1
|
Gouveia BA, Ramos FR, Silva IKL, Oliveira TESD, Vasconcelos RDO, Xavier JG, Strefezzi RF. Prognostic Implications of Decorin, E-Cadherin and EGFR Expression in Inflammatory and Non-Inflammatory Canine Mammary Carcinomas. Vet Comp Oncol 2025. [PMID: 39853670 DOI: 10.1111/vco.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Inflammatory mammary carcinoma (IMC) is the most aggressive variant of invasive mammary tumours in dogs and in women. Decorin is an extracellular matrix molecule whose expression can be reduced or absent in various human cancers, which is associated with a poor prognosis. E-cadherin is a cell adhesion protein whose expression is reduced in several neoplasms. However, it is overexpressed in inflammatory breast cancers of women. EGFR is also associated with cancer development and is commonly overexpressed in aggressive neoplasms. This study aimed to characterise the expressions of Decorin, E-cadherin, and EGFR in canine inflammatory and non-inflammatory mammary carcinomas (IMC and non-IMC) and to evaluate their expression levels as prognostic indicators for survival and occurrence of metastases. Thirty-three IMC and 43 non-IMC cases were analysed retrospectively and submitted to immunohistochemical analysis. The reactions were quantified in five high-power field images from areas of the highest intensity and frequency of immunostaining (hot spots). We found significantly lower expression of Decorin and higher of E-cadherin and EGFR in canine IMCs. Patients with tumours that exhibited Decorin expression in less than 26.35% of epithelial cells had shorter survival (p = 0.0410) and a higher occurrence of distant metastases (p = 0.0115). E-cadherin is overexpressed in canine IMCs (p < 0.0001), similar to what occurs in women, reinforcing that dogs can be used as a study model for human IMC. EGFR overexpression in canine IMCs (p = 0.0322) provides evidence for potential targeted therapy with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Bethânia Almeida Gouveia
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Fernanda Ramalho Ramos
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ingrid Kester Lima Silva
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | | | | | - Ricardo Francisco Strefezzi
- Laboratory of Comparative and Translational Oncology, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Li J, Zhang W, Chen L, Wang X, Liu J, Huang Y, Qi H, Chen L, Wang T, Li Q. Targeting extracellular matrix interaction in gastrointestinal cancer: Immune modulation, metabolic reprogramming, and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189225. [PMID: 39603565 DOI: 10.1016/j.bbcan.2024.189225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy. ECM components, such as collagen, fibronectin, laminin, and periostin, influence tumor growth, metastasis, immune modulation, and metabolic reprogramming by interacting with tumor cells, immune cells, and cancer-associated fibroblasts. In this review, we highlight the heterogeneous nature of the ECM and the dualistic roles of its components across GI cancers, with a focus on their contributions to immune evasion and metabolic remodeling via intercellular interactions. Additionally, we explore therapeutic strategies targeting ECM remodeling and ECM-centered interactions, emphasizing their potential in enhancing existing anti-tumor therapies.
Collapse
Affiliation(s)
- Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Liu Y, Xin Y, Lv T, Chang Z, Xue G, Shang X. Decorin impeded the advancement of thyroid papillary carcinoma by thwarting the EGFR/ FER/ SHP2 signaling-induced sustenance of early endosomes. Heliyon 2024; 10:e33358. [PMID: 39035505 PMCID: PMC11259844 DOI: 10.1016/j.heliyon.2024.e33358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Objective This study explores the inhibition of papillary thyroid carcinoma proliferation by Decorin via the EGFR/SHP2/FER pathway. Method ology: Thirty-two pairs of papillary thyroid carcinoma tissues and adjacent normal tissues were collected for immunohistochemical analysis. Thyroid cancer cell lines with overexpressed or silenced Decorin were employed in subcutaneous tumor formation experiments in nude mice. Cell membrane proteins were extracted for Western blot and immunofluorescence analyses. Results Reduced Decorin expression in human papillary thyroid carcinoma was associated with inhibited formation of the EGFR/SHP2/FER complex. Immunohistochemical analysis revealed lower Decorin levels in carcinoma tissues compared to adjacent normal tissues, corroborated by decreased Decorin and PTEN levels in carcinoma as shown by Western Blot. Overexpression of Decorin in mouse models diminished tumor growth, an effect reversed by Decorin silencing and mitigated by FER inhibition. Decorin modulated Rab5-GTP and Rab7-GTP levels, impacting endosome transition and subsequent signaling pathways. Conclusion Decorin inhibits papillary thyroid carcinoma proliferation by disrupting the EGFR/SHP2/FER pathway and modulating endosomal transport.
Collapse
Affiliation(s)
- Yaping Liu
- Otorhinolaryngology, Head and Neck Surgery, Hebei North University.Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Zhangjiakou, Hebei, China
| | - Yunchao Xin
- Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Tianyun Lv
- Otorhinolaryngology, Head and Neck Surgery, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhicheng Chang
- Otorhinolaryngology, Head and Neck Surgery, Hebei North University, Zhangjiakou, Hebei, China
| | - Gang Xue
- Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoling Shang
- Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
4
|
Aljagthmi WA, Alasmari MA, Daghestani MH, Al-Kharashi LA, Al-Mohanna FH, Aboussekhra A. Decorin (DCN) Downregulation Activates Breast Stromal Fibroblasts and Promotes Their Pro-Carcinogenic Effects through the IL-6/STAT3/AUF1 Signaling. Cells 2024; 13:680. [PMID: 38667295 PMCID: PMC11049637 DOI: 10.3390/cells13080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.
