1
|
Chavatte L, Lange L, Schweizer U, Ohlmann T. Understanding the role of tRNA modifications in UGA recoding as selenocysteine in eukaryotes. J Mol Biol 2025:169017. [PMID: 39988117 DOI: 10.1016/j.jmb.2025.169017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Selenocysteine (Sec), the 21st proteogenic amino acid, is a key component of selenoproteins, where it performs critical roles in redox reactions. Sec incorporation during translation is unique and highly sensitive to selenium levels. Encoded by the UGA codon, typically a termination signal, its insertion necessitates the presence of a selenocysteine insertion sequence (SECIS) within the 3' untranslated region (UTR) of selenoprotein mRNAs. This SECIS element orchestrates the recruitment of specialized molecular factors, including SECISBP2, the unique tRNA[Ser]Sec, and its dedicated elongation factor, EEFSEC. The extended variable arm of tRNA[Ser]Sec permits its specific recognition by EEFSEC. While the structure of the ribosome-bound complex is known, the precise mechanism by which EEFSEC-tRNA[Ser]Sec recodes UGA in the presence of SECIS and SECISBP2 remains unclear. tRNA[Ser]Sec has relatively few epitranscriptomic modifications, but those at the anticodon loop are crucial. Key modifications include N6-isopentenyladenosine (i6A) at position 37 and two forms of 5-methoxycarbonylmethyluridine (mcm5U and mcm5Um) at position 34. The ratio of these isoforms varies with tissue type and selenium levels, influencing mRNA-specific Sec recoding. A C65G mutation in the acceptor stem, identified in patients, disrupts these modifications at position 34, impairing selenoprotein synthesis. This highlights the essential role of wobble position modifications in anticodon function. tRNA[Ser]Sec exemplifies the complex regulation of UGA codon recoding and underscores the interplay of structural and epitranscriptomic factors in selenoprotein translation.
Collapse
Affiliation(s)
- Laurent Chavatte
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Lukas Lange
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany.
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie (CIRI), Lyon 69007, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, Lyon 69007, France; Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université Claude Bernard Lyon 1 (UCBL1), Lyon 69007, France; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5308 (UMR5308), Lyon 69007, France.
| |
Collapse
|
2
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
3
|
Pehlivan Ö, Wojtkowiak K, Jezierska A, Waliczek M, Stefanowicz P. Photochemical Transformations of Peptides Containing the N-(2-Selenoethyl)glycine Moiety. ACS OMEGA 2024; 9:16775-16791. [PMID: 38617632 PMCID: PMC11007844 DOI: 10.1021/acsomega.4c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The diselenide bond has attracted considerable attention due to its ability to undergo the metathesis reaction in response to visible light. In our previous study, we demonstrated visible-light-induced diselenide metathesis of selenocysteine-containing linear peptides, allowing for the convenient generation of peptide libraries. Here, we investigated the transformation of linear and cyclic peptides containing the N-(2-selenoethyl)glycine moiety. The linear peptides were highly susceptible to the metathesis reaction, whereas the cyclic systems gave only limited conversion yields of the metathesis product. In both cases, side reactions leading to the formation of mono-, di-, and polyselenides were observed upon prolonged irradiation. To confirm the radical mechanism of the reaction, the radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was tested, and it was found to induce diselenide metathesis without photochemical activation. The data were interpreted in the light of quantum-chemical simulations based on density functional theory (DFT). The simulations were performed at the B3LYP-D3BJ/def2-TZVP level of theory using a continuum solvation model (IEF-PCM) and methanol as a solvent.
Collapse
Affiliation(s)
- Özge Pehlivan
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie str. 14, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Mullegama SV, Kiernan KA, Torti E, Pavlovsky E, Tilton N, Sekula A, Gao H, Alaimo JT, Engleman K, Rush ET, Blocker K, Dipple KM, Fettig VM, Hare H, Glass I, Grange DK, Griffin M, Phornphutkul C, Massingham L, Mehta L, Miller DE, Thies J, Merritt JL, Muller E, Osmond M, Sawyer SL, Slaugh R, Hickey RE, Wolf B, Choudhary S, Simonović M, Zhang Y, Palculict TB, Telegrafi A, Carere DA, Wentzensen IM, Morrow MM, Monaghan KG, Yang J, Juusola J. De novo missense variants in exon 9 of SEPHS1 cause a neurodevelopmental condition with developmental delay, poor growth, hypotonia, and dysmorphic features. Am J Hum Genet 2024; 111:778-790. [PMID: 38531365 PMCID: PMC11023921 DOI: 10.1016/j.ajhg.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Sureni V Mullegama
- GeneDx, Gaithersburg, MD 20877, USA; Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA.
| | - Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Ethan Pavlovsky
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Nicholas Tilton
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Austin Sekula
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Hua Gao
- GeneDx, Gaithersburg, MD 20877, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA; Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Kendra Engleman
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Eric T Rush
- Department of Pediatrics, University of Missouri Kansas City, School of Medicine, Kansas City, MO, USA; Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA; Department of Internal Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Karli Blocker
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Katrina M Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Veronica M Fettig
- Center for Inherited Cardiovascular Disease, Cardiovascular Genetics Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Hare
- Northeastern Ontario Medical Genetics Program, Health Sciences, North Sudbury, ON, Canada
| | - Ian Glass
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Dorothy K Grange
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Griffin
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Chanika Phornphutkul
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lauren Massingham
- Division of Genetics, Department of Pediatrics, Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Lakshmi Mehta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danny E Miller
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jenny Thies
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - J Lawrence Merritt
- Department of Pediatrics, Division of Genetic Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Eric Muller
- Division of Clinical Genetics, Stanford Children's Health, San Francisco, CA, USA
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah L Sawyer
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel E Hickey
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Barry Wolf
- Department of Pediatrics, Division of Genetics, Birth Defects and Metabolism, Anne & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Sanjeev Choudhary
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | |
Collapse
|
5
|
Ralston NVC, Raymond LJ, Gilman CL, Soon R, Seale LA, Berry MJ. Maternal seafood consumption is associated with improved selenium status: Implications for child health. Neurotoxicology 2024; 101:26-35. [PMID: 38272071 PMCID: PMC10978253 DOI: 10.1016/j.neuro.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Selenium (Se) is required for synthesis of selenocysteine (Sec), an amino acid expressed in the active sites of Se-dependent enzymes (selenoenzymes), including forms with essential functions in fetal development, brain activities, thyroid hormone metabolism, calcium regulation, and to prevent or reverse oxidative damage. Homeostatic mechanisms normally ensure the brain is preferentially supplied with Se to maintain selenoenzymes, but high methylmercury (CH3Hg) exposures irreversibly inhibit their activities and impair Sec synthesis. Due to Hg's high affinity for sulfur, CH3Hg initially binds with the cysteine (Cys) moieties of thiomolecules which are selenoenzyme substrates. These CH3Hg-Cys adducts enter selenoenzyme active sites and transfer CH3Hg to Sec, thus irreversibly inhibiting their activities. High CH3Hg exposures are uniquely able to induce a conditioned Se-deficiency that impairs synthesis of brain selenoenzymes. Since the fetal brain lacks Se reserves, it is far more vulnerable to CH3Hg exposures than adult brains. This prompted concerns that maternal exposures to CH3Hg present in seafood might impair child neurodevelopment. However, typical varieties of ocean fish contain far more Se than CH3Hg. Therefore, eating them should augment Se-status and thus prevent Hg-dependent loss of fetal selenoenzyme activities. To assess this hypothesis, umbilical cord blood and placental tissue samples were collected following delivery of a cohort of 100 babies born on Oahu, Hawaii. Dietary food frequency surveys of the mother's last month of pregnancy identified groups with no (0 g/wk), low (0-12 g/wk), or high (12 + g/wk) levels of ocean fish consumption. Maternal seafood consumption increased Hg contents in fetal tissues and resulted in ∼34% of cord blood samples exceeding the EPA Hg reference level of 5.8 ppb (0.029 µM). However, Se concentrations in these tissues were orders of magnitude higher and ocean fish consumption caused cord blood Se to increase ∼9.4 times faster than Hg. Therefore, this study supports the hypothesis that maternal consumption of typical varieties of ocean fish provides substantial amounts of Se that protect against Hg-dependent losses in Se bioavailability. Recognizing the pivotal nature of the Hg:Se relationship provides a consilient perspective of seafood benefits vs. risks and clarifies the reasons for the contrasting findings of certain early studies.
