1
|
Domsicova M, Korcekova J, Poturnayova A, Breier A. New Insights into Aptamers: An Alternative to Antibodies in the Detection of Molecular Biomarkers. Int J Mol Sci 2024; 25:6833. [PMID: 38999943 PMCID: PMC11240909 DOI: 10.3390/ijms25136833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Aptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting. Furthermore, they can be easily modified with various labels or functional groups, tailoring them for diverse applications. Even more uniquely, aptamers can be regenerated after use, making aptasensors a cost-effective and sustainable alternative compared to disposable biosensors. This review delves into the inherent properties of aptamers that make them advantageous in established diagnostic methods. Furthermore, we will examine some of the limitations of aptamers, such as the need to engage in bioinformatics procedures in order to understand the relationship between the structure of the aptamer and its binding abilities. The objective is to develop a targeted design for specific targets. We analyse the process of aptamer selection and design by exploring the current landscape of aptamer utilisation across various industries. Here, we illuminate the potential advantages and applications of aptamers in a range of diagnostic techniques, with a specific focus on quartz crystal microbalance (QCM) aptasensors and their integration into the well-established ELISA method. This review serves as a comprehensive resource, summarising the latest knowledge and applications of aptamers, particularly highlighting their potential to revolutionise diagnostic approaches.
Collapse
Affiliation(s)
- Michaela Domsicova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Jana Korcekova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Alexandra Poturnayova
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
| | - Albert Breier
- Centre of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Dúbravská Cesta 9, 84005 Bratislava, Slovakia; (M.D.); (J.K.); (A.P.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia
| |
Collapse
|
2
|
Upasham S, Pali M, Jagannath B, Lin KC, Prasad S. Electrochemical Aptasensing for Lifestyle and Chronic Disease Management. Curr Med Chem 2023; 30:895-909. [PMID: 35619314 DOI: 10.2174/0929867329666220520111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/22/2022]
Abstract
Over the past decade, researchers have investigated electrochemical sensing for the purpose of fabricating wearable point-of-use platforms. These wearable platforms have the ability to non-invasively track biomarkers that are clinically relevant and provide a comprehensive evaluation of the user's health. Due to many significant operational advantages, aptamer-based sensing is gaining traction.Aptamer-based sensors have properties like long-term stability, resistance to denaturation, and high sensitivity. Using electrochemical sensing with aptamer-based biorecognition is advantageous because it provides significant benefits like lower detection limits, a wider range of operations, and, most importantly, the ability to detect using a label-free approach. This paper provides an outlook into the current state of electrochemical aptasensing. This review looks into the significance of the detection of biomarkers like glucose, cortisol etc., for the purpose of lifestyle and chronic disease monitoring. Moreover, this review will also provide a comprehensive evaluation of the current challenges and prospects in this field.
Collapse
Affiliation(s)
- Sayali Upasham
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Madhavi Pali
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Badrinath Jagannath
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas-75080, USA
| |
Collapse
|
3
|
Pheno-SELEX: Engineering Anti-Metastatic Aptamers through Targeting the Invasive Phenotype Using Systemic Evolution of Ligands by Exponential Enrichment. Bioengineering (Basel) 2021; 8:bioengineering8120212. [PMID: 34940365 PMCID: PMC8698736 DOI: 10.3390/bioengineering8120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Multiple methods (e.g., small molecules and antibodies) have been engineered to target specific proteins and signaling pathways in cancer. However, many mediators of the cancer phenotype are unknown and the ability to target these phenotypes would help mitigate cancer. Aptamers are small DNA or RNA molecules that are designed for therapeutic use. The design of aptamers to target cancers can be challenging. Accordingly, to engineer functionally anti-metastatic aptamers we used a modification of systemic evolution of ligands by exponential enrichment (SELEX) we call Pheno-SELEX to target a known phenotype of cancer metastasis, i.e., invasion. A highly invasive prostate cancer (PCa) cell line was established and used to identify aptamers that bound to it with high affinity as opposed to a less invasive variant to the cell line. The anti-invasive aptamer (AIA1) was found to inhibit in vitro invasion of the original highly invasive PCa cell line, as well as an additional PCa cell line and an osteosarcoma cell line. AIA1 also inhibited in vivo development of metastasis in both a PCa and osteosarcoma model of metastasis. These results indicate that Pheno-SELEX can be successfully used to identify aptamers without knowledge of underlying molecular targets. This study establishes a new paradigm for the identification of functional aptamers.
Collapse
|
4
|
Lavu PS, Mondal B, Ramlal S. Selection and Characterization of Cell Surface Specific Aptamer and Development of Fluorescence Assay for Detection of Shigella flexneri from Water Samples. J Fluoresc 2021; 31:685-693. [PMID: 33582948 DOI: 10.1007/s10895-021-02691-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
The present study demonstrates, development of ssDNA aptamers against whole cell of S. flexneri employing a whole bacterium-based Systemic Evolution of Ligands by Exponential Enrichment (SELEX). After ten rounds of SELEX, cell surface specific aptamer pool was cloned, sequenced and divided based on sequence similarities and secondary structure. Binding affinity of FITC labelled aptamer from different group were carried out by flow cytometry analysis. The dissociation constant (Kd) values for specific and higher binder were evaluated to range from 144 to 329 nM. Six high binding aptamers with lower dissociation constant was chosen for selectivity study. Aptamer SHI 23, SHI 37 and SHI 42 showed higher selectivity towards S. flexneri in comparison with other related bacteria. Further applicability of selected aptamer was proven by fluorescence assay for convenience detection of target cell from spiked water sample and natural contaminated water samples. Altogether, aptamer generated in this study can be alternative DNA ligands for detection of S. flexneri compared to available ligands.
