1
|
Ferrara MA, Cavalletti E, Bianco V, Miccio L, Coppola G, Ferraro P, Sardo A. Holographic tomography of the diatom Skeletonema pseudocostatum used as a bioindicator of heavy metal-polluted waters. PLoS One 2025; 20:e0322960. [PMID: 40338937 PMCID: PMC12061135 DOI: 10.1371/journal.pone.0322960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/10/2025] Open
Abstract
Heavy metal contamination in aquatic environments poses a significant threat to microbial communities, yet the subcellular responses of phytoplankton to metal stress remain poorly understood. In particular, the effects of heavy metal exposure on the structural and physiological properties of diatoms require further investigation. Here, we analyze the impact of cadmium (Cd) and copper (Cu) exposure on the subcellular structures of the diatom Skeletonema pseudocostatum using holographic tomography. This imaging technique enables detailed visualization and quantitative analysis of diatom subcomponents, including frustules, protoplasm, vacuoles, and chloroplasts, under varying metal concentrations. The study aims to understand the changes in the mean refractive index (RI) and concentration (e.g., the ratio among cell dry mass and its biovolume) as indicators of cellular response to metal stress and to infer if such diatom can be used as sentinel species of heavy metal pollution. Findings indicate that diatoms exhibit significant variations in RI and internal cell density when exposed to different metal concentrations. Lower RI values observed at higher metal concentrations, can be considered as a sign of stress due to cytoplasm extrusion and/or vacuolization. The results highlight the potential of using S. pseudocostatum as a bioindicator for monitoring water metal pollution. Moreover, the results show that holographic tomography as useful tool for non-invasive, high-resolution cellular imaging of phytoplankton in environmental studies.
Collapse
Affiliation(s)
- Maria Antonietta Ferrara
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Italian National Research Council (ISASI-CNR), Via Pietro Castellino 111, Naples, Italy
| | - Elena Cavalletti
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Vittorio Bianco
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR), Pozzuoli (Naples), Italy
| | - Lisa Miccio
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR), Pozzuoli (Naples), Italy
| | - Giuseppe Coppola
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Italian National Research Council (ISASI-CNR), Via Pietro Castellino 111, Naples, Italy
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems, Italian National Research Council (ISASI-CNR), Pozzuoli (Naples), Italy
| | - Angela Sardo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
2
|
Hamada H, Kumar V, Yokota M. Spatiotemporal heterodyne multiplexing in digital holography for realizing broad recordable bandwidth. OPTICS LETTERS 2025; 50:2808-2811. [PMID: 40310771 DOI: 10.1364/ol.558730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/20/2025] [Indexed: 05/03/2025]
Abstract
To realize high-capacity holographic multiplexing, we propose an off-axis frequency-modulated continuous-wave digital holography (FMCW-DH) that utilizes both temporal and spatial frequencies as the multiplexable bandwidth. The temporal and spatial carrier frequencies for the multiplexed wavefronts are achieved by the frequency-modulated continuous-wave technique of the light source and the off-axis configuration of digital holography, respectively. The effectiveness of the proposed technique is demonstrated by multiplexing the multiple holograms generated by illuminating two objects at two wavelengths. Also, the phase distribution maps reconstructed from the recorded complex wavefronts were used to measure the surface profile of the known step height by using the two-wavelength method.
Collapse
|
3
|
Mills B, Zervas MN, Grant-Jacob JA. Diatom Lensless Imaging Using Laser Scattering and Deep Learning. ACS ES&T WATER 2025; 5:1814-1820. [PMID: 40242343 PMCID: PMC11997998 DOI: 10.1021/acsestwater.4c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
We present a novel approach for imaging diatoms using lensless imaging and deep learning. We used a laser beam to scatter off samples of diatomaceous earth (diatoms) and then recorded and transformed the scattered light into microscopy images of the diatoms. The predicted microscopy images gave an average SSIM of 0.98 and an average RMSE of 3.26 as compared to the experimental data. We also demonstrate the capability of determining the velocity and angle of movement of the diatoms from their scattering patterns as they were translated through the laser beam. This work shows the potential for imaging and identifying the movement of diatoms and other microsized organisms in situ within the marine environment. Implementing such a method for real-time image acquisition and analysis could enhance environmental management, including improving the early detection of harmful algal blooms.
Collapse
Affiliation(s)
- Ben Mills
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Michalis N. Zervas
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| | - James A. Grant-Jacob
- Optoelectronics Research
Centre, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
4
|
Chen H, Cao C, He P, Wang H, Du H, Wu X, Zhang Y, Ren D, Liu T, Ma Y, Fan C, Zhao Z. Phase aberration compensation and parasitic fringes elimination in digital holographic microscopy based on polarization. OPTICS EXPRESS 2025; 33:15588-15602. [PMID: 40219469 DOI: 10.1364/oe.560706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
In digital holographic microscopy, parasitic fringes caused by optical components and phase aberration introduced by the optical system are crucial issues that constrain measurement accuracy and reconstructed image quality. This paper presents a straightforward and effective physical approach to simultaneously compensate aberration and eliminate parasitic fringes in reflective holographic microscopy. By modulating the polarization states of both the parasitic beams and the sample beam, combined with a polarized beam splitter element, parasitic fringes can be efficiently eliminated. An improved reflective double exposure optical configuration is integrated into the proposed holographic microscopy. A criterion based on the number of interference fringes is developed to ensure the consistency between the phase aberrations recorded by the flat mirror and that recorded by the sample, which significantly improves the accuracy and robustness of reflective double exposure methods. Experimental results of a terahertz chip and a SoC chip demonstrate that the proposed method can eliminate arbitrary parasitic fringes while preserving image details, which is a challenge with traditional image filtering methods. Moreover, the proposed improved reflective double exposure method can compensate all aberrations regardless of the sample's morphology, without the need for complex numerical computations, prior knowledge of the morphology, or the troublesome and challenging optical alignment process.
Collapse
|
5
|
Liu H, Kumar S, Garcia E, Flanagan W, Lightley J, Dunsby C, French PM. Open-source implementation of polarisation-resolved single-shot differential phase contrast microscopy ( pDPC) on a modular openFrame-based microscope. HARDWAREX 2025; 21:e00622. [PMID: 39877828 PMCID: PMC11773044 DOI: 10.1016/j.ohx.2024.e00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025]
Abstract
We recently demonstrated polarisation differential phase contrast microscopy (pDPC) as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. pDPC utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. pDPC microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy. Here we present a low-cost open-source pDPC module that is designed for use with the modular open-source microscope stand "openFrame". With improved hardware and software, this new pDPC implementation provides a real-time readout of phase across a field of view that facilitates optimisation of system alignment. We also provide protocols for background subtraction and correction of crosstalk.
Collapse
Affiliation(s)
- Huihui Liu
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
| | - Sunil Kumar
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Edwin Garcia
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
- Department of Surgery & Cancer, Imperial College London SW7 2AZ, UK
| | - William Flanagan
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
| | - Jonathan Lightley
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Dunsby
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul M.W. French
- LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
6
|
Dong Z, Ling Y, Li Y, Su Y. Motion Hologram: Jointly optimized hologram generation and motion planning for photorealistic 3D displays via reinforcement learning. SCIENCE ADVANCES 2025; 11:eads9876. [PMID: 39879288 PMCID: PMC11777193 DOI: 10.1126/sciadv.ads9876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025]
Abstract
Holography is capable of rendering three-dimensional scenes with full-depth control and delivering transformative experiences across numerous domains, including virtual and augmented reality, education, and communication. However, traditional holography presents 3D scenes with unnatural defocus and severe speckles due to the limited space bandwidth product of the spatial light modulator (SLM). Here, we introduce Motion Hologram, a holographic technique that accurately portrays photorealistic and speckle-free 3D scenes. This technique leverages a single hologram and a learnable motion trajectory, which are jointly optimized within a deep reinforcement learning framework. Specifically, we experimentally demonstrated that the proposed technique could achieve a 4- to 5-dB PSNR improvement of focal stacks in comparison with traditional holography and could successfully depict speckle-free, high-fidelity, and full-color 3D displays using only a commercial SLM. We believe that the proposed method promises a prospective form of holographic displays that will offer immersive viewing experiences for audiences.
