1
|
Sarwareddy KK, Singh AD, Patnam S, Sesuraj BA, Ponamgi S, Thakur BK, Manda VS. Harnessing tomato-derived small extracellular vesicles as drug delivery system for cancer therapy. Future Sci OA 2025; 11:2461956. [PMID: 39920889 PMCID: PMC11812386 DOI: 10.1080/20565623.2025.2461956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
AIM This study aims to explore a sustainable and scalable approach using tomato fruit-derived sEVs (TsEVs) to deliver calcitriol for enhanced anticancer effects, addressing challenges of low yield and high costs associated with mammalian cell-derived sEVs. METHODS TsEVs were isolated by centrifugation and ultrafiltration and characterized using DLS, TEM, and biochemical assays. Calcitriol was loaded into TsEVs via loading methods, with efficiency measured by spectrophotometry and HPLC. HCT116 and HT29 colon cancer cells were treated with TsEV-calcitriol and assessed for viability, colony formation, migration, ROS levels, and apoptosis gene expression. RESULTS Isolated TsEVs ranged from 30-200 nm with a protein-to-lipid ratio of ∼1. Calcitriol encapsulation efficiencies were 15.4% (passive), 34.8% (freeze-thaw), and 47.3% (sonication). TsEV-calcitriol reduced HCT116 cell viability with IC50 values of 4.05 µg/ml (24 h) and 2.07 µg/ml (48 h). Clonogenic assays showed reduced colony formation and migration. Elevated ROS levels and increased Bax/Bcl-2 ratio were observed in treated HCT116 and HT29 colon cancer cells. CONCLUSION These findings highlight TsEVs as a promising alternative drug delivery platform to mammalian cell-derived sEV for enhancing the therapeutic efficiency of calcitriol and other anticancer agents.
Collapse
Affiliation(s)
- Kartik Kumar Sarwareddy
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Hyderabad, India
| | - Anula Divyash Singh
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Hyderabad, India
| | - Sreekanth Patnam
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Hyderabad, India
| | | | - spd Ponamgi
- Department of Biotechnology, AU College of Science and Technology, Andhra University, India
| | | | - Venkata Sasidhar Manda
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Hyderabad, India
- Urvogelbio Private Limited, AHERF, Hyderabad, India
| |
Collapse
|
2
|
Saroj N, Dholaniya PS, Alvi SB, Sridharan D, Soni N, Ashraf SA, Choudhry A, Ashraf YA, Mikula SK, Singla DK, Khan M. SiRNA-mediated knockdown of TOP2B protects hiPSC-derived cardiomyocytes from doxorubicin-induced toxicity. Life Sci 2025; 371:123595. [PMID: 40158615 DOI: 10.1016/j.lfs.2025.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
AIMS Doxorubicin (Dox) is a potent chemotherapeutic agent, but its use is limited by cardiotoxicity, primarily due to the disruption of Topoisomerase-2 beta (TOP2B) activity. Dexrazoxane (Dex), an FDA-approved cardioprotective drug, alleviates Dox-induced toxicity but lacks heart-specific targeting. This study investigates siRNA-mediated TOP2B knockdown as a more targeted strategy to protect cardiomyocytes from Dox-induced damage. MATERIALS AND METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with siRNA to knock down TOP2B and were then exposed to Dox. We compared the cardioprotective effects of siRNA-mediated knockdown to Dex treatment using cell viability, cell toxicity assay and electrophysiological evaluation was performed using a multielectrode array (MEA). KEY FINDINGS Our results demonstrate that TOP2B silencing significantly decreases apoptosis and improved cell viability, as compared to the Dex treatment. Additionally, electrophysiological assays using a Multielectrode Array (MEA) demonstrated enhanced contractility and conductivity in siRNA-treated hiPSC-CMs. Furthermore, transmission electron microscopy (TEM) data revealed that TOP2B knockdown preserves mitochondrial morphology and sarcomere structure, compared to Dox and Dex-treated groups. SIGNIFICANCE These findings suggest that siRNA-mediated TOP2B inhibition could provide a safer, more specific approach to mitigate Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neha Saroj
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Pankaj Singh Dholaniya
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | - Syed Baseeruddin Alvi
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Divya Sridharan
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Navisha Soni
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Syed Abdullah Ashraf
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ayza Choudhry
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Yusuf Ali Ashraf
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sarah Kathleen Mikula
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - Dinender Kumar Singla
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Mahmood Khan
- Division of Basic and Translational Research, Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Santacruz-Márquez R, Sánchez Peña LDC, Flaws JA, Hernández-Ochoa I. The effect of TiO2 nanoparticles on antral follicles is dependent on the nanoparticle internalization rate. Toxicol Sci 2025; 204:31-42. [PMID: 39661493 DOI: 10.1093/toxsci/kfae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely produced metallic NPs due to commercial and industrial applications in products including food, cosmetics, paints, and plastics. TiO2 NPs are released into the environment posing health risks for humans and wildlife. Widespread uses have raised concerns about the potential toxicity of TiO2 NPs in reproduction. The ovary is an important endocrine organ responsible for sex steroid hormone production and folliculogenesis. NPs can reach the ovary, but limited information is available regarding NP toxicity and its effects on ovarian antral follicles. Thus, we tested the hypothesis that exposure to TiO2 NP affects sex hormone synthesis, oxidative stress, and antioxidant response in ovarian antral follicles in vitro. In addition, we characterized the NP internalization in the antral follicles over time to determine any association between NP internalization and effects on the antral follicle. Antral follicles were exposed to vehicle control or TiO2 NPs (5, 25, and 50 µg/ml) for 96 h. The lowest NP concentration (5 µg/ml) showed no internalization and no effects in antral follicles. The 25-µg/ml concentration had the highest internalization rate, leading to increased mRNA ratio of Bax to Bcl2. Interestingly, the highest concentration (50 µg/ml) showed lower internalization compared with the 25 µg/ml, with altered levels of steroidogenic involved genes and increased levels of progesterone and testosterone compared with control. In conclusion, these data suggest that TiO2 NP is internalized in antral follicles as the first step process in impairing follicle functions.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, México
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Luz Del Carmen Sánchez Peña
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, México
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Isabel Hernández-Ochoa
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, México
| |
Collapse
|
4
|
Kamila S, Dey KK, Chattopadhyay A. Arsenic and Chromium Induced Toxicity on Zebrafish Kidney: Mixture Effects on Oxidative Stress and Involvement of Nrf2-Keap1-ARE, DNA Repair, and Intrinsic Apoptotic Pathways. J Appl Toxicol 2025; 45:387-399. [PMID: 39402722 DOI: 10.1002/jat.4709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 02/11/2025]
Abstract
In polluted water, cooccurrences of two carcinogens, arsenic (As) and chromium (Cr), are extensively reported. Individual effects of these heavy metals have been reported in kidney of fishes, but underlying molecular mechanisms are not well established. There is no report on combined exposure of As and Cr in kidney. Thus, the present study investigated and compared individual and combined effects of As and Cr on zebrafish (Danio rerio) kidney treating at their environmentally relevant concentrations for 15, 30, and 60 days. Increased ROS levels, lipid peroxidation, GSH level, and decreased catalase activity implied oxidative stress in treated zebrafish kidney. Damage in histoarchitecture in treated groups was also noticed. The current study involved gene expression study of Nrf2, an important transcription factor of cellular stress responses along with its negative regulator Keap1 and downstream antioxidant genes nqo1 and ho1. Results indicated activation of Nrf2-Keap1 pathway after combined exposure. Expression pattern of ogg1, apex1, polb, and creb1 revealed the inhibition of base excision repair pathway in treatments. mRNA expression of tumor suppressor genes p53 and brca2 was also altered. Expressional alteration in bax, bcl2, caspase9, and caspase 3 indicated apoptosis (intrinsic pathway) induction, which was maximum in combined group. Inhibition of DNA repair and induction of apoptosis indicated that the activated antioxidant system was not enough to overcome the damage caused by As and Cr. Overall, this study revealed additive effects of As and Cr in zebrafish kidney after chronic exposure focusing cellular antioxidant and DNA damage responses.
Collapse
Affiliation(s)
- Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
5
|
Chueaphromsri P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. Enhancement hispolon production from Phellinus linteus via epigenetic-modified culture to inhibit human breast cancer cells. Biotechnol Lett 2025; 47:29. [PMID: 40011236 DOI: 10.1007/s10529-025-03561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 02/28/2025]
Abstract
Phellinus linteus (PL) is a medicinal fungus known for producing hispolon, a bioactive compound with antioxidant, anti-inflammatory, and anticancer properties. However, the natural scarcity of PL and the unsuccessful cultivation of its fruiting bodies have led to the exploration of alternative methods for enhancing its bioactive compound production. In this study, static fermentation was employed, and Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was added to the culture medium to induce epigenetic modifications and enhance hispolon production. After 30 days of fermentation, the hispolon concentration was analyzed using high-performance liquid chromatography (HPLC), mycelial dry weight was measured, and the expression of hispolon synthesis-related enzymes was quantified using quantitative PCR (qPCR). Additionally, the anticancer potential of the fermented media was assessed in human breast adenocarcinoma HTB-26 cells using assays for cytotoxicity, reactive oxygen species (ROS) formation, apoptosis, antioxidant activity, and autophagy markers. The results revealed that the addition of 400 µM VPA increased hispolon production by 120% and mycelial dry weight by 41%, likely due to enhanced transcriptional accessibility. Furthermore, the PL fermentation media significantly inhibited HTB-26 cell growth through the induction of ROS formation, autophagy, and apoptosis. These findings suggest that VPA-enhanced static fermentation of PL offers a promising strategy for optimizing hispolon production and developing effective anticancer therapeutics.