Collapse
Affiliation(s)
- Wafaa A. Aljagthmi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal A. Alasmari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Maha H. Daghestani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layla A. Al-Kharashi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Falah H. Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
5
|
Terasaki M, Tsuruoka K, Tanaka T, Maeda H, Shibata M, Miyashita K, Kanemitsu Y, Sekine S, Takahashi M, Yagishita S, Hamada A. Fucoxanthin Inhibits Development of Sigmoid Colorectal Cancer in a PDX Model With Alterations of Growth, Adhesion, and Cell Cycle Signals. Cancer Genomics Proteomics 2023; 20:686-705. [PMID: 38035706 PMCID: PMC10687734 DOI: 10.21873/cgp.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. MATERIALS AND METHODS Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis. RESULTS The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr397), pPaxillin(Tyr31), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx). CONCLUSION Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kirara Tsuruoka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | | | - Yukihide Kanemitsu
- Colorectal Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Zeren S, Seker S, Akgün GA, Okur E, Yerlikaya A. Label-free nLC-MS/MS proteomic analysis reveals significant differences in the proteome between colorectal cancer tissues and normal colon mucosa. Med Oncol 2023; 40:298. [PMID: 37707637 DOI: 10.1007/s12032-023-02173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023]
Abstract
Despite the discovery of numerous driving and passenger genes that play key roles in cancer characteristics, progress in cancer treatment has not been satisfactory. This is mainly because conventional therapies are neither selective nor targeted. Another important reason is that cancer cells rapidly develop resistance to chemotherapeutic agents due to excessive accumulation of mutations and/or epigenetic changes. In light of this, we believe that the discovery of new targets and key genes/proteins could improve treatment options. In this study, tissue samples (tumor and normal mucosa) were first collected from the colon or rectum by right or left hemicolectomy. Proteomic analysis was then performed using the label-free nLC-MS/MS method. We determined 77 proteins with statistically significant differences in expression levels between cancerous and normal mucosa. While the expression of 76 proteins was decreased in cancer tissues, only one protein (RNA-binding motif protein_X chromosome-RBMX) was increased in colorectal cancer tissues. The bioinformatics portal Metascape was used to determine the biological processes involved. 77 proteins with significantly different expression between cancerous and normal tissues were compared with the UALCAN platform using data from the Clinical Proteomics Tumor Analysis Consortium (CPTAC). The results for 45 of the 77 proteins clearly matched the CPTAC dataset. Western blot studies confirmed that RBMX protein (critical for gene transcription and alternative splicing of various pre-mRNAs) was increased 2.04-fold, while decorin protein (a matrix proteoglycan with tumor suppressor functions) was dramatically decreased by about 6.04-fold in tumor samples compared with normal mucosa.
Collapse
Affiliation(s)
- Sezgin Zeren
- Department of General Surgery, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Semih Seker
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Gizem Akkaş Akgün
- Department of Pathology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey
| | - Emrah Okur
- Department of Biology, Faculty of Art and Sciences, Kutahya Dumlupınar University, Kutahya, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
| |
Collapse
|
7
|
Gopinath P, Natarajan A, Sathyanarayanan A, Veluswami S, Gopisetty G. The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets. Gene 2022; 815:146137. [PMID: 35007686 DOI: 10.1016/j.gene.2021.146137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
Collapse
Affiliation(s)
- Prarthana Gopinath
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | - Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India
| | | | - Sridevi Veluswami
- Deaprtment of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute WIA, Chennai, Tamil Nadu, India.
| |
Collapse
|
8
|
Xie C, Mondal DK, Ulas M, Neill T, Iozzo RV. Oncosuppressive roles of decorin through regulation of multiple receptors and diverse signaling pathways. Am J Physiol Cell Physiol 2022; 322:C554-C566. [PMID: 35171698 PMCID: PMC8917911 DOI: 10.1152/ajpcell.00016.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Decorin is a stromal-derived prototype member of the small leucine-rich proteoglycan gene family. In addition to its functions as a regulator of collagen fibrillogenesis and TGF-β activity soluble decorin acts as a pan-receptor tyrosine kinase (RTK) inhibitor. Decorin binds to various RTKs including EGFR HER2 HGFR/Met VEGFR2 TLR and IGFR. Although the molecular mechanism for the action of decorin on these receptors is not entirely elucidated overall decorin evokes transient activation of these receptors with suppression of downstream signaling cascades culminating in growth inhibition followed by their physical downregulation via caveosomal internalization and degradation. In the case of Met decorin leads to decreased β-catenin signaling pathway and growth suppression. As most of these RTKs are responsible for providing a growth advantage to cancer cells the result of decorin treatment is oncosuppression. Another decorin-driven mechanism to restrict cancer growth and dissemination is by impeding angiogenesis via vascular endothelial growth factor receptor 2 (VEGFR2) and the concurrent activation of protracted endothelial cell autophagy. In this review we will dissect the multiple roles of decorin in cancer biology and its potential use as a next-generation protein-based adjuvant therapy to combat cancer.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dipon K. Mondal
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mikdat Ulas
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Žlajpah M, Urh K, Grosek J, Zidar N, Boštjančič E. Differential Expression of Decorin in Metastasising Colorectal Carcinoma Is Regulated by miR-200c and Long Non-Coding RNAs. Biomedicines 2022; 10:142. [PMID: 35052821 PMCID: PMC8773424 DOI: 10.3390/biomedicines10010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Decorin (DCN) is one of the matricellular proteins that participate in normal cells' function as well as in cancerogenesis. While its expression in primary tumours is well known, there is limited data about its expression in metastases. Furthermore, the post-transcriptional regulation of DCN is still questionable, although it is well accepted that it is an important mechanism of developing metastatic cancer. The aim of our study was to analyse the expression of DCN and its potential regulatory ncRNAs in metastatic colorectal carcinoma (CRC). Nineteen patients with metastatic CRC were included. Using qPCR, we analysed the expression of DCN, miR-200c and five lncRNAs (LUCAT1, MALAT1, lncTCF7, XIST, and ZFAS1) in lymph node and liver metastases in comparison to the invasive front and central part of a primary tumour. Our results showed insignificant upregulation of DCN and significant upregulation for miR-200c, MALAT1, lncTCF7 and ZFAS1 in metastases compared to the primary tumour. miR-200c showed a positive correlation with DCN, and the aforementioned lncRNAs exhibited a significant positive correlation with miR-200c expression in metastatic CRC. Our results suggest that DCN as well as miR-200c, MALAT1, lncTCF7 and ZFAS1 contribute to the development of metastases in CRC and that regulation of DCN expression in CRC by ncRNAs is accomplished in an indirect manner.
Collapse
Affiliation(s)
- Margareta Žlajpah
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Kristian Urh
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Jan Grosek
- Department of Abdominal Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.Ž.); (K.U.); (N.Z.)
| |
Collapse
|
10
|
Wang T, Zhang Y, Taaffe DR, Kim JS, Luo H, Yang L, Fairman CM, Qiao Y, Newton RU, Galvão DA. Protective effects of physical activity in colon cancer and underlying mechanisms: A review of epidemiological and biological evidence. Crit Rev Oncol Hematol 2022; 170:103578. [PMID: 35007701 DOI: 10.1016/j.critrevonc.2022.103578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous epidemiological studies indicate that physical activity has a protective effect against colon cancer development and progression. Further, the relevant biological mechanisms where physical activity or exercise may improve survival have also been initially examined. In this review, we provide an overview of the epidemiological evidence to date which comprises 16 cohort studies of the effects of physical activity on colon cancer outcomes including cancer recurrence, cancer-specific and overall survival. Moreover, we present four potential mechanisms involving shear pressure, systemic milieu alteration, extracellular vesicles, and immune function by which physical activity and exercise may favorably impact colon cancer. Research currently in progress will provide definitive evidence of survival benefits resulting from exercise and future work will help clarify the role of targeted exercise and the relevant mechanisms involved.