Collapse
Affiliation(s)
- Padma Sudharani Lavu
- Microbiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, 570011, India
| | - Bhairab Mondal
- Microbiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, 570011, India
| | - Shylaja Ramlal
- Microbiology Division, Defence Food Research Laboratory, Siddharthanagar, Mysore, Karnataka, 570011, India.
| |
Collapse
|
5
|
Khedri M, Abnous K, Rafatpanah H, Nabavinia MS, Taghdisi SM, Ramezani M. Development and Evaluation of Novel Aptamers Specific for Human PD1 Using Hybrid Systematic Evolution of Ligands by Exponential Enrichment Approach. Immunol Invest 2020; 49:535-554. [DOI: 10.1080/08820139.2020.1744639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mostafa Khedri
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sadat Nabavinia
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Wu HB, Wang ZW, Shi F, Ren ZL, Li LC, Hu XP, Hu R, Li BW. Av β3 Single-Stranded DNA Aptamer Attenuates Vascular Smooth Muscle Cell Proliferation and Migration via Ras-PI3K/MAPK Pathway. Cardiovasc Ther 2020; 2020:6869856. [PMID: 32042311 PMCID: PMC6995496 DOI: 10.1155/2020/6869856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To observe the effect of avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. BACKGROUND Percutaneous transluminal coronary angioplasty (PTCA) is currently the preferred method for the treatment of coronary heart disease. However, vascular restenosis still occurs after PTCA treatment, severely affecting the clinical efficacy of PTCA. Integrin avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. METHODS In this experiment, we used systematic evolution of ligands by exponential enrichment (SELEX) to screen out avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. RESULTS In the present study, we found that avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. P < 0.05). Avβ3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism. P < 0.05). AvP < 0.05). Av. CONCLUSIONS The findings suggest that avβ3 ssDNA inhibited the proliferation and migration of VSMCs by suppressing the activation of Ras-PI3K/MAPK signaling.β3 single-stranded (ss) DNA on proliferation and migration of vascular smooth muscle cells (VSMCs) and its potential mechanism.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Gene Expression Regulation
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Osteopontin/genetics
- Osteopontin/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Hong-Bing Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zong-Li Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luo-Cheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Wen Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
8
|
Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, Huang P, Chen F, Sun J, Hong DF, Naranmandura H. Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci 2019; 7:938-950. [PMID: 30519686 DOI: 10.1039/c8bm01393d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aptamers are short single-stranded DNA or RNA molecules, which have recently been developed for potential broad applications such as clinical therapeutics, diagnosis and tumor-targeted drug delivery. However, the selection of specific aptamers is often unsatisfactory using the classical protein or cell-based SELEX. Herein, we modified the paired cell line approach to identify aptamers targeting leukemia cells expressing the CD33 antigen. Our strategy artfully used the same cells for negative (HEK293T cells) and positive (CD33 transfected-HEK293T cells) aptamer selections, and the negative selections were performed adequately before the positive selection to remove unspecific sequences. The advantages of this strategy are that it is fast and accurate, where only a few rounds of selection together with PCR amplifications are sufficient to obtain high binding affinity antigen-targeted aptamers. By using our modified approach, we successfully obtained the CD33-targeting aptamer S30, which could highly recognize the C2 domain of the CD33 antigen in vitro and in vivo. Moreover, the optimized aptamer S30-T1 (i.e., core region of S30) was conjugated with doxorubicin (Dox) to synthesize S30-T1-Dox conjugates, which could specifically inhibit CD33 positive acute myeloid leukemia HL-60 cell proliferation by arresting the cell cycle at the G2 phase. Thus, our modified approach can rapidly screen reliable, stable and high binding affinity aptamers for precise cancer treatment.
Collapse
Affiliation(s)
- Chang Yang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao G, Liu C, Jain S, Li D, Wang H, Zhao Y, Liu J. Potential use of aptamers for diagnosis and treatment of pancreatic cancer. J Drug Target 2019; 27:853-865. [PMID: 30596288 DOI: 10.1080/1061186x.2018.1564924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer (PC) is highly malignant with a low 5-year survival rate. PC currently does not have good early diagnostic markers and responses poorly to chemotherapeutic drugs. The search for better biomarkers and developing more effective chemotherapy are important ways to improve the healthcare of PC patients. Aptamers are single-stranded nucleic acids with high binding affinity and specificity to target molecules. Many aptamers against different forms of cancer including PC have been selected for both diagnostic and therapeutic use. Aptamers can work as ligands to distinguish tumour cells from normal cells. Using cells as selection targets, the obtained aptamers have been used to discover new cancer biomarkers after identification of the binding target. Aptamers have been shown to have antagonists effect on cancer cell proliferation, apoptosis, and metastasis. In addition, aptamers have been used as carriers to deliver therapeutic agents to selectively kill PC cells. This review summarises the potential use of aptamers in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Ge Gao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Can Liu
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Sona Jain
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| | - Dai Li
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada.,d Department of Pharmacology , Xiangya Hospital, Central South University , Changsha , China
| | - Hai Wang
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Yongxin Zhao
- a Faculty of Laboratory Medicine , Xiangya Medical College, Central South University , Changsha , China.,b Department of Clinical Laboratory , Third Xiangya Hospital, Central South University , Changsha , China
| | - Juewen Liu
- c Department of Chemistry , Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo , Canada
| |
Collapse
|
10
|
Wang J, Gao T, Luo Y, Wang Z, Zhang Y, Zhang Y, Zhang Y, Pei R. In Vitro Selection of a DNA Aptamer by Cell-SELEX as a Molecular Probe for Cervical Cancer Recognition and Imaging. J Mol Evol 2019; 87:72-82. [PMID: 30659315 DOI: 10.1007/s00239-019-9886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Aptamers have become the most promising recognition reagents in terms of early diagnosis and effective treatment of cancers. In this study, using cervical cancer as a model, we have identified a DNA aptamer specifically binding to cervical cancer cells with high affinity using the cell-SELEX (systematic evolution of ligands by exponential enrichment) method, in which a negative selection was carried out using normal epithelial cells as control. The binding abilities of 6 selected truncated aptamers were determined by laser confocal fluorescence microscopy and flow cytometry, while most of them only recognize the target cells and do not bind the control cells, and the aptamer C-9S with 51-mer shows the best binding affinity to Ca Ski cells (target cells) with a dissociation constant value of 19.3 ± 2.9 nM. Moreover, at physiological temperature, C-9S remains its specific recognition capability to Ca Ski cells as well. Meanwhile, C-9S shows a similar binding ability to another cervical cancer cells (HeLa). Therefore, on the basis of its excellent targeting properties and inherent functional versatility of aptamer, C-9S holds great potential to be a molecular probe for early detection, in vivo imaging, and targeted delivery for further researches in cancer.
