1
|
O'Sullivan T, Karakoç C, Wollein Waldetoft K, Brown SP. Risk of death during acute infection is accelerating across diverse host-pathogen systems and consistent with multiple models of host-pathogen interaction. mSphere 2025; 10:e0095324. [PMID: 40293269 DOI: 10.1128/msphere.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Infectious diseases remain a major cause of global mortality, yet basic questions concerning the relationship between within-host processes governing pathogen burden (pathogen replication, immune responses) and population-scale (epidemiological) patterns of mortality remain obscure. We use a structured literature review to leverage the extensive biomedical data generated by controlled host infections to address the epidemiological question of whether infection-induced mortality is constant, accelerating, or follows some other pattern of change and to infer the within-host mechanistic basis of this pattern. We show that across diverse lethal infection models, the risk of death increases approximately exponentially in time since infection, in a manner phenomenologically similar to the dynamics of all-cause death. We further show that this pattern of accelerating risk is consistent with multiple alternate mechanisms of pathogen growth and host-pathogen interaction, underlining the limitations of current experimental approaches to connect within-host processes to epidemiological patterns. We review critical experimental questions that our work highlights, requiring additional non-invasive data on pathogen burden throughout the course of infection.IMPORTANCEHere, we ask a simple question: what are the dynamics of pathogen-induced death? Death is a central phenotype in both biomedical and epidemiological infectious disease biology, yet very little work has attempted to link the biomedical focus on pathogen dynamics within a host and the epidemiological focus on populations of infected hosts. To systematically characterize the dynamics of death in controlled animal infections, we analyzed 209 data sets spanning diverse lethal animal infection models. Across experimental models, we find robust support for an accelerating risk of death since the time of infection, contrasting with conventional epidemiological models that assume a constant elevated risk of death. Using math models, we show that multiple processes of growth and virulence are consistent with accelerating risk of death, and we end with a discussion of critical experiments to resolve how within-host biomedical processes map onto epidemiological patterns of disease.
Collapse
Affiliation(s)
- Tim O'Sullivan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Canan Karakoç
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kristofer Wollein Waldetoft
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Torsby Hospital, Torsby, Varmland County, Sweden
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Roche B, Claudi B, Cunrath O, Bleck CKE, Antelo-Varela M, Li J, Bumann D. A Salmonella subset exploits erythrophagocytosis to subvert SLC11A1-imposed iron deprivation. Cell Host Microbe 2025; 33:632-642.e4. [PMID: 40373749 DOI: 10.1016/j.chom.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025]
Abstract
Solute carrier family 11 member 1 (SLC11A1) is critical for host resistance to diverse intracellular pathogens. During infection, SLC11A1 limits Salmonella's access to iron, zinc, and magnesium, but only magnesium deprivation significantly impairs Salmonella replication. To understand the unexpected minor impact of iron, we determined Salmonella's iron access in infected SLC11A1-deficient and normal mice. Using reporter strains and mass spectrometry of Salmonella purified from the spleen, we found that SLC11A1 caused growth-restricting iron deprivation in a subset of Salmonella. Volume electron microscopy revealed that another Salmonella subset circumvented iron restriction by targeting iron-rich endosomes in macrophages degrading red blood cells (erythrophagocytosis). These iron-replete bacteria dominated overall Salmonella growth, masking the effects of the other Salmonella subset's iron deprivation. Thus, SLC11A1 effectively sequesters iron, but heterogeneous Salmonella populations partially bypass this nutritional immunity by targeting iron-rich tissue microenvironments.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Institut de Biologie Moléculaire et Cellulaire, UPR 9002 CNRS, 67084 Strasbourg, France
| | | | - Olivier Cunrath
- Biozentrum, University of Basel, 4056 Basel, Switzerland; Biotechnologie et signalisation cellulaire, Université de Strasbourg, 67412 Illkirch, France
| | - Christopher K E Bleck
- Biozentrum, University of Basel, 4056 Basel, Switzerland; HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | | | - Jiagui Li
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Laganenka L, Schubert C, Sichert A, Kalita I, Barthel M, Nguyen BD, Näf J, Lobriglio T, Sauer U, Hardt WD. Interplay between chemotaxis, quorum sensing, and metabolism regulates Escherichia coli-Salmonella Typhimurium interactions in vivo. PLoS Pathog 2025; 21:e1013156. [PMID: 40315408 PMCID: PMC12074654 DOI: 10.1371/journal.ppat.1013156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/13/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
Motile bacteria use chemotaxis to navigate complex environments like the mammalian gut. These bacteria sense a range of chemoeffector molecules, which can either be of nutritional value or provide a cue for the niche best suited for their survival and growth. One such cue molecule is the intra- and interspecies quorum sensing signaling molecule, autoinducer-2 (AI-2). Apart from controlling collective behavior of Escherichia coli, chemotaxis towards AI-2 contributes to its ability to colonize the murine gut. However, the impact of AI-2-dependent niche occupation by E. coli on interspecies interactions in vivo is not fully understood. Using the C57BL/6J mouse infection model, we show that chemotaxis towards AI-2 contributes to nutrient competition and thereby affects colonization resistance conferred by E. coli against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Like E. coli, S. Tm also relies on chemotaxis, albeit not towards AI-2, to compete against residing E. coli in a gut inflammation-dependent manner. Finally, utilizing a barcoded S. Tm mutant pool, we investigated the impact of AI-2 signaling in E. coli on carbohydrate utilization and central metabolism of S. Tm. Interestingly, AI-2-dependent niche colonization by E. coli was highly specific, impacting only a limited number of S. Tm mutants at distinct time points during infection. Notably, it significantly altered the fitness of mutants deficient in mannose utilization (ΔmanA, early stage infection) and, to a lesser extent, fumarate respiration (ΔdcuABC, late stage infection). The role of quorum sensing and chemotaxis in metabolic competition among bacteria remains largely unexplored. Here, we provide initial evidence that AI-2-dependent nutrient competition occurs between S. Tm and E. coli at specific time points during infection. These findings represent a crucial step toward understanding how bacteria navigate the gastrointestinal tract and engage in targeted nutrient competition within this complex three-dimensional environment.
Collapse
Affiliation(s)
- Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | | - Andreas Sichert
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Irina Kalita
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Manja Barthel
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Thomas Lobriglio
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Garg M, Waldor MK. Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice. Nat Microbiol 2025; 10:1171-1183. [PMID: 40148565 PMCID: PMC12055562 DOI: 10.1038/s41564-025-01975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale forward genetics in bacteria. However, inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks can limit its effectiveness. Here we have developed 'InducTn-seq', where an arabinose-inducible Tn5 transposase enables temporal control of mini-Tn5 transposition. InducTn-seq generated up to 1.2 million transposon mutants from a single colony of enterotoxigenic Escherichia coli, Salmonella typhimurium, Shigella flexneri and Citrobacter rodentium. This mutant diversity enabled more sensitive detection of subtle fitness defects and measurement of quantitative fitness effects for essential and non-essential genes. Applying InducTn-seq to C. rodentium in a mouse model of infectious colitis bypassed a highly restrictive host bottleneck, generating a diverse population of >5 × 105 unique transposon mutants compared to 10-102 recovered by traditional Tn-seq. This in vivo screen revealed that the C. rodentium type I-E CRISPR system is required to suppress a toxin otherwise activated during gut colonization. Our findings highlight the potential of InducTn-seq for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W Basta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J Sullivan
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Mehek Garg
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Lentsch V, Woller A, Rocker A, Aslani S, Moresi C, Ruoho N, Larsson L, Fattinger SA, Wenner N, Barazzone EC, Hardt WD, Loverdo C, Diard M, Slack E. Vaccine-enhanced competition permits rational bacterial strain replacement in the gut. Science 2025; 388:74-81. [PMID: 40179176 DOI: 10.1126/science.adp5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Colonization of the intestinal lumen precedes invasive infection for a wide range of enteropathogenic and opportunistic pathogenic bacteria. We show that combining oral vaccination with engineered or selected niche-competitor strains permits pathogen exclusion and strain replacement in the mouse gut lumen. This approach can be applied either prophylactically to prevent invasion of nontyphoidal Salmonella strains, or therapeutically to displace an established Escherichia coli. Both intact adaptive immunity and metabolic niche competition are necessary for efficient vaccine-enhanced competition. Our findings imply that mucosal antibodies have evolved to work in the context of gut microbial ecology by influencing the outcome of competition. This has broad implications for the elimination of pathogenic and antibiotic-resistant bacterial reservoirs and for rational microbiota engineering.