Collapse
Affiliation(s)
- Zhenxing Dong
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuye Ling
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Li
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yikai Su
- State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Yu Z, Bao K, Chen J, Lei J, Wang Q, Dou J, Liu J, Zhao M, Hu Y, Jing Q, Wang Y. Direct object recovery from the Fraunhofer diffraction integral. OPTICS LETTERS 2025; 50:534-537. [PMID: 39815555 DOI: 10.1364/ol.545213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
In this Letter, we present a novel, to the best of our knowledge, approach for recovering objects directly from the Fraunhofer diffraction integral, where the diffraction field of an object is approximated by the Fourier transform of this object augmented by an additional phase factor. This phase factor at the observation plane is universal for the diffraction fields generated by objects located at the same plane and illuminated by the same monochromatic plane wave. It can be first extracted from dividing the Fraunhofer diffraction field by the Fourier transform of an object reference. Rapid recovery for unknown objects is then enabled after applying a two-dimensional inverse Fourier transform to the ratio of the Fraunhofer diffraction fields to the phase factor. This approach is verified experimentally by constructing a modified Mach-Zehnder interferometer, with a digital micromirror device (DMD) generating the objects of desired structures. To record the Fraunhofer diffraction and interference patterns on a finite-size CCD camera, a convex lens is introduced with the CCD sensing surface positioned at the focal plane of the lens. The strategy described in [Nat. Commun.7, 10820 (2016)10.1038/ncomms10820] is applied to extract the phase of the diffraction field from the interference pattern. The results demonstrate the efficiency of our approach in swiftly and accurately recovering small objects with elimination of zero-order and conjugate images.
Collapse
|
8
|
Kumar M S, Hong J. Generalizable deep learning approach for 3D particle imaging using holographic microscopy (HM). OPTICS EXPRESS 2024; 32:48159-48173. [PMID: 39876127 DOI: 10.1364/oe.535207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/22/2024] [Indexed: 01/30/2025]
Abstract
Despite its potential for label-free particle diagnostics, holographic microscopy is limited by specialized processing methods that struggle to generalize across diverse settings. We introduce a deep learning architecture leveraging human perception of longitudinal variation of diffracted patterns of particles, which enables highly generalizable analysis of 3D particle information with orders of magnitude improvement in processing speed. Trained with minimal synthetic and real holograms of simple particles, our method demonstrates exceptional performance across various challenging cases, including high particle concentrations, significant noise, and a wide range of particle sizes, complex shapes, and optical properties, exceeding the diversity of training datasets.
Collapse
|
9
|
Haouat M, Larivière-Loiselle C, Crochetière MÈ, Chaniot J, Moreaud M, Bélanger E, Marquet P. Visualizing the fine structure and dynamics of living cells with temporal polychromatic digital holographic microscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:C109-C124. [PMID: 39889082 DOI: 10.1364/josaa.534150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 02/02/2025]
Abstract
Polychromatic digital holographic microscopy (P-DHM) has demonstrated its capacity to generate highly denoised optical path difference images, thereby enabling the label-free visualization of fine cellular structures, such as the dendritic arborization within neuronal cells in culture. So far, however, the sample must remain more or less stationary since P-DHM is performed manually, i.e., all actions are carried out sequentially over several minutes. In this paper, we propose fully automated, robust, and efficient management of the acquisition and reconstruction of the time series of polychromatic hologram sets, transforming P-DHM into temporal P-DHM. Experimental results have demonstrated the ability of the proposed temporal P-DHM implementation to non-invasively and quantitatively reveal the fine structure and dynamics of living cells.
Collapse
|
10
|
Chen N, Cao Y, Li J, Yang Q, Cao K, Tan L. Holography optimization based on combining iterative Green's function algorithm and deep learning method. OPTICS LETTERS 2024; 49:5619-5622. [PMID: 39353020 DOI: 10.1364/ol.531648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
In this Letter, we present a novel, to the best of our knowledge, approach that combines a new numerical iterative algorithm with a physics-informed neural network (PINN) architecture to solve the Helmholtz equation, thereby achieving highly generalized refractive index modulation holography. Firstly, we design a non-uniform refractive index convolutional neural network (NRI-CNN) to modify the refractive index and extract a feature vector. Then we propose an iterative Green's function algorithm (IGFA) to approximately solve the Helmholtz equation. In order to enhance the generalization ability of the solution, the abstracted vector is utilized as a multiplier term in IGFA, obtaining an approximately spatial distribution of the light field. Ultimately, we design a U-net to handle residuals of the Helmholtz equation and phases of optical fields (ERPU-net). We apply this method for holographic reconstructions on random Gaussian beams, beams with image data, and those altered by simulated turbulent phases.
Collapse
|
11
|
Dave H, Krupa S, Lebow P. Phase recovery from Fresnel incoherent correlation holography using differential Zernike fitting. OPTICS LETTERS 2024; 49:5023-5026. [PMID: 39270220 DOI: 10.1364/ol.531810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Fresnel incoherent correlation holography (FINCH) was created to improve imaging resolution and 3D imaging capabilities using spatially incoherent illumination. The optical setup of a FINCH-based interferometer is closely related to a radial shearing interferometer, which measures the radial phase difference of an input wavefront. By using phase retrieval methodologies from lateral shearing interferometry, namely, differential Zernike fitting (DZF), we show that FINCH-based and radial shearing interferometry can be used for phase retrieval and adaptive optics (AO). In this paper, we describe the phase retrieval algorithm using least squares-based DZF and demonstrate a simple adaptive optics loop with an aberrated point spread function using wave optics simulation. We find that FINCH-based phase retrieval has the advantages of fast phase retrieval measurements, thanks to well-studied least squares-based phase reconstruction methods, improved resolution compared to the Shack-Hartmann-based wavefront sensing, and the simplified optical setup of radial shearing interferometry.
Collapse
|
12
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
13
|
Pearce E, Wolley O, Mekhail SP, Gregory T, Gemmell NR, Oulton RF, Clark AS, Phillips CC, Padgett MJ. Single-frame transmission and phase imaging using off-axis holography with undetected photons. Sci Rep 2024; 14:16008. [PMID: 38992022 PMCID: PMC11239902 DOI: 10.1038/s41598-024-66233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible. This eliminates the need for phase stepping and multiple acquisitions, thereby greatly reducing total measurement time for imaging with long acquisition times at low flux or enabling video-rate imaging at higher flux. With this single-frame acquisition technique, we are able to reconstruct transmission images of an object in the infrared beam with a signal-to-noise ratio of 3.680 ± 0.004 at 10 frames per second, and record a dynamic scene in the infrared beam at 33 frames per second.
Collapse
Affiliation(s)
- Emma Pearce
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Osian Wolley
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simon P Mekhail
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas Gregory
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nathan R Gemmell
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Rupert F Oulton
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Alex S Clark
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1FD, Bristol, UK
| | - Chris C Phillips
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Miles J Padgett
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
14
|
Chow DJX, Tan TCY, Upadhya A, Lim M, Dholakia K, Dunning KR. Viewing early life without labels: optical approaches for imaging the early embryo†. Biol Reprod 2024; 110:1157-1174. [PMID: 38647415 PMCID: PMC11180623 DOI: 10.1093/biolre/ioae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Embryo quality is an important determinant of successful implantation and a resultant live birth. Current clinical approaches for evaluating embryo quality rely on subjective morphology assessments or an invasive biopsy for genetic testing. However, both approaches can be inherently inaccurate and crucially, fail to improve the live birth rate following the transfer of in vitro produced embryos. Optical imaging offers a potential non-invasive and accurate avenue for assessing embryo viability. Recent advances in various label-free optical imaging approaches have garnered increased interest in the field of reproductive biology due to their ability to rapidly capture images at high resolution, delivering both morphological and molecular information. This burgeoning field holds immense potential for further development, with profound implications for clinical translation. Here, our review aims to: (1) describe the principles of various imaging systems, distinguishing between approaches that capture morphological and molecular information, (2) highlight the recent application of these technologies in the field of reproductive biology, and (3) assess their respective merits and limitations concerning the capacity to evaluate embryo quality. Additionally, the review summarizes challenges in the translation of optical imaging systems into routine clinical practice, providing recommendations for their future development. Finally, we identify suitable imaging approaches for interrogating the mechanisms underpinning successful embryo development.