Collapse
Affiliation(s)
- Phongsakorn Chueaphromsri
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Parezanovic M, Stevanovic N, Andjelkovic M, Ugrin M, Pavlovic S, Stojiljkovic M, Skakic A. Phenylbutyric Acid Modulates Apoptosis and ER Stress-Related Gene Expression in Glycogen Storage Disease Type Ib In Vitro Model. Mol Genet Genomic Med 2025; 13:e70054. [PMID: 39803753 PMCID: PMC11726116 DOI: 10.1002/mgg3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
INTRODUCTION Chronic endoplasmic reticulum (ER) stress and increased apoptosis are involved in the pathogenesis of glycogen storage disease Ib (GSD Ib), whereas small molecule phenylbutyrate (4-PBA) showed the capability of reducing ER stress-induced apoptosis. The objective was to generate an in vitro system in which capability of small molecules (SMs) to influence ER stress and apoptosis could be screened at the expression level. METHODS G6PT-deficient FlpInHEK293 cell line was created and validated using the CRISPR/Cas9 knockout method. Molecular markers of unfolded protein response (ATF4, DDIT3, HSPA5, XBP1s), and apoptosis (BCL2/BAX, CASP3, CASP7) in G6PT-deficient cells were analyzed using RT-qPCR method before and upon the treatment with 4-PBA. RESULTS Treatment with the most effective dose of 1 mM 4-PBA reduced the expression of UPR markers and executioner caspases, while increased BCL2/BAX ratio in G6PT-deficient cells. Our results proved the concept that 4-PBA could alleviate markers of ER stress detected in the GSD Ib in vitro model system and prevent cell death. CONCLUSION This cost-effective in vitro model screens the therapeutic potential of SMs affecting ER stress and apoptosis in G6PT-deficient kidney cells, offering a first-line screening assay for promising compounds. 4-PBA's potential repurposing for GSD Ib patients opens new research directions.
Collapse
Affiliation(s)
- Marina Parezanovic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Nina Stevanovic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Marina Andjelkovic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Milena Ugrin
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Sonja Pavlovic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Maja Stojiljkovic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| | - Anita Skakic
- Group for Rare Disease Research and Therapeutics Development, Institute of Molecular Genetics and Genetic EngineeringUniversity of BelgradeBelgradeRepublic of Serbia
| |
Collapse
|
7
|
Barba-Ostria C, Carrero Y, Guamán-Bautista J, López O, Aranda C, Debut A, Guamán LP. Microencapsulation of Anthocyanins from Zea mays and Solanum tuberosum: Impacts on Antioxidant, Antimicrobial, and Cytotoxic Activities. Nutrients 2024; 16:4078. [PMID: 39683473 DOI: 10.3390/nu16234078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives: This study investigates the biological activities of microencapsulated anthocyanins extracted from two Andean ancestral edible plants, Solanum tuberosum, and Zea mays, with a focus on their potential applications in functional foods and therapeutics. The primary objective was to evaluate their antioxidant, antimicrobial, and cytotoxic properties alongside structural and functional analyses of the microencapsulation process. Methods: Anthocyanins were extracted and microencapsulated using maltodextrin as a carrier. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to analyze the stability and structure of the microencapsulated particles. The antioxidant, antimicrobial, and cytotoxic activities of the microencapsulated were assessed through established assays. Results:S. tuberosum exhibited superior antioxidant capacity and potent anticancer activity against HepG2 and THJ29T cell lines, while Z. mays demonstrated significant antimicrobial efficacy against multidrug-resistant bacterial strains and biofilm-forming pathogens. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the stabilization of anthocyanins within a maltodextrin matrix, enhancing their bioavailability and application potential. Conclusions: These results highlight the versatility of microencapsulated anthocyanins as bioactive agents for industrial and therapeutic applications. Future studies should explore in vivo validation and synergistic formulations to optimize their efficacy and broaden their use in nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Microbiología, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Yenddy Carrero
- Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato 180105, Ecuador
| | - Jéssica Guamán-Bautista
- Facultad de Ciencias de la Hospitalidad, Carrera de Gastronomía, Universidad de Cuenca, Cuenca 010201, Ecuador
| | - Orestes López
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Ambato 180207, Ecuador
| | - Christian Aranda
- Facultad de Ciencia e Ingeniería en Alimentos, Universidad Técnica de Ambato, Ambato 180207, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
- Departamento de Ciencias de la Vida y Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador
| | - Linda P Guamán
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Centro de Investigación Biomédica (CENBIO), Quito 170527, Ecuador
| |
Collapse
|
8
|
Ebrahimi Y, Rezaie J, Akbari A, Rasmi Y. Green hydrothermal synthesis of gallic acid carbon dots: characterization and cytotoxic effects on colorectal cancer cell line. Biomed Phys Eng Express 2024; 11:015017. [PMID: 39530648 DOI: 10.1088/2057-1976/ad9153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, necessitating the development of novel therapeutic approaches. Carbon dots (CDs) have emerged as promising nanoparticles for biomedical applications due to their unique properties. Gallic acid (GA), an anticancer agent, is effective against various tumor types. This study explores the potential of gallic acid-derived carbon dots (GA-CDs) as an innovative anticancer agent against HCT-116 CRC cells, focusing on apoptosis signaling pathways. GA-CDs were synthesized using a one-pot hydrothermal method. Characterization was conducted using transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-vis) absorption spectroscopy. The cytotoxicity of GA and GA-CDs on HCT-116 cells was evaluated using the MTT assay at various concentrations over 24 and 48 h. Cellular uptake was assessed via fluorescence microscopy, and apoptosis was analyzed using acridine orange/propidium iodide (AO/PI) staining. Total RNA extraction followed by complementary DNA (cDNA) synthesis via reverse transcription-PCR was performed, and real time-PCR (Q-PCR) was conducted to examine the expression of apoptosis-related genes includingCaspase-3,Bax, andBcl-2. Characterization confirmed the successful synthesis of spherical GA-CDs. GA-CDs exhibited dose- and time-dependent cytotoxicity, with IC50 values of 88.55 μg ml-1for GA-CDs and 192.2 μg ml-1for GA after 24 h. Fluorescence microscopy confirmed the efficient uptake of GA-CDs by HCT-116 cells. AO/PI staining showed a significant increase in apoptotic cell numbers after treatment with GA-CDs. Q-PCR analysis revealed overexpression ofCaspase-3 andBaxgenes in GA-CD-treated cells, though no significant changes were observed in the expression ofBcl-2 or theBax/Bcl-2 ratio. GA-CDs demonstrated potent anticancer properties by inducing apoptosis and reducing cell viability in HCT-116 cells. These findings suggest the potential of GA-CDs as a novel therapeutic agent for CRC treatment, warranting further investigation into their mechanism of action andin vivoefficacy.
Collapse
Affiliation(s)
- Yaser Ebrahimi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Alipour B, Veisi Malekshahi Z, Pourjafar F, Faridi-Majidi R, Negahdari B. Anticancer effects of simvastatin-loaded albumin nanoparticles on monolayer and spheroid models of breast cancer. Biochem Biophys Res Commun 2024; 734:150591. [PMID: 39255745 DOI: 10.1016/j.bbrc.2024.150591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024]
Abstract
Breast cancer is a prominent cause of death among women and is distinguished by a high occurrence of metastasis. From this perspective, apart from conventional therapies, several alternative approaches have been researched and explored in recent years, including the utilization of nano-albumin and statin medications like simvastatin. The objective of this study was to prepare albumin nanoparticles incorporating simvastatin by the self-assembly method and evaluate their impact on breast cancer metastasis and apoptosis. The data showed the prepared nanoparticles have a diameter of 185 ± 24nm and a drug loading capacity of 8.85 %. The findings exhibit improved release in a lysosomal-like environment and under acidic pH conditions. MTT data showed that nanoparticles do not exhibit a dose-dependent effect on cells. Additionally, the results from MTT, flow cytometry, and qPCR analyses demonstrated that nanoparticles have a greater inhibitory and lethal effect on MDA-MB-231 cells compared to normal simvastatin. And cause cells to accumulate in the G0/G1 phase, initiating apoptotic pathways by inhibiting cell cycle progression. Nanoparticles containing simvastatin can prevent cell invasion and migration in both monolayer and spheroid models, as compared to simvastatin alone, at microscopic levels and in gene expression. The obtained data clearly showed that, compared to simvastatin, nanoparticles containing simvastatin demonstrated significant efficacy in suppressing the growth, proliferation, invasion, and migration of cancer cells in monolayer (2D) and spheroid (3D) models.