Collapse
Affiliation(s)
- Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Medical Research Council (MRC) Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Selma Aslani
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Claudia Moresi
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Niina Ruoho
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Louise Larsson
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Wolf-Dietrich Hardt
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kroon S, Malcic D, Weidert L, Bircher L, Boldt L, Christen P, Kiefer P, Sintsova A, Nguyen BD, Barthel M, Steiger Y, Clerc M, Herzog MKM, Chen C, Gül E, Guery B, Slack E, Sunagawa S, Vorholt JA, Maier L, Lacroix C, Hausmann A, Hardt WD. Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition. Nat Commun 2025; 16:2760. [PMID: 40113753 PMCID: PMC11926250 DOI: 10.1038/s41467-025-57979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Endotoxin-driven systemic immune activation is a common hallmark across various clinical conditions. During acute critical illness, elevated plasma lipopolysaccharide triggers non-specific systemic immune activation. In addition, a compositional shift in the gut microbiota, including an increase in gut-luminal opportunistic pathogens, is observed. Whether a causal link exists between acute endotoxemia and abundance of gut-luminal opportunistic pathogens is incompletely understood. Here, we model acute, pathophysiological lipopolysaccharide concentrations in mice and show that systemic exposure promotes a 100-10'000-fold expansion of Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium and Salmonella Typhimurium in the gut within one day, without overt enteropathy. Mechanistically, this is driven by a Toll-like receptor 4-dependent increase in gut-luminal oxygen species levels, which transiently halts microbiota fermentation and fuels growth of gut-luminal facultative anaerobic pathogens through oxidative respiration. Thus, systemic immune activation transiently perturbs microbiota homeostasis and favours opportunistic pathogens, potentially increasing the risk of infection in critically ill patients.
Collapse
Affiliation(s)
- Sanne Kroon
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dejan Malcic
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lena Weidert
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lea Bircher
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Leonardo Boldt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Carmen Chen
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Benoit Guery
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- reNEW - Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Peterson ST, Dailey KG, Hullahalli K, Sorobetea D, Matsuda R, Sewell J, Yost W, Neill RO, Bobba S, Apenes N, Sherman ME, Balazs GI, Assenmacher CA, Cox A, Lanza M, Shin S, Waldor MK, Brodsky IE. TNF signaling maintains local restriction of bacterial founder populations in intestinal and systemic sites during oral Yersinia infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.639286. [PMID: 40060595 PMCID: PMC11888380 DOI: 10.1101/2025.02.26.639286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Enteroinvasive bacterial pathogens are responsible for an enormous worldwide disease burden that critically affects the young and immunocompromised. Yersinia pseudotuberculosis is a Gram-negative enteric pathogen, closely related to the plague agent Y. pestis, that colonizes intestinal tissues, induces the formation of pyogranulomas along the intestinal tract, and disseminates to systemic organs following oral infection of experimental rodents. Prior studies proposed that systemic tissues were colonized by a pool of intestinal replicating bacteria distinct from populations within Peyer's patches and mesenteric lymph nodes. Whether bacteria within intestinal pyogranulomas serve as the source for systemic dissemination, and the relationship between bacterial populations within different tissue sites is poorly defined. Moreover, the factors that regulate Yersinia colonization and dissemination are not well understood. Here, we demonstrate, using Sequence Tag-based Analysis of Microbial Populations in R (STAMPR), that remarkably small founder populations independently colonize intestinal and systemic tissues. Notably, intestinal pyogranulomas contain clonal populations of bacteria that are restricted and do not spread to other tissues. However, populations of Yersinia are shared among systemic organs and the blood, suggesting that systemic dissemination occurs via hematogenous spread. Finally, we demonstrate that TNF signaling is a key contributor to the bottlenecks limiting both tissue colonization and lymphatic dissemination of intestinal bacterial populations. Altogether, this study reveals previously undescribed aspects of infection dynamics of enteric bacterial pathogens.
Collapse
Affiliation(s)
- Stefan T Peterson
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Katherine G Dailey
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Boston, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Boston, USA
| | - Daniel Sorobetea
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Rina Matsuda
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Jaydeen Sewell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Winslow Yost
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Rosemary O' Neill
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Suhas Bobba
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolai Apenes
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Matthew E Sherman
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George I Balazs
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Boston, USA
| | | | - Arin Cox
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Matthew Lanza
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Boston, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Santamaria de Souza N, Cherrak Y, Andersen TB, Vetsch M, Barthel M, Kroon S, Bakkeren E, Schubert C, Christen P, Kiefer P, Vorholt JA, Nguyen BD, Hardt WD. Context-dependent change in the fitness effect of (in)organic phosphate antiporter glpT during Salmonella Typhimurium infection. Nat Commun 2025; 16:1912. [PMID: 39994176 PMCID: PMC11850910 DOI: 10.1038/s41467-025-56851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Salmonella enterica is a frequent cause of foodborne diseases, which is attributed to its adaptability. Even within a single host, expressing a gene can be beneficial in certain infection stages but neutral or even detrimental in others as previously shown for flagellins. Mutants deficient for the conserved glycerol-3-phosphate and phosphate antiporter glpT have been shown to be positively selected in nature, clinical, and laboratory settings. This suggests that different selective pressures select for the presence or absence of GlpT in a context dependent fashion, a phenomenon known as antagonistic pleiotropy. Using mutant libraries and reporters, we investigated the fitness of glpT-deficient mutants during murine orogastric infection. While glpT-deficient mutants thrive during initial growth in the gut lumen, where GlpT's capacity to import phosphate is disadvantageous, they are counter-selected by macrophages. The dichotomy showcases the need to study the spatial and temporal heterogeneity of enteric pathogens' fitness across distinct lifestyles and niches. Insights into the differential adaptation during infection may reveal opportunities for therapeutic interventions.
Collapse
Affiliation(s)
| | - Yassine Cherrak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Thea Bill Andersen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Michel Vetsch
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Erik Bakkeren
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Schubert
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
9
|
Jackson TM. Kinetics, thresholds, and a comparison of mechanisms underlying systemic infection by Listeria monocytogenes. J Theor Biol 2025; 599:112009. [PMID: 39643030 DOI: 10.1016/j.jtbi.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Studies on the system-scale pathogenesis of Listeria monocytogenes infection have classically focused on its ability to colonize in the intestines following an exposure event. However, despite this, many of the most dangerous complications arising from L. monocytogenes infection are observed days, weeks, or months after exposure, resulting indirectly from bacteria escaping this intestinal colonization hub and invading other organs. Over time, findings of various individual phenomena observed during systemic infection have accumulated, including a shift away from the principal route of intestinal dissemination, delays in bacterial colonization of the central nervous system, differing bacterial flux rates across organs, and multi-stability of bacterial population levels. To further our quantitative understanding of foodborne bacterial infection dynamics, a compartmental model of systemic infection that synthesizes these findings is proposed. Under parameterization to infection in BALB/c mice, the model is used to show a substantial decrease in bacterial populations resulting from dissemination through the mesenteric lymph nodes, as compared to the portal vein, when controlling for the number of bacteria passing through each route. Due to the compartmental nature of this model, we anticipate that this result may be paralleled in other microbes which make use of these pathways to escape the intestinal environment. Additionally, we predict thresholds for intestinal dissemination along each of these routes, which must be surpassed to induce systemic infection, and describe how these thresholds change over time. Supplementarily, logistic curves are fitted to synthetic data as a means of robustly quantifying the dose-response relationship beyond the intestinal barrier.
Collapse
Affiliation(s)
- Tristen M Jackson
- Department of Mathematics, Florida State University, Tallahassee, 32301, FL, United States of America.
| |
Collapse
|
10
|
Schubert C, Nguyen BD, Sichert A, Näpflin N, Sintsova A, Feer L, Näf J, Daniel BBJ, Steiger Y, von Mering C, Sauer U, Hardt WD. Monosaccharides drive Salmonella gut colonization in a context-dependent or -independent manner. Nat Commun 2025; 16:1735. [PMID: 39966379 PMCID: PMC11836396 DOI: 10.1038/s41467-025-56890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
The carbohydrates that fuel gut colonization by S. Typhimurium are not fully known. To investigate this, we designed a quality-controlled mutant pool to probe the metabolic capabilities of this enteric pathogen. Using neutral genetic barcodes, we tested 35 metabolic mutants across five different mouse models with varying microbiome complexities, allowing us to differentiate between context-dependent and context-independent nutrient sources. Results showed that S. Typhimurium uses D-mannose, D-fructose and likely D-glucose as context-independent carbohydrates across all five mouse models. The utilization of D-galactose, N-acetylglucosamine and hexuronates, on the other hand, was context-dependent. Furthermore, we showed that D-fructose is important in strain-to-strain competition between Salmonella serovars. Complementary experiments confirmed that D-glucose, D-fructose, and D-galactose are excellent niches for S. Typhimurium to exploit during colonization. Quantitative measurements revealed sufficient amounts of carbohydrates, such as D-glucose or D-galactose, in the murine cecum to drive S. Typhimurium colonization. Understanding these key substrates and their context-dependent or -independent use by enteric pathogens will inform the future design of probiotics and therapeutics to prevent diarrheal infections such as non-typhoidal salmonellosis.