Collapse
Affiliation(s)
- Darren J X Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| | - Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Avinash Upadhya
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Megan Lim
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
15
|
Uchiyama I, Tsutake C, Takahashi K, Fujii T. Holographic phase retrieval via Wirtinger flow: Cartesian form with auxiliary amplitude. OPTICS EXPRESS 2024; 32:20600-20617. [PMID: 38859438 DOI: 10.1364/oe.523855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
We propose a new gradient method for holography, where a phase-only hologram is parameterized by not only the phase but also amplitude. The key idea of our approach is the formulation of a phase-only hologram using an auxiliary amplitude. We optimize the parameters using the so-called Wirtinger flow algorithm in the Cartesian domain, which is a gradient method defined on the basis of the Wirtinger calculus. At the early stage of optimization, each element of the hologram exists inside a complex circle, and it can take a large gradient while diverging from the origin. This characteristic contributes to accelerating the gradient descent. Meanwhile, at the final stage of optimization, each element evolves along a complex circle, similar to previous state-of-the-art gradient methods. The experimental results demonstrate that our method outperforms previous methods, primarily due to the optimization of the amplitude.
Collapse
|
16
|
Shangguan H, Urbach HP, Kalkman J. Lensless single-shot dual-wavelength digital holography for industrial metrology. APPLIED OPTICS 2024; 63:4427-4434. [PMID: 38856623 DOI: 10.1364/ao.519491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
We demonstrate lensless single-shot dual-wavelength digital holography for high-speed 3D imaging in industrial inspection. Single-shot measurement is realized by combining off-axis digital holography and spatial frequency multiplexing of the two wavelengths on the detector. The system has 9.1 µm lateral resolution and a 50 µm unambiguous depth range. We determine the theoretical accuracy of off-axis dual-wavelength phase reconstruction for the case of shot-noise-limited detection. Experimental results show good agreement with the proposed model. The system is applied to industrial metrology of calibrated test samples and chip manufacturing.
Collapse
|
17
|
Wang Z, Ma H, Chen Y, Liu D. Autofocusing in digital holography based on an adaptive genetic algorithm. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:976-987. [PMID: 38856405 DOI: 10.1364/josaa.518105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024]
Abstract
In digital holography (DH), determining the reconstruction distance is critical to the quality of the reconstructed image. However, traditional focal plane detection methods require considerable time investment to reconstruct and evaluate holograms at multiple distances. To address this inefficiency, this paper proposes a fast and accurate autofocusing method based on an adaptive genetic algorithm. This method only needs to find several reconstruction distances in the search area as an initial population, and then adaptively optimize the reconstruction distance through iteration to determine the optimal focal plane in the search area. In addition, an off-axis digital holographic optical system was used to capture the holograms of the USAF resolution test target and the coin. The simulation and experimental results indicated that, compared with the traditional autofocusing, the proposed method can reduce the computation time by about 70% and improve the focal plane accuracy by up to 0.5 mm.
Collapse
|
18
|
Chen B, Gao H, Huang L, Yan L, Lou Y, Fu X. Quantitative phase image stitching guided by reconstructed intensity images in one-shot double field of view multiplexed digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3727-3742. [PMID: 38867776 PMCID: PMC11166420 DOI: 10.1364/boe.523051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
In digital holographic microscopy (DHM), achieving large field of view (FOV) imaging while maintaining high resolution is critical for quantitative phase measurements of biological cell tissues and micro-nano structures. We present a quantitative phase image stitching guided by reconstructed intensity images in one-shot double FOV multiplexed DHM. Double FOVs are recorded simultaneously through frequency division multiplexing; intensity feature pairs are accurately extracted by multi-algorithm fusion; aberrations and non-common baselines are effectively corrected by preprocessing. Experimental results show that even if phase images have coherent noise, complex aberrations, low overlap rate and large size, this method can achieve high-quality phase stitching.
Collapse
Affiliation(s)
- Benyong Chen
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Gao
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liu Huang
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Yan
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingtian Lou
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaping Fu
- Precision Measurement Laboratory, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
19
|
Kularia M, Banerjee M, Khare K. Twin-stagnation-free phase retrieval with vortex phase illumination. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1166-1174. [PMID: 38856431 DOI: 10.1364/josaa.516339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
The recovery of a complex-valued exit wavefront from its Fourier transform magnitude is challenging due to the stagnation problems associated with iterative phase retrieval algorithms. Among the various stagnation artifacts, the twin-image stagnation is the most difficult to address. The upright object and its inverted and complex-conjugated twin correspond to the identical Fourier magnitude data and hence appear simultaneously in the iterative solution. We show that the twin stagnation problem can be eliminated completely if a coherent beam with charge-1 vortex phase is used for illumination. Unlike the usual plane wave illumination case, a charge-1 vortex illumination intentionally introduces an isolated zero near the zero spatial frequency region, where maximal energy in the Fourier space is usually concentrated for most natural objects. The early iterations of iterative phase retrieval algorithms are observed to develop a clockwise or anti-clockwise vortex in the vicinity of this isolated zero. Once the Fourier transform of the solution latches onto a specific vortex profile in the neighborhood of this intentionally introduced intensity zero in early iterations, the solution quickly adjusts to the corresponding twin (upright or inverted) and further iterations are not observed to bring the other twin into the reconstruction. Our simulation studies with the well-known hybrid input-output (HIO) algorithm show that the solution always converges to one of the twins within a few hundred iterations when vortex phase illumination is used. Using a clockwise or anti-clockwise vortex phase as an initial guess is also seen to deterministically lead to a solution consisting of the corresponding twin. The resultant solution still has some faint residual artifacts that can be addressed via the recently introduced complexity guidance methodology. There is an additional vortex phase in the final solution that can simply be subtracted out to obtain the original test object. The near guaranteed convergence to a twin-stagnation-free solution with vortex illumination as described here is potentially valuable for deploying practical imaging systems that work based on the iterative phase retrieval algorithms.
Collapse
|
20
|
Yamaguchi M, Saito H, Ikezawa S, Iwami K. Highly-efficient full-color holographic movie based on silicon nitride metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1425-1433. [PMID: 39679229 PMCID: PMC11636475 DOI: 10.1515/nanoph-2023-0756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 12/17/2024]
Abstract
Metasurface holograms offer various advantages, including wide viewing angle, small volume, and high resolution. However, full-color animation of high-resolution images has been a challenging issue. In this study, a full-color dielectric metasurface holographic movie with a resolution of 2322 × 2322 was achieved by spatiotemporally multiplexing 30 frames with blue, green, and red color channels at the wavelengths of 445 nm, 532 nm, and 633 nm at the maximum reconstruction speed of 55.9 frames per second. The high average transmittance and diffraction efficiency of 92.0 % and 72.7 %, respectively, in the visible range, were achieved by adopting polarization-independent silicon nitride waveguide meta-atoms, resulting in high color reproducibility. The superposition of three wavelengths was achieved by adjusting the resolutions and positions of target images for each wavelength while maintaining the meta-atom pitch constant. The improvement in diffraction efficiency was brought about by the optimization of etching conditions to form high-aspect vertical nanopillar structures.
Collapse
Affiliation(s)
- Masakazu Yamaguchi
- Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| | - Hiroki Saito
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| | - Satoshi Ikezawa
- Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo169–8555Japan
| | - Kentaro Iwami
- Department of Bio-Functions and Systems Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo184–8588Japan
| |
Collapse
|
21
|
Long Z, Yuan Z, Fan X, He Z. Hyperspectral digital holography realized by using an electro-optical frequency comb via injection locking. OPTICS LETTERS 2024; 49:1516-1519. [PMID: 38489439 DOI: 10.1364/ol.516131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/17/2024] [Indexed: 03/17/2024]
Abstract
Hyperspectral digital holography (HSDH) is a versatile holographic imaging technique that offers large unambiguous depth range and spectroscopic information. In this Letter, we propose a novel, to the best of our knowledge, HSDH system that is realized by using an electro-optical frequency comb (EOFC) via injection locking. In comparison with conventional dual-comb HSDH, the proposed system only requires one EOFC and few other devices, which not only simplifies the system structure and reduces the cost but also improves the imaging speed. We validated the system using an EOFC with 20 optical frequencies spaced at 18 GHz intervals. In a total measurement time of 0.5 s, we successfully captured images of two targets that were 0.74 mm apart without phase ambiguity and obtained the transmission spectrum of an absorbing gas simultaneously. This work provides valuable insights for HSDH systems relying on an optical frequency comb.