Collapse
Affiliation(s)
| | - Laura J Raymond
- Sage Green Nutrition Research Guidance, Grand Forks, ND, 58203, USA
| | - Christy L Gilman
- Division of Gastroenterology and Hepatology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Reni Soon
- Department of Obstetrics and Gynecology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Bombana A, Shanmugam M, Collison D, Kibler AJ, Newton GN, Jäger CM, Croft AK, Morra S, Mitchell NJ. Application of a Synthetic Ferredoxin-Inspired [4Fe4S]-Peptide Maquette as the Redox Partner for an [FeFe]-Hydrogenase. Chembiochem 2023; 24:e202300250. [PMID: 37391388 PMCID: PMC10946529 DOI: 10.1002/cbic.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240 K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .
Collapse
Affiliation(s)
- Andrea Bombana
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Muralidharan Shanmugam
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - David Collison
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alexander J Kibler
- The GlaxoSmithKline Carbon Neutral Labs for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK
| | - Graham N Newton
- The GlaxoSmithKline Carbon Neutral Labs for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, UK
| | - Christof M Jäger
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Anna K Croft
- Department of Chemical Engineering, School of AACME, Loughborough University, Loughborough, LE11 3TU, UK
| | - Simone Morra
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
7
|
Hoffman KS, Chung CZ, Mukai T, Krahn N, Jiang HK, Balasuriya N, O'Donoghue P, Söll D. Recoding UAG to selenocysteine in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1400-1410. [PMID: 37279998 PMCID: PMC10573291 DOI: 10.1261/rna.079658.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Han-Kai Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
8
|
Huang M, Saragih M, Tambunan USF. In silico Antivirus Repurposing and its Modification to Organoselenium Compounds as SARS-CoV-2 Spike Inhibitors. Pak J Biol Sci 2023; 26:81-90. [PMID: 37265039 DOI: 10.3923/pjbs.2023.81.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
<b>Background and Objective:</b> The COVID-19, which has been circulating since late 2019, is caused by SARS-CoV-2. Because of its high infectivity, this virus has spread widely throughout the world. Spike glycoprotein is one of the proteins found in SARS-CoV-2. Spike glycoproteins directly affect infection by forming ACE-2 receptors on host cells. Inhibiting glycoprotein spikes could be one method of treating COVID-19. In this study, the antivirus marketed as a database will be repurposed into an antiviral SARS-CoV-2 and the selected compounds will be modified to become organoselenium compounds. <b>Materials and Methods:</b> The research was carried out using <i>in silico</i> methods, such as rigid docking and flexible docking. To obtain information about the interaction between spike glycoprotein and ligands, MOE 2014.09 was used to perform the molecular docking simulation. <b>Results:</b> The analysis of binding energy values was used to select the ten best ligands from the first stage of the molecular docking simulation, which was then modified according to the previous QSAR study to produce 96 new molecules. The second stage of molecular docking simulation was performed with modified molecules. The best-modified ligand was chosen by analyzing the ADME-Tox property, RMSD value and binding energy value. <b>Conclusion:</b> The best three unmodified ligands, Ombitasvir, Elbasvir and Ledipasvir, have a binding energy value of -15.8065, -15.3842 and -15.1255 kcal mol<sup>1</sup>, respectively and the best three modified ligands ModL1, ModL2 and ModL3 has a binding value of -15.6716, -13.9489 and -13.2951 kcal mol<sup>1</sup>, respectively with an RMSD value of 1.7109 Å, 2.3179 Å and 1.7836 Å.
Collapse
|
9
|
Bang J, Kang D, Jung J, Yoo TJ, Shim MS, Gladyshev VN, Tsuji PA, Hatfield DL, Kim JH, Lee BJ. SEPHS1: Its evolution, function and roles in development and diseases. Arch Biochem Biophys 2022; 730:109426. [PMID: 36202216 PMCID: PMC9648052 DOI: 10.1016/j.abb.2022.109426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
Abstract
Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.
Collapse
Affiliation(s)
- Jeyoung Bang
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Donghyun Kang
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jisu Jung
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Tack-Jin Yoo
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Petra A Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD, USA
| | - Dolph L Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin-Hong Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| | - Byeong Jae Lee
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
10
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
11
|
Schomburg L. Selenoprotein P - Selenium transport protein, enzyme and biomarker of selenium status. Free Radic Biol Med 2022; 191:150-163. [PMID: 36067902 DOI: 10.1016/j.freeradbiomed.2022.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
The habitual intake of selenium (Se) varies strongly around the world, and many people are at risk of inadequate supply and health risks from Se deficiency. Within the human organism, efficient transport mechanisms ensure that organs with a high demand and relevance for reproduction and survival are preferentially supplied. To this end, selenoprotein P (SELENOP) is synthesized in the liver and mediates Se transport to essential tissues such as the endocrine glands and the brain, where the "SELENOP cycle" maintains a privileged Se status. Mouse models indicate that SELENOP is not essential for life, as supplemental Se supply was capable of preventing the development of severe symptoms. However, knockout mice died under limiting supply, arguing for an essential role of SELENOP in Se deficiency. Many clinical studies support this notion, pointing to close links between health risks and low SELENOP levels. Accordingly, circulating SELENOP concentrations serve as a functional biomarker of Se supply, at least until a saturated status is achieved and SELENOP levels reach a plateau. Upon toxic intake, a further increase in SELENOP is observed, i.e., SELENOP provides information about possible selenosis. The SELENOP transcripts predict an insertion of ten selenocysteine residues. However, the decoding is imperfect, and not all these positions are ultimately occupied by selenocysteine. In addition to the selenocysteine residues near the C-terminus, one selenocysteine resides central within an enzyme-like environment. SELENOP proved capable of catalyzing peroxide degradation in vitro and protecting e.g. LDL particles from oxidation. An enzymatic activity in the intact organism is unclear, but an increasing number of clinical studies provides evidence for a direct involvement of SELENOP-dependent Se transport as an important and modifiable risk factor of disease. This interaction is particularly strong for cardiovascular and critical disease including COVID-19, cancer at various sites and autoimmune thyroiditis. This review briefly highlights the links between the growing knowledge of Se in health and disease over the last 50 years and the specific advances that have been made in our understanding of the physiological and clinical contribution of SELENOP to the current picture.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Institute for Experimental Endocrinology, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, 10115 Berlin, Germany.
| |
Collapse
|
12
|
Selenoprotein: Potential Player in Redox Regulation in Chlamydomonas reinhardtii. Antioxidants (Basel) 2022; 11:antiox11081630. [PMID: 36009349 PMCID: PMC9404770 DOI: 10.3390/antiox11081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.
