1
|
Khasanov R, Svoboda D, Tapia-Laliena MÁ, Kohl M, Maas-Omlor S, Hagl CI, Wessel LM, Schäfer KH. Muscle hypertrophy and neuroplasticity in the small bowel in short bowel syndrome. Histochem Cell Biol 2023; 160:391-405. [PMID: 37395792 PMCID: PMC10624713 DOI: 10.1007/s00418-023-02214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Short bowel syndrome (SBS) is a severe, life-threatening condition and one of the leading causes of intestinal failure in children. Here we were interested in changes in muscle layers and especially in the myenteric plexus of the enteric nervous system (ENS) of the small bowel in the context of intestinal adaptation. Twelve rats underwent a massive resection of the small intestine to induce SBS. Sham laparotomy without small bowel transection was performed in 10 rats. Two weeks after surgery, the remaining jejunum and ileum were harvested and studied. Samples of human small bowel were obtained from patients who underwent resection of small bowel segments due to a medical indication. Morphological changes in the muscle layers and the expression of nestin, a marker for neuronal plasticity, were studied. Following SBS, muscle tissue increases significantly in both parts of the small bowel, i.e., jejunum and ileum. The leading pathophysiological mechanism of these changes is hypertrophy. Additionally, we observed an increased nestin expression in the myenteric plexus in the remaining bowel with SBS. Our human data also showed that in patients with SBS, the proportion of stem cells in the myenteric plexus had risen by more than twofold. Our findings suggest that the ENS is tightly connected to changes in intestinal muscle layers and is critically involved in the process of intestinal adaptation to SBS.
Collapse
Affiliation(s)
- Rasul Khasanov
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Daniel Svoboda
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Martina Kohl
- Department of Pediatric and Adolescent Medicine, University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Silke Maas-Omlor
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Cornelia Irene Hagl
- Carl Remigius Medical School, Charles de Gaulle Str. 2, 81737, Munich, Germany
| | - Lucas M Wessel
- Department of Pediatric Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| |
Collapse
|
2
|
Grundmann D, Loris E, Maas-Omlor S, Schäfer KH. Enteric Neurogenesis During Life Span Under Physiological and Pathophysiological Conditions. Anat Rec (Hoboken) 2019; 302:1345-1353. [PMID: 30950581 DOI: 10.1002/ar.24124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) controls gastrointestinal key functions and is mainly characterized by two ganglionated plexus located in the gut wall: the myenteric plexus and the submucous plexus. The ENS harbors a high number and diversity of enteric neurons and glial cells, which generate neuronal circuitry to regulate intestinal physiology. In the past few years, the pivotal role of enteric neurons in the underlying mechanism of several intestinal diseases was revealed. Intestinal diseases are associated with neuronal death that could in turn compromise intestinal functionality. Enteric neurogenesis and regeneration is therefore a crucial aspect within the ENS and could be revealed not only during embryogenesis and early postnatal periods, but also in the adulthood. Enteric glia and/or enteric neural precursor/progenitor cells differentiate into enteric neurons, both under homeostatic and pathologic conditions beyond the perinatal period. The unique role of the intestinal microbiota and serotonin signaling in postnatal and adult neurogenesis has been shown by several studies in health and disease. In this review article, we will mainly focus on different recent studies, which advanced the concept of postnatal and adult ENS neurogenesis. Moreover, we will discuss the key factors and underlying mechanisms, which promote enteric neurogenesis. Finally, we will shortly describe neurogenesis of transplanted enteric neural progenitor cells. Anat Rec, 302:1345-1353, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Grundmann
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Eva Loris
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Silke Maas-Omlor
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Grundmann D, Markwart F, Scheller A, Kirchhoff F, Schäfer KH. Phenotype and distribution pattern of nestin-GFP-expressing cells in murine myenteric plexus. Cell Tissue Res 2016; 366:573-586. [PMID: 27519533 DOI: 10.1007/s00441-016-2476-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022]