Collapse
Affiliation(s)
- Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yajie Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuanyuan Zhang
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
11
|
Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev 2018; 134:122-137. [PMID: 30267743 DOI: 10.1016/j.addr.2018.09.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023]
Abstract
Aptamers are versatile nucleic acid-based macromolecules characterized by their high affinity and specificity to a specific target. Taking advantage of such binding properties, several aptamers have been selected to bind tumor biomarkers and have been used as targeting ligands for the functionalization of nanomedicines. Different functionalization methods have been used to link aptamers to the surface drug nanocarriers. The pre-clinical data of such nanomedicines overall show an enhanced and selective delivery of therapeutic payloads to cancer cells, thereby accelerating steps towards more effective therapeutic systems. This review describes the current advances in the use of aptamers as targeting moieties for the delivery of therapeutic and imaging agents to tumors by conjugation to organic and inorganic nanocarriers.
Collapse
|
12
|
Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers. Methods Mol Biol 2018; 1575:253-272. [PMID: 28255886 DOI: 10.1007/978-1-4939-6857-2_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.
Collapse
|
13
|
Wang S, Mao B, Wu M, Liang J, Deng L. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie van Leeuwenhoek 2017; 111:199-208. [PMID: 29098517 DOI: 10.1007/s10482-017-0941-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer-SWNTs and aptamer-ciprofloxacin-SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer-SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer-ciprofloxacin-SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Changsha Institute for Food and Drug Control, Changsha, 410081, Hunan, People's Republic of China
| | - Biyao Mao
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingxi Wu
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
14
|
Development of aptamers against unpurified proteins. Biotechnol Bioeng 2017; 114:2706-2716. [DOI: 10.1002/bit.26389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
|
15
|
Huang ZX, Xie Q, Guo QP, Wang KM, Meng XX, Yuan BY, Wan J, Chen YY. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Abstract
Nucleic acid aptamers, often termed 'chemical antibodies', are functionally comparable to traditional antibodies, but offer several advantages, including their relatively small physical size, flexible structure, quick chemical production, versatile chemical modification, high stability and lack of immunogenicity. In addition, many aptamers are internalized upon binding to cellular receptors, making them useful targeted delivery agents for small interfering RNAs (siRNAs), microRNAs and conventional drugs. However, several crucial factors have delayed the clinical translation of therapeutic aptamers, such as their inherent physicochemical characteristics and lack of safety data. This Review discusses these challenges, highlighting recent clinical developments and technological advances that have revived the impetus for this promising class of therapeutics.
Collapse
Affiliation(s)
- Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - John Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| |
Collapse
|
17
|
Hu L, Wang L, Lu W, Zhai Q, Fan D, Liu X, Zhao J, Zhang H, Chen W. Selection, identification and application of DNA aptamers for the detection of Bifidobacterium breve. RSC Adv 2017. [DOI: 10.1039/c6ra27672e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, a single-stranded DNA (ssDNA) aptamer binding toBifidobacterium brevewith high avidity and selectivity was selected through a whole-bacterium-based SELEX process.
Collapse
Affiliation(s)
- Lujun Hu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- PR China
| |
Collapse
|
18
|
Rong Y, Chen H, Zhou XF, Yin CQ, Wang BC, Peng CW, Liu SP, Wang FB. Identification of an aptamer through whole cell-SELEX for targeting high metastatic liver cancers. Oncotarget 2016; 7:8282-94. [PMID: 26882565 PMCID: PMC4884992 DOI: 10.18632/oncotarget.6988] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/13/2016] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly human cancers due to its ability of invasion and metastasis. Thus, the approaches to identify potential compounds that inhibit invasion and metastasis of HCC are critical for treatment of this disease. In the present study, we used HCCLM9 cells with high metastatic potential and MHCC97L with low metastatic potential as a model system to study the molecular mechanisms of HCC metastasis. By applying cell- Systematic Evolution of Ligands by Exponential enrichment (SELEX) against living cells, we used HCCLM9 as target cells and MHCC97L cells as control to screen a group of HCC metastasis- and cell-specific DNA aptamers. One of selected aptamers, LY-1, could specifically bind to metastatic HCC with a dissociation constant (Kd) in nanomolar range. In vitro studies demonstrated that LY-1 can recognize and bind to membrane protein of metastatic HCC cells. Furthermore, QD605 labeled LY-1 aptamer could recognize HCC cells in both local liver cancer tissues and pulmonary metastatic sites in a xenograft model of HCC with pulmonary metastasis. Further biochemical and immunostaining studies showed that LY-1 could selectively bind to a subpopulation of more metastatic cells in HCCLM9 cells, which express more CK19 and vimentin. Finally, treatment of highly metastatic cells with LY-1 led to reduced migration and invasiveness of HCCLM9 cells in vitro and suppression of xenograft growth in vivo. Taken together, the present study demonstrated the tumor targeting and tumor suppressive effects of LY-1, which could be a promising molecular probe for metastatic HCC and a potential candidate of chemotherapy for metastatic HCC.
Collapse
Affiliation(s)
- Yuan Rong
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Hao Chen
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Xue-Feng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chang-Qing Yin
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Bi-Cheng Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chun-Wei Peng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Shao-Ping Liu
- Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuchang, Wuhan 430071, P.R. China
| | - Fu-Bing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan 430071, P.R. China
| |
Collapse
|
19
|
Abstract
Live cell-based SELEX (Systematic Evolution of Ligand EXponential enrichment) is a promising approach for identifying aptamers that can selectively bind to a cell-surface antigen or a particular target cell population. In particular, it offers a facile selection strategy for some special cell-surface proteins that are original glycosylated or heavily post-translationally modified, and are unavailable in their native/active conformation after in vitro expression and purification. In this chapter, we describe evolution of cell-type-specific RNA aptamers targeting the human CCR5 by combining the live cell-based SELEX strategy with high-throughput sequencing (HTS) and bioinformatics analysis.