Collapse
|
13
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/0003-2697(88)90167-4.handy 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/05/2024]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Yoo TJ, Sup Shim M, Bang J, Kim JH, Jae Lee B. SPS1 deficiency-triggered PGRP-LC and Toll expression controls innate immunity in Drosophila S2 cells. Biol Open 2022; 11:275744. [PMID: 35723425 PMCID: PMC9364239 DOI: 10.1242/bio.059295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/29/2022] Open
Abstract
Selenophosphate synthetase 1 (SPS1) is an essential gene for the cell growth and embryogenesis in Drosophila melanogaster. We have previously reported that SPS1 deficiency stimulates the expression of genes responsible for the innate immune system, including antimicrobial peptides (AMPs), in Drosophila S2 cells. However, the underlying mechanism has not been elucidated. Here, we investigated the immune pathways that control the SPS1-deficiency-induced expression of AMPs in S2 cells. It was found that the activation of AMP expression is regulated by both immune deficiency (IMD) and the Toll pathway. Double knockdown of the upstream genes of each pathway with SPS1 showed that the peptidoglycan recognition protein-LC (PGRP-LC) and Toll genes are targeted by SPS1 for regulating these pathways. We also found that the IMD and Toll pathway regulate AMP expression by cross-talking. The levels of PGRP-LC and Toll mRNAs were upregulated upon Sps1 knockdown (6.4±0.36 and 3.2±0.45-fold, respectively, n=3). Overexpression of each protein also upregulated AMPs. Interestingly, PGRP-LC overexpression upregulated AMP more than Toll overexpression. These data strongly suggest that SPS1 controls the innate immune system of D. melanogaster through regulating PGRP-LC and Toll expression.
Collapse
Affiliation(s)
- Tack-Jin Yoo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke Eye Center, Duke University, Durham, NC 27705, USA
| | - Jeyoung Bang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Byeong Jae Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea,Author for correspondence ()
| |
Collapse
|
15
|
Niu R, Yang Q, Dong Y, Hou Y, Liu G. Selenium metabolism and regulation of immune cells in immune-associated diseases. J Cell Physiol 2022; 237:3449-3464. [PMID: 35788930 DOI: 10.1002/jcp.30824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Selenium, as one of the essential microelements, plays an irreplaceable role in metabolism regulation and cell survival. Selenium metabolism and regulation have great effects on physiological systems especially the immune system. Therefore, selenium is tightly related to various diseases like cancer. Although recent research works have revealed much about selenium metabolism, the ways in which selenium regulates immune cells' functions and immune-associated diseases still remain much unclear. In this review, we will briefly introduce the regulatory role of selenium metabolism in immune cells and immune-associated diseases.
Collapse
Affiliation(s)
- Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qiuli Yang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
GPX4: old lessons, new features. Biochem Soc Trans 2022; 50:1205-1213. [PMID: 35758268 DOI: 10.1042/bst20220682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/20/2023]
Abstract
GPX4 is a selenocysteine-containing protein that plays an essential role in repairing peroxidised phospholipids. Its role in organismal homeostasis has been known for decades, and it has been reported to play a pivotal role in cell survival and mammalian embryonic development. In recent years, GPX4 has been associated with a cell death modality dubbed ferroptosis. The framing of this molecular pathway of cell death was essential for understanding the conditions that determine GPX4 dependency and ultimately to the process of lipid peroxidation. Since its discovery, ferroptosis has been gaining momentum as a promising target for yet-incurable diseases, including cancer and neurodegeneration. Given the current interest, in the present review, we provide newcomers in the field with an overview of the biology of GPX4 and cover some of its most recent discoveries.
Collapse
|
17
|
Yu QQ, Zhang H, Guo Y, Han B, Jiang P. The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox "Tai Chi" theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
Affiliation(s)
- Qing-Qing Yu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Heng Zhang
- Department of Laboratory, Shandong Daizhuang Hospital, Jining 272051, China
| | - Yujin Guo
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Pei Jiang
- Jining First People's Hospital, Jining Medical College, Jining 272000, China
| |
Collapse
|
18
|
Carr SN, Crites BR, Pate JL, Hughes CHK, Matthews JC, Bridges PJ. Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows. Animals (Basel) 2022; 12:313. [PMID: 35158637 PMCID: PMC8833813 DOI: 10.3390/ani12030313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se)-deficient soils necessitate supplementation of this mineral to the diet of forage-grazing cattle. Functionally, Se is incorporated into selenoproteins, some of which function as important antioxidants. We have previously shown that the source of supplemental Se; inorganic (sodium selenite or sodium selenate; ISe), organic (selenomethionine or selenocysteine; OSe) or 1:1 mix of ISe and OSe (MIX), provided to Angus-cross cows affects concentrations of progesterone (P4) during the early luteal phase of the estrous cycle. In this study, we sought to investigate (1) the effect of form of Se on the expression of mRNA encoding selenoproteins in the corpus luteum (CL), and (2) whether this previously reported MIX-induced increase in P4 is the result of increased luteal expression of key steroidogenic transcripts. Following a Se depletion and repletion regimen, 3-year-old, non-lactating, Angus- cross cows were supplemented with either ISe as the industry standard, or MIX for at least 90 days, with the CL then retrieved on Day 7 post-estrus. Half of each CL was used for analysis of targeted mRNA transcripts and the remainder was dissociated for culture with select agonists. The expression of three selenoprotein transcripts and one selenoprotein P receptor was increased (p < 0.05), with an additional five transcripts tending to be increased (p < 0.10), in cows supplemented with MIX versus ISe. In cultures of luteal cells, hCG-induced increases in P4 (p < 0.05) were observed in CL obtained from ISe-supplemented cows. The abundance of steroidogenic transcripts in the CL was not affected by the form of Se, however, the abundance of mRNA encoding 2 key transcripts regulating cholesterol availability (Ldlr and Hsl) was increased (p < 0.05) in MIX-supplemented cows. Overall, the form of Se provided to cows is reported to affect the expression of mRNA encoding several selenoproteins in the CL, and that the form of Se-induced effects on luteal production of P4 appears to be the result of changes in cholesterol availability rather than a direct effect on the expression of steroidogenic enzymes within the CL.
Collapse
Affiliation(s)
- Sarah N. Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Benjamin R. Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Joy L. Pate
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, USA; (J.L.P.); (C.H.K.H.)
| | - Camilla H. K. Hughes
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, USA; (J.L.P.); (C.H.K.H.)
| | - James C. Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (J.C.M.)
| |
Collapse
|
19
|
Lee KW, Shin Y, Lee S, Lee S. Inherited Disorders of Thyroid Hormone Metabolism Defect Caused by the Dysregulation of Selenoprotein Expression. Front Endocrinol (Lausanne) 2022; 12:803024. [PMID: 35126314 PMCID: PMC8807339 DOI: 10.3389/fendo.2021.803024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Consistent activation and functioning of thyroid hormones are essential to the human body as a whole, especially in controlling the metabolic rate of all organs and systems. Impaired sensitivity to thyroid hormones describes any process that interferes with the effectiveness of thyroid hormones. The genetic origin of inherited thyroid hormone defects and the investigation of genetic defects upon the processing of thyroid hormones are of utmost importance. Impaired sensitivity to thyroid hormone can be categorized into three conditions: thyroid hormone cell membrane transport defect (THCMTD), thyroid hormone metabolism defect (THMD), and thyroid hormone action defect (THAD). THMD is caused by defects in the synthesis and processing of deiodinases that convert the prohormone thyroxine (T4) to the active hormone triiodothyronine (T3). Deiodinase, a selenoprotein, requires unique translation machinery that is collectively composed of the selenocysteine (Sec) insertion sequence (SECIS) elements, Sec-insertion sequence-binding protein 2 (SECISBP2), Sec-specific eukaryotic elongation factor (EEFSEC), and Sec-specific tRNA (TRU-TCA1-1), which leads to the recognition of the UGA codon as a Sec codon for translation into the growing polypeptide. In addition, THMD could be expanded to the defects of enzymes that are involved in thyroid hormone conjugation, such as glucuronidation and sulphation. Paucity of inherited disorders in this category leaves them beyond the scope of this review. This review attempts to specifically explore the genomic causes and effects that result in a significant deficiency of T3 hormones due to inadequate function of deiodinases. Moreover, along with SECISBP2, TRU-TCA1-1, and deiodinase type-1 (DIO1) mutations, this review describes the variants in DIO2 single nucleotide polymorphism (SNP) and thyroid stimulating hormone receptor (TSHR) that result in the reduced activity of DIO2 and subsequent abnormal conversion of T3 from T4. Finally, this review provides additional insight into the general functionality of selenium supplementation and T3/T4 combination treatment in patients with hypothyroidism, suggesting the steps that need to be taken in the future.