Collapse
Affiliation(s)
- Christopher Schubert
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Nicolas Näpflin
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lilith Feer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin B J Daniel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Hotinger JA, Campbell IW, Hullahalli K, Osaki A, Waldor MK. Quantification of Salmonella enterica serovar Typhimurium population dynamics in murine infection using a highly diverse barcoded library. eLife 2025; 13:RP101388. [PMID: 39945742 PMCID: PMC11825126 DOI: 10.7554/elife.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025] Open
Abstract
Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen's colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.
Collapse
Affiliation(s)
- Julia A Hotinger
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Akina Osaki
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's HospitalBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| |
Collapse
|
12
|
Fei X, Yuan Z, Wellner SM, Ma Y, Olsen JE. A sequencing-based method for quantifying gene-deletion mutants of bacteria in the intracellular environment. Front Microbiol 2025; 15:1487724. [PMID: 39981033 PMCID: PMC11841384 DOI: 10.3389/fmicb.2024.1487724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/23/2024] [Indexed: 02/22/2025] Open
Abstract
Advancements in next-generation sequencing (NGS) have significantly accelerated the development of innovative methodologies in microbiological research. In this study, we present a novel method to quantify the net survival of gene-deletion mutants within the intracellular environment. Based on standardized Illumina short-read sequencing of genomic DNA, the method eliminates the need for specific selective markers on each deletion mutant. For validation, the method was shown to accurately quantify mutants in spiked pools of mixed mutants, showing no statistically significant differences compared to the expected values based on CFU determination (p > 0.05). Further, the method was used to quantify mutants of S. Gallinarum in macrophages. Six mutants and one control strain were mixed in a pool and allowed to infect HD11 cells for 2 h. The results align with prior research results, providing evidence of the feasibility of mixed mutant infections in functional gene identification. Notably, the simplicity and standardization of the method, rooted in standard whole-genome sequencing protocols, make it easily implementable across various laboratories.
Collapse
Affiliation(s)
- Xiao Fei
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zengzhi Yuan
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin, China
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yibing Ma
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Newson JPM, Gürtler F, Piffaretti P, Meyer A, Sintsova A, Barthel M, Steiger Y, McHugh SC, Enz U, Alto NM, Sunagawa S, Hardt WD. Salmonella multimutants enable efficient identification of SPI-2 effector protein function in gut inflammation and systemic colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628483. [PMID: 39713370 PMCID: PMC11661221 DOI: 10.1101/2024.12.14.628483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Salmonella enterica spp. rely on translocation of effector proteins through the SPI-2 encoded type III secretion system (T3SS) to achieve pathogenesis. More than 30 effectors contribute to manipulation of host cells through diverse mechanisms, but interdependency or redundancy between effectors complicates the discovery of effector phenotypes using single mutant strains. Here, we engineer six mutant strains to be deficient in cohorts of SPI-2 effector proteins, as defined by their reported function. Using various animal models of infection, we show that three principle phenotypes define the functional contribution of the SPI-2 T3SS to infection. Multimutant strains deficient for intracellular replication, for manipulation of host cell defences, or for expression of virulence plasmid effectors all showed strong attenuation in vivo, while mutants representing approximately half of the known effector complement showed phenotypes similar to the wild-type parent strain. By additionally removing the SPI-1 T3SS, we find cohorts of effector proteins that contribute to SPI-2 T3SS-driven enhancement of gut inflammation. Further, we provide an example of how iterative mutation can be used to find a minimal number of effector deletions required for attenuation, and thus establish that the SPI-2 effectors SopD2 and GtgE are critical for the promotion of gut inflammation and mucosal pathology. This strategy provides a powerful toolset for simultaneous parallel screening of all known SPI-2 effectors in a single experimental context, and further facilitates the identification of the responsible effectors, and thereby provides an efficient approach to study how individual effectors contribute to disease.
Collapse
Affiliation(s)
| | - Flavia Gürtler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Zurich, Switzerland
| | | | - Annina Meyer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Sarah C McHugh
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- Current address: Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ursina Enz
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Neal M Alto
- Department of Microbiology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | | | | |
Collapse
|
14
|
Hotinger JA, Campbell IW, Hullahalli K, Osaki A, Waldor MK. Quantification of Salmonella enterica serovar Typhimurium Population Dynamics in Murine Infection Using a Highly Diverse Barcoded Library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601246. [PMID: 38979326 PMCID: PMC11230369 DOI: 10.1101/2024.06.28.601246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Murine models are often used to study the pathogenicity and dissemination of the enteric pathogen Salmonella enterica serovar Typhimurium. Here, we quantified S. Typhimurium population dynamics in mice using the STAMPR analytic pipeline and a highly diverse S. Typhimurium barcoded library containing ~55,000 unique strains distinguishable by genomic barcodes by enumerating S. Typhimurium founding populations and deciphering routes of spread in mice. We found that a severe bottleneck allowed only one in a million cells from an oral inoculum to establish a niche in the intestine. Furthermore, we observed compartmentalization of pathogen populations throughout the intestine, with few barcodes shared between intestinal segments and feces. This severe bottleneck widened and compartmentalization was reduced after streptomycin treatment, suggesting the microbiota plays a key role in restricting the pathogen's colonization and movement within the intestine. Additionally, there was minimal sharing between the intestine and extraintestinal organ populations, indicating dissemination to extraintestinal sites occurs rapidly, before substantial pathogen expansion in the intestine. Bypassing the intestinal bottleneck by inoculating mice via intravenous or intraperitoneal injection revealed that Salmonella re-enters the intestine after establishing niches in extraintestinal sites by at least two distinct pathways. One pathway results in a diverse intestinal population. The other re-seeding pathway is through the bile, where the pathogen is often clonal, leading to clonal intestinal populations and correlates with gallbladder pathology. Together, these findings deepen our understanding of Salmonella population dynamics.
Collapse
Affiliation(s)
- Julia A. Hotinger
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Akina Osaki
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
15
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
16
|
Burgos HL, Mandel MJ. Generation of Barcode-Tagged Vibrio fischeri Deletion Strains and Barcode Sequencing (BarSeq) for Multiplex Strain Competitions. Curr Protoc 2024; 4:e70024. [PMID: 39460611 PMCID: PMC11932736 DOI: 10.1002/cpz1.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Vibrio fischeri is a model mutualist for studying molecular processes affecting microbial colonization of animal hosts. We present a detailed protocol for a barcode sequencing (BarSeq) approach that combines targeted gene deletion with short-read sequencing technology to enable studies of mixed bacterial populations. This protocol includes wet lab steps to plan and produce the deletions, approaches to scale up mutant generation, protocols to prepare and conduct the strain competition, library preparation for sequencing on an Illumina iSeq 100 instrument, and data analysis with the barseq python package. Aspects of this protocol could be readily adapted for tagging wild-type V. fischeri strains with a neutral barcode for examination of population dynamics or BarSeq analyses in other species. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of the erm-bar DNA Basic Protocol 2: Generation of a targeted and barcoded deletion strain of V. fischeri Alternate Protocol: Parallel generation of multiple barcode-tagged V. fischeri deletion strains Basic Protocol 3: Setting up mixed populations of barcode-tagged strains Basic Protocol 4: Performing a competitive growth assay Basic Protocol 5: Amplicon library preparation and equimolar pooling Basic Protocol 6: Sequencing on Illumina iSeq 100 Basic Protocol 7: BarSeq data analysis.