Abstract
The enteric nervous system has to adapt to altering dietary or environmental conditions and presents an enormous plasticity that is conserved over the whole lifespan. It harbours neural-crest-derived neurons, glial cells and their precursors. Based on a nestin-green fluorescent protein (NGFP) transgenic model, a histological inventory has been performed to deliver an overview of neuronal and glial markers for the various parts of the gastrointestinal tract in newborn (postnatal day 7) and adult mice under homeostatic conditions. Whereas NGFP-positive glial cells can be found in all parts of the gut at any individual age, a specific NGFP population is present with both neuronal morphology and marker expression in the myenteric plexus (nNGFP). These cells appear in variable quantities, depending on age and location. Their overall abundance decreases from newborn to adults and their spatial distribution is also age-dependent. In newborn gut, nNGFP cells are found in similar quantities throughout the gut, with a significantly lower presence in the duodenum. Their expression increases in the adult mouse from the stomach to the colon. All of these nNGFP cells expressed either (but not both) of the glia markers S100 or glial fibrillary acidic protein (GFAP). In the S100-positive glia population, a subset of cells also shows a neuronal morphology (nS100), without expressing nestin. Thus, the presence of premature neurons that express NGFP demonstrates that neurogenesis takes place far beyond birth. In enteric neurons, NGFP acts as a marker for neuronal plasticity showing the differentiation and change in the phenotype of neuronal precursor cells.
Collapse
Affiliation(s)
- David Grundmann
- ENS Group, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482, Zweibrücken, Germany.
| | - Franziska Markwart
- ENS Group, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482, Zweibrücken, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Medical Faculty of the University of Saarland, Homburg/Saar, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Medical Faculty of the University of Saarland, Homburg/Saar, Germany
| | - Karl-Herbert Schäfer
- ENS Group, University of Applied Sciences Kaiserslautern, Amerikastraße 1, 66482, Zweibrücken, Germany.
| |
Collapse
|
4
|
Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016; 417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
5
|
Ippolito C, Segnani C, Errede M, Virgintino D, Colucci R, Fornai M, Antonioli L, Blandizzi C, Dolfi A, Bernardini N. An integrated assessment of histopathological changes of the enteric neuromuscular compartment in experimental colitis. J Cell Mol Med 2014; 19:485-500. [PMID: 25521239 PMCID: PMC4407593 DOI: 10.1111/jcmm.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2014] [Indexed: 12/19/2022] Open
Abstract
Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis.
Collapse
Affiliation(s)
- Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cho HM, Kim JY, Kim H, Sun W. Phosphatase and actin regulator 4 is associated with intermediate filaments in adult neural stem cells and their progenitor astrocytes. Histochem Cell Biol 2014; 142:411-9. [PMID: 24748504 DOI: 10.1007/s00418-014-1220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Abstract
Phosphatase and actin regulator 4 (Phactr4) is a newly discovered protein that inhibits protein phosphatase 1 and shows actin-binding activity. We previously found that Phactr4 is expressed in the neurogenic niche in adult mice, although its precise subcellular localization and possible function in neural stem cells (NSCs) is not yet understood. Here, we show that Phactr4 formed punctiform clusters in the cytosol of subventricular zone-derived adult NSCs and their progeny in vitro. These Phactr4 signals were not associated with F-actin fibers but were closely associated with intermediate filaments such as nestin and glial fibrillary acidic protein (GFAP) fibers. Direct binding of Phactr4 with nestin and GFAP filaments was demonstrated using Duolink protein interaction analyses and immunoprecipitation assays. Interestingly, when nestin fibers were de-polymerized during the mitosis or by the phosphatase inhibitor, Phactr4 appeared to be dissociated from nestin, suggesting that their protein interaction is regulated by the protein phosphorylation. These results suggest that Phactr4 forms functional associations with intermediate filament networks in adult NSCs.