Collapse
Affiliation(s)
- Jiehua Zhou
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Rd, Duarte, CA, 91010, USA
| | - John J Rossi
- Division of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Rd, Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 East Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Chen M, Yu Y, Jiang F, Zhou J, Li Y, Liang C, Dang L, Lu A, Zhang G. Development of Cell-SELEX Technology and Its Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2016; 17:ijms17122079. [PMID: 27973403 PMCID: PMC5187879 DOI: 10.3390/ijms17122079] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022] Open
Abstract
SELEX (systematic evolution of ligands by exponential enrichment) is a process involving the progressive isolation of high selective ssDNA/RNA from a combinatorial single-stranded oligonucleotide library through repeated rounds of binding, partitioning and amplification. SELEX-derived single-stranded DNA/RNA molecules, called aptamers, are selected against a wide range of targets, including purified proteins, live cells, tissues, microorganisms, small molecules and so on. With the development of SELEX technology over the last two decades, various modified SELEX processes have been arisen. A majority of aptamers are selected against purified proteins through traditional SELEX. Unfortunately, more and more evidence showed aptamers selected against purified membrane proteins failed to recognize their targets in live cells. Cell-SELEX could develop aptamers against a particular target cell line to discriminate this cell line from others. Therefore, cell-SELEX has been widely used to select aptamers for the application of both diagnosis and therapy of various diseases, especially for cancer. In this review, the advantages and limitations of cell-SELEX and SELEX against purified protein will be compared. Various modified cell-SELEX techniques will be summarized, and application of cell-SELEX in cancer diagnosis and therapy will be discussed.
Collapse
Affiliation(s)
- Man Chen
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Feng Jiang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Junwei Zhou
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Yongshu Li
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Chao Liang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Lei Dang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Ge Zhang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Comninatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| |
Collapse
|
21
|
Marton S, Cleto F, Krieger MA, Cardoso J. Isolation of an Aptamer that Binds Specifically to E. coli. PLoS One 2016; 11:e0153637. [PMID: 27104834 PMCID: PMC4841571 DOI: 10.1371/journal.pone.0153637] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/01/2016] [Indexed: 01/24/2023] Open
Abstract
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) to isolate four single stranded DNA (ssDNA) aptamers that bind strongly to E. coli cells (ATCC generic strain 25922), with Kd values in the nanomolar range. Fluorescently labeled aptamers label the surface of E. coli cells, as viewed by fluorescent microscopy. Specificity tests with twelve different bacterial species showed that one of the aptamers–called P12-31—is highly specific for E. coli. Importantly, this aptamer binds to Meningitis/sepsis associated E. coli (MNEC) clinical isolates, and is the first aptamer described with potential for use in the diagnosis of MNEC-borne pathologies.
Collapse
Affiliation(s)
- Soledad Marton
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Fernanda Cleto
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil.,Instituto Carlos Chagas, Laboratório de Genomica Functional, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| | - Josiane Cardoso
- Instituto de Biologia Molecular do Paraná, Department of Research and Development, 3375 Professor Algacyr Munhoz Mader Street, Curitiba, Brazil
| |
Collapse
|
22
|
Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach. Appl Biochem Biotechnol 2016; 180:10-25. [PMID: 27085355 DOI: 10.1007/s12010-016-2081-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.
Collapse
|
23
|
Thiel WH, Giangrande PH. AFBI assay - Aptamer Fluorescence Binding and Internalization assay for cultured adherent cells. Methods 2016; 103:180-7. [PMID: 26972784 DOI: 10.1016/j.ymeth.2016.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) process allows for the enrichment of DNA or RNA aptamers from a complex nucleic acid library that are specific for a target molecule. The SELEX process has been adapted from identifying aptamers in vitro using recombinant target protein to cell-based methodologies (Cell-SELEX), where the targets are expressed on the surface of cells. One major advantage of Cell-SELEX is that the target molecules are maintained in a native confirmation. Additionally, Cell-SELEX may be used to discover novel therapeutic biomarkers by performing selections on diseased versus healthy cells. However, a caveat to Cell-SELEX is that testing of single aptamers identified in the selection is laborious, time-consuming, and expensive. The most frequently used methods to screen for aptamer binding and internalization on cells are flow cytometry and quantitative PCR (qPCR). While flow cytometry can directly assess binding of a fluorescently-labeled aptamer to a target, it requires significant starting material and is not easily scalable. qPCR-based approaches are highly sensitive but have non-negligible experiment-to-experiment variability due to the number of sample processing steps. Herein we describe a cell-based aptamer fluorescence binding and internalization (AFBI) assay. This assay requires minimal reagents and has few experimental steps/manipulations, thereby allowing for rapid screening of many aptamers and conditions simultaneously and direct quantitation of aptamer binding and internalization.
Collapse
Affiliation(s)
- William H Thiel
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; The François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA.
| | - Paloma H Giangrande
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; The François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA 52242, USA; The Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; The Molecular and Cell Biology Program, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Almasi F, Mousavi Gargari SL, Bitaraf F, Rasoulinejad S. Development of a Single Stranded DNA Aptamer as a Molecular Probe for LNCap Cells Using Cell-SELEX. Avicenna J Med Biotechnol 2016; 8:104-11. [PMID: 27563422 PMCID: PMC4967543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Nowadays, highly specific aptamers generated by cell SELEX technology (systematic evolution of ligands by exponential enrichment) are being applied for early detection of cancer cells. Prostate Specific Membrane Antigen (PSMA), over expressed in prostate cancer, is a highly specific marker and therefore can be used for diagnosis of the prostate cancer cells. The aim of the present study was to select single-stranded DNA aptamers against LNCap cells highly expressing PSMA, using cell-SELEX method which can be used as a diagnostic tool for the detection of prostate cancer cells. METHODS After 10 rounds of cell-SELEX, DNA aptamers were isolated against PSMA using LNCaP cells as a target and PC-3 cell lines for counter SELEX. Five DNA aptamers with more than 70% affinity were selected up on flow cytometry analysis of positive clones. RESULTS Dissociation constants of two selected sequences (A12-B1) were estimated in the range of 33.78±3.77 and 57.49±2.214 pmol, respectively. Conserved secondary structures of A12 and B1 sequences suggest the necessity of these structures for binding with high affinity to native PSMA. Comparison of the secondary structures of our isolated aptamers and aptamer A10 obtained by protein SELEX showed similar stem-loop structures which could be responsible for the recognition of PSMA on LNCap cell surface. CONCLUSION Our results indicated that selected aptamers may turn out to be ideal candidates for the development of a detection tool and also can be used in targeted drug delivery for future smart drugs.