Collapse
Affiliation(s)
- Kyu Won Lee
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Yoochan Shin
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Sungahn Lee
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Sihoon Lee
- Laboratory of Genomics and Translational Medicine, Department of Internal Medicine, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
20
|
Mukai T, Amikura K, Fu X, Söll D, Crnković A. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems. Front Genet 2022; 12:794509. [PMID: 35047015 PMCID: PMC8762117 DOI: 10.3389/fgene.2021.794509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023] Open
Abstract
Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique O-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid O-phosphoserine (Sep) onto tRNACys. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNACys to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m1G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual O-phosphoseryl-tRNASec kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
21
|
Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP. Methods Enzymol 2022; 662:187-225. [DOI: 10.1016/bs.mie.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Minich WB. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S168-S102. [PMID: 35501994 PMCID: PMC8802287 DOI: 10.1134/s0006297922140139] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022]
Abstract
As an essential trace element, selenium (Se) plays a tremendous role in the functioning of the human organism being used for the biosynthesis of selenoproteins (proteins containing one or several selenocysteine residues). The functions of human selenoproteins in vivo are extremely diverse. Many selenoproteins have an antioxidant activity and, hence, play a key role in cell antioxidant defense and maintenance of redox homeostasis, which accounts for their involvement in diverse biological processes, such as signal transduction, proliferation, cell transformation and aging, ferroptosis, immune system functioning, etc. One of the critical functions of selenoenzymes is participation in the synthesis of thyroid hormones regulating basal metabolism in all body tissues. Over the last decades, optimization of population Se intake for prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide.
Collapse
Affiliation(s)
- Waldemar B Minich
- Institute of Experimental Endocrinology, Charite, Medical University, Berlin, D-10115, Germany.
| |
Collapse
|
23
|
Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci 2021; 23:ijms23010005. [PMID: 35008430 PMCID: PMC8744743 DOI: 10.3390/ijms23010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.
Collapse
Affiliation(s)
- Petra A. Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
- Correspondence:
| | - Didac Santesmasses
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Byeong J. Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Dolph L. Hatfield
- Scientist Emeritus, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
24
|
Mechanisms Affecting the Biosynthesis and Incorporation Rate of Selenocysteine. Molecules 2021; 26:molecules26237120. [PMID: 34885702 PMCID: PMC8659212 DOI: 10.3390/molecules26237120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure–activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.
Collapse
|
25
|
Fradejas-Villar N, Zhao W, Reuter U, Doengi M, Ingold I, Bohleber S, Conrad M, Schweizer U. Missense mutation in selenocysteine synthase causes cardio-respiratory failure and perinatal death in mice which can be compensated by selenium-independent GPX4. Redox Biol 2021; 48:102188. [PMID: 34794077 PMCID: PMC8605217 DOI: 10.1016/j.redox.2021.102188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
Selenoproteins are a small family of proteins containing the trace element selenium in form of the rare amino acid selenocysteine (Sec), which is decoded by the UGA codon. In humans, a number of pathogenic variants in genes encoding distinct selenoproteins or selenoprotein biosynthesis factors have been identified. Pathogenic variants in selenocysteine synthase (SEPSECS), which catalyzes the last step in Sec-tRNA[Ser]Sec biosynthesis, were reported in children suffering from progressive cerebello-cerebral atrophy. To understand the pathomechanism associated with SEPSECS deficiency, we generated a novel mouse model recapitulating the respective human pathogenic p.Y334C variant in the murine Sepsecs gene (SepsecsY334C). Unlike in patients, pups homozygous for the p.Y334C variant died perinatally with signs of cardio-respiratory failure. Perinatal death is reminiscent of the Sedaghatian spondylometaphyseal dysplasia disorder in humans, which is caused by pathogenic variants in the gene encoding the selenoprotein and key ferroptosis regulator glutathione peroxidase 4 (GPX4). Protein expression levels of distinct selenoproteins in SepsecsY334C/Y334C mice were found to be generally reduced in brain and isolated cortical neurons, while transcriptomics analysis uncovered an upregulation of NRF2-regulated genes. Crossbreeding of SepsecsY334C/Y334C mice with mice harboring a targeted mutation of the catalytically active Sec to Cys in GPX4 rescued perinatal death of SepsecsY334C/Y334C mice, showing that the cardio-respiratory defects of SepsecsY334C/Y334C mice were caused by the lack of GPX4. Like in SepsecsY334C/Y334C mice, selenoprotein expression levels remained low and NRF2-regulated genes remained highly expressed in these compound mutant mice, indicating that selenium-independent GPX4, along with a sustained antioxidant response are sufficient to compensate for dysfunctional Sec-tRNA[Ser]Sec biosynthesis. Our findings imply that children with pathogenic variants in SEPSECS or GPX4 may even benefit from treatments that incompletely compensate for impaired GPX4 activity.
Collapse
Affiliation(s)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Michael Doengi
- Institut für Physiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Irina Ingold
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, 85764, Neuherberg, Germany; Pirogov Russian National Research Medical University, Laboratory of Experimental Oncology, Moscow, 117997, Russia
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, Knoll R, McFarland R, Taylor RW, Mo Y, Miyauchi K, Sakaguchi Y, Suzuki T, Schweizer U. The Effect of tRNA [Ser]Sec Isopentenylation on Selenoprotein Expression. Int J Mol Sci 2021; 22:ijms222111454. [PMID: 34768885 PMCID: PMC8583801 DOI: 10.3390/ijms222111454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2′O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Rainer Knoll
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Yufeng Mo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
- Correspondence:
| |
Collapse
|
27
|
Zhang L, Zhao Q, Mao L, Li H, Zhuang M, Wang J, Liu Y, Qi M, Du X, Xia Z, Sun N, Liu Q, Chen H, Zhang R. Bioinformatics Analyses Reveal the Prognostic Value and Biological Roles of SEPHS2 in Various Cancers. Int J Gen Med 2021; 14:6059-6076. [PMID: 34594130 PMCID: PMC8478514 DOI: 10.2147/ijgm.s328222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Purpose Selenophosphate synthetase 2 (SEPHS2) has been shown to regulate selenoprotein biosynthesis by catalyzing the synthesis of active selenium donor selenophosphate. SEPHS2 influences the survival of tumor cells. However, few studies have explored the expression level and prognostic of SEPHS2 in various cancers. Methods The expression of SEPHS2 in human tumor tissues and normal adjacent tissues was analyzed in The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), and UALCAN databases. Cox regression analysis and Kaplan–Meier curve analysis were performed to analyze the association of SEPHS2 expression with the prognosis of cancer patients. The expression and prognosis of SEPHS2 in gliomas were further verified using the Chinese Glioma Genome Atlas (CGGA) dataset. The relationship between SEPHS2 and immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens was comprehensively explored using a TCGA cohort. The mechanism by which SEPHS2 regulates tumor progression was explored by using the STRING database. A nomogram was constructed using the R software to predict the overall survival (OS) of patients with brain lower grade glioma (LGG). Results SEPHS2 was highly expressed in many cancers including LGG. Its high expression was significantly associated with poor OS, disease-free survival (DFS), and progression-free survival (PFS). Univariate and multivariate Cox analyses showed that SEPHS2 was an independent prognostic factor for LGG. Concordance index and calibration curves revealed that the nomogram had good predictive performance (concordance index: 0.791; 95% CI: 0.732–1). A significant correlation was found between SEPHS2 and immune infiltration, TMB, MSI, and tumor neoantigens across diverse cancers. Enrichment analysis showed that SEPHS2 may regulate the PPAR signaling pathway. Conclusion SEPHS2 expression regulates tumor development and it is a potential treatment target and prognostic biomarker, especially for lower grade glioma.