Collapse
Affiliation(s)
- Tianzhen Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China; Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ying Zhang
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Department of Physiology, Harbin Medical University, Harbin, 150081, China
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hao Luo
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Lirui Yang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Ciaran M Fairman
- Exercise Science Department, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Yuandong Qiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
11
|
Baghy K, Reszegi A, Horváth Z, Kovalszky I. The Role of Decorin in Cancer. BIOLOGY OF EXTRACELLULAR MATRIX 2022:23-47. [DOI: 10.1007/978-3-030-99708-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Basak D, Jamal Z, Ghosh A, Mondal PK, Dey Talukdar P, Ghosh S, Ghosh Roy B, Ghosh R, Halder A, Chowdhury A, Dhali GK, Chattopadhyay BK, Saha ML, Basu A, Roy S, Mukherjee C, Biswas NK, Chatterji U, Datta S. Reciprocal interplay between asporin and decorin: Implications in gastric cancer prognosis. PLoS One 2021; 16:e0255915. [PMID: 34379688 PMCID: PMC8357146 DOI: 10.1371/journal.pone.0255915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Effective patient prognosis necessitates identification of novel tumor promoting drivers of gastric cancer (GC) which contribute to worsened conditions by analysing TCGA-gastric adenocarcinoma dataset. Small leucine-rich proteoglycans, asporin (ASPN) and decorin (DCN), play overlapping roles in development and diseases; however, the mechanisms underlying their interplay remain elusive. Here, we investigated the complex interplay of asporin, decorin and their interaction with TGFβ in GC tumor and corresponding normal tissues. The mRNA levels, protein expressions and cellular localizations of ASPN and DCN were analyzed using real-time PCR, western blot and immunohistochemistry, respectively. The protein-protein interaction was predicted by in-silico interaction analysis and validated by co-immunoprecipitation assay. The correlations between ASPN and EMT proteins, VEGF and collagen were achieved using western blot analysis. A significant increase in expression of ASPN in tumor tissue vs. normal tissue was observed in both TCGA and our patient cohort. DCN, an effective inhibitor of the TGFβ pathway, was negatively correlated with stages of GC. Co-immunoprecipitation demonstrated that DCN binds with TGFβ, in normal gastric epithelium, whereas in GC, ASPN preferentially binds TGFβ. Possible activation of the canonical TGFβ pathway by phosphorylation of SMAD2 in tumor tissues suggests its role as an intracellular tumor promoter. Furthermore, tissues expressing ASPN showed unregulated EMT signalling. Our study uncovers ASPN as a GC-promoting gene and DCN as tumor suppressor, suggesting that ASPN can act as a prognostic marker in GC. For the first time, we describe the physical interaction of TGFβ with ASPN in GC and DCN with TGFβ in GC and normal gastric epithelium respectively. This study suggests that prevention of ASPN-TGFβ interaction or overexpression of DCN could serve as promising therapeutic strategies for GC patients.
Collapse
Affiliation(s)
- Dipjit Basak
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Zarqua Jamal
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | - Semanti Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | - Ranajoy Ghosh
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aniket Halder
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Gopal Krishna Dhali
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Makhan Lal Saha
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhimanyu Basu
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Roy
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | - Urmi Chatterji
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Shalini Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
13
|
Zhang L, Liu C, Gao H, Zhou C, Qin W, Wang J, Meng L, Wang H, Ren Q, Zhang Y. Study on the expression profile and role of decorin in the progression of pancreatic cancer. Aging (Albany NY) 2021; 13:14989-14998. [PMID: 34021540 PMCID: PMC8221302 DOI: 10.18632/aging.203060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023]
Abstract
Desmoplasia in the extracellular matrix (ECM) is one of the hallmarks of pancreatic cancer (PC), a virtually incurable disease. Decorin, a classical small leucine-rich proteoglycan found in the ECM, was upregulated in PC tissue samples according to the data of TCGA. However, decorin plays a protective role in the ECM. So it is necessary to study the roles of decorin in the progression of PC. A significantly upregulated expression of decorin was observed in the PC tissue samples compared with the normal tissues. However, there was no considerable difference in the level of expression of decorin during different pathological stages, which was supported by the immunoblot analysis. Western blot showed a higher expression of decorin A in the para-carcinoma tissue than in the cancerous tissue but the expression of decorin B, C, and D was elevated in the cancerous tissue. The results of the MTT and scratch wound healing assays revealed an elevated proliferation ability and migration rate in decorin B-overexpressing cells but were inhibited in the decorin A-overexpressing cells. Overexpression of decorin A significantly elevated the expression of the apoptosis-related genes and Decorin B-overexpression elevated proliferation-related genes. All the results showed that decorin B played important roles in the promoting of PC.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Chao Liu
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Huijie Gao
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Caiju Zhou
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Jian Wang
- Department of Pancreatic Oncology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Lingxin Meng
- Department of Oncology, People's Hospital of Rizhao, Shandong, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Yuntao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
14
|
Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular carcinoma based on TCGA data. Aging (Albany NY) 2021; 13:11257-11280. [PMID: 33820866 PMCID: PMC8109113 DOI: 10.18632/aging.202811] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022]
Abstract
In order to explore the prognosis of tumor mutation burden (TMB) and the relationship with tumor infiltrating immune cells in hepatocellular carcinoma (HCC), we downloaded somatic mutation data and transcriptome profiles of 376 HCC patients from The Cancer Genome Atlas (TCGA) cohort. We divided the samples into high-TMB and low-TMB groups. A higher TMB level indicated improved overall survival (OS) and was associated with early pathological stages. One hundred and nine differentially expressed genes (DEGs) were identified in HCC. Moreover, based on four hub TMB-related signatures, we constructed a TMB Prognostic model (TMBPM) that possessed good predictive value with area under curve (AUC) of 0.701. HCC patients with higher TMBPM scores showed worse OS outcomes (p < 0.0001). Moreover, DCs subsets not only revealed higher infiltrating abundance in the high-TMB group, but also correlated with worse OS and hazard risk for high-TMB patients in HCC. Meanwhile, CD8+ T cells and B cells were associated with improved survival outcomes. In sum, high TMB indicates good prognosis for HCC and promotes HCC immune infiltration. Hence, DCs and the four hub TMB-related signatures can be used for predicting the prognosis in HCC as supplements to TMB.