Collapse
Affiliation(s)
- Behruz Alipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Pourjafar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Lteif A, Shebaby W, El Hage M, Azar-Atallah S, Mroue D, Mroueh M, Daher CF. Lebanese cannabis oil as a potential treatment for acute myeloid leukemia: In vitro and in vivo evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118512. [PMID: 38964627 DOI: 10.1016/j.jep.2024.118512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cannabis sativa L. ssp. indica (Lam.) plant has been historically utilized as a natural herbal remedy for the treatment of several ailments. In Lebanon, cannabis extracts have long been traditionally used to treat arthritis, diabetes, and cancer. AIM OF THE STUDY The current study aims to investigate the anti-cancer properties of Lebanese cannabis oil extract (COE) on acute myeloid leukemia using WEHI-3 cells, and a WEHI-3-induced leukemia mouse model. MATERIALS AND METHODS WEHI-3 cells were treated with increasing concentrations of COE to determine the IC50 after 24, 48 and 72-h post treatment. Flow cytometry was utilized to identify the mode of cell death. Western blot assay was performed to assess apoptotic marker proteins. In vivo model was established by inoculating WEHI-3 cells in BALB/c mice, and treatment commencing 10 days post-inoculation and continued for a duration of 3 weeks. RESULTS COE exhibited significant cytotoxicity with IC50 of 7.76, 3.82, and 3.34 μg/mL at 24, 48, and 72 h respectively post-treatment. COE treatment caused an induction of apoptosis through an inhibition of the MAPK/ERK pathway and triggering a caspase-dependent apoptosis via the extrinsic and intrinsic modes independent of ROS production. Animals treated with COE exhibited a significantly higher survival rate, reduction in spleen weight as well as white blood cells count. CONCLUSION COE exhibited a potent anti-cancer activity against AML cells, both in vitro and in vivo. These findings emphasize the potential application of COE as a chemotherapeutic adjuvant in treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Anthony Lteif
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Wassim Shebaby
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Marissa El Hage
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Shirine Azar-Atallah
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Dima Mroue
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Mohamad Mroueh
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon; Alice Ramez Chagoury School of Nursing, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
11
|
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MDL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. BIOLOGY 2024; 13:721. [PMID: 39336148 PMCID: PMC11429014 DOI: 10.3390/biology13090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 μM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.
Collapse
Affiliation(s)
- Sílvia Moreira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Miguel Pastor
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Vicente Seco-Rovira
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Mardi A, Alizadeh M, Abdolalizadeh AS, Baghbanzadeh A, Baradaran B, Aghebaqti-Maleki A, Sandoghchian Shotorbani S, Movloudi M, Aghebati-Maleki L. CTLA-4 silencing could promote anti-tumor effects in hepatocellular. Med Oncol 2024; 41:193. [PMID: 38955918 DOI: 10.1007/s12032-024-02361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024]
Abstract
Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Shahabaddin Abdolalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebaqti-Maleki
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Movloudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Venkidasamy B, Subramanian U, Almoallim HS, Alharbi SA, Lakshmikumar RRC, Thiruvengadam M. Vanillic Acid Nanocomposite: Synthesis, Characterization Analysis, Antimicrobial, and Anticancer Potentials. Molecules 2024; 29:3098. [PMID: 38999050 PMCID: PMC11243421 DOI: 10.3390/molecules29133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus, and Candida albicans. The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.
Collapse
Affiliation(s)
- Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Umadevi Subramanian
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Hesham S. Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia;
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Rahul Raj Chennam Lakshmikumar
- Department of General Surgery, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Makinwa Y, Luo Y, Musich PR, Zou Y. Canonical and Noncanonical Functions of the BH3 Domain Protein Bid in Apoptosis, Oncogenesis, Cancer Therapeutics, and Aging. Cancers (Basel) 2024; 16:2199. [PMID: 38927905 PMCID: PMC11202167 DOI: 10.3390/cancers16122199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Effective cancer therapy with limited adverse effects is a major challenge in the medical field. This is especially complicated by the development of acquired chemoresistance. Understanding the mechanisms that underlie these processes remains a major effort in cancer research. In this review, we focus on the dual role that Bid protein plays in apoptotic cell death via the mitochondrial pathway, in oncogenesis and in cancer therapeutics. The BH3 domain in Bid and the anti-apoptotic mitochondrial proteins (Bcl-2, Bcl-XL, mitochondrial ATR) it associates with at the outer mitochondrial membrane provides us with a viable target in cancer therapy. We will discuss the roles of Bid, mitochondrial ATR, and other anti-apoptotic proteins in intrinsic apoptosis, exploring how their interaction sustains cellular viability despite the initiation of upstream death signals. The unexpected upregulation of this Bid protein in cancer cells can also be instrumental in explaining the mechanisms behind acquired chemoresistance. The stable protein associations at the mitochondria between tBid and anti-apoptotic mitochondrial ATR play a crucial role in maintaining the viability of cancer cells, suggesting a novel mechanism to induce cancer cell apoptosis by freeing tBid from the ATR associations at mitochondria.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Yibo Luo
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| | - Phillip R. Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (Y.M.); (Y.L.)
| |
Collapse
|
15
|
Mitrović M, Djukić MB, Vukić M, Nikolić I, Radovanović MD, Luković J, Filipović IP, Matić S, Marković T, Klisurić OR, Popović S, Matović ZD, Ristić MS. Search for new biologically active compounds: in vitro studies of antitumor and antimicrobial activity of dirhodium(II,II) paddlewheel complexes. Dalton Trans 2024; 53:9330-9349. [PMID: 38747564 DOI: 10.1039/d4dt01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Four neutral Rh1-Rh4 complexes of the general formula [Rh2(CH3COO)4L2], where L is an N-alkylimidazole ligand, were synthesized and characterized using various spectroscopic techniques, and in the case of Rh4 the crystal structure was confirmed. Investigation of the interactions of these complexes with HSA by fluorescence spectroscopy revealed that the binding constants Kb are moderately strong (∼104 M-1), and site-marker competition experiments showed that the complexes bind to Heme site III (subdomain IB). Competitive binding studies for CT DNA using EB and HOE showed that the complexes bind to the minor groove, which was also confirmed by viscosity experiments. Molecular docking confirmed the experimental data for HSA and CT DNA. Antimicrobial tests showed that the Rh2-Rh4 complexes exerted a strong inhibitory effect on G+ bacteria B. cereus and G- bacteria V. parahaemolyticus as well as on the yeast C. tropicalis, which showed a higher sensitivity compared to fluconazole. The cytotoxic activity of Rh1-Rh4 complexes tested on three cancer cell lines (HeLa, HCT116 and MDA-MB-231) and on healthy MRC-5 cells showed that all investigated complexes elicited more efficient cytotoxicity on all tested tumor cells than on control cells. Investigation of the mechanism of action revealed that the Rh1-Rh4 complexes inhibit cell proliferation via different mechanisms of action, namely apoptosis (increase in expression of the pro-apoptotic Bax protein and caspase-3 protein in HeLa and HCT116 cells; changes in mitochondrial potential and mitochondrial damage; release of cytochrome c from the mitochondria; cell cycle arrest in G2/M phase in both HeLa and HCT116 cells together with a decrease in the expression of cyclin A and cyclin B) and autophagy (reduction in the expression of the protein p62 in HeLa and HCT116 cells).
Collapse
Affiliation(s)
- Marina Mitrović
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Maja B Djukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Milena Vukić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Ivana Nikolić
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Marko D Radovanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jovan Luković
- University of Kragujevac, Faculty of Medical Sciences, Department of Medical Biochemistry, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Ignjat P Filipović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Sanja Matić
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Tijana Marković
- University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Olivera R Klisurić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
| | - Suzana Popović
- University of Kragujevac, Faculty of Medical Sciences, Centre for Molecular Medicine and Stem Cell Research, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Zoran D Matović
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Marija S Ristić
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
16
|
Lotfian Sargazi M, Miri Karam Z, Shahraki A, Raeiszadeh M, Rezazadeh Khabaz MJ, Yari A. Anti-inflammatory and Apoptotic Effects of Levisticum Officinale Koch Extracts on HT 29 and Caco-2 Human Colorectal Carcinoma Cell Lines. Galen Med J 2024; 13:e3341. [PMID: 39224551 PMCID: PMC11368474 DOI: 10.31661/gmj.v13i.3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colorectal cancer is among the deadliest cancers in the world. Due to the occurrence of side effects related to current standard therapy, researchers are seeking better alternative treatments. For many years, herbs have been a promising source for discovering therapeutic compounds. Therefore, the primary objective of this research was to examine the distinctive apoptotic and anti-inflammatory properties exhibited by Levisticum officinale Koch (lovage) on HT-29 and Caco-2 cell lines. MATERIALS AND METHODS The maceration method was used to prepare different extracts (ethanol, dichloromethane, petroleum, and residues) from the plant. These extracts were then tested on two colon cancer cell lines - HT-29 and Caco-2 - using the MTT assay to determine the half-maximal inhibitory concentration (IC50) values. In addition, we evaluated the expression levels of several inflammatory genes (IKKb, IKKa, and REIB) using real-time PCR. We also assessed Cox-2 protein expression using western blot analysis. The western blot was also used to analyze apoptosis-related proteins, including Caspase-3, BAX, and Bcl-2. RESULTS The dichloromethane extract of Levisticum officin (DELO) exhibited a high cytotoxic effect on Caco-2 and HT-29 cell lines, with IC50 values of 106.0±2 μg/mL in HT-29 cells and 175.3±4 μg/mL in Caco-2 cells after 72 hours. None of the lovage extracts showed a significant cytotoxic effect on non-cancerous cells (3T3 cell line). Furthermore, the group treated with DELO showed a lower expression level of inflammatory genes and COX-2 protein compared to the control group. Notably, treatment with DELO resulted in an increase in Caspase-3 protein and BAX/Bcl-2 ratio in both HT-29 and Caco-2 cells. CONCLUSION According to this study, DELO has the potential to act as an anti-inflammatory and anti-cancer agent. Further research on the compounds present in DELO and their effect on various signaling pathways could help in the development of new drugs for diseases where inflammation or cells escape from apoptosis play a crucial role.