Collapse
Affiliation(s)
- Faezeh Almasi
- Department of Biotechnology, College of Science, Tehran University, Tehran, Iran
| | - Seyed Latif Mousavi Gargari
- Department of Biology, Shahed University, Tehran, Iran,Corresponding author: Seyed Latif Mousavi Gargari, Ph.D., Biology Department, Shahed University, Tehran-Qom Expressway, Tehran, Iran, Tel: +98 21 51212200, Fax: +98 21 51212201, E-mail:
| | | | | |
Collapse
|
25
|
Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y. Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 2015; 44:1240-56. [PMID: 25561050 DOI: 10.1039/c4cs00357h] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligomers, identified from a random sequence pool, with the ability to form unique and versatile tertiary structures that bind to cognate molecules with superior specificity. Their small size, excellent chemical stability and low immunogenicity enable them to rival antibodies in cancer imaging and therapy applications. Their facile chemical synthesis, versatility in structural design and engineering, and the ability for site-specific modifications with functional moieties make aptamers excellent recognition motifs for cancer biomarker discovery and detection. Moreover, aptamers can be selected or engineered to regulate cancer protein functions, as well as to guide anti-cancer drug design or screening. This review summarizes their applications in cancer, including cancer biomarker discovery and detection, cancer imaging, cancer therapy, and anti-cancer drug discovery. Although relevant applications are relatively new, the significant progress achieved has demonstrated that aptamers can be promising players in cancer research.
Collapse
Affiliation(s)
- Haitao Ma
- The Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamula CLA, Peng H, Wang Z, Newbigging AM, Tyrrell GJ, Li XF, Le XC. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells. J Mol Evol 2015; 81:194-209. [PMID: 26538121 DOI: 10.1007/s00239-015-9711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022]
Abstract
Aptamers of high affinity and specificity have a wide range of analytic and clinical applications. Selection of DNA or RNA aptamer molecules usually involves systematic evolution of ligands via exponential enrichment (SELEX), in which a random DNA or RNA library is incubated with a target molecule, and the oligonucleotides that bind the target are then separated from the nonbinders, PCR amplified, and used as refined libraries in the next round of selection. Conventional SELEX methodologies require the use of purified target molecules and their immobilization onto a solid support. However, purified targets from cells are not always available, and fixing the target to a support may alter its conformation. To overcome these problems, we have developed a SELEX technique using live bacterial cells in suspension as targets, for selecting DNA aptamers specific to cell-surface molecules. Through the selection of aptamers binding to Lactobacillus acidophilus and Streptococcus pyogenes, we report here optimization of this technique and show how varying selection conditions impact the characteristics of resultant aptamer pools, including the binding affinity, selectivity, and the secondary structures. We found that the use of larger starting library sequence diversity, gel purification of the subsequent pools, and the introduction of counter-selection resulted in a more efficient SELEX process and more selective aptamers. A SELEX protocol with lower starting sequence diversity, the use of heat denaturation, and the absence of counter-selection still resulted in high-affinity aptamer sequences specific to the target cell types; however, the SELEX process was inefficient, requiring 20 rounds, and the aptamers were not specific to the strain of the bacterial cells. Strikingly, two different SELEX methodologies yielded the same sequence that bound strongly to the target S. pyogenes cells, suggesting the robustness of the bacterial cell-SELEX technique.
Collapse
Affiliation(s)
- Camille L A Hamula
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.,Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York City, NY, 10029, USA
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zhixin Wang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Ashley M Newbigging
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Gregory J Tyrrell
- The Provincial Laboratory for Public Health for Alberta, Walter Mackenzie Health Sciences Centre, Edmonton, AB, T6G 2J2, Canada.,Department of Laboratory Medicine and Pathology, 2B3.08 Walter Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
27
|
Ravindranath RR, Romaschin A, Thompson M. In vitro and in vivo cell-capture strategies using cardiac stent technology - A review. Clin Biochem 2015; 49:186-91. [PMID: 26474510 DOI: 10.1016/j.clinbiochem.2015.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 01/23/2023]
Abstract
Stenosis is a symptom of coronary artery disease (CAD), and is caused by narrowing of arteries in the heart. Over the last several decades, medical implants such as cardiac stents have been developed to counter stenosis. Upon implantation of a stent to open up a restricted artery, narrowing of the artery can reoccur (restenosis), due to an immune response launched by the body towards the stent. Currently, restenosis is a major health concern for patients who have undergone heart surgery for coronary artery disease. Recently, there have been new methods developed to combat restenosis, which have shown potential signs of success. One proposed method is the use of stents to capture cells, thereby reducing immune response. This review will explore the different methods for cell capture both in vitro and in vivo. Biological modifications of the stent will be surveyed, as well as the use of surface science to immobilize biological probes. Immobilization of proteins and nucleotides, as well as use of magnetic field are all methods that will be further discussed. Finally, concluding remarks and future prospects will be presented.