Collapse
Affiliation(s)
- Hector L. Burgos
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| | - Mark J. Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
17
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Experimental genital tract infection demonstrates Neisseria gonorrhoeae MtrCDE efflux pump is not required for in vivo human infection and identifies gonococcal colonization bottleneck. PLoS Pathog 2024; 20:e1012578. [PMID: 39321205 PMCID: PMC11457995 DOI: 10.1371/journal.ppat.1012578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/07/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection and is a known gonococcal virulence factor. Here, we evaluate the role of this efflux pump system in strain FA1090 during in vivo human male urethral infection with N. gonorrhoeae using a controlled human infection model. With the strategy of competitive infections initiated with mixtures of wild-type FA1090 and an isogenic mutant FA1090 strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump is not required for an infection to be established in the human male urethra. This finding contrasts with previous studies of in vivo infection in the lower genital tract of female mice, which demonstrated that mutant gonococci of a different strain (FA19) lacking a functional MtrCDE pump had a significantly reduced fitness compared to their wild-type parental FA19 strain. To determine if these conflicting results are due to strain or human vs. mouse differences, we conducted a series of systematic competitive infections in female mice with the same FA1090 strains as in humans, and with FA19 strains, including mutants that do not assemble a functional MtrCDE efflux pump. Our results indicate the fitness advantage provided by the MtrCDE efflux pump during infection of mice is strain dependent. Owing to the equal fitness of the two FA1090 strains in men, our experiments also demonstrated the presence of a colonization bottleneck of N. gonorrhoeae in the human male urethra, which may open a new area of inquiry into N. gonorrhoeae infection dynamics and control. TRIAL REGISTRATION. Clinicaltrials.gov NCT03840811.
Collapse
Affiliation(s)
- Andreea Waltmann
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Afrin A. Begum
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - Nancy Hua
- The Emmes Company, Rockville, Maryland, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, United States
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center (Atlanta), Decatur, Georgia, United States
| | - Marcia M. Hobbs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joseph A. Duncan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
18
|
Basta DW, Campbell IW, Sullivan EJ, Hotinger JA, Hullahalli K, Waldor MK. Inducible transposon mutagenesis for genome-scale forward genetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595064. [PMID: 38826325 PMCID: PMC11142078 DOI: 10.1101/2024.05.21.595064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transposon insertion sequencing (Tn-seq) is a powerful method for genome-scale functional genetics in bacteria. However, its effectiveness is often limited by a lack of mutant diversity, caused by either inefficient transposon delivery or stochastic loss of mutants due to population bottlenecks. Here, we introduce "InducTn-seq", which leverages inducible mutagenesis for temporal control of transposition. InducTn-seq generates millions of transposon mutants from a single colony, enabling the sensitive detection of subtle fitness defects and transforming binary classifications of gene essentiality into a quantitative fitness measurement across both essential and non-essential genes. Using a mouse model of infectious colitis, we show that InducTn-seq bypasses a highly restrictive host bottleneck to generate a diverse transposon mutant population from the few cells that initiate infection, revealing the role of oxygen-related metabolic plasticity in pathogenesis. Overall, InducTn-seq overcomes the limitations of traditional Tn-seq, unlocking new possibilities for genome-scale forward genetic screens in bacteria.
Collapse
Affiliation(s)
- David W. Basta
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian W. Campbell
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Emily J. Sullivan
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Julia A Hotinger
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
19
|
Daniel BBJ, Steiger Y, Sintsova A, Field CM, Nguyen BD, Schubert C, Cherrak Y, Sunagawa S, Hardt WD, Vorholt JA. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat Microbiol 2024; 9:1103-1116. [PMID: 38503975 PMCID: PMC10994841 DOI: 10.1038/s41564-024-01634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Microbiomes feature recurrent compositional structures under given environmental conditions. However, these patterns may conceal diverse underlying population dynamics that require intrastrain resolution. Here we developed a genomic tagging system, termed wild-type isogenic standardized hybrid (WISH)-tags, that can be combined with quantitative polymerase chain reaction and next-generation sequencing for microbial strain enumeration. We experimentally validated the performance of 62 tags and showed that they can be differentiated with high precision. WISH-tags were introduced into model and non-model bacterial members of the mouse and plant microbiota. Intrastrain priority effects were tested using one species of isogenic barcoded bacteria in the murine gut and the Arabidopsis phyllosphere, both with and without microbiota context. We observed colonization resistance against late-arriving strains of Salmonella Typhimurium in the mouse gut, whereas the phyllosphere accommodated Sphingomonas latecomers in a manner proportional to their presence at the late inoculation timepoint. This demonstrates that WISH-tags are a resource for deciphering population dynamics underlying microbiome assembly across biological systems.
Collapse
Affiliation(s)
| | - Yves Steiger
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Páez DJ, Kurath G, Powers RL, Naish KA, Purcell MK. Local and systemic replicative fitness for viruses in specialist, generalist, and non-specialist interactions with salmonid hosts. J Gen Virol 2024; 105. [PMID: 38180085 DOI: 10.1099/jgv.0.001937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.
Collapse
Affiliation(s)
- David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Rachel L Powers
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maureen K Purcell
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
- U.S. Geological Survey, Forest Rangeland Ecosystem Science Center, Corvallis, OR 97330, USA
| |
Collapse
|
21
|
Saula AY, Knight G, Bowness R. Within-Host Mathematical Models of Antibiotic Resistance. Methods Mol Biol 2024; 2833:79-91. [PMID: 38949703 DOI: 10.1007/978-1-0716-3981-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Mathematical models have been used to study the spread of infectious diseases from person to person. More recently studies are developing within-host modeling which provides an understanding of how pathogens-bacteria, fungi, parasites, or viruses-develop, spread, and evolve inside a single individual and their interaction with the host's immune system.Such models have the potential to provide a more detailed and complete description of the pathogenesis of diseases within-host and identify other influencing factors that may not be detected otherwise. Mathematical models can be used to aid understanding of the global antibiotic resistance (ABR) crisis and identify new ways of combating this threat.ABR occurs when bacteria respond to random or selective pressures and adapt to new environments through the acquisition of new genetic traits. This is usually through the acquisition of a piece of DNA from other bacteria, a process called horizontal gene transfer (HGT), the modification of a piece of DNA within a bacterium, or through. Bacteria have evolved mechanisms that enable them to respond to environmental threats by mutation, and horizontal gene transfer (HGT): conjugation; transduction; and transformation. A frequent mechanism of HGT responsible for spreading antibiotic resistance on the global scale is conjugation, as it allows the direct transfer of mobile genetic elements (MGEs). Although there are several MGEs, the most important MGEs which promote the development and rapid spread of antimicrobial resistance genes in bacterial populations are plasmids and transposons. Each of the resistance-spread-mechanisms mentioned above can be modeled allowing us to understand the process better and to define strategies to reduce resistance.
Collapse
Affiliation(s)
| | - Gwenan Knight
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ruth Bowness
- Department of Mathematical Sciences, University of Bath, Bath, UK.
| |
Collapse
|
22
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
Czuppon P, Day T, Débarre F, Blanquart F. A stochastic analysis of the interplay between antibiotic dose, mode of action, and bacterial competition in the evolution of antibiotic resistance. PLoS Comput Biol 2023; 19:e1011364. [PMID: 37578976 PMCID: PMC10449190 DOI: 10.1371/journal.pcbi.1011364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/24/2023] [Accepted: 07/17/2023] [Indexed: 08/16/2023] Open
Abstract
The use of an antibiotic may lead to the emergence and spread of bacterial strains resistant to this antibiotic. Experimental and theoretical studies have investigated the drug dose that minimizes the risk of resistance evolution over the course of treatment of an individual, showing that the optimal dose will either be the highest or the lowest drug concentration possible to administer; however, no analytical results exist that help decide between these two extremes. To address this gap, we develop a stochastic mathematical model of bacterial dynamics under antibiotic treatment. We explore various scenarios of density regulation (bacterial density affects cell birth or death rates), and antibiotic modes of action (biostatic or biocidal). We derive analytical results for the survival probability of the resistant subpopulation until the end of treatment, the size of the resistant subpopulation at the end of treatment, the carriage time of the resistant subpopulation until it is replaced by a sensitive one after treatment, and we verify these results with stochastic simulations. We find that the scenario of density regulation and the drug mode of action are important determinants of the survival of a resistant subpopulation. Resistant cells survive best when bacterial competition reduces cell birth and under biocidal antibiotics. Compared to an analogous deterministic model, the population size reached by the resistant type is larger and carriage time is slightly reduced by stochastic loss of resistant cells. Moreover, we obtain an analytical prediction of the antibiotic concentration that maximizes the survival of resistant cells, which may help to decide which drug dosage (not) to administer. Our results are amenable to experimental tests and help link the within and between host scales in epidemiological models.