Collapse
Affiliation(s)
- Marzieh Lotfian Sargazi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of
Medical Sciences, Kerman, Iran
| | - Zahra Miri Karam
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences,
Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shahraki
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan,
Zahedan, Iran
| | - Mahboobeh Raeiszadeh
- Herbal and traditional medicines research center, Kerman University of Medical
Sciences, kerman, Iran
| | | | - Abolfazl Yari
- Cellular and Molecular Research Center, Birjand University of Medical Sciences,
Birjand, Iran
| |
Collapse
|
17
|
Worsfold SI, Carter K, Akbar M, Hackett L, Millar NL, Murrell GAC. Rotator Cuff Tendinopathy: Pathways of Apoptosis. Sports Med Arthrosc Rev 2024; 32:12-16. [PMID: 38695498 DOI: 10.1097/jsa.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Rotator cuff repair is usually successful, but retear is not uncommon. It has been previously identified that there is a higher incidence of apoptosis in the edges of the torn supraspinatus tendon. A prospective cohort study was conducted with 28 patients-14 rotator cuff tear patients, 5 instability patients, and 9 Anterior cruciate ligament reconstruction patients to determine whether there was any increase in several genes implicated in apoptosis, including Fas receptor (FasR), Fas ligand, Aifm-1, Bcl-2, Fadd, Bax, and caspase-3. There was a significant expression of Bax (P=0.2) and FasR (P=0.005) in the edges of torn supraspinatus tendons, and in intact subscapularis tendons, there was a significant expression of caspase-3 (P=0.02) compared with samples from the torn supraspinatus tendon (P=0.04). The cytochrome c pathway, with its subsequent activation of caspase-3, as well as the TRAIL-receptor signaling pathway involving FasR have both been implicated. The elevated expression of Bax supported the model that the Bax to Bcl-2 expression ratio represents a cell death switch. The elevated expression of Bax in the intact subscapularis tissue from rotator cuff tear patients also may confirm that tendinopathy is an ongoing molecular process.
Collapse
Affiliation(s)
- Sophie I Worsfold
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, University of New South Wales, St George Hospital Campus, Sydney, NSW, Australia
| | - Kristyn Carter
- Institute of infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Moeed Akbar
- Institute of infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lisa Hackett
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, University of New South Wales, St George Hospital Campus, Sydney, NSW, Australia
| | - Neal L Millar
- Institute of infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - George A C Murrell
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, University of New South Wales, St George Hospital Campus, Sydney, NSW, Australia
| |
Collapse
|
18
|
Alhowail AH, Aldubayan MA. Doxorubicin impairs cognitive function by upregulating AMPAR and NMDAR subunit expression and increasing neuroinflammation, oxidative stress, and apoptosis in the brain. Front Pharmacol 2023; 14:1251917. [PMID: 38099144 PMCID: PMC10720042 DOI: 10.3389/fphar.2023.1251917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: The anticancer drug doxorubicin (DOX) is used for various malignancies. However, it also causes cognitive impairment in cancer survivors. In order to determine the mechanisms underlying the acute effects of DOX, we assessed the mRNA and protein expression of glutamate receptors and proteins involved in cognitive function and apoptosis. Methods: Fear-conditioning memory tests were performed in rats after a single intraperitoneal injection of DOX (25 mg/kg) to evaluate short-term memory function. Rat brain samples were collected, and GluA1 mRNA and protein expression; NR2A and NR2B mRNA expression; and COX-2, NF-kB, TNF-α, and MDA, Bax, and caspase-3 levels were assessed via reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assays. Results: We observed a decreased number of entries in Y-maze, decreased exploration time to the novel object in the novel object recognition (NOR), and decreased freezing time in the fear-conditioning memory tests in DOX-treated rats relative to those in control rats, demonstrating cognitive impairment. GluA1, NR2B, and NR2A expression and MDA, NF-κB, Bax, COX-2, TNF-α, and caspase-3 levels in the brain were significantly elevated in DOX-treated rats. Conclusion: DOX induced cognitive impairment in the rats via neuronal toxicity by upregulating AMPAR and NMDAR expression and increasing neuroinflammation, oxidative stress, and apoptosis in the brain.
Collapse
Affiliation(s)
- Ahmad H. Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | | |
Collapse
|
19
|
Čižmáriková M, Michalková R, Mirossay L, Mojžišová G, Zigová M, Bardelčíková A, Mojžiš J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules 2023; 13:1653. [PMID: 38002335 PMCID: PMC10669545 DOI: 10.3390/biom13111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a complex and multifaceted disease with a high global incidence and mortality rate. Although cancer therapy has evolved significantly over the years, numerous challenges persist on the path to effectively combating this multifaceted disease. Natural compounds derived from plants, fungi, or marine organisms have garnered considerable attention as potential therapeutic agents in the field of cancer research. Ellagic acid (EA), a natural polyphenolic compound found in various fruits and nuts, has emerged as a potential cancer prevention and treatment agent. This review summarizes the experimental evidence supporting the role of EA in targeting key hallmarks of cancer, including proliferation, angiogenesis, apoptosis evasion, immune evasion, inflammation, genomic instability, and more. We discuss the molecular mechanisms by which EA modulates signaling pathways and molecular targets involved in these cancer hallmarks, based on in vitro and in vivo studies. The multifaceted actions of EA make it a promising candidate for cancer prevention and therapy. Understanding its impact on cancer biology can pave the way for developing novel strategies to combat this complex disease.
Collapse
Affiliation(s)
- Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Annamária Bardelčíková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Č.); (R.M.); (M.Z.); (A.B.)
| |
Collapse
|
20
|
Elizalde-Velázquez GA, Herrera-Vázquez SE, Gómez-Oliván LM, García-Medina S. Health impact assessment after Danio rerio long-term exposure to environmentally relevant concentrations of metformin and guanylurea. CHEMOSPHERE 2023; 341:140070. [PMID: 37689151 DOI: 10.1016/j.chemosphere.2023.140070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
The antidiabetic drug metformin (MET) and its metabolite guanylurea (GUA) have been frequently and ubiquitously detected in surface water. Consequently, there has been a consistent rise in studying the toxicity of MET and GUA in fish over the past decade. Nonetheless, it is noteworthy that no study has assessed the harmful effects both compounds might trigger on fish blood and organs after chronic exposure. Taking into consideration the data above, our research strived to accomplish two primary objectives: Firstly, to assess the effect of comparable concentrations of MET and GUA (1, 40, 100 μg/L) on the liver, gills, gut, and brain of Danio rerio after six months of flow-through exposure. Secondly, to compare the outcomes to identify which compound prompts more significant oxidative stress and apoptosis in organs and blood parameter alterations. Herein, findings indicate that both compounds induced oxidative damage and increased the expression of genes associated with apoptosis (bax, bcl2, p53, and casp3). Chronic exposure to MET and GUA also generated fluctuations in glucose, creatinine, phosphorus, liver enzymes, red and white blood count, hemoglobin, and hematocrit levels. The observed biochemical changes indicate that MET and GUA are responsible for inducing hepatic damage in fish, whereas hematological alterations suggest that both compounds cause anemia. Considering GUA altered to a more considerable extent the values of all endpoints compared to the control group, it is suggested transformation product GUA is more toxic than MET. Moreover, based on the above evidence, it can be inferred that a six-month exposure to MET and GUA can impair REDOX status and generate apoptosis in fish, adversely affecting their essential organs' functioning.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico. https://orcid.org/0000-0002-7248-3449
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
21
|
Bonelli F, Demirsoy I, Lasagni Vitar RM, Fonteyne P, Ferrari G. Topical formulations of Aprepitant are safe and effective in relieving pain and inflammation, and drive neural regeneration. Ocul Surf 2023; 30:92-103. [PMID: 37690516 DOI: 10.1016/j.jtos.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE To test long-term ocular toxicity and analgesic/anti-inflammatory efficacy of two novel ocular formulations of neurokinin 1 receptor (NK1R) antagonist Aprepitant. METHODS for toxicity studies, two Aprepitant formulations (X and Y) were tested on C57BL/6 N mice. Gold standards were 0.4% Oxybuprocaine, 0.1% Diclofenac, or saline. For efficacy studies, C57BL/6 N mice underwent corneal alkali burn, and then received Aprepitant formulation X, Dexamethasone or saline. Eye-drops were applied 3 times/day for 90 days (toxicity) and 14 days (efficacy). Stromal opacity, corneal epithelial damage, nociception and sensitivity were assessed in vivo. The eye-wiping test and corneal sensitivity were assessed to evaluate analgesic efficacy and nerve function. At the end of the experiments mice were euthanized, and corneas were dissected for immunohistochemistry and RT-PCR analyses. RESULTS In normal mice, formulation X was not toxic when topically administered for 90 days. Formulation Y was associated with increased leukocyte infiltration in the cornea (p < 0.001). X1 and X2 formulations significantly reduced corneal pain, as Diclofenac and Oxybuprocaine, but did not reduce corneal sensitivity. Formulation Y, instead, was not analgesic at any time point. In the alkali burn model, X1 and X2 formulation enhanced epithelial damage recovery, and reduced inflammation both at day 7 and 14. Moreover, formulation X showed a stronger analgesic effect when compared to the saline and Dexamethasone groups (p < 0.01). Finally, formulation X1 and X2 restored corneal sensitivity by promoting corneal nerve regeneration. CONCLUSIONS Aprepitant X formulation is a promising candidate for the treatment of pain associated with inflammation of the ocular surface.