Collapse
Affiliation(s)
- Rohan R Ravindranath
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; Keenan Research Centre and Clinical Biochemistry, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Alexander Romaschin
- Keenan Research Centre and Clinical Biochemistry, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
28
|
Retraction: Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase. PLoS Biol 2015; 13:e1002215. [PMID: 26186737 PMCID: PMC4505871 DOI: 10.1371/journal.pbio.1002215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
McConnell EM, Holahan MR, DeRosa MC. Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic Acid Ther 2015; 24:388-404. [PMID: 25296265 DOI: 10.1089/nat.2014.0492] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Oligonucleotide aptamers are short, synthetic, single-stranded DNA or RNA able to recognize and bind to a multitude of targets ranging from small molecules to cells. Aptamers have emerged as valuable tools for fundamental research, clinical diagnosis, and therapy. Due to their small size, strong target affinity, lack of immunogenicity, and ease of chemical modification, aptamers are an attractive alternative to other molecular recognition elements, such as antibodies. Although it is a challenging environment, the central nervous system and related molecular targets present an exciting potential area for aptamer research. Aptamers hold promise for targeted drug delivery, diagnostics, and therapeutics. Here we review recent advances in aptamer research for neurotransmitter and neurotoxin targets, demyelinating disease and spinal cord injury, cerebrovascular disorders, pathologies related to protein aggregation (Alzheimer's, Parkinson's, and prions), brain cancer (glioblastomas and gliomas), and regulation of receptor function. Challenges and limitations posed by the blood brain barrier are described. Future perspectives for the application of aptamers to the central nervous system are also discussed.
Collapse
Affiliation(s)
- Erin M McConnell
- 1 Department of Chemistry, Carleton University , Ottawa, Ontario, Canada
| | | | | |
Collapse
|
30
|
Sharma TK, Ramanathan R, Weerathunge P, Mohammadtaheri M, Daima HK, Shukla R, Bansal V. Aptamer-mediated 'turn-off/turn-on' nanozyme activity of gold nanoparticles for kanamycin detection. Chem Commun (Camb) 2015; 50:15856-9. [PMID: 25331713 DOI: 10.1039/c4cc07275h] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Applied Science, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hu J, Zhao Z, Liu Q, Ye M, Hu B, Wang J, Tan W. Study of the Function of G-Rich Aptamers Selected for Lung Adenocarcinoma. Chem Asian J 2015; 10:1519-25. [PMID: 25864879 PMCID: PMC4966285 DOI: 10.1002/asia.201500187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/08/2022]
Abstract
Guanine (G)-rich oligonucleotides have attracted considerable interest as therapeutic agents. Two G-rich aptamers were selected against epidermal growth factor receptor (EGFR)-transfected A549 cells, and their G-rich domains (S13 and S50) were identified to account for the binding of parental aptamers. Circular dichroism (CD) spectra showed that S13 and S50 bound to their targets by forming parallel quadruplexes. Their binding, internalization, and antiproliferation activity in cancer and noncancer cells were investigated by flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, and compared with those of nucleolin-binding AS1411 and thrombin-binding aptamer. The two truncated aptamers (S13 and S50) have good binding and internalization in cancer cells and noncancer cells; however, only S50, similar to AS1411, shows potent antiproliferation against cancer cells. Our data suggest that tumor-selective antiproliferation of G-rich oligonucleotides does not directly depend on the binding of the G-rich aptamer to cells.
Collapse
Affiliation(s)
- Jun Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular, Engineering for Theranostics, Hunan University, Changsha, 410082, P.R. China
- Hunan Tumor Hospital, Changsha, 410013, P.R. China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular, Engineering for Theranostics, Hunan University, Changsha, 410082, P.R. China
- Center for Research at Bio/Nano Interface, Department of Chemistry and, Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute, and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular, Engineering for Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular, Engineering for Theranostics, Hunan University, Changsha, 410082, P.R. China
| | - Bingqiang Hu
- Hunan Tumor Hospital, Changsha, 410013, P.R. China
| | - Jing Wang
- Hunan Tumor Hospital, Changsha, 410013, P.R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, and Collaborative Research Center of Molecular, Engineering for Theranostics, Hunan University, Changsha, 410082, P.R. China.
- Center for Research at Bio/Nano Interface, Department of Chemistry and, Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute, and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611-7200, USA.
| |
Collapse
|
32
|
Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26199940 PMCID: PMC4493287 DOI: 10.1155/2015/419318] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed.
Collapse
|
33
|
Liang C, Li D, Zhang G, Li H, Shao N, Liang Z, Zhang L, Lu A, Zhang G. Comparison of the methods for generating single-stranded DNA in SELEX. Analyst 2015; 140:3439-44. [PMID: 25811413 DOI: 10.1039/c5an00244c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The generation of single-stranded DNA (ssDNA) from double-stranded PCR products is an essential step in the selection of aptamers by systematic evolution of ligands by exponential enrichment (SELEX). Magnetic separation with streptavidin-coated beads is always the most commonly used method. Recently, two size separation methods derived from unequal primers with chemical or structural modification were designed in SELEX. In this report, we made a comparison between magnetic separation and the two size separation methods for generation of ssDNA from double-stranded PCR products. Our results showed that all the methods produced ssDNA of good purity. Compared to the magnetic separation, size separation derived from unequal primers with chemical modification achieved an almost equivalent recovery rate of ssDNA, whereas size separation derived from unequal primers with structural modification showed a lower recovery rate of ssDNA. Considering the low cost, size separation derived from unequal primers with chemical modification could be a satisfactory alternative to the classic magnetic separation for the generation of ssDNA in SELEX.
Collapse
Affiliation(s)
- Chao Liang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hu X, Wang Z, Wu H, Jiang W, Hu R. Ras ssDNA aptamer inhibits vascular smooth muscle cell proliferation and migration through MAPK and PI3K pathways. Int J Mol Med 2015; 35:1355-61. [PMID: 25778421 DOI: 10.3892/ijmm.2015.2139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/25/2015] [Indexed: 11/05/2022] Open
Abstract
Proliferation and migration of vascular smooth muscle cells (VSMCs) mediated by Ras proteins are crucial in restenosis following percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG). In this study, a novel, single-stranded DNA (ssDNA) aptamer designated as Ras-a1 with high affinity and specificity to human Ras protein was isolated using systematic evolution of ligands by exponential enrichment. Ras-a1 was delivered into VSMCs by electroporation using one square waveform of 200 V for 20 msec. Proliferation of VSMCs was determined using a cell counting kit‑8 assay, which revealed the maximal inhibitory rate (40%) was obtained at 24 h after Ras-a1 transfection. The migration of VSMCs, determined using a Transwell assay, was significantly inhibited in Rasa1 cells in a time-dependent manner. To investigate the potential mechanisms of transfected Ras-a1 on the migration and proliferation of VSMCs, the phosphorylation of MEK1/2, ERK1/2, and Akt was determined using western blot analysis, which showed that a marked downregulation was observed in the phosphorylation of MEK1/2, ERK1/2, and Akt following the delivery of Ras-a1. This result demonstrated that Ras-a1 inhibits the proliferation and migration of VSMCs by inhibiting the phosphorylation of Ras and interrupting signal transduction in the Ras‑MEK1/2‑ERK1/2 and phosphoinositide-3 kinase/Akt pathways. The novel Ras protein-targeted ssDNA aptamer selected may be applicable for the prevention of restenosis after PCI and CABG.