Collapse
|
15
|
Duran Güler S, Balbaba M, Çolakoğlu N, Bulmuş Ö, Ulaş F, Eröksüz Y. Effect of Decorin and Bevacizumab on oxygen-induced retinopathy in rat models: A comparative study. Indian J Ophthalmol 2021; 69:369-373. [PMID: 33463595 PMCID: PMC7933886 DOI: 10.4103/ijo.ijo_1739_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose The aims of this study were to evaluate the effects of decorin (DCN) in rat oxygen-induced retinopathy (OIR) model and to compare the results with those of bevacizumab. Methods Twenty-eight newborn Sprague-Dawley rats were randomly divided into four groups. Group I (control): normoxia plus intraperitoneal (ip) normal saline (NS), Group II (sham): OIR plus ip NS, Group III (DCN): OIR plus ip 0.1 mg/kg DCN, and Group IV (bevacizumab): OIR plus ip 2.5 mg/kg bevacizumab. The OIR model was induced by cycling the oxygen concentration between 50% and 10% every 24 h for 14 days following their birth. In all groups, injections were administered on postnatal day (PD) 15. All animals were sacrificed and their right eyes were enucleated on PD 18. The nuclei of neovascular endothelial cells on the vitreal side of the inner limiting membrane were counted, and vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF)-α immunoreactivity were detected in histopathological and immunohistochemical examinations. One-way analysis of variance and post hoc Tukey tests were used for statistical analyses of the data. Results In Groups II, III, and IV, the mean neovascular cell nuclei counts were 13.14 ± 1.34, 6.57 ± 1.51, and 6.71 ± 1.49, respectively. The mean neovascular cell nuclei count was significantly reduced in treatment groups compared with sham group (P < 0.001). In immunohistochemical staining, the immunoreactivity of VEGF was 0.07 ± 0.02, 0.97 ± 0.21, 0.37 ± 0.12, and 0.23 ± 0.17, respectively. Likewise, immunoreactivity of TNF-α was 0.02 ± 0.02, 1.11 ± 0.36, 0.37 ± 0.13, and 0.62 ± 0.21, respectively. VEGF and TNF-α immunoreactivity increased markedly in the sham group compared with those in the control group (P < 0.001). VEGF and TNF-α immunoreactivity of treatment groups decreased significantly compared to sham group (P < 0.001). Conclusion The beneficial effects obtained by DCN administration in OIR model were comparable to the effects of bevacizumab.
Collapse
Affiliation(s)
- Seda Duran Güler
- Department of Ophthalmology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Mehmet Balbaba
- Department of Ophthalmology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Neriman Çolakoğlu
- Department of Histology-Embryology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Özgür Bulmuş
- Department of Physiology, Faculty of Health Sciences, Fırat University, Elazığ, Turkey
| | - Fatih Ulaş
- Department of Ophthalmology, Faculty of Medicine, Abant Izzet Baysal University, Bolu, Turkey
| | - Yesari Eröksüz
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
16
|
Mao L, Yang J, Yue J, Chen Y, Zhou H, Fan D, Zhang Q, Buraschi S, Iozzo RV, Bi X. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol 2020; 95:1-14. [PMID: 33065248 DOI: 10.1016/j.matbio.2020.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.
Collapse
Affiliation(s)
- Liping Mao
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jinxue Yang
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiaxin Yue
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Yang Chen
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Hongrui Zhou
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Dongdong Fan
- College of Life Science, Liaoning University, Shenyang 110036, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang 110036, China
| | - Simone Buraschi
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and Cancer Cell Biology and Signaling Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Xiuli Bi
- College of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
17
|
Baghy K, Reszegi A, Tátrai P, Kovalszky I. Decorin in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:17-38. [PMID: 32845500 DOI: 10.1007/978-3-030-48457-6_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor microenvironment plays a determining role in cancer development through a plethora of interactions between the extracellular matrix and tumor cells. Decorin is a prototype member of the SLRP family found in a variety of tissues and is expressed in the stroma of various forms of cancer. Decorin has gained recognition for its essential roles in inflammation, fibrotic disorders, and cancer, and due to its antitumor properties, it has been proposed to act as a "guardian from the matrix." Initially identified as a natural inhibitor of transforming growth factor-β, soluble decorin is emerging as a pan-RTK inhibitor targeting a multitude of RTKs, including EGFR, Met, IGF-IR, VEGFR2, and PDGFR. Besides initiating signaling, decorin/RTK interaction can induce caveosomal internalization and receptor degradation. Decorin also triggers cell cycle arrest and apoptosis and evokes antimetastatic and antiangiogenic processes. In addition, as a novel regulatory mechanism, decorin was shown to induce conserved catabolic processes, such as endothelial cell autophagy and tumor cell mitophagy. Therefore, decorin is a promising candidate for combatting cancer, especially the cancer types heavily dependent on RTK signaling.
Collapse
Affiliation(s)
- Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Reszegi A, Horváth Z, Karászi K, Regős E, Postniková V, Tátrai P, Kiss A, Schaff Z, Kovalszky I, Baghy K. The Protective Role of Decorin in Hepatic Metastasis of Colorectal Carcinoma. Biomolecules 2020; 10:1199. [PMID: 32824864 PMCID: PMC7465536 DOI: 10.3390/biom10081199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022] Open
Abstract
Decorin, the prototype member of the small leucine-rich proteoglycan gene family of extracellular matrix (ECM) proteins, acts as a powerful tumor suppressor by inducing the p21Waf1/Cip1 cyclin-dependent kinase inhibitor, as well as through its ability to directly bind and block the action of several tyrosine kinase receptors. Our previous studies suggested that the lack of decorin promotes hepatic carcinogenesis in mice. Based on this, we set out to investigate whether excess decorin may protect against the liver metastases of colon carcinoma. We also analyzed the effect of decorin in tissue microarrays of human colon carcinoma liver metastasis and examined whether the tumor cells can directly influence the decorin production of myofibroblasts. In humans, low levels of decorin in the liver facilitated the development of colon carcinoma metastases in proportion with more aggressive phenotypes, indicating a possible antitumor action of the proteoglycan. In vitro, colon carcinoma cells inhibited decorin expression in LX2 hepatic stellate cells. Moreover, liver-targeted decorin delivery in mice effectively attenuated metastasis formation of colon cancer. Overexpressed decorin reduced the activity of multiple receptor tyrosine kinases (RTKs) including the epidermal growth factor receptor (EGFR), an important player in colorectal cancer (CRC) pathogenesis. Downstream of that, we observed weakened signaling of ERK1/2, PLCγ, Akt/mTOR, STAT and c-Jun pathways, while p38 MAPK/MSK/CREB and AMPK were upregulated culminating in enhanced p53 function. In conclusion, decorin may effectively inhibit metastatic tumor formation in the liver.
Collapse
Affiliation(s)
- Andrea Reszegi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Zsolt Horváth
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Eszter Regős
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Victoria Postniková
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | | | - András Kiss
- 2nd Department of Pathology, Semmelweis University, H-1091 Budapest, Hungary; (A.K.); (Z.S.)
| | - Zsuzsa Schaff
- 2nd Department of Pathology, Semmelweis University, H-1091 Budapest, Hungary; (A.K.); (Z.S.)