Collapse
|
22
|
Goyal N, Khare K. Carrier-frequency estimation for digital holograms of phase objects. APPLIED OPTICS 2024; 63:B42-B48. [PMID: 38437254 DOI: 10.1364/ao.505663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/16/2023] [Indexed: 03/06/2024]
Abstract
Accurate estimation of carrier fringe frequency is essential for the demodulation of off-axis digital holograms. The fringe frequency is often associated with the amplitude peak of the cross-term in the two-dimensional Fourier transform of a digital hologram. We point out that this definition of carrier frequency is not valid in general for holograms associated with phase objects. We examine the carrier-envelope representation for digital holograms from the viewpoint of Mandel's criterion [J. Opt. Soc. Am.57, 613 (1967)10.1364/JOSA.57.000613]. An appropriate definition of carrier frequency is observed to be the centroid of the power spectrum associated with the cross term. This definition is shown to apply uniformly to holograms associated with phase objects, is robust to noise, and leads to the smoothest (or least fluctuating) envelope representation for the demodulated object wave. The proposed definition is illustrated with simulated as well as experimentally recorded off-axis holograms.
Collapse
|
23
|
Berg MJ, Aleau K, Ceolato R. Measuring spectral extinction with digital holography. APPLIED OPTICS 2024; 63:B134-B142. [PMID: 38437264 DOI: 10.1364/ao.506873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
The optical extinction caused by a small particle, such as an aerosol particle, is an important measurable quantity. Understanding the influence of atmospheric aerosols on the climate, assessing visibility in urban environments, and remote sensing applications such as lidar all need accurate measurements of particle extinction. While multiple methods are known to measure extinction, digital in-line holography (DIH) features the unique ability to provide contact-free images of particles simultaneously with estimates for the extinction cross section. This is achieved through an integration of a measured hologram followed by an extrapolation. By means of a supercontinuum laser, we investigate the measurement of the cross section via DIH for stationary particles across a broad spectrum, from 440 nm to 1040 nm. The particles considered include a 50 µm glass microsphere, a volcanic ash particle, and an iron(III) oxide particle. The results show the ability to estimate a particle's cross section to within 10% error across portions of the spectrum and approximately 20% error otherwise. An examination of the accompanying hologram-derived particle images reveals details in the images that evolve with wavelength. The behavior suggests a basic means to resolve whether absorption or scattering dominates a particle's extinction.
Collapse
|
24
|
Sheng W, Liu Y, Shi Y. General phase-difference imaging of incoherent digital holography. OPTICS EXPRESS 2024; 32:8473-8483. [PMID: 38439502 DOI: 10.1364/oe.516467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
The hologram formed by incoherent holography based on self-interference should preserve the phase difference information of the object, such as the phase difference between the mutually orthogonal polarizations of anisotropic object. How to decode this phase difference from this incoherent hologram, i.e., phase-difference imaging, is of great significance for studying the properties of the measured object. However, there is no general phase-difference imaging theory due to both diverse incoherent holography systems and the complicated reconstruction process from holograms based on the diffraction theory. To realize phase-difference image in incoherent holography, the relationship between the phase difference of the object and the image reconstructed by holograms is derived using a general physical model of incoherent holographic systems, and then the additional phase that will distort this relationship in actual holographic systems is analyzed and eliminated. Finally, the phase-difference imaging that is suitable for the most incoherent holographic systems is realized and the general theory is experimentally verified. This technology can be applied to phase-difference imaging of anisotropic objects, and has potential applications in materials science, biomedicine, polarized optics and other fields.
Collapse
|
25
|
Xu F, Wu Z, Tan C, Liao Y, Wang Z, Chen K, Pan A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells 2024; 13:324. [PMID: 38391937 PMCID: PMC10887115 DOI: 10.3390/cells13040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Fourier ptychographic microscopy (FPM) emerged as a prominent imaging technique in 2013, attracting significant interest due to its remarkable features such as precise phase retrieval, expansive field of view (FOV), and superior resolution. Over the past decade, FPM has become an essential tool in microscopy, with applications in metrology, scientific research, biomedicine, and inspection. This achievement arises from its ability to effectively address the persistent challenge of achieving a trade-off between FOV and resolution in imaging systems. It has a wide range of applications, including label-free imaging, drug screening, and digital pathology. In this comprehensive review, we present a concise overview of the fundamental principles of FPM and compare it with similar imaging techniques. In addition, we present a study on achieving colorization of restored photographs and enhancing the speed of FPM. Subsequently, we showcase several FPM applications utilizing the previously described technologies, with a specific focus on digital pathology, drug screening, and three-dimensional imaging. We thoroughly examine the benefits and challenges associated with integrating deep learning and FPM. To summarize, we express our own viewpoints on the technological progress of FPM and explore prospective avenues for its future developments.
Collapse
Affiliation(s)
- Fannuo Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zipei Wu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chao Tan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Yizheng Liao
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiping Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keru Chen
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - An Pan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; (F.X.); (Z.W.); (C.T.); (Y.L.); (Z.W.); (K.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
March JG, Krishnan A, Mantiuk RK, Watt SJ. Impact of focus cue presentation on perceived realism of 3-D scene structure: Implications for scene perception and for display technology. J Vis 2024; 24:13. [PMID: 38411956 PMCID: PMC10910649 DOI: 10.1167/jov.24.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024] Open
Abstract
Stereoscopic imagery often aims to evoke three-dimensional (3-D) percepts that are accurate and realistic-looking. The "gap" between 3-D imagery and real scenes is small, but focus cues typically remain incorrect because images are displayed on a single focal plane. Research has concentrated on the resulting vergence-accommodation conflicts. Yet, incorrect focus cues may also affect the appearance of 3-D imagery. We investigated whether incorrect focus cues reduce perceived realism of 3-D structure ("depth realism"). Experiment 1 used a multiple-focal-planes display to compare depth realism with correct focus cues vs. conventional stereo presentation. The stimuli were random-dot stereograms, which isolated the role of focus cues. Depth realism was consistently lower with incorrect focus cues, providing proof-of-principle evidence that they contribute to perceptual realism. Experiments 2 and 3 examined whether focus cues play a similar role with realistic objects, presented with an almost complete set of visual cues using a high-resolution, high-dynamic-range multiple-focal-planes display. We also examined the efficacy of approximating correct focus cues via gaze-contingent depth-of-field rendering. Improvements in depth realism with correct focus cues were less clear in more realistic scenes, indicating that the role of focus cues in depth realism depends on scene content. Rendering-based approaches, if anything, reduced depth realism, which we attribute to their inability to present higher-order aspects of blur correctly. Our findings suggest future general 3-D display solutions may need to present focus cues correctly to maximise perceptual realism.