Collapse
Affiliation(s)
- Luyu Zhang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Leilei Mao
- School of Information Engineering, Chang'an University, Xi'an, Shaanxi, People's Republic of China
| | - Huanze Li
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Miaoqing Zhuang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Jiayi Wang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Yue Liu
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Meng Qi
- Ankang R & D Center of Se-enriched Products, Ankang, Shaanxi, People's Republic of China
| | - Xiaoping Du
- Ankang R & D Center of Se-enriched Products, Ankang, Shaanxi, People's Republic of China
| | - Zengrun Xia
- Ankang R & D Center of Se-enriched Products, Ankang, Shaanxi, People's Republic of China
| | - Na Sun
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| | - Hongfang Chen
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Shaanxi Academy of Tradional Chinese Medicine, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Provincial Hospital of Chinese Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Handy DE, Joseph J, Loscalzo J. Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology. Nutrients 2021; 13:nu13093238. [PMID: 34579115 PMCID: PMC8471878 DOI: 10.3390/nu13093238] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
Selenium (Se) is a trace nutrient that promotes human health through its incorporation into selenoproteins in the form of the redox-active amino acid selenocysteine (Sec). There are 25 selenoproteins in humans, and many of them play essential roles in the protection against oxidative stress. Selenoproteins, such as glutathione peroxidase and thioredoxin reductase, play an important role in the reduction of hydrogen and lipid hydroperoxides, and regulate the redox status of Cys in proteins. Emerging evidence suggests a role for endoplasmic reticulum selenoproteins, such as selenoproteins K, S, and T, in mediating redox homeostasis, protein modifications, and endoplasmic reticulum stress. Selenoprotein P, which functions as a carrier of Se to tissues, also participates in regulating cellular reactive oxygen species. Cellular reactive oxygen species are essential for regulating cell growth and proliferation, protein folding, and normal mitochondrial function, but their excess causes cell damage and mitochondrial dysfunction, and promotes inflammatory responses. Experimental evidence indicates a role for individual selenoproteins in cardiovascular diseases, primarily by modulating the damaging effects of reactive oxygen species. This review examines the roles that selenoproteins play in regulating vascular and cardiac function in health and disease, highlighting their antioxidant and redox actions in these processes.
Collapse
Affiliation(s)
- Diane E. Handy
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Correspondence: ; Tel.: +1-617-525-4845
| | - Jacob Joseph
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.J.); (J.L.)
| |
Collapse
|
29
|
Cao L, Pechan T, Lee S, Cheng WH. Identification of Selenoprotein H Isoforms and Impact of Selenoprotein H Overexpression on Protein But Not mRNA Levels of 2 Other Selenoproteins in 293T Cells. J Nutr 2021; 151:3329-3338. [PMID: 34510207 PMCID: PMC9034323 DOI: 10.1093/jn/nxab290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Selenoprotein H (SELONOH), a member of the thioredoxin-like family proteins, is prioritized to degradation in selenium (Se) insufficiency. Recent studies implicate protective roles of SELENOH in oxidative stress, cellular senescence, and intestinal tumorigenesis. Although the nonselenoprotein H0YE28 is suggested as shortened SELENOH according to genomic and proteomic data repositories, this variant has not been verified biochemically. OBJECTIVES We sought to identify SELENOH isoforms and explore the impact of Se flux on selenoprotein expression in SELENOH-overexpressing cells. METHODS A vector expressing a FLAG (the DYKDDDDK sequence) tag on the N-terminal end of wild-type SELENOH was constructed and transiently transfected into 293T cells incubated with graded concentrations of Na2SeO3 (0-200 nM). Cells were subjected to immunoprecipitation, LC-MS/MS protein analysis, immunoblotting, qRT-PCR, and senescence assays. Data were analyzed by 1-way or 2-way ANOVA. RESULTS Results of anti-FLAG immunoblotting showed that FLAG-SELENOH transfection increased (3.7-fold; P < 0.05) protein levels of the long, but not the short, SELENOH variants in the presence of Na2SeO3 (100 nM). By contrast, SELENOH mRNA levels were increased by 53-fold upon FLAG-SELENOH transfection but were comparable with or without supplemental Se (100 nM). LC-MS/MS analyses of anti-FLAG immunoprecipitates designated both anti-FLAG bands as SELENOH and co-identified three 60S ribosomal and 9 other proteins. Overexpression of FLAG-SELENOH 1) reduced glutathione peroxidase 1 and thioredoxin reductase 1 expression at the protein rather than the mRNA level in the absence but not presence of supplemental Se (100 nM; P < 0.05); 2) increased mRNA levels of 3 heat shock proteins (HSP27, HSP70-1A, and HSP70-1B; P < 0.05); and 3) reduced senescence induced by H2O2 (20 μM, 4 hours; P < 0.05). CONCLUSIONS These cellular studies demonstrate a Se-independent, shortened SELENOH variant and suggest competition of overexpressed FLAG-SELENOH with 2 other selenoproteins for the expression at the protein but not the mRNA level in Se insufficiency.
Collapse
Affiliation(s)
- Lei Cao
- Departments of Food Science, Nutrition, and Health Promotion, Mississippi
State University, Mississippi State, MS, USA,Institute of Marine Life Science, Pukyong National
University, Busan, Republic
of Korea
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State
University, Mississippi State, MS, USA
| | - Sanggil Lee
- Department of Food Science and Nutrition, Pukyong National
University, Busan, Republic
of Korea
| | | |
Collapse
|
30
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
31
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
32
|
Wang Y, Liu P, Chang J, Xu Y, Wang J. Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering. Chembiochem 2021; 22:2918-2924. [PMID: 33949764 DOI: 10.1002/cbic.202100124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Collapse
Affiliation(s)
- Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| | - Pengcheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Jiao Chang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Yunping Xu
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China
| | - Jiangyun Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| |
Collapse
|
33
|
Ralston NV, Raymond LJ. Soft electrophile inhibition of selenoenzymes in disease pathologies. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
da Silva MTA, Silva IRE, Faim LM, Bellini NK, Pereira ML, Lima AL, de Jesus TCL, Costa FC, Watanabe TF, Pereira HD, Valentini SR, Zanelli CF, Borges JC, Dias MVB, da Cunha JPC, Mittra B, Andrews NW, Thiemann OH. Trypanosomatid selenophosphate synthetase structure, function and interaction with selenocysteine lyase. PLoS Negl Trop Dis 2020; 14:e0008091. [PMID: 33017394 PMCID: PMC7595633 DOI: 10.1371/journal.pntd.0008091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/29/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite’s ER stress response. Selenium is both a toxic compound and a micronutrient. As a micronutrient, it participates in the synthesis of specific proteins, selenoproteins, as the amino acid selenocysteine. The synthesis of selenocysteine is present in organisms ranging from bacteria to humans. The protist parasites of the Trypanosomatidae family, that cause major tropical diseases, conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins. However, this pathway has been considered dispensable for the parasitic protist cells. This has intrigued us, and lead to question that if maintained in the cell it should be under selective pressure and therefore be necessary. Also, extensive and dynamic protein-protein interactions must happen to deliver selenium-containing intermediates along the pathway in order to warrant efficient usage of biological selenium in the cell. In this study we have investigated the molecular interactions of different proteins involved in selenocysteine synthesis and its putative involvement in the endoplasmic reticulum redox homeostasis.