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, H-1085 Budapest, Hungary; (A.R.); (Z.H.); (K.K.); (E.R.); (V.P.); (I.K.)
| |
Collapse
|
19
|
Szczubiał M, Kankofer M, Wawrzykowski J, Dąbrowski R, Łopuszyński W, Bochniarz M, Brodzki P. Decorin concentrations in canine normal and neoplastic mammary gland tissues. Reprod Domest Anim 2020; 55:1404-1410. [PMID: 33470009 DOI: 10.1111/rda.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022]
Abstract
In the present study, the concentration of decorin in canine normal and neoplastic mammary gland tissues was examined to understand the potential role of decorin in development and progression of canine mammary tumours. The homogenates of 48 mammary gland tumours (10 benign and 38 malignant) and 10 samples of normal canine mammary gland tissue were used in the study. The presence and quantification of decorin was examined in the homogenates using Western blot and specific canine ELISA. Western blotting confirmed the presence of decorin both in the normal mammary gland tissues and in the mammary gland tumours. The concentration of decorin was significantly higher (p < .05) in the benign tumours and non-metastatic malignant tumours than in the normal mammary gland. The concentration of decorin was significantly lower (p < .05) in the malignant tumours with metastasis to regional lymph nodes compared with benign tumours and non-metastatic malignant tumours. No significant differences were found in the level of decorin between the benign and the non-metastatic malignant tumours. Both the histological type of malignant tumours and the histological grade did not significantly affect the concentration of decorin. These findings suggest that neoplastic transformation in the canine mammary gland leads to increase in the decorin protein synthesis. The reducing decorin concentration in canine malignant mammary tumours appears to facilitate the metastatic spread of these tumours.
Collapse
Affiliation(s)
- Marek Szczubiał
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, Lublin, Poland
| | - Marta Kankofer
- Department of Animal Biochemistry, University of Life Sciences in Lublin, Lublin, Poland
| | - Jacek Wawrzykowski
- Department of Animal Biochemistry, University of Life Sciences in Lublin, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, Lublin, Poland
| | - Wojciech Łopuszyński
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Mariola Bochniarz
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
20
|
Deng M, Xue Y, Xu L, Wang Q, Wei J, Ke X, Wang J, Chen X. Chrysophanol exhibits inhibitory activities against colorectal cancer by targeting decorin. Cell Biochem Funct 2019; 38:47-57. [PMID: 31710116 DOI: 10.1002/cbf.3445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/10/2019] [Accepted: 09/23/2019] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is a common human malignancy that accounts for 600,000 deaths annually worldwide. Chrysophanol, a naturally occurring anthraquinone compound, exhibits anti-neoplastic effects in various cancer cells. The aim of this study was to explore the biological effects of chrysophanol on CRC cells, and determine the underlying mechanism. Chrysophanol inhibited proliferation of and promoted apoptosis in CRC cells by activating the intrinsic mitochondrial apoptotic pathway. In addition, chrysophanol also suppressed tumor growth in vivo and increased the percentage of apoptotic cells in tumor xenografts, without general toxicity. Proteomic iTRAQ analysis revealed decorin (DCN) as the major target of chrysophanol. DCN was upregulated in the tumor tissues following chrysophanol treatment, and ectopic DCN expression markedly augmented the pro-apoptotic effects of chrysophanol in CRC cells. In contrast, DCN knockdown significantly abrogated chrysophanol-induced apoptosis in CRC cells. Taken together, chrysophanol exerts anti-neoplastic effects in vitro and in vivo in CRC cells by modulating DCN, there by highlighting its therapeutic potential in CRC.
Collapse
Affiliation(s)
- Min Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Yongju Xue
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Lerong Xu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Qiangwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Xiquan Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Jianchao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| | - Xiaodong Chen
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, P.R. China
| |
Collapse
|
21
|
Hu J, Zhou L, Song Z, Xiong M, Zhang Y, Yang Y, Chen K, Chen Z. The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets. J Cell Physiol 2019; 234:15607-15618. [PMID: 30779109 DOI: 10.1002/jcp.28208] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Bladder cancer (BC) is one of the most common neoplastic diseases worldwide. With the highest recurrence rate among all cancers, treatment of BC only improved a little in the last 30 years. Available biomarkers are not sensitive enough for the diagnosis of BC, whereas the standard diagnostic method, cystoscopy, is an invasive test and expensive. Hence, seeking new biomarkers of BC is urgent and challenging. With that order, we screened the overlapped differentially expressed genes (DEGs) of GSE13507 and TCGA BLCA datasets. Subsequent protein-protein interactions network analysis recognized the hub genes among these DEGs. Further functional analysis including Gene Ontology and KEGG pathway analysis and gene set enrichment analysis were processed to investigate the role of these genes and potential underlying mechanisms in BC. Kaplan-Meier analysis and Cox hazard ratio analysis were carried out to clarify the diagnostic and prognostic role of these genes. In conclusion, our present study demonstrated that ACTA2, CDC20, MYH11, TGFB3, TPM1, VIM, and DCN are all potential diagnostic biomarkers for BC. And may also be potential treatment targets for clinical implication in the future.
Collapse
Affiliation(s)
- Junyi Hu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youpeng Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Yang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Nyman MC, Jokilammi AB, Boström PC, Kurki SH, Sainio AO, Grenman SE, Orte KJ, Hietanen SH, Elenius K, Järveläinen HT. Decorin Expression in Human Vulva Carcinoma: Oncosuppressive Effect of Decorin cDNA Transduction on Carcinoma Cells. J Histochem Cytochem 2019; 67:511-522. [PMID: 31009269 DOI: 10.1369/0022155419845373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The extracellular matrix proteoglycan decorin is well-known for its oncosuppressive activity. Here, decorin expression was examined in human vulva carcinoma tissue samples and in primary and commercial cell lines representing this malignant disease. Furthermore, the effect of adenovirus-mediated decorin cDNA (Ad-DCN) transduction on the viability, proliferation, and the expression and activity of the epidermal growth factor receptor (ErbB/HER) family members of the cell lines were investigated. Using in situ hybridization and immunohistochemistry for decorin, it was demonstrated that malignant cells in human vulva carcinoma tissues lack decorin expression. This result was true independently on tumor stage, grade or human papillomavirus status. RT-qPCR analyses showed that the human vulva carcinoma cell lines used in this study were also negative for decorin expression. Transduction of the cell lines with Ad-DCN caused a marked reduction in cell viability, while the proliferation of the cells was not affected. Experiments examining potential mechanisms behind the oncosuppressive effect of Ad-DCN transduction revealed that ErbB2/HER2 expression and activity in carcinoma cells were markedly downregulated. In conclusion, the results of this study showed that human vulva carcinoma cells lack decorin expression, and that Ad-DCN transduction of these cells induces oncosuppressive activity in part via downregulation of ErbB2/HER2.