Collapse
Affiliation(s)
- Hyo Min Cho
- Department of Anatomy, Brain Korea 21, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, 136-705, Korea
| | | | | | | |
Collapse
|
7
|
Mohr R, Neckel P, Zhang Y, Stachon S, Nothelfer K, Schaeferhoff K, Obermayr F, Bonin M, Just L. Molecular and cell biological effects of 3,5,3′-triiodothyronine on progenitor cells of the enteric nervous system in vitro. Stem Cell Res 2013; 11:1191-205. [DOI: 10.1016/j.scr.2013.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023] Open
|
8
|
Wiese CB, Fleming N, Buehler DP, Southard-Smith EM. A Uchl1-Histone2BmCherry:GFP-gpi BAC transgene for imaging neuronal progenitors. Genesis 2013; 51:852-61. [PMID: 24123561 DOI: 10.1002/dvg.22716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/30/2013] [Accepted: 09/20/2013] [Indexed: 11/09/2022]
Abstract
Uchl1 encodes the protein gene product 9.5 antigen (PGP9.5) that is a widely used to identify migrating neural progenitors in the PNS, mature neurons of the central and peripheral nervous systems, as well as neuroendocrine cells. To facilitate analysis of developing peripheral neurons, we linked regulatory regions of Uchl1 carried within a 160kb bacterial artificial chromosome (BAC) to the dual fluorescent reporter H2BmCherry:GFP-gpi. The Uchl1-H2BmCherry:GFP-gpi transgene exhibits robust expression and allows clear discrimination of individual cells and cellular processes in cranial ganglia, sympathetic chain, the enteric nervous system (ENS), and autonomic ganglia of the urogenital system. The transgene also labels subsets of cells in endocrine tissues where earlier in situ hybridization (ISH) studies have previously identified expression of this deubiquinating enzyme. The Uchl1-H2BmCherry:GFP-gpi transgene will be a powerful tool for static and live imaging, as well as isolation of viable neural progenitors to investigate processes of autonomic neurogenesis.
Collapse
Affiliation(s)
- Carrie B Wiese
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, 529 Light Hall, 2215 Garland Avenue, Nashville, Tennessee
| | | | | | | |
Collapse
|
9
|
Hagl CI, Heumüller-Klug S, Wink E, Wessel L, Schäfer KH. The human gastrointestinal tract, a potential autologous neural stem cell source. PLoS One 2013; 8:e72948. [PMID: 24023797 PMCID: PMC3762931 DOI: 10.1371/journal.pone.0072948] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/15/2013] [Indexed: 01/28/2023] Open
Abstract
Stem cell therapies seem to be an appropriate tool for the treatment of a variety of diseases, especially when a substantial cell loss leads to a severe clinical impact. This is the case in most neuronal cell losses. Unfortunately, adequate neural stem cell sources are hard to find and current alternatives, such as induced programmed stem cells, still have incalculable risks. Evidence of neurogenesis in the adult human enteric nervous system brought up a new perspective. In humans the appendix harbors enteric neuronal tissue and is an ideal location where the presence of neural stem cells is combined with a minimal invasive accessibility. In this study appendices from adults and children were investigated concerning their neural stem cell potential. From each appendix tissue samples were collected, and processed for immunohistochemistry or enteric neural progenitor cell generation. Free-floating enteric neurospheres (EnNS's) could be generated after 6 days in vitro. EnNS's were either used for transplantation into rat brain slices or differentiation experiments. Both transplanted spheres and control cultures developed an intricate network with glia, neurons and interconnecting fibers, as seen in primary enteric cultures before. Neuronal, glial and neural stem cell markers could be identified both in vitro and in vivo by immunostaining. The study underlines the potential of the enteric nervous system as an autologous neural stem cell source. Using the appendix as a potential target opens up a new perspective that might lead to a relatively unproblematic harvest of neural stem cells.