Collapse
Affiliation(s)
- Marco Túlio Alves da Silva
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Ivan Rosa e Silva
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Lívia Maria Faim
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Natália Karla Bellini
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Murilo Leão Pereira
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Ana Laura Lima
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Teresa Cristina Leandro de Jesus
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Laboratory of Cell Cycle and Center of Toxins, Immune Response and Cell Signaling—CeTICS, Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Cristina Costa
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tatiana Faria Watanabe
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Júlio Cesar Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | - Júlia Pinheiro Chagas da Cunha
- Laboratory of Cell Cycle and Center of Toxins, Immune Response and Cell Signaling—CeTICS, Butantan Institute, São Paulo, SP, Brazil
| | - Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Otavio Henrique Thiemann
- Laboratory of Structural Biology, Sao Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
35
|
Santesmasses D, Mariotti M, Gladyshev VN. Bioinformatics of Selenoproteins. Antioxid Redox Signal 2020; 33:525-536. [PMID: 32031018 PMCID: PMC7409585 DOI: 10.1089/ars.2020.8044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Significance: Bioinformatics has brought important insights into the field of selenium research. The progress made in the development of computational tools in the last two decades, coordinated with growing genome resources, provided new opportunities to study selenoproteins. The present review discusses existing tools for selenoprotein gene finding and other bioinformatic approaches to study the biology of selenium. Recent Advances: The availability of complete selenoproteomes allowed assessing a global distribution of the use of selenocysteine (Sec) across the tree of life, as well as studying the evolution of selenoproteins and their biosynthetic pathway. Beyond gene identification and characterization, human genetic variants in selenoprotein genes were used to examine adaptations to selenium levels in diverse human populations and to estimate selective constraints against gene loss. Critical Issues: The synthesis of selenoproteins is essential for development in mice. In humans, several mutations in selenoprotein genes have been linked to rare congenital disorders. And yet, the mechanism of Sec insertion and the regulation of selenoprotein synthesis in mammalian cells are not completely understood. Future Directions: Omics technologies offer new possibilities to study selenoproteins and mechanisms of Sec incorporation in cells, tissues, and organisms.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Cubas-Gaona LL, de Francisco P, Martín-González A, Gutiérrez JC. Tetrahymena Glutathione Peroxidase Family: A Comparative Analysis of These Antioxidant Enzymes and Differential Gene Expression to Metals and Oxidizing Agents. Microorganisms 2020; 8:microorganisms8071008. [PMID: 32635666 PMCID: PMC7409322 DOI: 10.3390/microorganisms8071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, an extensive analysis of the putative glutathione peroxidases (GPx) of the eukaryotic microorganism model Tetrahymena thermophila is carried out. A comparative analysis with GPx present in other Tetrahymena species and other very taxonomically diverse ciliates is also performed. A majority of ciliate GPx have replaced the selenocysteine (Sec) by Cys in its catalytic center, so they can be considered as phospholipid hydroperoxide glutathione peroxidases (PHGPx). Selenocysteine insertion sequence (SECIS) elements have been detected in several ciliate GPx that do not incorporate Sec in their amino acid sequences, and conversely, in other ciliate GPx with Sec, no SECIS elements are detected. These anomalies are analyzed and discussed. From the phylogenetic analysis using the ciliate GPx amino acid sequences, the existence of extensive intra- and interspecific gene duplications that produced multiple GPx isoforms in each species is inferred. The ancestral character of the selenoproteins is also corroborated. The analysis by qRT-PCR of six selected T. thermophila GPx genes has shown a quantitative differential expression between them, depending on the stressor (oxidizing agents, apoptotic inducer or metals) and the time of exposure.
Collapse
Affiliation(s)
| | - Patricia de Francisco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Ana Martín-González
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
| | - Juan Carlos Gutiérrez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología. C/. José Antonio Nováis, 12. Universidad Complutense (UCM), 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
37
|
Peeler JC, Falco JA, Kelemen RE, Abo M, Chartier BV, Edinger LC, Chen J, Chatterjee A, Weerapana E. Generation of Recombinant Mammalian Selenoproteins through Genetic Code Expansion with Photocaged Selenocysteine. ACS Chem Biol 2020; 15:1535-1540. [PMID: 32330002 DOI: 10.1021/acschembio.0c00147] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Selenoproteins contain the amino acid selenocysteine (Sec) and are found in all domains of life. The functions of many selenoproteins are poorly understood, partly due to difficulties in producing recombinant selenoproteins for cell-biological evaluation. Endogenous mammalian selenoproteins are produced through a noncanonical translation mechanism requiring suppression of the UGA stop codon and a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. Here, recombinant selenoproteins are generated in mammalian cells through genetic code expansion, circumventing the requirement for the SECIS element and selenium availability. An engineered orthogonal E. coli leucyl-tRNA synthetase/tRNA pair is used to incorporate a photocaged Sec (DMNB-Sec) at the UAG amber stop codon. DMNB-Sec is successfully incorporated into GFP and uncaged by irradiation of living cells. Furthermore, DMNB-Sec is used to generate the native selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1). Importantly, MsrB1 is shown to be catalytically active after uncaging, constituting the first use of genetic code expansion to generate a functional selenoprotein in mammalian systems. The ability to site-specifically introduce Sec directly in mammalian cells, and temporally modulate selenoprotein activity, will aid in the characterization of mammalian selenoprotein function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
38
|
Zhang L, Shi Y, Sheng Z, Zhang Y, Kai X, Li M, Yin X. Bioluminescence Imaging of Selenocysteine in Vivo with a Highly Sensitive Probe. ACS Sens 2019; 4:3147-3155. [PMID: 31701738 DOI: 10.1021/acssensors.9b01268] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a vital member of reactive selenium species, is closely implicated in diverse pathophysiological states, including cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and male infertility. Monitoring Sec in vivo is of significant interest for understanding the physiological roles of Sec and the mechanisms of human diseases associated with abnormal levels of Sec. However, no bioluminescence probe for real-time monitoring of Sec in vivo has been reported. Herein, we present a novel bioluminescent probe BF-1 as an effective tool for the determination of Sec in living cells and in vivo for the first time. BF-1 has advantages of high sensitivity (a detection limit of 8 nM), remarkable bioluminescence enhancement (580-fold), reasonable selectivity, low cytotoxicity, and high signal-to-noise ratio imaging feasibility of Sec in living cells and mice. More importantly, BF-1 affords high sensitivity for monitoring Sec stimulated by Na2SeO3 in tumor-bearing mice. These results demonstrate that our new probe could serve as a powerful tool to selectively monitor Sec in vivo, thus providing a valuable approach for exploring the physiological and pathological functions and anticancer mechanisms of selenium.
Collapse
Affiliation(s)
- Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yanfen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Zhijia Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yiran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xiaoning Kai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan 250012, PR China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
39
|
Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci Rep 2019; 9:16131. [PMID: 31695102 PMCID: PMC6834634 DOI: 10.1038/s41598-019-52718-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Selenophosphate synthetase 2 (SEPHS2) synthesizes selenide and ATP into selenophosphate, the selenium donor for selenocysteine (Sec), which is cotranslationally incorporated into selenoproteins. The action and regulatory mechanisms of SEPHS2 as well as its role in carcinogenesis (especially breast cancer) remain ambiguous and need further clarification. Therefore, lacking an experimentally determined structure for SEPHS2, we first analyzed the physicochemical properties of its sequence, modeled its three-dimensional structure and studied its conformational behavior to identify the key residues (named HUB nodes) responsible for protein stability and to clarify the molecular mechanisms by which it induced its function. Bioinformatics analysis evidenced higher amplification frequencies of SEPHS2 in breast cancer than in other cancer types. Therefore, because triple negative breast cancer (TNBC) is biologically the most aggressive breast cancer subtype and its treatment represents a challenge due to the absence of well-defined molecular targets, we evaluated SEPHS2 expression in two TNBC cell lines and patient samples. We demonstrated mRNA and protein overexpression to be correlated with aggressiveness and malignant tumor grade, suggesting that this protein could potentially be considered a prognostic marker and/or therapeutic target for TNBC.