Collapse
Affiliation(s)
- Marie C Nyman
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anne B Jokilammi
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pia C Boström
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Samu H Kurki
- Auria Biobank, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Annele O Sainio
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Seija E Grenman
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Katri J Orte
- Department of Pathology, University of Turku, Turku, Finland.,Turku University Hospital, Turku, Finland
| | - Sakari H Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Klaus Elenius
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland.,Medicity Research Laboratory, Turku, Finland
| | - Hannu T Järveläinen
- Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland
| |
Collapse
|
23
|
Jia X, Chen C, Chen L, Yu C, Kondo T. Decorin as a prognostic biomarker in patients with malignant peripheral nerve sheath tumors. Oncol Lett 2019; 17:3517-3522. [PMID: 30867792 DOI: 10.3892/ol.2019.9959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/04/2018] [Indexed: 01/30/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft-tissue sarcomas. The prognosis of MPNSTs has been reported to differ among previous studies. However, there have been a number of reported prognostic biomarkers associated with MPNSTs. In the present study, a proteomics study was performed to discover the differential protein expression in patients with MPSNTs with different prognoses. The clinical data of 30 primary extremities of patients with MPNSTs, who underwent surgery at the Department of Hand Surgery, Huashan Hospital, Fudan University between January 2002 and December 2011, were acquired. A total of 16 patients succumbed to their diseases within 5 years, whereas 14 patients were disease-free for >5 years. Samples from the 9 patients who succumbed within 2 years were assigned to Group D, while samples from the 8 patients who were continuously disease-free for >5 years following diagnosis were assigned to Group L for the proteomics study. Label-free quantitative proteomics and mass spectrometry were performed to filtrate differential protein in patients with MPSNTs with different prognoses. Decorin was filtrated as a differential protein of note. The expression level of decorin was significantly lower in Group D compared with that in Group L (D/L=0.0948; P=0.0004). The result was verified by immunohistochemical staining in the 30 primary extremities of patients with MPNSTs. The 5-year survival rate of patients with positive expression of decorin was 78.57%, while the 5-year survival rate of patients negative for decorin expression was 18.75% (P=0.0014). Overall, a high level of decorin indicted a better prognosis in patients with MPNSTs. With further investigation, decorin may be a reliable prognostic biomarker for MPNSTs.
Collapse
Affiliation(s)
- Xiaotian Jia
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Chao Chen
- Department of Gynecology and Obstetrics, Putuo District Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Lin Chen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Cong Yu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai 200040, P.R. China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai 200040, P.R. China
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
24
|
Small Leucine Rich Proteoglycans (decorin, biglycan and lumican) in cancer. Clin Chim Acta 2019; 491:1-7. [PMID: 30629950 DOI: 10.1016/j.cca.2019.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) prevents invasion of tumour cells and possesses an intrinsic mechanism to down-regulate signalling processes that promote cancer proliferation. Small Leucine Rich Proteoglycans (SLRPs) are ubiquitous ECM components involved in matrix structural organization and as such can potentially regulate cancer cell multiplication, angiogenesis and migration. Decorin, a class I SLRP that modulates collagen fibrillogenesis, also functions as a natural pan-tyrosine kinase inhibitor to reduce tumour growth. In fact, decreased decorin expression has been associated with tumour aggressiveness and lower survival. In contrast, biglycan, another class I SLRP, was highly expressed in cancer and was associated with metastatic activity and lower survival. Tissue expression of lumican, a class II SLRP, was associated with clinical outcome and appears tumour specific. Recently, decorin, biglycan and lumican were found to be potential biomarkers in bladder cancer. This review updates our current understanding on the molecular interplay and significance of decorin, biglycan and lumican expression in cancer.
Collapse
|
25
|
Sainio AO, Järveläinen HT. Decorin-mediated oncosuppression - a potential future adjuvant therapy for human epithelial cancers. Br J Pharmacol 2018; 176:5-15. [PMID: 29488209 PMCID: PMC6284329 DOI: 10.1111/bph.14180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Currently, the multifaceted role of the extracellular matrix (ECM) in tumourigenesis has been realized. One ECM macromolecule exhibiting potent oncosuppressive actions in tumourigenesis is decorin, the prototype of the small leucine-rich proteoglycan gene family. The actions of decorin include its ability to function as an endogenous pan-receptor tyrosine kinase inhibitor, a regulator of both autophagy and mitophagy, as well as a modulator of the immune system. In this review, we will discuss these topics in more detail. We also provide a summary of preclinical studies exploring the value of decorin-mediated oncosuppression, as a potential future adjuvant therapy for epithelial cancers. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Annele Orvokki Sainio
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Hannu Tapio Järveläinen
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland
| |
Collapse
|
26
|
Atak A, Khurana S, Gollapalli K, Reddy PJ, Levy R, Ben-Salmon S, Hollander D, Donyo M, Heit A, Hotz-Wagenblatt A, Biran H, Sharan R, Rane S, Shelar A, Ast G, Srivastava S. Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget 2018; 9:13530-13544. [PMID: 29568375 PMCID: PMC5862596 DOI: 10.18632/oncotarget.24418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/30/2018] [Indexed: 01/21/2023] Open
Abstract
Adenocarcinomas are cancers originating from the gland forming cells of the colon and rectal lining, and are known to be the most common type of colorectal cancers. The current diagnosis strategies for colorectal cancers include biopsy, laboratory tests, and colonoscopy which are time consuming. Identification of protein biomarkers could aid in the detection of colon adenocarcinomas (CACs). In this study, tissue proteome of colon adenocarcinomas (n = 11) was compared with the matched control specimens (n = 11) using isobaric tags for relative and absolute quantitation (iTRAQ) based liquid chromatography-mass spectrometry (LC-MS/MS) approach. A list of 285 significantly altered proteins was identified in colon adenocarcinomas as compared to its matched controls, which are associated with growth and malignancy of the tumors. Protein interaction analysis revealed the association of altered proteins in colon adenocarcinomas with various transcription factors and their targets. A panel of nine proteins was validated using multiple reaction monitoring (MRM). Additionally, S100A9 was also validated using immunoblotting. The identified panel of proteins may serve as potential biomarkers and thereby aid in the detection of colon adenocarcinomas.