Collapse
Affiliation(s)
- Cornelia Irene Hagl
- Clinic of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Sabine Heumüller-Klug
- Clinic of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Elvira Wink
- Clinic of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Lucas Wessel
- Clinic of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Karl-Herbert Schäfer
- Clinic of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
- Life Science Department, Faculty of Computer Sciences and Microsystems Technology, University of Applied Sciences, Zweibrücken, Germany
| |
Collapse
|
10
|
Belkind-Gerson J, Carreon A, Benedict LA, Steiger C, Pieretti A, Nagy N, Dietrich J, Goldstein AM. Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil 2013; 25:61-9.e7. [PMID: 22998406 PMCID: PMC3531577 DOI: 10.1111/nmo.12015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuronal stem cells (NSCs) are promising for neurointestinal disease therapy. Although NSCs have been isolated from intestinal musclularis, their presence in mucosa has not been well described. Mucosa-derived NSCs are accessible endoscopically and could be used autologously. Brain-derived Nestin-positive NSCs are important in endogenous repair and plasticity. The aim was to isolate and characterize mucosa-derived NSCs, determine their relationship to Nestin-expressing cells and to demonstrate their capacity to produce neuroglial networks in vitro and in vivo. METHODS Neurospheres were generated from periventricular brain, colonic muscularis (Musc), and mucosa-submucosa (MSM) of mice expressing green fluorescent protein (GFP) controlled by the Nestin promoter (Nestin-GFP). Neuronal stem cells were also grown as adherent colonies from intestinal mucosal organoids. Their differentiation potential was assessed using immunohistochemistry using glial and neuronal markers. Brain and gut-derived neurospheres were transplanted into explants of chick embryonic aneural hindgut to determine their fate. KEY RESULTS Musc- and MSM-derived neurospheres expressed Nestin and gave rise to cells of neuronal, glial, and mesenchymal lineage. Although Nestin expression in tissue was mostly limited to glia co-labelled with glial fibrillary acid protein (GFAP), neurosphere-derived neurons and glia both expressed Nestin in vitro, suggesting that Nestin+/GFAP+ glial cells may give rise to new neurons. Moreover, following transplantation into aneural colon, brain- and gut-derived NSCs were able to differentiate into neurons. CONCLUSIONS & INFERENCES Nestin-expressing intestinal NSCs cells give rise to neurospheres, differentiate into neuronal, glial, and mesenchymal lineages in vitro, generate neurons in vivo and can be isolated from mucosa. Further studies are needed for exploring their potential for treating neuropathies.
Collapse
Affiliation(s)
- Jaime Belkind-Gerson
- Department of Pediatric Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alfonso Carreon
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA,Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Leo Andrew Benedict
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casey Steiger
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alberto Pieretti
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Nandor Nagy
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest-1094, Hungary
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital Cancer Center & Center for Regenerative Medicine, Harvard Medical School, Boston, MA
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Abstract
The enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, consists of numerous types of neurons, and glial cells, that are distributed in two intramuscular plexuses that extend along the entire length of the gut and control co-ordinated smooth muscle contractile activity and other gut functions. All enteric neurons and glia are derived from neural crest cells (NCC). Vagal (hindbrain) level NCC provide the majority of enteric precursors along the entire length of the gut, while a lesser contribution, that is restricted to the hindgut, arises from the sacral region of the neuraxis. After leaving the dorsal neural tube NCC undergo extensive migration, proliferation, survival and differentiation in order to form a functional ENS. This article reviews the molecular mechanisms underlying these key developmental processes and highlights the major groups of molecules that affect enteric NCC proliferation and survival (Ret/Gdnf and EdnrB/Et-3 pathways, Sox10 and Phox2b transcription factors), cell migration (Ret and EdnrB signalling, semaphorin 3A, cell adhesion molecules, Rho GTPases), and the development of enteric neuronal subtypes and morphologies (Mash1, Gdnf/neurturin, BMPs, Hand2, retinoic acid). Finally, looking to the future, we discuss the need to translate the wealth of data gleaned from animal studies to the clinical area and thus better understand, and develop treatments for, congenital human diseases affecting the ENS.