Collapse
Affiliation(s)
- Joseph G March
- Department of Computer Science and Technology University of Cambridge, UK
- https://www.cst.cam.ac.uk/people/jgm45
| | | | - Rafal K Mantiuk
- Department of Computer Science and Technology University of Cambridge, UK
- https://www.cl.cam.ac.uk/~rkm38/
| | - Simon J Watt
- School of Psychology and Sport Science Bangor University, UK
- http://watt-lab.bangor.ac.uk/
| |
Collapse
|
27
|
Wen K, Idicula MS, Józwik M, Choo HG, Gao P, Kozacki T. Spherical wave illumination scanning digital holographic profilometry. OPTICS EXPRESS 2024; 32:1609-1624. [PMID: 38297709 DOI: 10.1364/oe.507233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/10/2023] [Indexed: 02/02/2024]
Abstract
In this work, we proposed what we believe to be a novel scanning solution for the assessment of high-NA samples, referred to as spherical-wave illumination scanning digital holographic profilometry (SWS-DHP). This approach introduces a 2F optimization methodology, based on the measurement of the focal length of the object to determine the spherical component of the scanning. Furthermore, re-optimization of 2F, whether it needs to be operated depends on the measured object's NA to inspect more information. Meanwhile, utilizing phase space analysis shows SWS superiority in information transfer for high-NA samples compared to plane-wave illumination scanning. In addition, this method introduces a shape reconstruction algorithm with volumetric aberration compensation based on the propagation of the aberrated object and illumination waves to obtain high-quality measurements. Finally, the imaging merits of SWS-DHP were proved through simulations and were experimentally verified for the object of NA up to 0.87.
Collapse
|
28
|
De Koninck Y, Alonso J, Bancelin S, Béïque JC, Bélanger E, Bouchard C, Canossa M, Chaniot J, Choquet D, Crochetière MÈ, Cui N, Danglot L, De Koninck P, Devor A, Ducros M, Getz AM, Haouat M, Hernández IC, Jowett N, Keramidis I, Larivière-Loiselle C, Lavoie-Cardinal F, MacGillavry HD, Malkoç A, Mancinelli M, Marquet P, Minderler S, Moreaud M, Nägerl UV, Papanikolopoulou K, Paquet ME, Pavesi L, Perrais D, Sansonetti R, Thunemann M, Vignoli B, Yau J, Zaccaria C. Understanding the nervous system: lessons from Frontiers in Neurophotonics. NEUROPHOTONICS 2024; 11:014415. [PMID: 38545127 PMCID: PMC10972537 DOI: 10.1117/1.nph.11.1.014415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.
Collapse
Affiliation(s)
- Yves De Koninck
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Johanna Alonso
- CERVO Brain Research Centre, Québec City, Québec, Canada
| | - Stéphane Bancelin
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | - Jean-Claude Béïque
- University of Ottawa, Brain and Mind Research Institute, Centre of Neural Dynamics, Ottawa, Ontario, Canada
| | - Erik Bélanger
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Département de physique, de génie physique et d’optique, Québec City, Québec, Canada
| | - Catherine Bouchard
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Institute Intelligence and Data, Québec City, Québec, Canada
| | - Marco Canossa
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
| | - Johan Chaniot
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Daniel Choquet
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | | | - Nanke Cui
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Paul De Koninck
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Biochemistry, Microbiology, and Bioinformatics, Faculty of Science and Engineering, Québec City, Québec, Canada
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Mathieu Ducros
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | - Angela M. Getz
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
- University of Bordeaux, CNRS, Institut national de la santé et de la recherche médicale (INSERM), Bordeaux Imaging Center (BIC), Bordeaux, France
| | - Mohamed Haouat
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
| | - Iván Coto Hernández
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Nate Jowett
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | | | - Céline Larivière-Loiselle
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Département de physique, de génie physique et d’optique, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Institute Intelligence and Data, Québec City, Québec, Canada
| | - Harold D. MacGillavry
- Utrecht University, Faculty of Science, Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht, The Netherlands
| | - Asiye Malkoç
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
- University of Trento, Department of Physics, Trento, Italy
| | | | - Pierre Marquet
- CERVO Brain Research Centre, Québec City, Québec, Canada
- Laval University, Department of Psychiatry and Neurosciences, Faculty of Medicine, Québec City, Québec, Canada
- Laval University, Centre d’optique, photonique et laser (COPL), Québec City, Québec, Canada
| | - Steven Minderler
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Maxime Moreaud
- CERVO Brain Research Centre, Québec City, Québec, Canada
- IFP Energies nouvelles, Solaize, France
| | - U. Valentin Nägerl
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | | | - Lorenzo Pavesi
- University of Trento, Department of Physics, Trento, Italy
| | - David Perrais
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, National Centre for Scientific Research (CNRS), Bordeaux, France
| | | | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Beatrice Vignoli
- University of Trento, Department of Cellular Computational and Integrative Biology, Trento, Italy
- University of Trento, Department of Physics, Trento, Italy
| | - Jenny Yau
- Harvard Medical School, Surgical Photonics & Engineering Laboratory, Mass Eye and Ear, Boston, Massachusetts, United States
| | - Clara Zaccaria
- University of Trento, Department of Physics, Trento, Italy
| |
Collapse
|
29
|
Castaneda R, Trujillo C, Doblas A. In-focus quantitative phase imaging from defocused off-axis holograms: synergistic reconstruction framework. OPTICS LETTERS 2023; 48:6244-6247. [PMID: 38039237 DOI: 10.1364/ol.506400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Digital holographic microscopy (DHM) enables the three-dimensional (3D) reconstruction of quantitative phase distributions from a defocused hologram. Traditional computational algorithms follow a sequential approach in which one first reconstructs the complex amplitude distribution and later applies focusing algorithms to provide an in-focus phase map. In this work, we have developed a synergistic computational framework to compensate for the linear tilt introduced in off-axis DHM systems and autofocus the defocused holograms by minimizing a cost function, providing in-focus reconstructed phase images without phase distortions. The proposed computational tool has been validated in defocused holograms of human red blood cells and three-dimensional images of dynamic sperm cells.
Collapse
|
30
|
Abbasian V, Darafsheh A, Moradi AR. Simple high-resolution 3D microscopy by a dielectric microsphere: a proof of concept. OPTICS LETTERS 2023; 48:6216-6219. [PMID: 38039230 DOI: 10.1364/ol.502599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
We present a simple high-resolution approach for 3D and quantitative phase imaging (QPI). Our method makes the most of a glass microsphere (MS) for microscopy and a glass plate for lateral shearing self-referencing interferometry. The single MS serves all the functions of a microscope objective (MO) in digital holographic microscopy (DHM) while offering the advantages of compactness, lightness, and affordability. A proof-of-concept experiment is performed on a standard diffraction grating, and various effective parameters on the imaging performance are investigated. The results are validated by atomic force microscopy and Mirau-DHM, and 3D morphometric information of the sample under inspection is obtained. The technique is then applied for 3D quantitative measurement and visualization of a human red blood cell, proving the principle of our easy-to-implement and vibration-immune arrangement for high-contrast label-free QPI of biological samples, and its utility in cell morphology, identification, and classification.
Collapse
|
31
|
Kim HW, Cho M, Lee MC. A Novel Image Processing Method for Obtaining an Accurate Three-Dimensional Profile of Red Blood Cells in Digital Holographic Microscopy. Biomimetics (Basel) 2023; 8:563. [PMID: 38132502 PMCID: PMC10741912 DOI: 10.3390/biomimetics8080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Recently, research on disease diagnosis using red blood cells (RBCs) has been active due to the advantage that it is possible to diagnose many diseases with a drop of blood in a short time. Representatively, there are disease diagnosis technologies that utilize deep learning techniques and digital holographic microscope (DHM) techniques. However, three-dimensional (3D) profile obtained by DHM has a problem of random noise caused by the overlapping DC spectrum and sideband in the Fourier domain, which has the probability of misjudging diseases in deep learning technology. To reduce random noise and obtain a more accurate 3D profile, in this paper, we propose a novel image processing method which randomly selects the center of the high-frequency sideband (RaCoHS) in the Fourier domain. This proposed algorithm has the advantage of filtering while using only recorded hologram information to maintain high-frequency information. We compared and analyzed the conventional filtering method and the general image processing method to verify the effectiveness of the proposed method. In addition, the proposed image processing algorithm can be applied to all digital holography technologies including DHM, and in particular, it is expected to have a great effect on the accuracy of disease diagnosis technologies using DHM.