Collapse
Affiliation(s)
- Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Ibrahim Demirsoy
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
22
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Herrera-Vázquez SE, Rosales-Pérez KE, SanJuan-Reyes N, García-Medina S, Galar-Martínez M. Acute exposure to realistic concentrations of Bisphenol-A trigger health damage in fish: Blood parameters, gene expression, oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106610. [PMID: 37327538 DOI: 10.1016/j.aquatox.2023.106610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Despite much information regarding BPA toxicity in fish and other aquatic organisms, data is still misleading as most studies have utilized concentrations several orders of magnitude higher than those typically found in the environment. As an illustration, eight of the ten studies investigating the impact of BPA on the biochemical and hematological parameters of fish have employed concentrations on the order of mg/L. Therefore, the results may not accurately represent the effects observed in the natural environment. Considering the information above, our study aimed to 1) determine whether or not realistic concentrations of BPA might alter the biochemical and blood parameters of Danio rerio and trigger an inflammatory response in the fish liver, brain, gills, and gut and 2) determine which organ could be more affected after exposure to this chemical. Findings pinpoint that realistic concentrations of BPA prompted a substantial increase in antioxidant and oxidant biomarkers in fish, triggering an oxidative stress response in all organs. Likewise, the expression of different genes related to inflammation and apoptosis response was significantly augmented in all organs. Our Pearson correlation shows gene expression was closely associated with the oxidative stress response. Regarding blood parameters, acute exposure to BPA generated biochemical and hematological parameters increased concentration-dependent. Thus, it can be concluded that BPA, at environmentally relevant concentrations, threatens aquatic species, as it prompts polychromasia and liver dysfunction in fish after acute exposure.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México.
| | - Selene Elizabeth Herrera-Vázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, México
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, México
| |
Collapse
|
23
|
Lim HK, Hughes CO, Lim MJS, Li JJ, Rakshit M, Yeo C, Chng KR, Li A, Chan JSH, Ng KW, Leavesley DI, Smith BPC. Development of reconstructed intestinal micronucleus cytome (RICyt) assay in 3D human gut model for genotoxicity assessment of orally ingested substances. Arch Toxicol 2022; 96:1455-1471. [PMID: 35226136 PMCID: PMC9013689 DOI: 10.1007/s00204-022-03228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
The micronucleus (MN) assay is widely used as part of a battery of tests applied to evaluate the genotoxic potential of chemicals, including new food additives and novel food ingredients. Micronucleus assays typically utilise homogenous in vitro cell lines which poorly recapitulate the physiology, biochemistry and genomic events in the gut, the site of first contact for ingested materials. Here we have adapted and validated the MN endpoint assay protocol for use with complex 3D reconstructed intestinal microtissues; we have named this new protocol the reconstructed intestine micronucleus cytome (RICyt) assay. Our data suggest the commercial 3D microtissues replicate the physiological, biochemical and genomic responses of native human small intestine to exogenous compounds. Tissues were shown to maintain log-phase proliferation throughout the period of exposure and expressed low background MN. Analysis using the RICyt assay protocol revealed the presence of diverse cell types and nuclear anomalies (cytome) in addition to MN, indicating evidence for comprehensive DNA damage and mode(s) of cell death reported by the assay. The assay correctly identified and discriminated direct-acting clastogen, aneugen and clastogen requiring exogenous metabolic activation, and a non-genotoxic chemical. We are confident that the genotoxic response in the 3D microtissues more closely resembles the native tissues due to the inherent tissue architecture, surface area, barrier effects and tissue matrix interactions. This proof-of-concept study highlights the RICyt MN cytome assay in 3D reconstructed intestinal microtissues is a promising tool for applications in predictive toxicology.
Collapse
Affiliation(s)
- Hui Kheng Lim
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore.
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore.
- Future Ready Food Safety Hub (a Joint Initiative of A*STAR, SFA and NTU), Nanyang Technological University, Singapore, Singapore.
| | - Christopher Owen Hughes
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore
| | - Michelle Jing Sin Lim
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Singapore
| | - Jia'En Jasmine Li
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Moumita Rakshit
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Calvin Yeo
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Kern Rei Chng
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | - Angela Li
- National Centre for Food Science, Singapore Food Agency, Singapore, Singapore
| | | | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Singapore, Singapore
- Harvard T. H. Chan School of Public Health, Harvard University, Cambridge, USA
| | - David Ian Leavesley
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research, Singapore, Singapore
| | - Benjamin Paul Chapman Smith
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research, Singapore, Singapore
- Future Ready Food Safety Hub (a Joint Initiative of A*STAR, SFA and NTU), Nanyang Technological University, Singapore, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
24
|
Lombard AP, Armstrong CM, D'Abronzo LS, Ning S, Leslie AR, Sharifi M, Lou W, Evans CP, Dall'Era M, Chen HW, Chen X, Gao AC. Olaparib-Induced Senescence Is Bypassed through G2-M Checkpoint Override in Olaparib-Resistant Prostate Cancer. Mol Cancer Ther 2022; 21:677-685. [PMID: 35086956 PMCID: PMC8983570 DOI: 10.1158/1535-7163.mct-21-0604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/08/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
PARP inhibition represents the dawn of precision medicine for treating prostate cancer. Despite this advance, questions remain regarding the use of PARP inhibitors (PARPi) for the treatment of this disease, including (i) how specifically do PARPi-sensitive tumor cells respond to treatment, and (ii) how does PARPi resistance develop? To address these questions, we characterized response to olaparib in sensitive LNCaP and C4-2B cells and developed two olaparib-resistant derivative cell line models from each, termed LN-OlapR and 2B-OlapR, respectively. OlapR cells possess distinct morphology from parental cells and display robust resistance to olaparib and other clinically relevant PARPis, including rucaparib, niraparib, and talazoparib. In LNCaP and C4-2B cells, we found that olaparib induces massive DNA damage, leading to activation of the G2-M checkpoint, activation of p53, and cell-cycle arrest. Furthermore, our data suggest that G2-M checkpoint activation leads to both cell death and senescence associated with p21 activity. In contrast, both LN-OlapR and 2B-OlapR cells do not arrest at G2-M and display a markedly blunted response to olaparib treatment. Interestingly, both OlapR cell lines harbor increased DNA damage relative to parental cells, suggesting that OlapR cells accumulate and manage persistent DNA damage during acquisition of resistance, likely through augmenting DNA repair capacity. Further impairing DNA repair through CDK1 inhibition enhances DNA damage, induces cell death, and sensitizes OlapR cells to olaparib treatment. Our data together further our understanding of PARPi treatment and provide a cellular platform system for the study of response and resistance to PARP inhibition.
Collapse
Affiliation(s)
- Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Amy R Leslie
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Marc Dall'Era
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
| | - Hong-Wu Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| | - Xinbin Chen
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- School of Veterinary Medicine, University of California, Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
25
|
Yang X, Li C, Yu G, Sun L, Guo S, Sai L, Bo C, Xing C, Shao H, Peng C, Jia Q. Ligand-independent activation of AhR by hydroquinone mediates benzene-induced hematopoietic toxicity. Chem Biol Interact 2022; 355:109845. [DOI: 10.1016/j.cbi.2022.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022]
|
26
|
Baicalin mediated regulation of key signaling pathways in cancer. Pharmacol Res 2020; 164:105387. [PMID: 33352232 DOI: 10.1016/j.phrs.2020.105387] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Baicalin has been widely investigated against different types of malignancies both at the cellular and molecular levels over the past few years. Due to its remarkable anti-proliferative potential in numerous cancer cell lines, it has created immense interest as a potential chemotherapeutic modality compared to other flavonoids. Thus, this review focuses on the recent accomplishments of baicalin and its limitations in cancer prevention and treatment. Further, combination studies and nanoformulations using baicalin to treat cancer along with the metabolism, bioavailability, toxicity, and pharmacokinetics have been discussed. The present review explains biological source, and anti-proliferative potential of baicalin against cancers including breast, colon, hepatic, leukemia, lung, and skin, as well as the relevant mechanism of action to modulate diverse signaling pathways including apoptosis, cell cycle, invasion, and migration, angiogenesis, and autophagy. The anticancer mechanism of baicalin in orthotropic and xenograft mice models have been deliberated. The combination studies of baicalin in novel therapies as chemotherapeutic adjuvants have also been summarized. The low bioavailability, fast metabolism, and poor solubility, and other significant factors that limit the clinical use of baicalin have been examined as a challenge. The improvement in the pharmacokinetics and pharmacodynamics of baicalin with newer approaches and the gaps are highlighted, which could establish baicalin as an effective and safe compound for cancer treatment as well as help to translate its potential from bench to bedside.