Collapse
|
12
|
Schimmack S, Lawrence B, Svejda B, Alaimo D, Schmitz-Winnenthal H, Fischer L, Büchler MW, Kidd M, Modlin I. The clinical implications and biologic relevance of neurofilament expression in gastroenteropancreatic neuroendocrine neoplasms. Cancer 2011; 118:2763-75. [PMID: 21990041 DOI: 10.1002/cncr.26592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/31/2011] [Accepted: 09/12/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) exhibit widely divergent behavior, limited biologic information (apart from Ki-67) is available to characterize malignancy. Therefore, the identification of alternative biomarkers is a key unmet need. Given the role of internexin alpha (INA) in neuronal development, the authors assessed its function in neuroendocrine cell systems and the clinical implications of its expression as a GEP-NEN biomarker. METHODS Functional assays were undertaken to investigate the mechanistic role of INA in the pancreatic BON cell line. Expression levels of INA were investigated in 50 pancreatic NENs (43 primaries, 7 metastases), 43 small intestinal NENs (25 primaries, 18 metastases), normal pancreas (n = 10), small intestinal mucosa (n = 16), normal enterochromaffin (EC) cells (n = 9), mouse xenografts (n = 4) and NEN cell lines (n = 6) using quantitative polymerase chain reaction, Western blot, and immunostaining analyses. RESULTS In BON cells, decreased levels of INA messenger RNA and protein were associated with the inhibition of both proliferation and mitogen-activated protein kinase (MAPK) signaling. INA was not expressed in normal neuroendocrine cells but was overexpressed (from 2-fold to 42-fold) in NEN cell lines and murine xenografts. In pancreatic NENs, INA was overexpressed compared with pancreatic adenocarcinomas and normal pancreas (27-fold [P = .0001], and 9-fold [P = .02], respectively). INA transcripts were correlated positively with Ki-67 (correlation coefficient [r] = 0.5; P < .0001) and chromogranin A (r = 0.59; P < .0001). INA distinguished between primary tumors and metastases (P = .02), and its expression was correlated with tumor size, infiltration, and grade (P < .05). CONCLUSIONS INA is a novel NEN biomarker, and its expression was associated with MAPK signaling and proliferation. In clinical samples, elevated INA was correlated with Ki-67 and identified malignancy. INA may provide additional biologic information relevant to delineation of both pancreatic NEN tumor phenotypes and clinical behavior.
Collapse
Affiliation(s)
- Simon Schimmack
- Department of Gastroenterological Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maltman DJ, Brand S, Belau E, Paape R, Suckau D, Przyborski SA. Top-down label-free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers. Proteomics 2011; 11:3992-4006. [DOI: 10.1002/pmic.201100024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/26/2011] [Accepted: 06/10/2011] [Indexed: 12/19/2022]
|
14
|
Fichter M, Klotz M, Hirschberg DL, Waldura B, Schofer O, Ehnert S, Schwarz LK, Ginneken CV, Schäfer KH. Breast milk contains relevant neurotrophic factors and cytokines for enteric nervous system development. Mol Nutr Food Res 2011; 55:1592-6. [PMID: 21809438 DOI: 10.1002/mnfr.201100124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/11/2011] [Accepted: 05/18/2011] [Indexed: 11/05/2022]
Abstract
Breast-feeding plays an important role for the development of the newborn. Non-breast fed premature born infants show a significantly higher risk of developing diseases like infantile diarrhoea and necrotizing enterocolitis. In this study, the content of neurotrophic factors and cytokines, which might influence the postnatal development of the enteric nervous system (ENS), was determined in human breast milk. Glial cell-line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) as well as a panel of cytokines were analyzed using single factor or multiplex ELISA. In order to link their presence in milk with possible effects on the development of the ENS, rat myenteric neurons were cultured in protein extracts from breast milk. Neurite outgrowth, neuron survival and nestin expression in glial cells were measured. Growth factors and cytokines were found in all breast milk samples at varying concentrations. It could be demonstrated that protein extracts of breast milk increased the amount of surviving enteric neurones as well as neurite outgrowth. Additionally it was shown, that the number of nestin and S100-expressing glial cells increased significantly after incubating in breast milk protein extracts. The data suggest that milk-born proteins support the development of the enteric nervous system.