Collapse
Affiliation(s)
- Hyun-Woo Kim
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan;
| | - Myungjin Cho
- School of ICT, Robotics, and Mechanical Engineering, Hankyong National University, Institute of Information and Telecommunication Convergence, 327 Chungang-ro, Anseong 17579, Kyonggi-do, Republic of Korea
| | - Min-Chul Lee
- Department of Computer Science and Networks, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka 820-8502, Japan;
| |
Collapse
|
32
|
Jamali R, Rad VF, Razaghi M, Mohamadnia Z, Khorasani M, Moradi AR. Digital holographic microscopy of spiropyran-based dynamic materials. J Microsc 2023; 292:78-89. [PMID: 37694978 DOI: 10.1111/jmi.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Spiropyran (SP)-based dynamic materials undergo structural changes in response to external stimuli. In this paper, we show that digital holographic microscopy (DHM) is an effective candidate for characterisation of SPs (embedded in polymer matrices) and for monitoring of their dynamical changes. The polymer matrices are polylactic acid (PLA) and poly(methyl methacrylate) (PMMA) films, which are decorated with SPs and immobilised on graphene quantum dots (GQDs). GQDs are modified by benzylamines prior to the loading of SP species because of the enhancement of hydrophobic characteristics. UV irradiation is used as the external stimulus and the dynamical changes of the samples before and after UV irradiation are measured. DHM is arranged on a novel self-referencing setup, which substantially reduces the sensitivity of DHM to environmental vibrations. Morphometric information for characterisation of the samples is obtained by analysis of the recorded digital holograms. The experimental results demonstrate the potential of the presented technique to serve as an alternative technique for surface measurement methodologies such as atomic force microscope and stylus profiler for surface characterisation of similar materials.
Collapse
Affiliation(s)
- Ramin Jamali
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Vahideh Farzam Rad
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Masoumeh Razaghi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mojtaba Khorasani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
33
|
Istrate E, Pedrini G, Reichelt S. Lensless microscopy by multiplane recordings: sub-micrometer, diffraction-limited, wide field-of-view imaging. OPTICS EXPRESS 2023; 31:36388-36401. [PMID: 38017792 DOI: 10.1364/oe.503944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 11/30/2023]
Abstract
Lensless microscopy is attractive because lenses are often large, heavy and expensive. We report diffraction-limited, sub-micrometer resolution in a lensless imaging system that does not need a reference wave and imposes few restrictions on the density of the sample. We use measurements of the intensity of light scattered by the sample at multiple heights above the sample and a modified Gerchberg-Saxton algorithm to reconstruct the phase of the optical field. We introduce a pixel-splitting algorithm that increases resolution beyond the size of the sensor pixels, and implement high-dynamic-range measurements. The resolution depends on the numerical aperture of the first measurement height only, while the field of view is limited by the last measurement height only. As a result, resolution and field of view can be controlled independently. The pixel-splitting algorithm also allows imaging with light of low spatial coherence, and we show that such low coherence is beneficial for a larger field of view. Using illumination from three LEDs, we produce full-color images of biological samples. Finally, we provide a detailed analysis of the limiting factors of this lensless microscopy system. The good performance demonstrated here can allow lensless systems to replace conventional microscope objectives in some situations.
Collapse
|
34
|
Kim JH, Jang SH, Kim YJ. Photolithographic patterning on multi-wavelength quantum dot film of the improved conversion efficiency for digital holography. OPTICS EXPRESS 2023; 31:34667-34676. [PMID: 37859217 DOI: 10.1364/oe.498121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
A triple-wavelength patterned quantum dot film was fabricated for the light source of digital holography to improve both the axial measurement range and noise reduction. The patterned quantum dot film was fabricated after optimizing the photolithography process condition based on the UV-curable quantum dot solution, which was capable of multiple patterning processes. In addition, an optimized pattern structure was developed by adding TiO2 nanoparticles to both the quantum dot and bank layers to increase the scattering effect for the improved photoluminescence intensity. Finally, the newly developed light source with the balanced spectral distribution was applied to the digital holography, rendering it applicable as an improved light source.
Collapse
|
35
|
Hassini H, Dorizzi B, Thellier M, Klossa J, Gottesman Y. Investigating the Joint Amplitude and Phase Imaging of Stained Samples in Automatic Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:7932. [PMID: 37765989 PMCID: PMC10536387 DOI: 10.3390/s23187932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
The diagnosis of many diseases relies, at least on first intention, on an analysis of blood smears acquired with a microscope. However, image quality is often insufficient for the automation of such processing. A promising improvement concerns the acquisition of enriched information on samples. In particular, Quantitative Phase Imaging (QPI) techniques, which allow the digitization of the phase in complement to the intensity, are attracting growing interest. Such imaging allows the exploration of transparent objects not visible in the intensity image using the phase image only. Another direction proposes using stained images to reveal some characteristics of the cells in the intensity image; in this case, the phase information is not exploited. In this paper, we question the interest of using the bi-modal information brought by intensity and phase in a QPI acquisition when the samples are stained. We consider the problem of detecting parasitized red blood cells for diagnosing malaria from stained blood smears using a Deep Neural Network (DNN). Fourier Ptychographic Microscopy (FPM) is used as the computational microscopy framework to produce QPI images. We show that the bi-modal information enhances the detection performance by 4% compared to the intensity image only when the convolution in the DNN is implemented through a complex-based formalism. This proves that the DNN can benefit from the bi-modal enhanced information. We conjecture that these results should extend to other applications processed through QPI acquisition.
Collapse
Affiliation(s)
- Houda Hassini
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
- TRIBVN/T-Life, 92800 Puteaux, France;
| | - Bernadette Dorizzi
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| | - Marc Thellier
- AP-HP, Centre National de Référence du Paludisme, 75013 Paris, France;
- Institut Pierre-Louis d’Épidémiologie et de Santé Publique, Sorbonne Université, INSERM, 75013 Paris, France
| | | | - Yaneck Gottesman
- Samovar, Télécom SudParis, Institut Polytechnique de Paris, 91120 Palaiseau, France; (B.D.); (Y.G.)
| |
Collapse
|
36
|
Dudaie M, Barnea I, Nissim N, Shaked NT. On-chip label-free cell classification based directly on off-axis holograms and spatial-frequency-invariant deep learning. Sci Rep 2023; 13:12370. [PMID: 37524884 PMCID: PMC10390541 DOI: 10.1038/s41598-023-38160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
We present a rapid label-free imaging flow cytometry and cell classification approach based directly on raw digital holograms. Off-axis holography enables real-time acquisition of cells during rapid flow. However, classification of the cells typically requires reconstruction of their quantitative phase profiles, which is time-consuming. Here, we present a new approach for label-free classification of individual cells based directly on the raw off-axis holographic images, each of which contains the complete complex wavefront (amplitude and quantitative phase profiles) of the cell. To obtain this, we built a convolutional neural network, which is invariant to the spatial frequencies and directions of the interference fringes of the off-axis holograms. We demonstrate the effectiveness of this approach using four types of cancer cells. This approach has the potential to significantly improve both speed and robustness of imaging flow cytometry, enabling real-time label-free classification of individual cells.
Collapse
Affiliation(s)
- Matan Dudaie
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Itay Barnea
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Noga Nissim
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
37
|
Manisha, Mandal AC, Rathor M, Zalevsky Z, Singh RK. Randomness assisted in-line holography with deep learning. Sci Rep 2023; 13:10986. [PMID: 37419990 PMCID: PMC10329003 DOI: 10.1038/s41598-023-37810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
We propose and demonstrate a holographic imaging scheme exploiting random illuminations for recording hologram and then applying numerical reconstruction and twin image removal. We use an in-line holographic geometry to record the hologram in terms of the second-order correlation and apply the numerical approach to reconstruct the recorded hologram. This strategy helps to reconstruct high-quality quantitative images in comparison to the conventional holography where the hologram is recorded in the intensity rather than the second-order intensity correlation. The twin image issue of the in-line holographic scheme is resolved by an unsupervised deep learning based method using an auto-encoder scheme. Proposed learning technique leverages the main characteristic of autoencoders to perform blind single-shot hologram reconstruction, and this does not require a dataset of samples with available ground truth for training and can reconstruct the hologram solely from the captured sample. Experimental results are presented for two objects, and a comparison of the reconstruction quality is given between the conventional inline holography and the one obtained with the proposed technique.