Collapse
Affiliation(s)
- Xiaoping Hu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Hongbing Wu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Wanli Jiang
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| | - Rui Hu
- Department of Cardiovascular Surgery, Wuhan University Renmin Hospital, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
35
|
Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. ACTA ACUST UNITED AC 2015; 22:379-90. [PMID: 25754473 DOI: 10.1016/j.chembiol.2015.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/29/2014] [Accepted: 01/25/2015] [Indexed: 11/21/2022]
Abstract
The C-C chemokine receptor type 5 (CCR5) is a receptor expressed by T cells and macrophages that serves as a coreceptor for macrophage-tropic HIV-1. Loss of CCR5 is associated with resistance to HIV-1. Here, we combine the live-cell-based SELEX with high-throughput sequencing technology to generate CCR5 RNA aptamers capable of specifically targeting HIV-1 susceptible cells (as small interfering RNA [siRNA] delivery agent) and inhibiting HIV-1 infectivity (as antiviral agent) via block of the CCR5 required for HIV-1 to enter cells. One of the best candidates, G-3, efficiently bound and was internalized into human CCR5-expressing cells. The G-3 specifically neutralized R5 virus infection in primary peripheral blood mononuclear cells, and in vivo generated human CD4(+) T cells with a nanomolar inhibitory concentration 50%. G-3 was also capable of transferring functional siRNAs to CCR5-expressing cells. Collectively, the cell-specific, internalizing, CCR5-targeted aptamers and aptamer-siRNA conjugates offer promise for overcoming some of the current challenges of drug resistance in HIV-1 by providing cell-type- or tissue-specific delivery of various therapeutic moieties.
Collapse
|
36
|
Meng HM, Fu T, Zhang XB, Tan W. Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Nucleic acid aptamers, which are generated by a novel technique called SELEX (systematic evolution of ligands by exponential enrichment), have recently attracted significant attention in the field of early detection and treatment of cancer based on their numerous merits, such as high affinity, high specificity, small size, little immunogenicity, stable structures, and ease of chemical modification. Furthermore, aptamers can gain more flexibility as cancer cell targeting tools when conjugated to nanomaterials, including metallic nanoparticles, carbon nanomaterials, DNA nanodevices, and polymeric nanoparticles. We discuss the progress achieved in cancer diagnosis and therapy through the conjugation of cell-SELEX-based aptamers with different nanomaterials.
Collapse
Affiliation(s)
- Hong-Min Meng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| |
Collapse
|
37
|
Takahashi M, Burnett JC, Rossi JJ. Aptamer–siRNA Chimeras for HIV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:211-34. [DOI: 10.1007/978-1-4939-2432-5_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Barman J. Targeting cancer cells using aptamers: cell-SELEX approach and recent advancements. RSC Adv 2015. [DOI: 10.1039/c4ra12407c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aptamers are short single stranded nucleic acid based therapeutic and diagnostic molecules which can be isolated from a random pool of oligonucleotides by Systematic Evolution of Ligands by EXponential Enrichment (SELEX).
Collapse
Affiliation(s)
- Jharna Barman
- Agricultural and Ecological Research Unit
- Biological Science Division
- Indian Statistical Institute
- Kolkata
- India
| |
Collapse
|
39
|
Taghdisi SM, Danesh NM, Lavaee P, Sarreshtehdar Emrani A, Ramezani M, Abnous K. Aptamer Biosensor for Selective and Rapid Determination of Insulin. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.956216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Wiraja C, Yeo D, Lio D, Labanieh L, Lu M, Zhao W, Xu C. Aptamer technology for tracking cells' status & function. MOLECULAR AND CELLULAR THERAPIES 2014; 2:33. [PMID: 26056599 PMCID: PMC4452066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2023]
Abstract
In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.
Collapse
Affiliation(s)
- Christian Wiraja
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - David Yeo
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Daniel Lio
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Louai Labanieh
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Mengrou Lu
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Weian Zhao
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Chenjie Xu
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| |
Collapse
|
41
|
Wiraja C, Yeo D, Lio D, Labanieh L, Lu M, Zhao W, Xu C. Aptamer technology for tracking cells' status & function. MOLECULAR AND CELLULAR THERAPIES 2014; 2:33. [PMID: 26056599 PMCID: PMC4452066 DOI: 10.1186/2052-8426-2-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023]
Abstract
In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.
Collapse
Affiliation(s)
- Christian Wiraja
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - David Yeo
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Daniel Lio
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| | - Louai Labanieh
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Mengrou Lu
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Weian Zhao
- />Department of Pharmaceutical Sciences, Sue and Bill Gross Stem Cell Research Center, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697 USA
- />Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92697 USA
| | - Chenjie Xu
- />Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457 Singapore
| |
Collapse
|
42
|
Szilágyi A, Kun Á, Szathmáry E. Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 2014; 9:e109987. [PMID: 25299454 PMCID: PMC4192543 DOI: 10.1371/journal.pone.0109987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.