Collapse
|
40
|
Abstract
Selenoproteins are the family of proteins that contain the amino acid selenocysteine. Many selenoproteins, including glutathione peroxidases and thioredoxin reductases, play a role in maintaining cellular redox homeostasis. There are a number of examples of homologues of selenoproteins that utilize cysteine residues, raising the question of why selenocysteines are utilized. One hypothesis is that incorporation of selenocysteine protects against irreversible overoxidation, typical of cysteine-containing homologues under high oxidative stress. Studies of selenocysteine function are hampered by challenges both in detection and in recombinant expression of selenoproteins. In fact, about half of the 25 known human selenoproteins remain uncharacterized. Historically, selenoproteins were first detected via labeling with radioactive 75Se or by use of inductively coupled plasma-mass spectrometry to monitor nonradioactive selenium. More recently, tandem mass-spectrometry techniques have been developed to detect selenocysteine-containing peptides. For example, the isotopic distribution of selenium has been used as a unique signature to identify selenium-containing peptides from unenriched proteome samples. Additionally, selenocysteine-containing proteins and peptides were selectively enriched using thiol-reactive electrophiles by exploiting the increased reactivity of selenols relative to thiols, especially under low pH conditions. Importantly, the reactivity-based enrichment of selenoproteins can differentiate between oxidized and reduced selenoproteins, providing insight into the activity state. These mass spectrometry-based selenoprotein detection approaches have enabled (1) production of selenoproteome expression atlases, (2) identification of aging-associated changes in selenoprotein expression, (3) characterization of selenocysteine reactivity across the selenoprotein family, and (4) interrogation of selenoprotein targets of small-molecule drugs. Further investigations of selenoprotein function would benefit from recombinant expression of selenoproteins. However, the endogenous mechanism of selenoprotein production makes recombinant expression challenging. Primarily, selenocysteine is biosynthesized on its own tRNA, is dependent on multiple enzymatic steps, and is highly sensitive to selenium concentrations. Furthermore, selenocysteine is encoded by the stop codon UGA, and suppression of that stop codon requires a selenocysteine insertion sequence element in the selenoprotein mRNA. In order to circumvent the low efficiency of the endogenous machinery, selenoproteins have been produced in vitro through native chemical ligation and expressed protein ligation. Attempts have also been made to engineer the endogenous machinery for increased efficiency, including recoding the selenocysteine codon, and engineering the tRNA and the selenocysteine insertion sequence element. Alternatively, genetic code expansion can be used to generate selenoproteins. This approach allows for selenoprotein production directly within its native cellular environment, while bypassing the endogenous selenocysteine incorporation machinery. Furthermore, by incorporating a caged selenocysteine by genetic code expansion, selenoprotein activity can be spatially and temporally controlled. Genetic code expansion has allowed for the expression and uncaging of human selenoproteins in E. coli and more recently in mammalian cells. Together, advances in selenoprotein detection and expression should enable a better understanding of selenoprotein function and provide insight into the necessity for selenocysteine production.
Collapse
Affiliation(s)
- Jennifer C. Peeler
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
41
|
Selenocysteine β-Lyase: Biochemistry, Regulation and Physiological Role of the Selenocysteine Decomposition Enzyme. Antioxidants (Basel) 2019; 8:antiox8090357. [PMID: 31480609 PMCID: PMC6770646 DOI: 10.3390/antiox8090357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
The enzyme selenocysteine β-lyase (SCLY) was first isolated in 1982 from pig livers, followed by its identification in bacteria. SCLY works as a homodimer, utilizing pyridoxal 5'-phosphate as a cofactor, and catalyzing the specific decomposition of the amino acid selenocysteine into alanine and selenide. The enzyme is thought to deliver its selenide as a substrate for selenophosphate synthetases, which will ultimately be reutilized in selenoprotein synthesis. SCLY subcellular localization is unresolved, as it has been observed both in the cytosol and in the nucleus depending on the technical approach used. The highest SCLY expression and activity in mammals is found in the liver and kidneys. Disruption of the Scly gene in mice led to obesity, hyperinsulinemia, glucose intolerance, and hepatic steatosis, with SCLY being suggested as a participant in the regulation of energy metabolism in a sex-dependent manner. With the physiological role of SCLY still not fully understood, this review attempts to discuss the available literature regarding SCLY in animals and provides avenues for possible future investigation.
Collapse
|
42
|
Cockman EM, Narayan V, Willard B, Shetty SP, Copeland PR, Driscoll DM. Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity. RNA Biol 2019; 16:1682-1696. [PMID: 31432740 PMCID: PMC6844570 DOI: 10.1080/15476286.2019.1653681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Selenoproteins are a unique class of proteins that contain the 21st amino acid, selenocysteine (Sec). Addition of Sec into a protein is achieved by recoding of the UGA stop codon. All 25 mammalian selenoprotein mRNAs possess a 3′ UTR stem-loop structure, the Selenocysteine Insertion Sequence (SECIS), which is required for Sec incorporation. It is widely believed that the SECIS is the major RNA element that controls Sec insertion, however recent findings in our lab suggest otherwise for Selenoprotein S (SelS). Here we report that the first 91 nucleotides of the SelS 3′ UTR contain a proximal stem loop (PSL) and a conserved sequence we have named the SelS Positive UGA Recoding (SPUR) element. We developed a SelS-V5/UGA surrogate assay for UGA recoding, which was validated by mass spectrometry to be an accurate measure of Sec incorporation in cells. Using this assay, we show that point mutations in the SPUR element greatly reduce recoding in the reporter; thus, the SPUR is required for readthrough of the UGA-Sec codon. In contrast, deletion of the PSL increased Sec incorporation. This effect was reversed when the PSL was replaced with other stem-loops or an unstructured sequence, suggesting that the PSL does not play an active role in Sec insertion. Additional studies revealed that the position of the SPUR relative to the UGA-Sec codon is important for optimal UGA recoding. Our identification of the SPUR element in the SelS 3′ UTR reveals a more complex regulation of Sec incorporation than previously realized.
Collapse
Affiliation(s)
- Eric M Cockman
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Vivek Narayan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Belinda Willard
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sumangala P Shetty
- Department of Biochemistry and Molecular Biology, Rutgers University, New Brunswick, NJ, USA
| | - Paul R Copeland
- Department of Biochemistry and Molecular Biology, Rutgers University, New Brunswick, NJ, USA
| | - Donna M Driscoll
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
43
|
Hoffman KS, Vargas-Rodriguez O, Bak DW, Mukai T, Woodward LK, Weerapana E, Söll D, Reynolds NM. A cysteinyl-tRNA synthetase variant confers resistance against selenite toxicity and decreases selenocysteine misincorporation. J Biol Chem 2019; 294:12855-12865. [PMID: 31296657 DOI: 10.1074/jbc.ra119.008219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/03/2019] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) is the 21st genetically encoded amino acid in organisms across all domains of life. Although structurally similar to cysteine (Cys), the Sec selenol group has unique properties that are attractive for protein engineering and biotechnology applications. Production of designer proteins with Sec (selenoproteins) at desired positions is now possible with engineered translation systems in Escherichia coli However, obtaining pure selenoproteins at high yields is limited by the accumulation of free Sec in cells, causing undesired incorporation of Sec at Cys codons due to the inability of cysteinyl-tRNA synthetase (CysRS) to discriminate against Sec. Sec misincorporation is toxic to cells and causes protein aggregation in yeast. To overcome this limitation, here we investigated a CysRS from the selenium accumulator plant Astragalus bisulcatus that is reported to reject Sec in vitro Sequence analysis revealed a rare His → Asn variation adjacent to the CysRS catalytic pocket. Introducing this variation into E. coli and Saccharomyces cerevisiae CysRS increased resistance to the toxic effects of selenite and selenomethionine (SeMet), respectively. Although the CysRS variant could still use Sec as a substrate in vitro, we observed a reduction in the frequency of Sec misincorporation at Cys codons in vivo We surmise that the His → Asn variation can be introduced into any CysRS to provide a fitness advantage for strains burdened by Sec misincorporation and selenium toxicity. Our results also support the notion that the CysRS variant provides higher specificity for Cys as a mechanism for plants to grow in selenium-rich soils.