Collapse
|
27
|
Cellular Mechanisms Accounting for the Refractoriness of Colorectal Carcinoma to Pharmacological Treatment. Cancers (Basel) 2020; 12:cancers12092605. [PMID: 32933095 PMCID: PMC7563523 DOI: 10.3390/cancers12092605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
Collapse
|
28
|
Cui G, Zhang H, Guo Q, Shan S, Chen S, Li C, Yang X, Li Z, Mu Y, Shao H, Du Z. Oxidative stress-mediated mitochondrial pathway-dependent apoptosis is induced by silica nanoparticles in H9c2 cardiomyocytes. Toxicol Mech Methods 2020; 30:646-655. [PMID: 32746757 DOI: 10.1080/15376516.2020.1805664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of silica nanoparticles (SiNPs) is increasing in popularity; however, the emissions released during manufacturing, use and during the disposal stages potentially harm the environment. SiNPs can enter the body and cause cardiac toxicity indirectly or directly. However, toxicological data on SiNPs in cardiac cells in vitro, and the detailed molecular mechanisms by which damage is caused remain unclear. In the present study, oxidative stress-mediated apoptosis and cytotoxicity induced by SiNPs in H9c2 cells were examined. H9c2 cells were used to explore the mechanisms of toxicity by treating cells with 0, 25, 50, 100, and 200 µg/ml SiNPs, with and without 3 mM of the reactive oxygen species (ROS) scavenger, N-acetyl-l-cysteine (NAC), for 24 h. The results showed that SiNPs decreased cell viability and proliferation by increasing the release of lactate dehydrogenase (LDH) and inducing apoptosis in H9c2 cells. ROS levels were significantly increased in a dose-dependent manner. Additionally, the levels of superoxide dismutase (SOD), glutathione (GSH), and GSH-peroxidase (Px) were significantly decreased following exposure to SiNPs. Treatment with NAC attenuated LDH release; the levels of ROS, SOD, GSH, and GSH-Px production were increased, and SiNPs-induced mitochondrial pathway-dependent apoptosis was reduced. These results demonstrate that apoptosis and cytotoxicity induced by SiNPs in H9c2 cells are a result of ROS-mediated oxidative stress. These data suggest that exposure to SiNPs is a potential risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Guanqun Cui
- Department of Respiratory Medicine, Qilu Children's Hospital of Shandong University, Ji'nan, People's Republic of China
| | - Haiyang Zhang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, People's Republic of China
| | - Qiming Guo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Shan Shan
- School of Public Health Shandong University, Ji'nan, People's Republic of China
| | - Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Ziyuan Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Yingwen Mu
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, People's Republic of China
| |
Collapse
|
29
|
Expression and Significance of Insulin Receptor Substrate 1 in Human Hepatocellular Carcinoma. DISEASE MARKERS 2020; 2020:7174062. [PMID: 32695243 PMCID: PMC7368964 DOI: 10.1155/2020/7174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Background Insulin receptor substrate 1 (IRS-1) is an important molecule of the insulin signal transduction pathway and has been associated with the occurrence and development of many tumors, including hepatocellular carcinoma (HCC). Our study was designed to determine the expression and significance of IRS-1 in human HCC. Methods Two hundred and forty specimens were drawn from 140 patients, including 100 HCC tissues and 100 paracancerous (PC) tissues from 100 HCC patients, 20 liver cirrhosis (LC) tissues from 20 LC patients, and 20 chronic hepatitis (CH) tissues from 20 CH patients. Baseline and pathological characteristics were included, and the expression of IRS-1 was examined by immunohistochemical (IHC) staining. Binary logistic regression model calculation was used for multivariate analysis. Results The total positive rates of IRS-1 expression were 41.0%, 17.0%, 15.0%, and 10.0% in HCC, PC, LC and CH tissues, respectively. IRS-1-positive signals were brown in color and located in the nucleus and cytoplasm. Compared with PC, LC, and CH tissues, a significantly increased expression was observed in human HCC tissues (P < 0.001, P = 0.028, and P = 0.008). Eight of the total 240 specimens had the strong immunostaining of IRS-1 expression, and all of them were HCC tissues. After control of the age, gender, and HBV and HCV infection, IRS-1 expression was independently associated with the diagnosis of HCC (OR 6.60, 95% CI 2.243-19.425, P = 0.001). Conclusions Positive expression of IRS-1 in HCC was increased significantly and may play an important role in the occurrence and development of human HCC.
Collapse
|
30
|
Oregano Feed Supplementation Affects Glycoconjugates Production in Swine Gut. Animals (Basel) 2020; 10:ani10010149. [PMID: 31963225 PMCID: PMC7023309 DOI: 10.3390/ani10010149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The European ban towards antibiotics is increasing the number of studies on the effects of feed additives, such as plant extracts, in order to enhance the health and welfare status of domestic animals intended for human consumption. Origanum vulgare possesses multiple pharmacological characteristics and its antioxidant and antibacterial properties are particularly interesting. Besides, a recent study aimed at evaluating the effects of oregano aqueous extract supplementation in poultry nutrition gave encouraging results regarding the secretion of glycoconjugates in the gut which increases tissue hydration and protects the intestinal mucosa from pathogenic bacteria, viruses, and parasites. Therefore, we investigated the effects of oregano feed supplementation on antioxidant and defense ability of pig gut. Our results showed that there was improved production of glycoconjugates in the duodenum and colon of pigs fed with supplementation of oregano aqueous extract, enhancing protection of the mucosa of these sections of the intestine. Also, we observed an enhanced antioxidant action in the two examined gut tract samples of the group supplemented with oregano. Findings can be used in further research to identify ways to improve endogenous defense ability with to reduce antibiotic use and prevent antimicrobial resistance. Abstract This study evaluated the effects of adding oregano aqueous extract (OAE) to the diet of pig slaughtered at finisher stage. Study was performed to identify glycoconjugates and evaluate the oxidative stress levels in the duodenum and colon intestinal tracts. Glycohistochemistry was performed by staining with Periodic acid–Schiff (PAS), Alcian blue (AB) pH 2.5, AB-PAS, AB pH 1, AB pH 0.5, low iron diamine, and high iron diamine. Serial sections were pre-treated with sialidase V before staining with AB pH 2.5 (Sial-AB) preceded or not by saponification. To study oxidative stress, an immunohistochemical analysis was applied to investigate the presence of the oxidative stress target molecule Bcl-2 Associate X protein (BAX). Findings show that oregano aqueous extract supplementation improves the production of the secretion glycoconjugates involved in direct and indirect defense, thus enhancing the protection of the pig intestinal mucosa. Moreover, the reduced BAX protein immunostaining observed in both duodenum and colon of swine of the oregano-supplemented group respect to that observed in the control group suggests an enhanced antioxidant action by oregano adding. Findings could be useful for other studies aiming to reduce antibiotic use and prevent antimicrobial resistance.
Collapse
|
31
|
Özkan Vardar D, Aydin S, Hocaoğlu İ, Yağci Acar H, Başaran N. An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turk J Pharm Sci 2019; 16:282-291. [PMID: 32454726 DOI: 10.4274/tjps.galenos.2018.85619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
Objectives Silver sulfide (Ag2S) quantum dots (QDs) are highly promising nanomaterials in bioimaging systems due to their high activities for both imaging and drug/gene delivery. There is insufficient research on the toxicity of Ag2S QDs coated with meso-2,3-dimercaptosuccinic acid (DMSA). In this study, we aimed to determine the cytotoxicity of Ag2S QDs coated with DMSA in Chinese hamster lung fibroblast (V79) cells over a wide range of concentrations (5-2000 μg/mL). Materials and Methods Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutral red uptake (NRU) assays. The genotoxic and apoptotic effects of DMSA/Ag2S QDs were also assessed by comet assay and real-time polymerase chain reaction technique, respectively. Results Cell viability was 54.0±4.8% and 65.7±4.1% at the highest dose (2000 μg/mL) of Ag2S QDs using the MTT and NRU assays, respectively. Although cell viability decreased above 400 μg/mL (MTT assay) and 800 μg/mL (NRU assay), DNA damage was not induced by DMSA/Ag2S QDs at the studied concentrations. The mRNA expression levels of p53, caspase-3, caspase-9, Bax, Bcl-2, and survivin genes were altered in the cells exposed to 500 and 1000 μg/mL DMSA/Ag2S QDs. Conclusion The cytotoxic effects of DMSA/Ag2S QDs may occur at high doses through the apoptotic pathways. However, DMSA/Ag2S QDs appear to be biocompatible at low doses, making them well suited for cell labeling applications.
Collapse
Affiliation(s)
- Deniz Özkan Vardar
- Hitit University, Sungurlu Vocational High School, Health Programs, Çorum, Turkey
| | - Sevtap Aydin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - İbrahim Hocaoğlu
- Koç University, Graduate School of Materials Science and Engineering, İstanbul, Turkey
| | - Havva Yağci Acar
- Koç University, College of Sciences, Department of Chemistry, İstanbul, Turkey
| | - Nursen Başaran
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
32
|
Yang Y, Du X, Wang Q, Liu J, Zhang E, Sai L, Peng C, Lavin MF, Yeo AJ, Yang X, Shao H, Du Z. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int J Mol Med 2019; 44:903-912. [PMID: 31524225 PMCID: PMC6657974 DOI: 10.3892/ijmm.2019.4265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Silicon is one of the most widely used chemical materials, and the increasing use of silica nanoparticles (SNs) highlights the requirement for safety and biological toxicity studies. The damaging and adverse effects of SNs on human hepatocytes remain largely unknown, as do the mechanisms involved. In the present study, the mechanisms underlying SN‑induced toxicity in the human hepatocyte cell line HL‑7702 were investigated. An MTT assay revealed that following exposure to SNs in the concentration range of 25‑200 µg/ml, the viability of HL‑7702 cells decreased, and the viability decreased further with increasing exposure time. SNs induced a delay in the S and G2/M phases of the cell cycle, and also induced DNA damage in these cells. Western blot and flow cytometry analyses revealed that cell death was mediated by mitochondrial damage and the upregulated expression of a number of pro‑apoptotic proteins. In conclusion, exposure to SNs led to mitochondrial and DNA damage, resulting in apoptosis‑mediated HL‑7702 cell death. The study provided evidence for the cellular toxicity of SNs, and added to the growing body of evidence regarding the potential damaging effects of nanoparticles, indicating that caution should be exercised in their widespread usage.