Collapse
Affiliation(s)
- Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, Paris, France
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Troy Day
- Department of Mathematics and Statistics, Department of Biology, Queen’s University, Kingston, Canada
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| |
Collapse
|
24
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Neisseria gonorrhoeae MtrCDE Efflux Pump During In Vivo Experimental Genital Tract Infection in Men and Mice Reveals the Presence of Within-Host Colonization Bottleneck. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291824. [PMID: 37425726 PMCID: PMC10327229 DOI: 10.1101/2023.06.23.23291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection. Here, we evaluate the role of this efflux pump system in strain FA1090 in human male urethral infection with a Controlled Human Infection Model. Using the strategy of competitive multi-strain infection with wild-type FA1090 and an isogenic mutant strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump during human experimental infection did not confer a competitive advantage. This finding is in contrast to previous findings in female mice, which demonstrated that gonococci of strain FA19 lacking a functional MtrCDE pump had a significantly reduced fitness compared to the wild type strain in the lower genital tract of female mice. We conducted competitive infections in female mice with FA19 and FA1090 strains, including mutants that do not assemble a functional Mtr efflux pump, demonstrating the fitness advantage provided byt the MtrCDE efflux pump during infection of mice is strain dependent. Our data indicate that new gonorrhea treatment strategies targeting the MtrCDE efflux pump functions may not be universally efficacious in naturally occurring infections. Owing to the equal fitness of FA1090 strains in men, our experiments unexpectedly demonstrated the likely presence of an early colonization bottleneck of N. gonorrhoeae in the human male urethra. TRIAL REGISTRATION Clinicaltrials.gov NCT03840811 .
Collapse
|
25
|
Gül E, Enz U, Maurer L, Abi Younes A, Fattinger SA, Nguyen BD, Hausmann A, Furter M, Barthel M, Sellin ME, Hardt WD. Intraluminal neutrophils limit epithelium damage by reducing pathogen assault on intestinal epithelial cells during Salmonella gut infection. PLoS Pathog 2023; 19:e1011235. [PMID: 37384776 PMCID: PMC10337893 DOI: 10.1371/journal.ppat.1011235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Recruitment of neutrophils into and across the gut mucosa is a cardinal feature of intestinal inflammation in response to enteric infections. Previous work using the model pathogen Salmonella enterica serovar Typhimurium (S.Tm) established that invasion of intestinal epithelial cells by S.Tm leads to recruitment of neutrophils into the gut lumen, where they can reduce pathogen loads transiently. Notably, a fraction of the pathogen population can survive this defense, re-grow to high density, and continue triggering enteropathy. However, the functions of intraluminal neutrophils in the defense against enteric pathogens and their effects on preventing or aggravating epithelial damage are still not fully understood. Here, we address this question via neutrophil depletion in different mouse models of Salmonella colitis, which differ in their degree of enteropathy. In an antibiotic pretreated mouse model, neutrophil depletion by an anti-Ly6G antibody exacerbated epithelial damage. This could be linked to compromised neutrophil-mediated elimination and reduced physical blocking of the gut-luminal S.Tm population, such that the pathogen density remained high near the epithelial surface throughout the infection. Control infections with a ssaV mutant and gentamicin-mediated elimination of gut-luminal pathogens further supported that neutrophils are protecting the luminal surface of the gut epithelium. Neutrophil depletion in germ-free and gnotobiotic mice hinted that the microbiota can modulate the infection kinetics and ameliorate epithelium-disruptive enteropathy even in the absence of neutrophil-protection. Together, our data indicate that the well-known protective effect of the microbiota is augmented by intraluminal neutrophils. After antibiotic-mediated microbiota disruption, neutrophils are central for maintaining epithelial barrier integrity during acute Salmonella-induced gut inflammation, by limiting the sustained pathogen assault on the epithelium in a critical window of the infection.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- reNEW – NNF Center for Stem Cell Medicine, University of Copenhagen, Denmark
| | - Markus Furter
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Avraham R. Untangling Cellular Host-Pathogen Encounters at Infection Bottlenecks. Infect Immun 2023; 91:e0043822. [PMID: 36939328 PMCID: PMC10112260 DOI: 10.1128/iai.00438-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bacterial pathogens can invade the tissue and establish a protected intracellular niche at the site of invasion that can spread locally (e.g., microcolonies) or to systemic sites (e.g., granulomas). Invasion of the tissue and establishment of intracellular infection are rare events that are difficult to study in the in vivo setting but have critical clinical consequences, such as long-term carriage, reinfections, and emergence of antibiotic resistance. Here, I discuss Salmonella interactions with its host macrophage during early stages of infection and their critical role in determining infection outcome. The dynamics of host-pathogen interactions entail highly heterogenous host immunity, bacterial virulence, and metabolic cross talk, requiring in vivo analysis at single-cell resolution. I discuss models and single-cell approaches that provide a global understanding of the establishment of a protected intracellular niche within the tissue and the host-pathogen landscape at infection bottlenecks during early stages of infection. Studying cellular host-pathogen interactions in vivo can improve our knowledge of the trajectory of infection between the initial inoculation with a dose of pathogens and the appearance of symptoms of disease.
Collapse
Affiliation(s)
- Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Giuliano CJ, Wei KJ, Harling FM, Waldman BS, Farringer MA, Boydston EA, Lan TCT, Thomas RW, Herneisen AL, Sanderlin AG, Coppens I, Dvorin JD, Lourido S. Functional profiling of the Toxoplasma genome during acute mouse infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531216. [PMID: 36945434 PMCID: PMC10028831 DOI: 10.1101/2023.03.05.531216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Within a host, pathogens encounter a diverse and changing landscape of cell types, nutrients, and immune responses. Examining host-pathogen interactions in animal models can therefore reveal aspects of infection absent from cell culture. We use CRISPR-based screens to functionally profile the entire genome of the model apicomplexan parasite Toxoplasma gondii during mouse infection. Barcoded gRNAs were used to track mutant parasite lineages, enabling detection of bottlenecks and mapping of population structures. We uncovered over 300 genes that modulate parasite fitness in mice with previously unknown roles in infection. These candidates span multiple axes of host-parasite interaction, including determinants of tropism, host organelle remodeling, and metabolic rewiring. We mechanistically characterized three novel candidates, including GTP cyclohydrolase I, against which a small-molecule inhibitor could be repurposed as an antiparasitic compound. This compound exhibited antiparasitic activity against T. gondii and Plasmodium falciparum, the most lethal agent of malaria. Taken together, we present the first complete survey of an apicomplexan genome during infection of an animal host, and point to novel interfaces of host-parasite interaction that may offer new avenues for treatment.
Collapse
Affiliation(s)
| | - Kenneth J. Wei
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Faye M. Harling
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Madeline A. Farringer
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Biological Sciences in Public Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Raina W. Thomas
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | - Alice L. Herneisen
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Jeffrey D. Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, MA
- Biology Department, MIT, Cambridge, MA
| |
Collapse
|
28
|
Hoces D, Greter G, Arnoldini M, Stäubli ML, Moresi C, Sintsova A, Berent S, Kolinko I, Bansept F, Woller A, Häfliger J, Martens E, Hardt WD, Sunagawa S, Loverdo C, Slack E. Fitness advantage of Bacteroides thetaiotaomicron capsular polysaccharide in the mouse gut depends on the resident microbiota. eLife 2023; 12:81212. [PMID: 36757366 PMCID: PMC10014078 DOI: 10.7554/elife.81212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
Many microbiota-based therapeutics rely on our ability to introduce a microbe of choice into an already-colonized intestine. In this study, we used genetically barcoded Bacteroides thetaiotaomicron (B. theta) strains to quantify population bottlenecks experienced by a B. theta population during colonization of the mouse gut. As expected, this reveals an inverse relationship between microbiota complexity and the probability that an individual wildtype B. theta clone will colonize the gut. The polysaccharide capsule of B. theta is important for resistance against attacks from other bacteria, phage, and the host immune system, and correspondingly acapsular B. theta loses in competitive colonization against the wildtype strain. Surprisingly, the acapsular strain did not show a colonization defect in mice with a low-complexity microbiota, as we found that acapsular strains have an indistinguishable colonization probability to the wildtype strain on single-strain colonization. This discrepancy could be resolved by tracking in vivo growth dynamics of both strains: acapsular B.theta shows a longer lag phase in the gut lumen as well as a slightly slower net growth rate. Therefore, as long as there is no niche competitor for the acapsular strain, this has only a small influence on colonization probability. However, the presence of a strong niche competitor (i.e., wildtype B. theta, SPF microbiota) rapidly excludes the acapsular strain during competitive colonization. Correspondingly, the acapsular strain shows a similarly low colonization probability in the context of a co-colonization with the wildtype strain or a complete microbiota. In summary, neutral tagging and detailed analysis of bacterial growth kinetics can therefore quantify the mechanisms of colonization resistance in differently-colonized animals.