Collapse
Affiliation(s)
- Apurva Atak
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Samiksha Khurana
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kishore Gollapalli
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Panga Jaipal Reddy
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Roei Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Ben-Salmon
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anke Heit
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Genomics and Proteomics Core Facility (GPCF), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Hadas Biran
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shailendra Rane
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Ashutosh Shelar
- Shimadzu Analytical (India) Pvt. Ltd, 1A/B, Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai 400059, India
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
27
|
Subbarayan K, Leisz S, Wickenhauser C, Bethmann D, Massa C, Steven A, Seliger B. Biglycan-mediated upregulation of MHC class I expression in HER-2/neu-transformed cells. Oncoimmunology 2018; 7:e1373233. [PMID: 29632715 DOI: 10.1080/2162402x.2017.1373233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix protein biglycan (BGN) has oncogenic or tumor suppressive potential depending on the cellular origin. HER-2/neu overexpression in murine fibroblasts and human model systems is inversely correlated with BGN expression. Upon its restoration BGNhigh HER-2/neu+ fibroblasts were less tumorigenic in immune competent mice when compared to BGNlow/neg HER-2/neu+ cells, which was associated with enhanced immune cell responses and higher frequencies of immune effector cells in tumors and peripheral blood. The increased immunogenicity of BGNhigh HER-2/neu+ fibroblasts appears to be due to upregulated MHC class I surface antigens and reduced expression levels of transforming growth factor (TGF)-β isoforms and the TGF-β receptor 1 suggesting a link between BGN, TGF-β pathway and HER-2/neu-mediated downregulation of MHC class I antigens. Treatment of BGNlow/neg HER-2/neu+ cells with recombinant BGN or an inhibitor of TGF-β enhanced MHC class I surface antigens in BGNlow/neg HER-2/neu-overexpressing murine fibroblasts, which was mediated by a transcriptional upregulation of major MHC class I antigen processing components. Furthermore, BGN expression in HER-2/neu+ cells was accompanied by an increased expression of the proteoglycan decorin (DCN). Since recombinant DCN also elevated MHC class I surface expression in BGNlow/neg HER-2/neu+ cells, both proteoglycans might act synergistically. This was in accordance with in silico analyses of mRNA data obtained from The Cancer Genome Atlas (TCGA) dataset available for breast cancer (BC) patients. Thus, our data provide for the first time evidence that proteoglycan signatures are modulated by HER-2/neu and linked to MHC class I-mediated immune escape associated with an altered TGF-β pathway.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle/ Saale, Germany
| |
Collapse
|
28
|
Zhang W, Ge Y, Cheng Q, Zhang Q, Fang L, Zheng J. Decorin is a pivotal effector in the extracellular matrix and tumour microenvironment. Oncotarget 2018; 9:5480-5491. [PMID: 29435195 PMCID: PMC5797066 DOI: 10.18632/oncotarget.23869] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/27/2017] [Indexed: 12/02/2022] Open
Abstract
Decorin (DCN), an extracellular matrix (ECM) protein, belongs to the small leucine-rich proteoglycan family. As a pluripotent molecule, DCN regulates the bioactivities of cell growth factors and participates in ECM assembly. Accumulating evidence has shown that DCN acts as a ligand of various cytokines and growth factors by directly or indirectly interacting with the corresponding signalling molecules involved in cell growth, differentiation, proliferation, adhesion and metastasis and that DCN especially plays vital roles in cancer cell proliferation, spread, pro-inflammatory processes and anti-fibrillogenesis. The multifunctional nature of DCN thus enables it to be a potential therapeutic agent for a variety of diseases and shows good prospects for clinical and research applications. DCN, an extracellular matrix (ECM) protein that belongs to the small leucine-rich proteoglycan family, is widely distributed and plays multifunctional roles in the stroma and epithelial cells. Originally, DCN was known as an effective collagen-binding partner for fibrillogenesis [1] and to modulate key biomechanical parameters of tissue integrity in the tendon, skin and cornea [2]; thus, it was named decorin (DCN). Since being initially cloned in 1986, DCN was discovered to be a structural constituent of the ECM [3]. However, the paradigm has been shifted; it has become increasingly evident that in addition to being a matrix structural protein, DCN affects a wide range of biological processes, including cell growth, differentiation, proliferation, adhesion, spread and migration, and regulates inflammation and fibrillogenesis [4–7]. Two main themes for DCN functions have emerged: maintenance of cellular structure and regulation of signal transduction pathways, culminating in anti-tumourigenic effects. Here, we review the interaction network of DCN and emphasize the biological correlations between these interactions, some of which are expected to be therapeutic intervention targets.
Collapse
Affiliation(s)
- Wen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yan Ge
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qian Cheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for The Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Liu Z, Yang Y, Zhang X, Wang H, Xu W, Wang H, Xiao F, Bai Z, Yao H, Ma X, Jin L, Wu C, Seth P, Zhang Z, Wang L. An Oncolytic Adenovirus Encoding Decorin and Granulocyte Macrophage Colony Stimulating Factor Inhibits Tumor Growth in a Colorectal Tumor Model by Targeting Pro-Tumorigenic Signals and via Immune Activation. Hum Gene Ther 2017; 28:667-680. [DOI: 10.1089/hum.2017.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhao Liu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuefeng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Xiaoyan Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Weidong Xu
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fengjun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhigang Bai
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Yao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuemei Ma
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lan Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chutse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Prem Seth
- Gene Therapy Program, Department of Medicine, NorthShore Research Institute, Evanston, Illinois
| | - Zhongtao Zhang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research and National Clinical Research Center for Digestive Disease, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lisheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
30
|
Boström P, Sainio A, Eigėlienė N, Jokilammi A, Elenius K, Koskivuo I, Järveläinen H. Human Metaplastic Breast Carcinoma and Decorin. CANCER MICROENVIRONMENT 2017; 10:39-48. [PMID: 28653173 PMCID: PMC5750199 DOI: 10.1007/s12307-017-0195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 02/04/2023]
Abstract
Metaplastic breast carcinoma (MBC) is a rare subtype of invasive breast cancer and has poor prognosis. In general, cancers are heterogeneous cellular masses comprised of different cell types and their extracellular matrix (ECM). However, little is known about the composition of the ECM and its constituents in MBC. Decorin is a ubiquitous ECM macromolecule known of its oncosuppressive activity. As such, it provides an intriguing molecule in the development of novel therapeutics for different malignancies such as MBC. In this study, decorin immunoreactivity and the effect of adenoviral decorin cDNA (Ad-DCN) transduction were examined in MBC. Multiple immunohistochemical stainings were used to characterize a massive breast tumour derived from an old woman. Furthermore, three-dimensional (3D) explant cultures derived from the tumour were transduced with Ad-DCN to study the effect of the transduction on the explants. The MBC tumour was shown to be completely negative for decorin immunoreactivity demonstrating that the malignant cells were not able to synthesize decorin. Ad-DCN transduction resulted in a markedly altered cytological phenotype of MBC explants by decreasing the amount of atypical cells and by inhibiting cell proliferation. The results of this study support approaches to develop new, decorin-based adjuvant therapies for MBC.