Collapse
Affiliation(s)
- Ye Yang
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xinjing Du
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianwei Liu
- Radiation Protection Safety Institute, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, P.R. China
| | - Enguo Zhang
- School of Medicine and Life Sciences, University of Jinan‑Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Linlin Sai
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Abrey Jie Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xu Yang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
33
|
Manikandan R, Anjali R, Beulaja M, Prabhu N, Koodalingam A, Saiprasad G, Chitra P, Arumugam M. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Ahamed M, Akhtar MJ, Khan MAM, Alrokayan SA, Alhadlaq HA. Oxidative stress mediated cytotoxicity and apoptosis response of bismuth oxide (Bi 2O 3) nanoparticles in human breast cancer (MCF-7) cells. CHEMOSPHERE 2019; 216:823-831. [PMID: 30399561 DOI: 10.1016/j.chemosphere.2018.10.214] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/04/2018] [Accepted: 10/30/2018] [Indexed: 05/27/2023]
Abstract
Bismuth oxide nanoparticles (Bi2O3 NPs) have shown great potential for several applications including cosmetics and biomedicine. However, there is paucity of research on toxicity of Bi2O3 NPs. In this study, we first examined dose-dependent cytotoxicity and apoptosis response of Bi2O3 NPs in human breast cancer (MCF-7) cells. We further explored the potential mechanisms of cytotoxicity of Bi2O3 NPs through oxidative stress. Physicochemical study demonstrated that Bi2O3 NPs have crystalline structure and spherical shape with mean size of 97 nm. Toxicity studies have shown that Bi2O3 NPs reduce cell viability and induce membrane damage dose-dependently in the concentration range of 50-300 μg/ml. Bi2O3 NPs also disturbed cell cycle of MCF-7 cells. Oxidative stress response of Bi2O3 NPs was evident by generation of reactive oxygen species (ROS), higher lipid peroxidation, reduction of glutathione (GSH) and low superoxide dismutase (SOD) enzyme activity. Interestingly, supplementation of external antioxidant N-acetyl-cysteine almost negated the effect of Bi2O3 NPs induced oxidative stress and cell death. We also found that exposure of Bi2O3 NPs induced apoptotic response in MCF-7 cells suggested by impaired regulation of Bcl-2, Bax and caspase-3 genes. Altogether, we found that Bi2O3 NPs induced cytotoxicity in MCF-7 cells through modulating the redox homeostasis via Bax/Bcl-2 pathway. This study warranted further research to delineate the underlying mechanism of Bi2O3 NPs induced toxicity at in vivo level.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Johnson BM, Radwan FFY, Hossain A, Doonan BP, Hathaway-Schrader JD, God JM, Voelkel-Johnson CV, Banik NL, Reddy SV, Haque A. Endoplasmic reticulum stress, autophagic and apoptotic cell death, and immune activation by a natural triterpenoid in human prostate cancer cells. J Cell Biochem 2018; 120:6264-6276. [PMID: 30378157 DOI: 10.1002/jcb.27913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50 s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.
Collapse
Affiliation(s)
- Benjamin M Johnson
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Faisal F Y Radwan
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Azim Hossain
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Bently P Doonan
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Jessica D Hathaway-Schrader
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Jason M God
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Christina V Voelkel-Johnson
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Narendra L Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Sakamuri V Reddy
- Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Azizul Haque
- Department of Microbiology and Immunology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina.,Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
36
|
Ozkan Vardar D, Aydin S, Hocaoglu I, Yagci Acar FH, Basaran N. Effects of silver sulfide quantum dots coated with 2-mercaptopropionic acid on genotoxic and apoptotic pathways in vitro. Chem Biol Interact 2018; 291:212-219. [DOI: 10.1016/j.cbi.2018.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 01/17/2023]
|
37
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alrokayan SA. Cytotoxic response of platinum-coated gold nanorods in human breast cancer cells at very low exposure levels. ENVIRONMENTAL TOXICOLOGY 2016; 31:1344-1356. [PMID: 25846798 DOI: 10.1002/tox.22140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Because of unique optical behavior gold nanorods (GNRs) have attracted attention for the application in biomedical field such as bio-sensing, bio-imaging and hyperthermia. However, toxicological response of GNRs is controversial due to their different surface coating. Therefore, a comprehensive knowledge about toxicological profile of GNRs is necessary before their biomedical applications. First time, we investigated the toxic response of GNRs coated with platinum (GNRs-Pt) in human breast carcinoma (MCF-7) cells. Platinum coating further improves the optical and catalytic properties of GNRs. Assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydroganase (LDH) assays have shown that GNRs-Pt induced cytotoxicity at very low exposure levels (0.1-0.8 μg mL-1 ). Accumulation of cells in SubG1 phase and low mitochondrial membrane potential (JC-1 probe) in treated cells suggest that GNRs-Pt induced cell death via apoptotic pathway. Quantitative real-time PCR data demonstrated that mRNA expression of apoptotic genes (bax, caspase-3 and caspase-9) were up-regulated while anti-apoptotic gene bcl-2 was down-regulated in cells exposed to GNRs-Pt. We further observed the higher activity of caspase-3 and caspase-9 enzymes in GNRs-Pt treated cells supporting mRNA data. Moreover, N-acetyl cysteine (NAC) significantly attenuated the ROS generation and cytotoxicity induced by GNRs-Pt in MCF-7 cells suggesting that ROS might plays a crucial role in GNRs-Pt induced toxicity. This study warns of possible toxicity of GNRs even at very low exposure levels. Further investigations needed to explore potential mechanisms of this low dose toxicity phenomenon. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1344-1356, 2016.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salman A Alrokayan
- Research Chair in Drug Targeting and Treatment of Cancer Using Nanoparticles, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
38
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA, Alshamsan A. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2). Colloids Surf B Biointerfaces 2016; 148:665-673. [PMID: 27701048 DOI: 10.1016/j.colsurfb.2016.09.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Cobalt iron oxide (CoFe2O4) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia; Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Ahamed M, Akhtar MJ, Alhadlaq HA, Alshamsan A. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells. Colloids Surf B Biointerfaces 2016; 142:46-54. [DOI: 10.1016/j.colsurfb.2016.02.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 01/13/2023]
|
40
|
Yoon C, Koppula S, Yoo S, Yum M, Kim J, Lee J, Song M. Rhus javanica Linn protects against hydrogen peroxide‑induced toxicity in human Chang liver cells via attenuation of oxidative stress and apoptosis signaling. Mol Med Rep 2015; 13:1019-25. [PMID: 26648020 DOI: 10.3892/mmr.2015.4603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Rhus javanica Linn, a traditional medicinal herb from the family Anacardiaceae, has been used in the treatment of liver diseases, cancer, parasitic infections, malaria and respiratory diseases in China, Korea and other Asian countries for centuries. In the present study, the protective effects of R. javanica ethanolic extract (RJE) on hydrogen peroxide (H2O2)-induced oxidative stress in human Chang liver cells was investigated. The cell cytotoxicity and viability were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The activities of superoxide dismutase (SOD) and catalase (CAT) were measured using respective enzymatic kits. Cell cycle analysis was performed using flow cytometric analysis. The protein expression levels of p53, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax) and caspase-3 were assessed by western blotting. Human Chang liver cells were treated with different concentrations (0.1, 0.3 or 0.5 mg/ml) of RJE, and were subsequently exposed to H2O2 (30 µM). Treatment with H2O2 (30 µM) significantly induced cytotoxicity (P<0.05) and reduced the viability of the Chang liver cells. However, pretreatment of the cells with RJE (0.1, 0.3 or 0.5 mg/ml) significantly increased the cell viability (P<0.001 at 0.5 mg/ml) in a concentration-dependent manner following H2O2 treatment. Furthermore, pretreatment with RJE increased the enzyme activities of SOD and CAT, and decreased the sub-G1 growth phase of the cell cycle in response to H2O2-induced oxidative stress (P<0.001 at 0.3 and 0.5 mg/ml H2O2). RJE also regulated the protein expression levels of p53, Bax, caspase-3 and Bcl-2. These results suggested that RJE may protect human Chang liver cells against oxidative damage by increasing the levels of antioxidant enzymes and regulating antiapoptotic oxidative stress mechanisms, thereby providing insights into the mechanism which underpins the traditional claims made for RJE in the treatment of liver diseases.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Seunghoon Yoo
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Munjeong Yum
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Jinseoub Kim
- Department of Applied Life Science, Graduate School of Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Jaedong Lee
- Department of Internal Medicine, School of Medicine, Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| | - Mindong Song
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju, Chungbuk 380‑701, Republic of Korea
| |
Collapse
|
41
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
42
|
Ahamed M, Akhtar MJ, Alhadlaq HA, Khan MAM, Alrokayan SA. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells. CHEMOSPHERE 2015; 135:278-288. [PMID: 25966046 DOI: 10.1016/j.chemosphere.2015.03.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/10/2015] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
Abstract
Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M A Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman A Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Ahamed M, Alhadlaq HA, Ahmad J, Siddiqui MA, Khan ST, Musarrat J, Al-Khedhairy AA. Comparative cytotoxicity of dolomite nanoparticles in human larynx HEp2 and liver HepG2 cells. J Appl Toxicol 2015; 35:640-50. [DOI: 10.1002/jat.3097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/20/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University; Riyadh 11451 Saudi Arabia
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Javed Ahmad
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Maqsood A. Siddiqui
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Shams T. Khan
- Department of Zoology, College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences; Aligarh Muslim University; Aligarh 202002 India
| | | |
Collapse
|
44
|
Ceballos-Torres J, Virag P, Cenariu M, Prashar S, Fajardo M, Fischer-Fodor E, Gómez-Ruiz S. Anti-cancer applications of titanocene-functionalised nanostructured systems: an insight into cell death mechanisms. Chemistry 2014; 20:10811-28. [PMID: 24715574 DOI: 10.1002/chem.201400300] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 12/20/2022]
Abstract
A series of alkenyl-substituted titanocene compounds have been supported on the mesoporous silica-based material KIT-6. The corresponding functionalised materials were completely characterised by different techniques (solid-state multinuclear NMR spectroscopy, IR spectroscopy, N2 adsorption-desorption isotherms, X-ray fluorescence and diffraction, SEM and TEM) to observe the incorporation of the titanocene derivatives on the external surface of the material KIT-6. Both the titanocene compounds and the materials were tested in vitro against a wide variety of human cancer and normal cell lines. A very high cytotoxicity of the synthesised titanocene derivatives (IC50 values in the range of those described in the literature for the most active cytotoxic titanocene compounds), with selectivity towards cancer cell lines was observed. The cytotoxic activity of the materials is the highest reported to date for titanocene-functionalised materials. In addition, higher Ti uptake (from 4 to 23% of the initial amount of Ti) of the cells treated with materials was observed with respect to those treated with "free" titanocene derivatives (which gave Ti uptake values from 0.4 to 4.6% of the initial amount of Ti). Additional experiments with the titanocene derivatives and the functionalised materials revealed that changes to the morphological and functional dynamics of apoptosis occurred when the active titanocene species were incorporated into mesoporous materials. In addition, the materials could induce programmed cell death in tumour cell populations by impairing the damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signalling pathways.