Collapse
Affiliation(s)
- Daniel Hoces
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Giorgia Greter
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Markus Arnoldini
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Melanie L Stäubli
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Claudia Moresi
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Sara Berent
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Isabel Kolinko
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Florence Bansept
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Janine Häfliger
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| | - Eric Martens
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP)ParisFrance
| | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH ZurichZürichSwitzerland
| |
Collapse
|
29
|
Pidwill GR, Pyrah JF, Sutton JAF, Best A, Renshaw SA, Foster SJ. Clonal population expansion of Staphylococcus aureus occurs due to escape from a finite number of intraphagocyte niches. Sci Rep 2023; 13:1188. [PMID: 36681703 PMCID: PMC9867732 DOI: 10.1038/s41598-023-27928-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal and also an opportunist pathogen causing life threatening infections. During S. aureus disease, the abscesses that characterise infection can be clonal, whereby a large bacterial population is founded by a single or few organisms. Our previous work has shown that macrophages are responsible for restricting bacterial growth such that a population bottleneck occurs and clonality can emerge. A subset of phagocytes fail to control S. aureus resulting in bacterial division, escape and founding of microabscesses that can seed other host niches. Here we investigate the basis for clonal microabscess formation, using in vitro and in silico models of S. aureus macrophage infection. Macrophages that fail to control S. aureus are characterised by formation of intracellular bacterial masses, followed by cell lysis. High-resolution microscopy reveals that most macrophages had internalised only a single S. aureus, providing a conceptual framework for clonal microabscess generation, which was supported by a stochastic individual-based, mathematical model. Once a threshold of masses was reached, increasing the number of infecting bacteria did not result in greater mass numbers, despite enhanced phagocytosis. This suggests a finite number of permissive, phagocyte niches determined by macrophage associated factors. Increased understanding of the parameters of infection dynamics provides avenues for development of rational control measures.
Collapse
Affiliation(s)
- Grace R Pidwill
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Josie F Pyrah
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joshua A F Sutton
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Alex Best
- School of Mathematics & Statistics, University of Sheffield, Sheffield, S3 7RH, UK.
| | - Stephen A Renshaw
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- The Bateson Centre, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Simon J Foster
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
30
|
Nyhoegen C, Uecker H. Sequential antibiotic therapy in the laboratory and in the patient. J R Soc Interface 2023; 20:20220793. [PMID: 36596451 PMCID: PMC9810433 DOI: 10.1098/rsif.2022.0793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Laboratory experiments suggest that rapid cycling of antibiotics during the course of treatment could successfully counter resistance evolution. Drugs involving collateral sensitivity could be particularly suitable for such therapies. However, the environmental conditions in vivo differ from those in vitro. One key difference is that drugs can be switched abruptly in the laboratory, while in the patient, pharmacokinetic processes lead to changing antibiotic concentrations including periods of dose overlaps from consecutive administrations. During such overlap phases, drug-drug interactions may affect the evolutionary dynamics. To address the gap between the laboratory and potential clinical applications, we set up two models for comparison-a 'laboratory model' and a pharmacokinetic-pharmacodynamic 'patient model'. The analysis shows that in the laboratory, the most rapid cycling suppresses the bacterial population always at least as well as other regimens. For patient treatment, however, a little slower cycling can sometimes be preferable if the pharmacodynamic curve is steep or if drugs interact antagonistically. When resistance is absent prior to treatment, collateral sensitivity brings no substantial benefit unless the cell division rate is low and drug cycling slow. By contrast, drug-drug interactions strongly influence the treatment efficiency of rapid regimens, demonstrating their importance for the optimal choice of drug pairs.
Collapse
Affiliation(s)
- Christin Nyhoegen
- Department of Evolutionary Theory, Research Group Stochastic Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Department of Evolutionary Theory, Research Group Stochastic Evolutionary Dynamics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
31
|
Di Martino ML, Sellin ME. Barcoded Consortium Infections: A Scalable, Internally Controlled Method to Study Host Cell Binding and Invasion by Pathogenic Bacteria. Methods Mol Biol 2023; 2674:295-311. [PMID: 37258976 DOI: 10.1007/978-1-0716-3243-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial host cell invasion has routinely been investigated by gentamicin protection assays, which are laborsome and suffer from pronounced experimental noise. This chapter describes an internally controlled, medium- to high-throughput method that resolves the capacity of multiple Salmonella virulence factor mutant strains to bind and invade host cells. The method, widely applicable to also other pathogens, is based on the combination of consortia of genetically tagged isogenic bacterial strains and a modified gentamicin protection assay. These protocols provide a flexible tool box to stringently quantify host cell binding and invasive properties of different mutants. Moreover, the method can be applied to both infections of cultured host cells and in vivo animal models, providing a comparable genetic readout, which greatly facilitates comparisons across experimental models.
Collapse
Affiliation(s)
- Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, Narciso MV, López-Escobar L, Ferreira J, Butter F, Bringaud F, Gjini E, Figueiredo LM. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun 2022; 13:7548. [PMID: 36481558 PMCID: PMC9732351 DOI: 10.1038/s41467-022-34622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
When Trypanosoma brucei parasites, the causative agent of sleeping sickness, colonize the adipose tissue, they rewire gene expression. Whether this adaptation affects population behavior and disease treatment remained unknown. By using a mathematical model, we estimate that the population of adipose tissue forms (ATFs) proliferates slower than blood parasites. Analysis of the ATFs proteome, measurement of protein synthesis and proliferation rates confirm that the ATFs divide on average every 12 h, instead of 6 h in the blood. Importantly, the population of ATFs is heterogeneous with parasites doubling times ranging between 5 h and 35 h. Slow-proliferating parasites remain capable of reverting to the fast proliferation profile in blood conditions. Intravital imaging shows that ATFs are refractory to drug treatment. We propose that in adipose tissue, a subpopulation of T. brucei parasites acquire a slow growing behavior, which contributes to disease chronicity and treatment failure.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Fábio Bento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Marta Valido Narciso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Falk Butter
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS, UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS, UMR-5536, Bordeaux, France
| | - Erida Gjini
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
33
|
Rodríguez-Rojas A, Rolff J. Antimicrobial activity of cationic antimicrobial peptides against stationary phase bacteria. Front Microbiol 2022; 13:1029084. [PMID: 36386690 PMCID: PMC9641054 DOI: 10.3389/fmicb.2022.1029084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ancient antimicrobial weapons used by multicellular organisms as components of their innate immune defenses. Because of the antibiotic crisis, AMPs have also become candidates for developing new drugs. Here, we show that five different AMPs of different classes are effective against non-dividing Escherichia coli and Staphylococcus aureus. By comparison, three conventional antibiotics from the main three classes of antibiotics poorly kill non-dividing bacteria at clinically relevant doses. The killing of fast-growing bacteria by AMPs is faster than that of slow-dividing bacteria and, in some cases, without any difference. Still, non-dividing bacteria are effectively killed over time. Our results point to a general property of AMPs, which might explain why selection has favored AMPs in the evolution of metazoan immune systems. The ability to kill non-dividing cells is another reason that makes AMPs exciting candidates for drug development.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Department for Small Animal Internal Medicine, Clinic for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Jens Rolff
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
34
|
Wincott CJ, Sritharan G, Benns HJ, May D, Gilabert-Carbajo C, Bunyan M, Fairweather AR, Alves E, Andrew I, Game L, Frickel EM, Tiengwe C, Ewald SE, Child MA. Cellular barcoding of protozoan pathogens reveals the within-host population dynamics of Toxoplasma gondii host colonization. CELL REPORTS METHODS 2022; 2:100274. [PMID: 36046624 PMCID: PMC9421581 DOI: 10.1016/j.crmeth.2022.100274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.