Collapse
Affiliation(s)
- Michael Fichter
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, Zweibrücken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Azan G, Low WC, Wendelschafer-Crabb G, Ikramuddin S, Kennedy WR. Evidence for neural progenitor cells in the human adult enteric nervous system. Cell Tissue Res 2011; 344:217-25. [PMID: 21369860 DOI: 10.1007/s00441-011-1130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 01/12/2011] [Indexed: 01/18/2023]
Abstract
Putative neural stem cells have been identified within the enteric nervous system (ENS) of adult rodents and cultured from human myenteric plexus. We conducted studies to identify neural stem cells or progenitor cells within the submucosa of adult human ENS. Jejunum tissue was removed from adult human subjects undergoing gastric bypass surgery. The tissue was immunostained, and confocal images of ganglia in the submucosal plexus were collected to identify protein gene product 9.5 (PGP 9.5) - immunoractive neurons and neuronal progenitor cells that coexpress PGP 9.5 and nestin. In addition to PGP-9.5-positive/nestin-negative neuronal cells within ganglia, we observed two other types of cells: (1) cells in which PGP 9.5 and nestin were co-localized, (2) cells negative for both PGP 9.5 and nestin. These observations suggest that the latter two types of cells are related to a progenitor cell population and are consistent with the concept that the submucosa of human adult ENS contains stem cells capable of maintenance and repair within the peripheral nervous system.
Collapse
Affiliation(s)
- Gaetano Azan
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Xu R, Wu C, Tao Y, Yi J, Yang Y, Yang R, Zhang X, Zhang Y, Liu R. Description of distributed features of the nestin-containing cells in brains of adult mice: a potential source of neural precursor cells. J Neurosci Res 2010; 88:945-56. [PMID: 19908282 DOI: 10.1002/jnr.22263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The distribution of neural precursor cells (NPCs) in adult mice brain has so far not been described. Therefore, we investigated the distribution of NPCs by analyzing the nestin-containing cells (NCCs) in distinct brain regions of adult nestin second-intron enhancer-controlled LacZ reporter transgenic mice through LacZ staining. Results showed that NCCs existed in various regions of adult mouse brain. In cerebellum, the greatest number of NCCs existed in cortex of the simple lobule, followed by cortex of the cerebellar lobule. In olfactory bulb, NCCs were most numerous in the granular cell layer, followed by the mitral cell layer and the internal plexiform, glomerular, and external plexiform layers. In brain nuclei (nu), NCCs were most numerous in the marginal nu, followed by the brainstem and diencephalon nu. NCCs in sensory nu of brainstem were more numerous than in motor nu, and NCCs in the dorsal of sensory nu were more numerous than in the ventral part. In brain ventricle systems, NCCs were largely distributed in the center of and external to the lateral ventricle, the inferior part of the third ventricle, the dorsal and inferior parts of the fourth ventricle, and the gray matter around the cerebral aqueduct. NCCs in the left vs. right brain were not significantly different. These data collectively indicate that NCCs were extensively distributed in the cerebellum and olfactory bulb, the partial nu of the marginal system, the partial brain nu adjacent to brain ventricle systems, the subependymal zone, and the cerebral cortex around the marginal lobe and were a potential source of NPCs.
Collapse
Affiliation(s)
- Renshi Xu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schäfer KH, Van Ginneken C, Copray S. Plasticity and neural stem cells in the enteric nervous system. Anat Rec (Hoboken) 2010; 292:1940-52. [PMID: 19943347 DOI: 10.1002/ar.21033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The enteric nervous system (ENS) is a highly organized part of the autonomic nervous system, which innervates the whole gastrointestinal tract by several interconnected neuronal networks. The ENS changes during development and keeps throughout its lifespan a significant capacity to adapt to microenvironmental influences, be it in inflammatory bowel diseases or changing dietary habits. The presence of neural stem cells in the pre-, postnatal, and adult gut might be one of the prerequisites to adapt to changing conditions. During the last decade, the ENS has increasingly come into the focus of clinical neural stem cell research, forming a considerable pool of neural crest derived stem cells, which could be used for cell therapy of dysganglionosis, that is, diseases based on the deficient or insufficient colonization of the gut by neural crest derived stem cells; in addition, the ENS could be an easily accessible neural stem cell source for cell replacement therapies for neurodegenerative disorders or traumatic lesions of the central nervous system.