Collapse
Affiliation(s)
- Pia Boström
- Department of Pathology, University of Turku and Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Annele Sainio
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Natalja Eigėlienė
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland.,Oncology Clinic, Vaasa Central Hospital, Vaasa, Hietalahdenkatu 2-4, 65130, Vaasa, Finland
| | - Anne Jokilammi
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Klaus Elenius
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Hannu Järveläinen
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland. .,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland.
| |
Collapse
|
31
|
Singh S, Chouhan S, Mohammad N, Bhat MK. Resistin causes G1 arrest in colon cancer cells through upregulation of SOCS3. FEBS Lett 2017; 591:1371-1382. [PMID: 28417458 DOI: 10.1002/1873-3468.12655] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022]
Abstract
Resistin, a proinflammatory cytokine, is elevated in a number of pathological disorders, including cancer. The serum resistin level in colon cancer patients is elevated and correlates with tumor grade. However, the implications of increased resistin on colon cancer cells remain unclear. In the present study, we find that resistin binds to TLR4 on colon cancer cell membrane and initiates TLR4-MyD88-dependent activation of ERK. In addition, the upregulation of SOCS3 by ERK downregulates the JAK2/TAT3 pathway and causes the arrest of cells in G1 phase. Interestingly, we observe that resistin-exposed cells survive 5-fluorouracil treatment because of a decrease in drug uptake due to the arrest of cells in G1 phase.
Collapse
|
32
|
Guerra L, Odorisio T, Zambruno G, Castiglia D. Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol 2017; 63:1-10. [PMID: 28126522 DOI: 10.1016/j.matbio.2017.01.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a skin fragility disease caused by mutations that affect the function and/or the amount of type VII collagen (C7), the major component of anchoring fibrils. Hallmarks of RDEB are unremitting blistering and chronic wounds leading to tissue fibrosis and scarring. Nearly all patients with severe RDEB develop highly metastatic squamous cell carcinomas (SCC) which are the main cause of death. Accumulating evidence from a murine RDEB model and human RDEB cells demonstrates that lack of C7 also directly alters the wound healing process. Non-healing RDEB wounds are characterized by increased inflammation, high transforming growth factor-β1 (TGF-β1) levels and activity, and are heavily populated by myofibroblasts responsible for enhanced fibrogenesis and matrix stiffness. These changes make the RDEB stroma a microenvironment prone to cancer initiation, where cells with features of cancer-associated fibroblasts are found. Here, we discuss recent knowledge on microenvironment alterations in RDEB, highlighting possible therapeutic targets to prevent and/or delay fibrosis and SCC development.
Collapse
Affiliation(s)
- Liliana Guerra
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area and Dermatology Unit, Bambino Gesù Children's Hospital-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI)-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
33
|
Hong X, Yang Z, Wang M, Wang L, Xu Q. Reduced decorin expression in the tumor stroma correlates with tumor proliferation and predicts poor prognosis in patients with I-IIIA non-small cell lung cancer. Tumour Biol 2016; 37:16029–16038. [PMID: 27726099 DOI: 10.1007/s13277-016-5431-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022] Open
Abstract
Decorin, chiefly synthesized by tumor stroma, is known as a tumor suppressor. However, the clinical and prognostic significance in lung cancer remained unclear. Here, decorin and Ki67 expression was detected by immunohistochemistry (IHC) in I-IIIA non-small cell lung cancer (NSCLC) tissues (n = 264) in comparison to adjacent normal tissues (n = 40). The relationship between the expression of decorin and clinical characteristics, as well as Ki67 index and prognosis, was analyzed. Decorin expression was decreased in both the stroma (P < 0.001) and the tumor cells (P = 0.038) in NSCLC specimens. There was the lowest stromal expression of decorin in patients with G3 adenocarcinoma and higher Ki67 index in the stromal decorin-negative group. The Kaplan-Meier survival analysis demonstrated that lack of decorin in the stroma was correlated with a shorter DFS and OS (P = 0.005 and P = 0.010, respectively), while there was no significant association between decorin expression in the tumor cells and outcome. Multivariate analysis showed that reduced expression of decorin in the stroma was an independent prognostic factor for poor outcome including DFS (HR = 5.685, 95 % CI 0.493-0.933; P = 0.017) and OS (HR = 6.579, 95 % CI 0.484-0.908; P = 0.010). Negative decorin in the stroma combined with high Ki67 index predicted poorer outcomes for I-IIIA NSCLC patients. Our results provide data on decorin expression in both the stroma and cancer cells in NSCLC and reveal that reduced expression of stromal decorin correlates with high Ki67 index and has prognostic significance for poor outcome in I-IIIA NSCLC. Our data suggest that evaluating stromal decorin expression might be useful in assessing the prognosis and malignant potential.
Collapse
Affiliation(s)
- Xuan Hong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Zhaoyang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Meng Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Li Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, People's Republic of China
| | - Qingyong Xu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, People's Republic of China.
| |
Collapse
|
34
|
Liu Y, Wang X, Wang Z, Ju W, Wang D. Decorin inhibits the proliferation of HepG2 cells by elevating the expression of transforming growth factor-β receptor II. Exp Ther Med 2016; 12:2191-2195. [PMID: 27698710 DOI: 10.3892/etm.2016.3572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/19/2016] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effects of decorin (DCN) on the proliferation of human hepatoma HepG2 cells and the involvement of transforming growth factor-β (TGF-β) signaling pathway. A vector containing DCN was transfected into HepG2 cells with the use of Lipofectamine 2000. Cell proliferation was assessed with an MTT assay, and western blot analysis was used to detect the protein expression of TGF-β receptor I (TGF-βRI), phosphorylated TGF-βRI, p15 and TGF-βRII. In addition, small interfering RNA (siRNA) silencing was performed to knock down the target gene. The results indicated that, compared with the control group, cell proliferation was significantly decreased in HepG2 cells transfected with DCN. In addition, DCN transfection significantly increased the phosphorylation level of TGF-βRI in HepG2 cells. The expression of the downstream factor p15 was also significantly elevated in the DCN-transfected HepG2 cells. Furthermore, DCN transfection significantly elevated the expression level of TGF-βRII in HepG2 cells. By contrast, the silencing of TGF-βRII significantly decreased the phosphorylation of TGF-βRI in DCN-transfected HepG2 cells. In addition, TGF-βRII silencing abolished the effects of DCN on the proliferation of HepG2 cells. In conclusion, DCN elevated the expression level of TGF-βRII, increased the phosphorylation level of TGF-βRI, enhanced the expression of p15, and finally inhibited the proliferation of HepG2 cells. These findings may contribute to the understanding of the role of DCN in the pathogenesis of hepatic carcinoma and assist in the disease treatment.
Collapse
Affiliation(s)
- Yanfeng Liu
- Department of Human Anatomy, College of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Xuesong Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Zhaohui Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Wenbo Ju
- Department of Human Anatomy, College of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, P.R. China
| | - Dawei Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Beihua University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
35
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
36
|
Trotter TN, Yang Y. Matricellular proteins as regulators of cancer metastasis to bone. Matrix Biol 2016; 52-54:301-314. [PMID: 26807761 DOI: 10.1016/j.matbio.2016.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 01/08/2023]
Abstract
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.
Collapse
Affiliation(s)
- Timothy N Trotter
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yang Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center and the Center for Metabolic Bone Disease, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
37
|
Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654765. [PMID: 26697491 PMCID: PMC4677162 DOI: 10.1155/2015/654765] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023]
Abstract
Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer.
Collapse
|