Collapse
Affiliation(s)
- Ceire J. Wincott
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gayathri Sritharan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Biological Sciences, Birkbeck, University of London, Mallet Street, Bloomsbury, London WC1E 7HX, UK
| | - Henry J. Benns
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Dana May
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Carla Gilabert-Carbajo
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Monique Bunyan
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
| | - Aisling R. Fairweather
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eduardo Alves
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ivan Andrew
- UKRI London Institute of Medical Sciences Genomics Laboratory, Shepherd’s Bush, London W12 0NN, UK
| | - Laurence Game
- UKRI London Institute of Medical Sciences Genomics Laboratory, Shepherd’s Bush, London W12 0NN, UK
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1BF, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Calvin Tiengwe
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Sarah E. Ewald
- Department of Microbiology, Immunology and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Matthew A. Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
35
|
Gibson JF, Bojarczuk A, Evans RJ, Kamuyango AA, Hotham R, Lagendijk AK, Hogan BM, Ingham PW, Renshaw SA, Johnston SA. Blood vessel occlusion by Cryptococcus neoformans is a mechanism for haemorrhagic dissemination of infection. PLoS Pathog 2022; 18:e1010389. [PMID: 35446924 PMCID: PMC9022829 DOI: 10.1371/journal.ppat.1010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Meningitis caused by infectious pathogens is associated with vessel damage and infarct formation, however the physiological cause is often unknown. Cryptococcus neoformans is a human fungal pathogen and causative agent of cryptococcal meningitis, where vascular events are observed in up to 30% of patients, predominantly in severe infection. Therefore, we aimed to investigate how infection may lead to vessel damage and associated pathogen dissemination using a zebrafish model that permitted noninvasive in vivo imaging. We find that cryptococcal cells become trapped within the vasculature (dependent on their size) and proliferate there resulting in vasodilation. Localised cryptococcal growth, originating from a small number of cryptococcal cells in the vasculature was associated with sites of dissemination and simultaneously with loss of blood vessel integrity. Using a cell-cell junction tension reporter we identified dissemination from intact blood vessels and where vessel rupture occurred. Finally, we manipulated blood vessel tension via cell junctions and found increased tension resulted in increased dissemination. Our data suggest that global vascular vasodilation occurs following infection, resulting in increased vessel tension which subsequently increases dissemination events, representing a positive feedback loop. Thus, we identify a mechanism for blood vessel damage during cryptococcal infection that may represent a cause of vascular damage and cortical infarction during cryptococcal meningitis. Meningitis is a life threatening form of infection in the brain that is difficult to treat. How infection spreads from the blood to cause meningitis is not well understood. Here we have shown how infection with the fungus Cryptococcus neoformans can be spread from the blood by blocking and bursting blood vessels. Using zebrafish larvae, we were able to follow the same infections over a period of days to understand how this infection behaves in blood vessels. We found that fungal cells become stuck within blood vessels depending on their size. These cells grow within blood vessels, resulting in the blood vessels becoming wider. We measured increased tension in blood vessels suggesting that, with the bloackage and widening of vessels, there was increased local blood pressure. We found that vessel blockage was associated with their rupture and spreading of fungus into the surround tissue. Finally, by increasing the tension in vessels we could increase the number of blood bursting events supporting our conclusion that blood vessel blockage leads to the spread of the infection outside of blood vessels.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
| | - Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Robert J. Evans
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Alfred Alinafe Kamuyango
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Anne K. Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Benjamin M. Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Philip W. Ingham
- Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-Star), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Stephen A. Renshaw
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
| | - Simon A. Johnston
- Department of Infection, Immunity and Cardiovascular disease, Bateson Centre and Florey Institute, University of Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Sobota M, Rodilla Ramirez PN, Cambré A, Rocker A, Mortier J, Gervais T, Haas T, Cornillet D, Chauvin D, Hug I, Julou T, Aertsen A, Diard M. The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biol 2022; 20:e3001608. [PMID: 35389980 PMCID: PMC9017878 DOI: 10.1371/journal.pbio.3001608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/19/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies.
Collapse
Affiliation(s)
| | | | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Théo Gervais
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Dany Chauvin
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Isabelle Hug
- Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Julou
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
37
|
A Computational Model of Bacterial Population Dynamics in Gastrointestinal Yersinia enterocolitica Infections in Mice. BIOLOGY 2022; 11:biology11020297. [PMID: 35205164 PMCID: PMC8869254 DOI: 10.3390/biology11020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Computational modeling of bacterial infection is an attractive way to simulate infection scenarios. In the long-term, such models could be used to identify factors that make individuals more susceptible to infection, or how interference with bacterial growth influences the course of bacterial infection. This study used different mouse infection models (immunocompetent, lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings derived from mouse infections, and we demonstrated how crucial the exact knowledge about parameters influencing the population dynamics is. Still, we think that computational models will be of great value in the future; however, to foster the development of more complex models, we propose the broad implementation of the interdisciplinary training of mathematicians and biologists. Abstract The complex interplay of a pathogen with its virulence and fitness factors, the host’s immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
Collapse
|
38
|
Abstract
During infection, the rates of pathogen replication, death, and migration affect disease progression, dissemination, transmission, and resistance evolution. Here, we follow the population dynamics of Vibrio cholerae in a mouse model by labeling individual bacteria with one of >500 unique, fitness-neutral genomic tags. Using the changes in tag frequencies and CFU numbers, we inform a mathematical model that describes the within-host spatiotemporal bacterial dynamics. This allows us to disentangle growth, death, forward, and retrograde migration rates continuously during infection. Our model has robust predictive power across various experimental setups. The population dynamics of V. cholerae shows substantial spatiotemporal heterogeneity in replication, death, and migration. Importantly, we find that the niche available to V. cholerae in the host increases with inoculum size, suggesting cooperative effects during infection. Therefore, it is not enough to consider just the likelihood of exposure (50% infectious dose) but rather the magnitude of exposure to predict outbreaks. IMPORTANCE Determining the rates of bacterial migration, replication, and death during infection is important for understanding how infections progress. Separately measuring these rates is often difficult in systems where multiple processes happen simultaneously. Here, we use next-generation sequencing to measure V. cholerae migration, replication, death, and niche size along the mouse gastrointestinal tract. We show that the small intestine of the mouse is a heterogeneous environment, and the population dynamic characteristics change substantially between adjacent gut sections. Our approach also allows us to characterize the effect of inoculum size on these processes. We find that the niche size in mice increases with the infectious dose, hinting at cooperative effects in larger inocula. The dose-response relationship between inoculum size and final pathogen burden is important for the infected individual and is thought to influence the progression of V. cholerae epidemics.
Collapse
|
39
|
Bakkeren E, Herter JA, Huisman JS, Steiger Y, Gül E, Newson JPM, Brachmann AO, Piel J, Regoes R, Bonhoeffer S, Diard M, Hardt WD. Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. eLife 2021; 10:e69744. [PMID: 34872631 PMCID: PMC8651294 DOI: 10.7554/elife.69744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Many plasmids encode antibiotic resistance genes. Through conjugation, plasmids can be rapidly disseminated. Previous work identified gut luminal donor/recipient blooms and tissue-lodged plasmid-bearing persister cells of the enteric pathogen Salmonella enterica serovar Typhimurium (S.Tm) that survive antibiotic therapy in host tissues, as factors promoting plasmid dissemination among Enterobacteriaceae. However, the buildup of tissue reservoirs and their contribution to plasmid spread await experimental demonstration. Here, we asked if re-seeding-plasmid acquisition-invasion cycles by S.Tm could serve to diversify tissue-lodged plasmid reservoirs, and thereby promote plasmid spread. Starting with intraperitoneal mouse infections, we demonstrate that S.Tm cells re-seeding the gut lumen initiate clonal expansion. Extended spectrum beta-lactamase (ESBL) plasmid-encoded gut luminal antibiotic degradation by donors can foster recipient survival under beta-lactam antibiotic treatment, enhancing transconjugant formation upon re-seeding. S.Tm transconjugants can subsequently re-enter host tissues introducing the new plasmid into the tissue-lodged reservoir. Population dynamics analyses pinpoint recipient migration into the gut lumen as rate-limiting for plasmid transfer dynamics in our model. Priority effects may be a limiting factor for reservoir formation in host tissues. Overall, our proof-of-principle data indicates that luminal antibiotic degradation and shuttling between the gut lumen and tissue-resident reservoirs can promote the accumulation and spread of plasmids within a host over time.