Collapse
Affiliation(s)
- Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, Zweibrücken, Germany.
| | | | | |
Collapse
|
18
|
Abstract
The mature enteric nervous system (ENS) is composed of many different neuron subtypes and enteric glia, which all arise from the neural crest. How this diversity is generated from neural crest-derived cells is a central question in neurogastroenterology, as defects in these processes are likely to underlie some paediatric motility disorders. Here we review the developmental appearance (the earliest age at which expression of specific markers can be localized) and birthdates (the age at which precursors exit the cell cycle) of different enteric neuron subtypes, and their projections to some targets. We then focus on what is known about the mechanisms underlying the generation of enteric neuron diversity and axon pathfinding. Finally, we review the development of the ENS in humans and the etiologies of a number of paediatric motility disorders.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| | - Heather M Young
- Department of Anatomy & Cell Biology, University of MelbourneParkville, Victoria, Australia
| |
Collapse
|
19
|
Xu R, Wu C, Tao Y, Yi J, Yang Y, Zhang X, Liu R. Nestin‐positive cells in the spinal cord: a potential source of neural stem cells. Int J Dev Neurosci 2008; 26:813-20. [DOI: 10.1016/j.ijdevneu.2008.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/09/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023] Open
Affiliation(s)
- Renshi Xu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Chengsi Wu
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Yuhui Tao
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Juan Yi
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Yunzhu Yang
- Department of NeurologyThe First Affiliated Hospital of Nanchang UniversityNanchangJiangxi330006China
| | - Xiong Zhang
- Department of NeurologyGuangdong Provincial People's Hospital, Nanfang Medical University106 Zhongshan Er RoadGuangzhouGuangdong Province510080China
| | - Rugao Liu
- Department of Anatomy and Cell BiologyUniversity of North Dakota School of MedicineGrand ForksND58202USA
| |
Collapse
|
20
|
Silva AT, Wardhaugh T, Dolatshad NF, Jones S, Saffrey MJ. Neural progenitors from isolated postnatal rat myenteric ganglia: expansion as neurospheres and differentiation in vitro. Brain Res 2008; 1218:47-53. [PMID: 18514173 DOI: 10.1016/j.brainres.2008.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 02/02/2023]
Abstract
Identification of the stem cell niche is crucial for understanding the factors that regulate these cells. Rodent enteric neural crest-derived stem cells have previously been isolated by flow cytometry and culture of cell suspensions from the outer smooth muscle layers or the entire gut wall from postnatal and adult animals. Such cell suspensions contain a mixture of cell types, including smooth muscle, fibroblasts and cells associated with the vasculature and extrinsic innervation. Thus these preparations may be contaminated by stem cells associated with extrinsic sensory and autonomic nerves and by other types of stem cell that reside in the gut. Here we describe a different approach, similar to that recently used for infant human gut, to obtain enteric ganglion-derived cells, with properties of neural progenitor cells, using isolated myenteric ganglia from postnatal rat ileum. Myenteric ganglia were separated from the gut wall, dispersed and resulting cell dissociates were plated in non-adherent culture conditions with EGF and FGF-2. Under these conditions neurosphere-like bodies (NLB) developed. Cells in NLB incorporated BrdU and expressed the stem cell marker nestin but not the pan-neuronal marker PGP 9.5. Upon growth factor withdrawal some BrdU-immunopositive cells assumed the morphology of neurons and expressed PGP 9.5; others were flattened and expressed the glial cell marker GFAP. This work therefore provides evidence that neural crest-derived progenitors in the postnatal rat gut are located in the myenteric plexus, and shows that these cells can be expanded and differentiated in NLB in vitro.