Collapse
Affiliation(s)
- András Szilágyi
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
43
|
Riley KR, Saito S, Gagliano J, Colyer CL. Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection. J Chromatogr A 2014; 1368:183-9. [PMID: 25311485 DOI: 10.1016/j.chroma.2014.09.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/05/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
An efficient separation method that utilizes capillary transient isotachophoresis (ctITP) was developed for the preselection of binding ligands. With the ultimate goal of providing enriched fractions from vast libraries for drug discovery, the preselection process described herein entails three distinct elements, which have been validated using a model thrombin protein (target) and thrombin aptamer (ligand) system. First, a high fidelity, on-column labeling scheme employing the noncovalent, fluorescent reagent SYBR Gold was demonstrated for single-stranded DNA with an 11-fold greater sensitivity than pre-column labeling procedures. Second, this on-column labeling was incorporated into a new ctITP method with laser-induced fluorescence (LIF) detection, which provided greatly enhanced resolution of protein-aptamer complex and free aptamer (in comparison to traditional capillary zone electrophoresis (CZE) methods). Third, this enhanced resolution permitted the subsequent accumulation of bound aptamer fractions via an automated collection method, with the establishment of quantitative measures of DNA accumulation. Preselected aptamer or ligand samples such as these can serve as inputs for subsequent lab-on-bead or next-generation-sequencing technologies, enabling accelerated drug discovery.
Collapse
Affiliation(s)
- Kathryn R Riley
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Jason Gagliano
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Christa L Colyer
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
44
|
Gedi V, Kim YP. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. SENSORS (BASEL, SWITZERLAND) 2014; 14:18302-27. [PMID: 25268922 PMCID: PMC4239906 DOI: 10.3390/s141018302] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/08/2014] [Accepted: 09/02/2014] [Indexed: 12/30/2022]
Abstract
Detection and characterization of cells using aptamers and aptamer-conjugated nanoprobes has evolved a great deal over the past few decades. This evolution has been driven by the easy selection of aptamers via in vitro cell-SELEX, permitting sensitive discrimination between target and normal cells, which includes pathogenic prokaryotic and cancerous eukaryotic cells. Additionally, when the aptamer-based strategies are used in conjunction with nanomaterials, there is the potential for cell targeting and therapeutic effects with improved specificity and sensitivity. Here we review recent advances in aptamer-based nano-conjugates and their applications for detecting cancer cells and pathogenic bacteria. The multidisciplinary research utilized in this field will play an increasingly significant role in clinical medicine and drug discovery.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 133-791, Korea.
| |
Collapse
|
45
|
Sun H, Zhu X, Lu PY, Rosato RR, Tan W, Zu Y. Oligonucleotide aptamers: new tools for targeted cancer therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e182. [PMID: 25093706 PMCID: PMC4221593 DOI: 10.1038/mtna.2014.32] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.
Collapse
Affiliation(s)
- Hongguang Sun
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xun Zhu
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Jilin, China
| | | | - Roberto R Rosato
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Wen Tan
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
46
|
Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e169. [PMID: 24936916 PMCID: PMC4078761 DOI: 10.1038/mtna.2014.21] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
One hundred years ago, Dr. Paul Ehrlich popularized the "magic bullet" concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, "targeted therapy" that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges.
Collapse
|
47
|
Wang ZW, Wu HB, Mao ZF, Hu XP, Zhang H, Hu ZP, Ren ZL. In vitro selection and identification of ssDNA aptamers recognizing the Ras protein. Mol Med Rep 2014; 10:1481-8. [PMID: 24938205 DOI: 10.3892/mmr.2014.2337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop high-affinity single-stranded DNA (ssDNA) aptamers that can selectively recognize the protein Ras and can be used as preventive and therapeutic agents for restenosis occurring after coronary surgery or angioplasty. For this purpose, we used the systematic evolution of ligands by exponential enrichment (SELEX) technique, also known as in vitro selection. Using this technique, ssDNA aptamers recognizing the Ras protein were obtained from a synthesized random ssDNA library in vitro. The binding rate and affinity of each aptamer pool, isolated in successive rounds of selection, were measured using ELISA, and the finally selected aptamer pool was cloned and sequenced. The binding affinities of each aptamer in this pool were measured. Their primary and secondary structures were analyzed using the DNAMAN 5.29 software, and the relationship between these structures and corresponding binding affinities was analyzed. The rate of aptamer pool binding to the Ras protein gradually increased from 2.4 to 34.5% along the selection process. Optical density (OD) and equilibrium dissociation constant (Kd) measurements showed that OD gradually increased from 0.220 to 1.080 and Kd decreased from 51.5 to 18.3 nM. The 11th pool of aptamers was selected based on these analyses, and cloning and sequencing of individual aptamers was performed. Secondary structure analysis revealed different conformations, but of a single type: stem‑loop. The aptamer Ra1 showed the highest affinity, with a measured OD of 1.213 and an estimated Kd of 15.3 nM. The binding affinity of the aptamer Ra1 to Ras was dose-dependent. In conclusion, high‑affinity ssDNA aptamers recognizing the Ras protein have been successfully selected. These aptamers may serve in the future as preventive and/or therapeutic agents for restenosis occurring after coronary surgery or angioplasty.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong-Bing Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Fu Mao
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Ping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Peng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zong-Li Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
48
|
Kim EY, Kim JW, Kim WK, Han BS, Park SG, Chung BH, Lee SC, Bae KH. Selection of aptamers for mature white adipocytes by cell SELEX using flow cytometry. PLoS One 2014; 9:e97747. [PMID: 24844710 PMCID: PMC4028271 DOI: 10.1371/journal.pone.0097747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited. METHODS AND RESULTS We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes. CONCLUSIONS These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity.
Collapse
Affiliation(s)
- Eun Young Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Ji Won Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Won Kon Kim
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Baek Soo Han
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Bong Hyun Chung
- BioNanotechnology Research Center, Bioconvergence Research Institute, KRIBB, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Research Center for Integrated Cellulomics, KRIBB, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| |
Collapse
|
49
|
Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv 2014; 4:1527-46. [PMID: 24304250 DOI: 10.4155/tde.13.118] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted.
Collapse
|
50
|
Patel K, Cai S, Singh BR. Current strategies for designing antidotes against botulinum neurotoxins. Expert Opin Drug Discov 2014; 9:319-33. [DOI: 10.1517/17460441.2014.884066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kruti Patel
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
| | - Shuowei Cai
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
| | - Bal Ram Singh
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, North Dartmouth, MA 02747, USA
- Institute of Advanced Sciences and Prime Bio, Inc., Botulinum Research Center, 166 Chase Road, North Dartmouth, MA 02747, USA
| |
Collapse
|