Collapse
Affiliation(s)
- Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Mohit Rathor
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Zeev Zalevsky
- Faculty of Engineering and Nano Technology Center, Bar-Ilan University, Ramat Gan, Israel
| | - Rakesh Kumar Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
38
|
Dwapanyin GO, Chow DJX, Tan TCY, Dubost NS, Morizet JM, Dunning KR, Dholakia K. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3327-3342. [PMID: 37497510 PMCID: PMC10368053 DOI: 10.1364/boe.492292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the in vitro fertilization clinic. Determining physical parameters of the embryo may offer key information for this purpose. Here, we demonstrate that digital holographic microscopy (DHM) can rapidly and non-invasively assess the refractive index of mouse embryos. Murine embryos were cultured in either low- or high-lipid containing media and digital holograms recorded at various stages of development. The phase of the recorded hologram was numerically retrieved, from which the refractive index of the embryo was calculated. We showed that DHM can detect spatio-temporal changes in refractive index during embryo development that are reflective of its lipid content. As accumulation of intracellular lipid is known to compromise embryo health, DHM may prove beneficial in developing an accurate, non-invasive, multimodal diagnostic.
Collapse
Affiliation(s)
- George O. Dwapanyin
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Darren J. X. Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Tiffany C. Y. Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicolas S. Dubost
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Josephine M. Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Kylie R. Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Wen K, Gao Z, Liu R, Fang X, Ma Y, Zheng J, An S, Kozacki T, Gao P. Structured illumination phase and fluorescence microscopy for bioimaging. APPLIED OPTICS 2023; 62:4871-4879. [PMID: 37707263 DOI: 10.1364/ao.486718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/14/2023] [Indexed: 09/15/2023]
Abstract
This study presents a dual-modality microscopic imaging approach that combines quantitative phase microscopy and fluorescence microscopy based on structured illumination (SI) to provide structural and functional information for the same sample. As the first imaging modality, structured illumination digital holographic microscopy (SI-DHM) is implemented along the transmission beam path. SI-DHM acts as a label-free, noninvasive approach and provides high-contrast and quantitative phase images utilizing the refractive index contrast of the inner structures of samples against the background. As the second imaging modality, structured illumination (fluorescence) microscopy (SIM) is constructed along the reflection beam path. SIM utilizes fluorescent labeling and provides super-resolution images for specific functional structures of samples. We first experimentally demonstrated phase imaging of SI-DHM on rice leaves and fluorescence (SIM) imaging on mouse kidney sections. Then, we demonstrated dual-modality imaging of biological samples, using DHM to acquire the overall cell morphology and SIM to obtain specific functional structures. These results prove that the proposed technique is of great importance in biomedical studies, such as providing insight into cell physiology by visualizing and quantifying subcellular structures.
Collapse
|
40
|
Yu H, Kim Y, Yang D, Seo W, Kim Y, Hong JY, Song H, Sung G, Sung Y, Min SW, Lee HS. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system. Nat Commun 2023; 14:3534. [PMID: 37316495 DOI: 10.1038/s41467-023-39329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/02/2023] [Indexed: 06/16/2023] Open
Abstract
While recent research has shown that holographic displays can represent photorealistic 3D holograms in real time, the difficulty in acquiring high-quality real-world holograms has limited the realization of holographic streaming systems. Incoherent holographic cameras, which record holograms under daylight conditions, are suitable candidates for real-world acquisition, as they prevent the safety issues associated with the use of lasers; however, these cameras are hindered by severe noise due to the optical imperfections of such systems. In this work, we develop a deep learning-based incoherent holographic camera system that can deliver visually enhanced holograms in real time. A neural network filters the noise in the captured holograms, maintaining a complex-valued hologram format throughout the whole process. Enabled by the computational efficiency of the proposed filtering strategy, we demonstrate a holographic streaming system integrating a holographic camera and holographic display, with the aim of developing the ultimate holographic ecosystem of the future.
Collapse
Affiliation(s)
- Hyeonseung Yu
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Youngrok Kim
- Department of Information Display, KyungHee University, 26, Kyungheedae-ro, Seoul, 02447, South Korea
| | - Daeho Yang
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
- Department of Physics, Gachon University, 1342 Seongnam-daero, Seongnam, Gyeonggi-do, 13120, South Korea
| | - Wontaek Seo
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Yunhee Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Jong-Young Hong
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Hoon Song
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Geeyoung Sung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Younghun Sung
- Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Suwon, 16678, Gyeonggi-do, South Korea
| | - Sung-Wook Min
- Department of Information Display, KyungHee University, 26, Kyungheedae-ro, Seoul, 02447, South Korea.
| | - Hong-Seok Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Seoul, 08826, South Korea.
| |
Collapse
|
41
|
Hurley N, Kamau S, Cui J, Lin Y. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. MICROMACHINES 2023; 14:1217. [PMID: 37374802 DOI: 10.3390/mi14061217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
A moiré photonic crystal is an optical analog of twisted graphene. A 3D moiré photonic crystal is a new nano-/microstructure that is distinguished from bilayer twisted photonic crystals. Holographic fabrication of a 3D moiré photonic crystal is very difficult due to the coexistence of the bright and dark regions, where the exposure threshold is suitable for one region but not for the other. In this paper, we study the holographic fabrication of 3D moiré photonic crystals using an integrated system of a single reflective optical element (ROE) and a spatial light modulator (SLM) where nine beams (four inner beams + four outer beams + central beam) are overlapped. By modifying the phase and amplitude of the interfering beams, the interference patterns of 3D moiré photonic crystals are systemically simulated and compared with the holographic structures to gain a comprehensive understanding of SLM-based holographic fabrication. We report the holographic fabrication of phase and beam intensity ratio-dependent 3D moiré photonic crystals and their structural characterization. Superlattices modulated in the z-direction of 3D moiré photonic crystals have been discovered. This comprehensive study provides guidance for future pixel-by-pixel phase engineering in SLM for complex holographic structures.
Collapse
Affiliation(s)
- Noah Hurley
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Steve Kamau
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
42
|
Wetherfield B, Wilkinson TD. Planar Fourier optics for slab waveguides, surface plasmon polaritons, and 2D materials. OPTICS LETTERS 2023; 48:2945-2948. [PMID: 37262250 DOI: 10.1364/ol.491576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
Recent experimental work has demonstrated the potential of combining the merits of diffractive and on-chip photonic information processing devices in a single chip by making use of planar (or slab) waveguides. Here, arguments are developed to show that diffraction formulas familiar from 3D Fourier optics can be adapted to 2D under certain mild conditions on the operating speeds of the devices in question. In addition to serving those working in on-chip photonics, this Letter provides analytical tools for the study of surface plasmon polaritons, surface waves, and the optical, acoustic, and crystallographic properties of 2D materials.
Collapse
|
43
|
Sun J, Czarske JW. Compressive holographic sensing simplifies quantitative phase imaging. LIGHT, SCIENCE & APPLICATIONS 2023; 12:121. [PMID: 37198148 DOI: 10.1038/s41377-023-01145-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image. This paradigm shift is promising for advanced QPI of cells and tissues.
Collapse
Affiliation(s)
- Jiawei Sun
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany
| | - Juergen W Czarske
- Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.
- Laboratory of Measurement and Sensor System Technique (MST), TU Dresden, Helmholtzstrasse 18, 01069, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Institute of Applied Physics, TU Dresden, Dresden, Germany.
| |
Collapse
|
44
|
Ebner C, Mohr P, Langlotz T, Peng Y, Schmalstieg D, Wetzstein G, Kalkofen D. Off-Axis Layered Displays: Hybrid Direct-View/Near-Eye Mixed Reality with Focus Cues. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2816-2825. [PMID: 37027729 DOI: 10.1109/tvcg.2023.3247077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This work introduces off-axis layered displays, the first approach to stereoscopic direct-view displays with support for focus cues. Off-axis layered displays combine a head-mounted display with a traditional direct-view display for encoding a focal stack and thus, for providing focus cues. To explore the novel display architecture, we present a complete processing pipeline for the real-time computation and post-render warping of off-axis display patterns. In addition, we build two prototypes using a head-mounted display in combination with a stereoscopic direct-view display, and a more widely available monoscopic direct-view display. In addition we show how extending off-axis layered displays with an attenuation layer and with eye-tracking can improve image quality. We thoroughly analyze each component in a technical evaluation and present examples captured through our prototypes.