Collapse
Affiliation(s)
- Kyle S Hoffman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Laura K Woodward
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511.,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
44
|
Pletcher RC, Hardman SL, Intagliata SF, Lawson RL, Page A, Tennessen JM. A Genetic Screen Using the Drosophila melanogaster TRiP RNAi Collection To Identify Metabolic Enzymes Required for Eye Development. G3 (BETHESDA, MD.) 2019; 9:2061-2070. [PMID: 31036678 PMCID: PMC6643872 DOI: 10.1534/g3.119.400193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023]
Abstract
The metabolic enzymes that compose glycolysis, the citric acid cycle, and other pathways within central carbon metabolism have emerged as key regulators of animal development. These enzymes not only generate the energy and biosynthetic precursors required to support cell proliferation and differentiation, but also moonlight as regulators of transcription, translation, and signal transduction. Many of the genes associated with animal metabolism, however, have never been analyzed in a developmental context, thus highlighting how little is known about the intersection of metabolism and development. Here we address this deficiency by using the Drosophila TRiP RNAi collection to disrupt the expression of over 1,100 metabolism-associated genes within cells of the eye imaginal disc. Our screen not only confirmed previous observations that oxidative phosphorylation serves a critical role in the developing eye, but also implicated a host of other metabolic enzymes in the growth and differentiation of this organ. Notably, our analysis revealed a requirement for glutamine and glutamate metabolic processes in eye development, thereby revealing a role of these amino acids in promoting Drosophila tissue growth. Overall, our analysis highlights how the Drosophila eye can serve as a powerful tool for dissecting the relationship between development and metabolism.
Collapse
Affiliation(s)
- Rose C Pletcher
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sara L Hardman
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Sydney F Intagliata
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Rachael L Lawson
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Aumunique Page
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| | - Jason M Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405
| |
Collapse
|
45
|
Ibrahim SAZ, Kerkadi A, Agouni A. Selenium and Health: An Update on the Situation in the Middle East and North Africa. Nutrients 2019; 11:E1457. [PMID: 31252568 PMCID: PMC6682981 DOI: 10.3390/nu11071457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selenium (Se) is an important trace element that should be present in the diet of all age groups to provide an adequate intake. Se is incorporated in 25 known selenoproteins, which mediate the biological effects of Se including, immune response regulation, maintenance of thyroid function, antioxidant defense, and anti-inflammatory actions. A balanced intake of Se is critical to achieve health benefits because depending on its status, Se has been found to play physiological roles or contribute to the pathophysiology of various diseases including, neurodegenerative diseases, diabetes, cancer, and cardiovascular disorders. Se status and intake are very important to be known for a specific population as the levels of Se are highly variable among different populations and regions. In the Middle East and North African (MENA) region, very little is known about the status of Se. Studies available show that Se status is widely variable with some countries being deficient, some over sufficient, and some sufficient. This variability was apparent even within the same country between regions. In this review, we summarized the key roles of Se in health and disease and discussed the available data on Se status and intake among countries of the MENA region.
Collapse
Affiliation(s)
- Sohayla A Z Ibrahim
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelhamid Kerkadi
- Department of Nutrition, College of Health Sciences, QU health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
46
|
Zhang X, Liu RP, Cheng WH, Zhu JH. Prioritized brain selenium retention and selenoprotein expression: Nutritional insights into Parkinson's disease. Mech Ageing Dev 2019; 180:89-96. [PMID: 30998939 DOI: 10.1016/j.mad.2019.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/14/2019] [Indexed: 01/12/2023]
Abstract
Selenium (Se), an essential trace mineral, confers its physiological functions mainly through selenoproteins, most of which are oxidoreductases. Results from animal, epidemiological, and human genetic studies link Parkinson's disease to Se and certain selenoproteins. Parkinson's disease is characterized by multiple motor and non-motor symptoms that are difficult to diagnose at early stages of the pathogenesis. While irreversible, degenerative and age-related, the onset of Parkinson's disease may be delayed through proper dietary and environmental controls. One particular attribute of Se biology is that brain has the highest priority to receive and retain this nutrient even in Se deficiency. Thus, brain Se deficiency is rare; however, a strong body of recent evidence implicates selenoprotein dysfunction in Parkinson's disease. Direct and indirect evidence from mouse models implicate selenoprotein T, glutathione peroxidase 1, selenoprotein P and glutathione peroxidase 4 in counteracting Parkinson's disease through Se transportation to the brain and reduced oxidative stress. It is of future interest to further characterize the full selenoproteomes in various types of brain cells and elucidate the mechanism of their actions in Parkinson's disease.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong-Pei Liu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
47
|
Mariotti M, Salinas G, Gabaldón T, Gladyshev VN. Utilization of selenocysteine in early-branching fungal phyla. Nat Microbiol 2019; 4:759-765. [PMID: 30742068 DOI: 10.1038/s41564-018-0354-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/20/2018] [Indexed: 11/09/2022]
Abstract
Selenoproteins are a diverse group of proteins containing selenocysteine (Sec)-the twenty-first amino acid-incorporated during translation via a unique recoding mechanism1,2. Selenoproteins fulfil essential roles in many organisms1, yet are not ubiquitous across the tree of life3-7. In particular, fungi were deemed devoid of selenoproteins4,5,8. However, we show here that Sec is utilized by nine species belonging to diverse early-branching fungal phyla, as evidenced by the genomic presence of both Sec machinery and selenoproteins. Most fungal selenoproteins lack consensus Sec recoding signals (SECIS elements9) but exhibit other RNA structures, suggesting altered mechanisms of Sec insertion in fungi. Phylogenetic analyses support a scenario of vertical inheritance of the Sec trait within eukaryotes and fungi. Sec was then lost in numerous independent events in various fungal lineages. Notably, Sec was lost at the base of Dikarya, resulting in the absence of selenoproteins in Saccharomyces cerevisiae and other well-studied fungi. Our results indicate that, despite scattered occurrence, selenoproteins are found in all kingdoms of life.
Collapse
Affiliation(s)
- Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gustavo Salinas
- Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,Worm Biology Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Versatility of Synthetic tRNAs in Genetic Code Expansion. Genes (Basel) 2018; 9:genes9110537. [PMID: 30405060 PMCID: PMC6267555 DOI: 10.3390/genes9110537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering challenges, but also offer tunable features. Major advances in the field of genetic code expansion have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation of ncAAs. Here we review the current status of two fundamentally different translation systems (TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best synthetic variants.
Collapse
|
49
|
Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med 2018; 127:190-197. [PMID: 29715549 DOI: 10.1016/j.freeradbiomed.2018.04.577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.
Collapse
Affiliation(s)
- Jiwoon Na
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisu Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeyoung Bang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiao Lu
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinhong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dolph L Hatfield
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byeong Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
50
|
Abstract
Selenium has transitioned from an environmental poison and carcinogen to an essential micronutrient associated with a broad array of health promoting effects. These beneficial effects are now accepted to be linked to its incorporation into selenoproteins, a family of rare proteins utilizing a specialized translation machinery to integrate selenium in the form of selenocysteine. Despite this recognized role, much less is known regarding the actual role of selenium in these proteins. Here, we will provide the reader with an overview of the essential role of specific selenoproteins and their link to pathology based on mouse studies and relevant mutations discovered in humans. Additionally, we will cover recent insights linking a non-interchangeable role for selenium in glutathione peroxidase 4 and its function in suppressing ferroptosis. This critical dependency ultimately generates a strong reliance on metabolic pathways that regulate selenium metabolism and its incorporation into proteins, such as the mevalonate pathway.
Collapse
Affiliation(s)
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|