Collapse
Affiliation(s)
- Jesús Ceballos-Torres
- Departamento de Química Inorgánica y Analítica, E.S.C.E.T. Universidad Rey Juan Carlos, 28933 Móstoles, Madrid (Spain)
| | | | | | | | | | | | | |
Collapse
|
45
|
Park SC, Chun HJ. Comparison of Capsule Endoscopy and Device-Assisted Enteroscopy. HANDBOOK OF CAPSULE ENDOSCOPY 2014:153-164. [DOI: 10.1007/978-94-017-9229-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). CHEMOSPHERE 2013; 93:2514-22. [PMID: 24139157 DOI: 10.1016/j.chemosphere.2013.09.047] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/29/2013] [Accepted: 09/10/2013] [Indexed: 05/07/2023]
Abstract
Increasing use of nickel oxide nanoparticles (NiO NPs) necessitates an improved understanding of their potential impact on human health. Previously, toxic effects of NiO NPs have been investigated, mainly on airway cells. However, information on effect of NiO NPs on human liver cells is largely lacking. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and induction of apoptotic response in human liver cells (HepG2) due to NiO NPs exposure. Prepared NiO NPs were crystalline and spherical shaped with an average diameter of 44 nm. NiO NPs induced cytotoxicity (cell death) and ROS generation in HepG2 cells in dose-dependent manner. Further, ROS scavenger vitamin C reduced cell death drastically caused by NiO NPs exposure indicating that oxidative stress plays an important role in NiO NPs toxicity. Micronuclei induction, chromatin condensation and DNA damage in HepG2 cells treated with NiO NPs suggest that NiO NPs induced cell death via apoptotic pathway. Quantitative real-time PCR analysis showed that following the exposure of HepG2 cells to NiO NPs, the expression level of mRNA of apoptotic genes (bax and caspase-3) were up-regulated whereas the expression level of anti-apoptotic gene bcl-2 was down-regulated. Moreover, activity of caspase-3 enzyme was also higher in NiO NPs treated cells. To the best of our knowledge this is the first report demonstrating that NiO NPs caused cytotoxicity via ROS and induced apoptosis in HepG2 cells, which is likely to be mediated through bax/bcl-2 pathway. This work warrants careful assessment of Ni NPs before their commercial and industrial applications.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | | | | |
Collapse
|
47
|
Immunohistochemical expression of Bax and Bak in canine non-neoplastic tissues. Vet J 2013; 198:131-40. [PMID: 23988332 DOI: 10.1016/j.tvjl.2013.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/04/2013] [Accepted: 07/21/2013] [Indexed: 11/22/2022]
Abstract
Apoptosis is critical for embryonic development, maintenance of tissue homeostasis and protection against malignant transformation. The Bcl-2 family of proteins plays a key role in intrinsic apoptosis by controlling the integrity of the outer mitochondrial membrane, and the multidomain pro-apoptotic Bcl-2 family members Bax and Bak are essential components of this pathway. The aim of this study was to provide data on the expression of these proteins in normal canine tissues. Two antibodies against Bax recognising different conformations of the protein and one antibody against Bak were validated by immunohistochemistry and immunoblotting using canine recombinant proteins and keratinocytes treated with ultraviolet light. The antibodies were used immunohistochemically to label a wide panel of histologically normal tissues assembled on tissue microarrays. In addition, a subset of the tissues was evaluated by Western blot analysis. Immunohistochemical and Western blot analyses revealed that both Bax and Bak are widely expressed in non-neoplastic tissues from adult dogs. Immunohistochemistry showed almost exclusively cytoplasmic labelling and prominent labelling of epithelial cells. In lymph nodes, immunohistochemical labelling was diffuse for both proteins and showed enhanced intensities in the mantle zones for Bax and the germinal centres for Bak. Strong reactivity for the active conformation of Bax was detected only in enterocytes and Leydig cells and in scattered lymphocytes. These data indicate widespread expression of Bax and Bak in normal canine tissues. Knowledge of the expression of Bax and Bak in normal tissues is a prerequisite in assessing the role of these proteins in canine neoplastic disease.
Collapse
|
48
|
Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One 2013; 8:e69534. [PMID: 23940521 PMCID: PMC3734287 DOI: 10.1371/journal.pone.0069534] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.
Collapse
Affiliation(s)
- Maqsood A Siddiqui
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
49
|
Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 2013; 8:983-93. [PMID: 23493450 PMCID: PMC3593769 DOI: 10.2147/ijn.s42028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The widespread use of zinc oxide (ZnO) nanoparticles worldwide exposes humans to their adverse effects, so it is important to understand their biological effects and any associated risks. This study was designed to investigate the cytotoxicity, oxidative stress, and apoptosis caused by ZnO nanoparticles in human skin melanoma (A375) cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] and lactate dehydrogenase-based cell viability assays showed a significant decrease in cell viability after exposure to ZnO nanoparticles, and phase contrast images revealed that cells treated with these nanoparticles had a lower density and a rounded morphology. ZnO nanoparticles were also found to induce oxidative stress, evidenced by generation of reactive oxygen species and depletion of the antioxidant, glutathione. Induction of apoptosis was confirmed by chromosomal condensation assay and caspase-3 activation. Further, more DNA damage was observed in cells exposed to the highest concentration of ZnO nanoparticles. These results demonstrate that ZnO nanoparticles have genotoxic potential in A375 cells, which may be mediated via oxidative stress. Our short-term exposure study showing induction of a genotoxic and apoptotic response to ZnO nanoparticles needs further investigation to determine whether there may be consequences of long-term exposure to ZnO nanoparticles.
Collapse
Affiliation(s)
- Saud Alarifi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
50
|
Alevizos L, Gomatos IP, Smparounis S, Konstadoulakis MM, Zografos G. Review of the molecular profile and modern prognostic markers for gastric lymphoma: how do they affect clinical practice? Can J Surg 2012; 55:117-24. [PMID: 22564515 DOI: 10.1503/cjs.002310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary gastric lymphoma is a rare cancer of the stomach with an indeterminate prognosis. Recently, a series of molecular prognostic markers has been introduced to better describe this clinical entity. This review describes the clinical importance of several oncogenes, apoptotic genes and chromosomal mutations in the initiation and progress of primary non-Hodgkin gastric lymphoma and their effect on patient survival. We also outline the prognostic clinical importance of certain cellular adhesion molecules, such as ICAM and PECAM-1, in patients with gastric lymphoma, and we analyze the correlation of these molecules with apoptosis, angiogenesis, tumour growth and metastatic potential. We also focus on the host-immune response and the impact of Helicobacter pylori infection on gastric lymphoma development and progression. Finally, we explore the therapeutic methods currently available for gastric lymphoma, comparing the traditional invasive approach with more recent conservative options, and we stress the importance of the application of novel molecular markers in clinical practice.
Collapse
Affiliation(s)
- Leonidas Alevizos
- 1st Department of Propaedeutic Surgery, Hippokration Hospital of Athens, Athens Medical School, Vasilissis, Sofia Avenue 114, 11527, Athens, Greece
| | | | | | | | | |
Collapse
|