Collapse
Affiliation(s)
- Ayona Therese Silva
- Department of Life Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | | | | | | | | |
Collapse
|
21
|
Is teratoma formation in stem cell research a characterization tool or a window to developmental biology? Reprod Biomed Online 2008; 17:270-80. [DOI: 10.1016/s1472-6483(10)60206-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages. BMC DEVELOPMENTAL BIOLOGY 2007; 7:89. [PMID: 17651502 PMCID: PMC1950091 DOI: 10.1186/1471-213x-7-89] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/25/2007] [Indexed: 11/29/2022]
Abstract
Background The intermediate filament Nestin has been reported as a marker for stem cells and specific precursor cell populations in the developing mammalian central nervous system (CNS). Nestin expressing precursors may give rise to neurons and glia. Mouse nestin expression starts at the onset of neurulation in the neuroectodermal cells and is dramatically down regulated when progenitor cells differentiate and become postmitotic. It has been reported that in the adult zebrafish (Danio rerio) active neurogenesis continues in all major subdivisions of the CNS, however few markers for zebrafish precursors cells are known, and Nestin has not been described in zebrafish. Results We cloned a zebrafish nestin gDNA fragment in order to find a marker for precursor cells in the developing and postembryonic brain. Phylogenetic tree analysis reveals that this zebrafish ortholog clusters with Nestin sequences from other vertebrates but not with other intermediate filament proteins. We analyzed nestin expression from gastrula stage to 4 day larvae, and in post-embryonic brains. We found broad expression in the neuroectoderm during somitogenesis. In the larvae, nestin expression progressively becomes restricted to all previously described proliferative zones of the developing and postembryonic central nervous system. nestin expressing cells of the forebrain also express PCNA during late embryogenesis, identifying them as proliferating precursor or neural stem cells. nestin is also expressed in the cranial ganglia, in mesodermal precursors of muscle cells, and in cranial mesenchymal tissue. Conclusion Our data demonstrate that in zebrafish, like in mammals, the expression of the intermediated neurofilament nestin gene may serve as a marker for stem cells and proliferating precursors in the developing embryonic nervous system as well as in the postembryonic brain.
Collapse
|
23
|
Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem 2007; 55:1075-88. [PMID: 17595340 DOI: 10.1369/jhc.7a7179.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of chick-quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest-derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan.
| | | | | | | | | |
Collapse
|
24
|
Estrada-Mondaca S, Carreón-Rodríguez A, Belkind-Gerson J. Biology of the adult enteric neural stem cell. Dev Dyn 2007; 236:20-32. [PMID: 16972279 DOI: 10.1002/dvdy.20954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease?
Collapse
Affiliation(s)
- Sandino Estrada-Mondaca
- Grupo de Medicina Regenerativa, Unidad de Ingeniería de Tejidos y Terapia Celular, Instituto Nacional de Rehabilitación, Secretaría de Salud, Tlalpan, Mexico City, Mexico
| | | | | |
Collapse
|
25
|
Hayman MW, Christie VB, Keating TS, Przyborski SA. Following the Differentiation of Human Pluripotent Stem Cells by Proteomic Identification of Biomarkers. Stem Cells Dev 2006; 15:221-31. [PMID: 16646668 DOI: 10.1089/scd.2006.15.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Following the differentiation of cultured stem cells is often reliant on the expression of genes and proteins that provide information on the developmental status of the cell or culture system. There are few molecules, however, that show definitive expression exclusively in a specific cell type. Moreover, the reliance on a small number of molecules that are not entirely accurate biomarkers of particular tissues can lead to misinterpretation in the characterization of the direction of cell differentiation. Here we describe the use of technology that examines the mass spectrum of proteins expressed in cultured cells as a means to identify the developmental status of stem cells and their derivatives in vitro. This approach is rapid and reproducible and it examines the expression of several different biomarkers simultaneously, providing a profile of protein expression that more accurately corresponds to a particular type of cell differentiation.
Collapse
Affiliation(s)
- M W Hayman
- School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | |
Collapse
|