Collapse
|
45
|
Lee C, Hugonnet H, Park J, Lee MJ, Park W, Park Y. Single-shot refractive index slice imaging using spectrally multiplexed optical transfer function reshaping. OPTICS EXPRESS 2023; 31:13806-13816. [PMID: 37157259 DOI: 10.1364/oe.485559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The refractive index (RI) of cells and tissues is crucial in pathophysiology as a noninvasive and quantitative imaging contrast. Although its measurements have been demonstrated using three-dimensional quantitative phase imaging methods, these methods often require bulky interferometric setups or multiple measurements, which limits the measurement sensitivity and speed. Here, we present a single-shot RI imaging method that visualizes the RI of the in-focus region of a sample. By exploiting spectral multiplexing and optical transfer function engineering, three color-coded intensity images of a sample with three optimized illuminations were simultaneously obtained in a single-shot measurement. The measured intensity images were then deconvoluted to obtain the RI image of the in-focus slice of the sample. As a proof of concept, a setup was built using Fresnel lenses and a liquid-crystal display. For validation purposes, we measured microspheres of known RI and cross-validated the results with simulated results. Various static and highly dynamic biological cells were imaged to demonstrate that the proposed method can conduct single-shot RI slice imaging of biological samples with subcellular resolution.
Collapse
|
46
|
Rajora S, Butola M, Khare K. 3D reconstruction of unstained weakly scattering cells from a single defocused hologram. APPLIED OPTICS 2023; 62:D146-D156. [PMID: 37132780 DOI: 10.1364/ao.478351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We investigate the problem of 3D complex field reconstruction corresponding to unstained red blood cells (RBCs) with a single defocused off-axis digital hologram. The main challenge in this problem is the localization of cells to the correct axial range. While investigating the volume recovery problem for a continuous phase object like the RBC, we observe an interesting feature of the backpropagated field that it does not show a clear focusing effect. Therefore, sparsity enforcement within the iterative optimization framework using a single hologram data frame cannot effectively restrict the reconstruction to the true object volume. For phase objects, it is known that the amplitude contrast of the backpropagated object field at the focus plane is minimum. We use this information available in the recovered object field in the hologram plane to device depth-dependent weights that are proportional to the inverse of amplitude contrast. This weight function is employed in the iterative steps of the optimization algorithm to assist the object volume localization. The overall reconstruction process is performed using the mean gradient descent (MGD) framework. Experimental illustrations of 3D volume reconstruction of the healthy as well as malaria-infected RBCs are presented. A test sample of polystyrene microsphere bead is also used to validate the axial localization capability of the proposed iterative technique. The proposed methodology is simple to implement experimentally and provides an approximate tomographic solution, which is axially restricted and consistent with the object field data.
Collapse
|
47
|
Ho IL, Chang CL. Suppression of alias and replica noises in phase holograms using fractal topologies. OPTICS LETTERS 2023; 48:1746-1749. [PMID: 37221756 DOI: 10.1364/ol.484564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/20/2023] [Indexed: 05/25/2023]
Abstract
Two-dimensional fractal topologies featuring (scaling) self-similarity, dense set of Bragg (diffraction) peaks, and inherent rotation symmetry, which are not achievable with regular grid-matrix geometries, exhibit optical robustness against structural damage and noise immunity of optical transmission paths. In this work, we numerically and experimentally demonstrate phase holograms using fractal plane-divisions. By taking advantage of the symmetries of the fractal topology, we propose numerical algorithms to design the fractal holograms. This algorithm solves the inapplicability of the conventional iterative Fourier transform algorithm (IFTA) method and enables efficient optimizations of millions of adjustable parameters in the optical element. Experimental samples show that the alias and replica noises in the image plane of fractal holograms are clearly suppressed, facilitating applications for high-accuracy and compact requirements.
Collapse
|
48
|
Zhang Y, Huang Z, Jin S, Cao L. Hough transform-based multi-object autofocusing compressive holography. APPLIED OPTICS 2023; 62:D23-D30. [PMID: 37132766 DOI: 10.1364/ao.478473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reconstruction of multiple objects from one hologram can be affected by the focus metric judgment of autofocusing. Various segmentation algorithms are applied to obtain a single object in the hologram. Each object is unambiguously reconstructed to acquire its focal position, which produces complicated calculations. Herein, Hough transform (HT)-based multi-object autofocusing compressive holography is presented. The sharpness of each reconstructed image is computed by using a focus metric such as entropy or variance. According to the characteristics of the object, the standard HT is further used for calibration to remove redundant extreme points. The compressive holographic imaging framework with a filter layer can eliminate the inherent noise in in-line reconstruction including cross talk noise of different depth layers, two-order noise, and twin image noise. The proposed method can effectively obtain 3D information on multiple objects and achieve noise elimination by only reconstructing from one hologram.
Collapse
|
49
|
Zhu L, Xiao Z, Chen C, Sun A, He X, Jiang Z, Kong Y, Xue L, Liu C, Wang S. sPhaseStation: a whole slide quantitative phase imaging system based on dual-view transport of intensity phase microscopy. APPLIED OPTICS 2023; 62:1886-1894. [PMID: 37133070 DOI: 10.1364/ao.477375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Whole slide imaging scans a microscope slide into a high-resolution digital image, and it paves the way from pathology to digital diagnostics. However, most of them rely on bright-field and fluorescence imaging with sample labels. In this work, we designed sPhaseStation, which is a dual-view transport of intensity phase microscopy-based whole slide quantitative phase imaging system for label-free samples. sPhaseStation relies on a compact microscopic system with two imaging recorders that can capture both under and over-focus images. Combined with the field of view (FoV) scan, a series of these defocus images in different FoVs can be captured and stitched into two FoV-extended under and over-focus ones, which are used for phase retrieval via solving the transport of intensity equation. Using a 10× micro-objective, sPhaseStation reaches the spatial resolution of 2.19 µm and obtains the phase with high accuracy. Additionally, it acquires a whole slide image of a 3m m×3m m region in 2 min. The reported sPhaseStation could be a prototype of the whole slide quantitative phase imaging device, which may provide a new perspective for digital pathology.
Collapse
|
50
|
Kumar R, Anand V, Rosen J. 3D single shot lensless incoherent optical imaging using coded phase aperture system with point response of scattered airy beams. Sci Rep 2023; 13:2996. [PMID: 36810914 PMCID: PMC9944900 DOI: 10.1038/s41598-023-30183-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Interferenceless coded aperture correlation holography (I-COACH) techniques have revolutionized the field of incoherent imaging, offering multidimensional imaging capabilities with a high temporal resolution in a simple optical configuration and at a low cost. The I-COACH method uses phase modulators (PMs) between the object and the image sensor, which encode the 3D location information of a point into a unique spatial intensity distribution. The system usually requires a one-time calibration procedure in which the point spread functions (PSFs) at different depths and/or wavelengths are recorded. When an object is recorded under identical conditions as the PSF, the multidimensional image of the object is reconstructed by processing the object intensity with the PSFs. In the previous versions of I-COACH, the PM mapped every object point to a scattered intensity distribution or random dot array pattern. The scattered intensity distribution results in a low SNR compared to a direct imaging system due to optical power dilution. Due to the limited focal depth, the dot pattern reduces the imaging resolution beyond the depth of focus if further multiplexing of phase masks is not performed. In this study, I-COACH has been realized using a PM that maps every object point into a sparse random array of Airy beams. Airy beams during propagation exhibit a relatively high focal depth with sharp intensity maxima that shift laterally following a curved path in 3D space. Therefore, sparse, randomly distributed diverse Airy beams exhibit random shifts with respect to one another during propagation, generating unique intensity distributions at different distances while retaining optical power concentrations in small areas on the detector. The phase-only mask displayed on the modulator was designed by random phase multiplexing of Airy beam generators. The simulation and experimental results obtained for the proposed method are significantly better in SNR than in the previous versions of I-COACH.
Collapse
Affiliation(s)
- Ravi Kumar
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer-Sheva, Israel.
- Department of Physics, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India.
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
- Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, 8410501, Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|