Collapse
Affiliation(s)
- Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | | | - Jana Sanne Huisman
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Roland Regoes
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Médéric Diard
- Botnar Research Centre for Child HealthBaselSwitzerland
- Biozentrum, University of BaselBaselSwitzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
40
|
Hullahalli K, Waldor MK. Pathogen clonal expansion underlies multiorgan dissemination and organ-specific outcomes during murine systemic infection. eLife 2021; 10:e70910. [PMID: 34636322 PMCID: PMC8545400 DOI: 10.7554/elife.70910] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
The dissemination of pathogens through blood and their establishment within organs lead to severe clinical outcomes. However, the within-host dynamics that underlie pathogen spread to and clearance from systemic organs remain largely uncharacterized. In animal models of infection, the observed pathogen population results from the combined contributions of bacterial replication, persistence, death, and dissemination, each of which can vary across organs. Quantifying the contribution of each these processes is required to interpret and understand experimental phenotypes. Here, we leveraged STAMPR, a new barcoding framework, to investigate the population dynamics of extraintestinal pathogenic Escherichia coli, a common cause of bacteremia, during murine systemic infection. We show that while bacteria are largely cleared by most organs, organ-specific clearance failures are pervasive and result from dramatic expansions of clones representing less than 0.0001% of the inoculum. Clonal expansion underlies the variability in bacterial burden between animals, and stochastic dissemination of clones profoundly alters the pathogen population structure within organs. Despite variable pathogen expansion events, host bottlenecks are consistent yet highly sensitive to infection variables, including inoculum size and macrophage depletion. We adapted our barcoding methodology to facilitate multiplexed validation of bacterial fitness determinants identified with transposon mutagenesis and confirmed the importance of bacterial hexose metabolism and cell envelope homeostasis pathways for organ-specific pathogen survival. Collectively, our findings provide a comprehensive map of the population biology that underlies bacterial systemic infection and a framework for barcode-based high-resolution mapping of infection dynamics.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Brigham & Women’s HospitalBostonUnited States
| |
Collapse
|
41
|
Study on Significance of Receptor Targeting in Killing of Intracellular Bacteria with Membrane‐Impermeable Antibiotics. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Gibson JF, Pidwill GR, Carnell OT, Surewaard BGJ, Shamarina D, Sutton JAF, Jeffery C, Derré-Bobillot A, Archambaud C, Siggins MK, Pollitt EJG, Johnston SA, Serror P, Sriskandan S, Renshaw SA, Foster SJ. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog 2021; 17:e1009880. [PMID: 34529737 PMCID: PMC8478205 DOI: 10.1371/journal.ppat.1009880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection. S. aureus is a commensal inhabitant of the human skin and nares. However, it can cause serious diseases if it is able to breach our protective barriers such as the skin, often via wounds or surgery. If infection occurs via a wound, this initial inoculum contains both the pathogen, other members of the microflora and also wider environmental microbes. We have previously described “augmentation”, whereby this other non-pathogenic material can enhance the ability of S. aureus to lead to a serious disease outcome. Here we have determined the breadth of augmenting material and elucidated the cellular and molecular basis for its activity. Augmentation occurs via shielding of S. aureus from the direct bactericidal effects of reactive oxygen species produced by macrophages. This initial protection enables the effective establishment of S. aureus infection. Understanding augmentation not only explains an important facet of the interaction of S. aureus with our innate immune system, but also provides a platform for the development of novel prophylaxis approaches.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Bas G. J. Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Charlotte Jeffery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthew K. Siggins
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Simon A. Johnston
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| |
Collapse
|
43
|
Abstract
Pathogen population dynamics during infection are critical determinants of infection susceptibility and define patterns of dissemination. However, deciphering these dynamics, particularly founding population sizes in host organs and patterns of dissemination between organs, is difficult because measuring bacterial burden alone is insufficient to observe these patterns. Introduction of allelic diversity into otherwise identical bacteria using DNA barcodes enables sequencing-based measurements of these parameters, in a method known as STAMP (Sequence Tag-based Analysis of Microbial Populations). However, bacteria often undergo unequal expansion within host organs, resulting in marked differences in the frequencies of barcodes in input and output libraries. Here, we show that these differences confound STAMP-based analyses of founding population sizes and dissemination patterns. We present STAMPR, a successor to STAMP, which accounts for such population expansions. Using data from systemic infection of barcoded extraintestinal pathogenic E. coli, we show that this new framework, along with the metrics it yields, enhances the fidelity of measurements of bottlenecks and dissemination patterns. STAMPR was also validated on an independent barcoded Pseudomonas aeruginosa data set, uncovering new patterns of dissemination within the data. This framework (available at https://github.com/hullahalli/stampr_rtisan), when coupled with barcoded data sets, enables a more complete assessment of within-host bacterial population dynamics. IMPORTANCE Barcoded bacteria are often employed to monitor pathogen population dynamics during infection. The accuracy of these measurements is diminished by unequal bacterial expansion rates. Here, we develop computational tools to circumvent this limitation and establish additional metrics that collectively enhance the fidelity of measuring within-host pathogen founding population sizes and dissemination patterns. These new tools will benefit future studies of the dynamics of pathogens and symbionts within their respective hosts and may have additional barcode-based applications beyond host-microbe interactions.
Collapse
|
44
|
Berk KL, Blum SM, Funk VL, Sun Y, Yang IY, Gostomski MV, Roth PA, Liem AT, Emanuel PA, Hogan ME, Miklos AE, Lux MW. Rapid Visual Authentication Based on DNA Strand Displacement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19476-19486. [PMID: 33852293 DOI: 10.1021/acsami.1c02429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel ways to track and verify items of a high value or security is an ever-present need. Taggants made from deoxyribonucleic acid (DNA) have several advantageous properties, such as high information density and robust synthesis; however, existing methods require laboratory techniques to verify, limiting applications. Here, we leverage DNA nanotechnology to create DNA taggants that can be validated in the field in seconds to minutes with a simple equipment. The system is driven by toehold-mediated strand-displacement reactions where matching oligonucleotide sequences drive the generation of a fluorescent signal through the potential energy of base pairing. By pooling different "input" oligonucleotide sequences in a taggant and spatially separating "reporter" oligonucleotide sequences on a paper ticket, unique, sequence-driven patterns emerge for different taggant formulations. Algorithmically generated oligonucleotide sequences show no crosstalk and ink-embedded taggants maintain activity for at least 99 days at 60 °C (equivalent to nearly 2 years at room temperature). The resulting fluorescent signals can be analyzed by the eye or a smartphone when paired with a UV flashlight and filtered glasses.
Collapse
Affiliation(s)
- Kimberly L Berk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Steven M Blum
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Vanessa L Funk
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Yuhua Sun
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - In-Young Yang
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Mark V Gostomski
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Pierce A Roth
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Alvin T Liem
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
- DCS Corporation, Belcamp, Maryland 21017, United States
| | - Peter A Emanuel
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Michael E Hogan
- Applied DNA Sciences, Stony Brook, New York 11790, United States
| | - Aleksandr E Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| | - Matthew W Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Edgewood, Maryland 21010, United States
| |
Collapse
|
45
|
Dhingra D, Marathe SA, Sharma N, Marathe A, Chakravortty D. Modeling the immune response to Salmonella during typhoid. Int Immunol 2021; 33:281-298. [PMID: 33406267 DOI: 10.1093/intimm/dxab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Several facets of the host immune response to Salmonella infection have been studied independently at great depths to understand the progress and pathogenesis of Salmonella infection. The circumstances under which a Salmonella-infected individual succumbs to an active disease, evolves as a persister or clears the infection are not understood in detail. We have adopted a system-level approach to develop a continuous-time mechanistic model. We considered key interactions of the immune system state variables with Salmonella in the mesenteric lymph node to determine the final disease outcome deterministically and exclusively temporally. The model accurately predicts the disease outcomes and immune response trajectories operational during typhoid. The results of the simulation confirm the role of anti-inflammatory (M2) macrophages as a site for persistence and relapsing infection. Global sensitivity analysis highlights the importance of both bacterial and host attributes in influencing the disease outcome. It also illustrates the importance of robust phagocytic and anti-microbial potential of M1 macrophages and dendritic cells (DCs) in controlling the disease. Finally, we propose therapeutic strategies for both antibiotic-sensitive and antibiotic-resistant strains (such as IFN-γ therapy, DC transfer and phagocytic potential stimulation). We also suggest prevention strategies such as improving the humoral response and macrophage carrying capacity, which could complement current vaccination schemes for enhanced efficiency.
Collapse
Affiliation(s)
- Divy Dhingra
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Nandita Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Amol Marathe
- Department of Mechanical Engineering, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
46
|
A SNP in the Cache 1 Signaling Domain of Diguanylate Cyclase STM1987 Leads to Increased In Vivo Fitness of Invasive Salmonella Strains. Infect Immun 2021; 89:IAI.00810-20. [PMID: 33468583 DOI: 10.1128/iai.00810-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.
Collapse
|
47
|
Bernhards CB, Lux MW, Katoski SE, Goralski TDP, Liem AT, Gibbons HS. barCoder: a tool to generate unique, orthogonal genetic tags for qPCR detection. BMC Bioinformatics 2021; 22:98. [PMID: 33648451 PMCID: PMC7919090 DOI: 10.1186/s12859-021-04019-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tracking dispersal of microbial populations in the environment requires specific detection methods that discriminate between the target strain and all potential natural and artificial interferents, including previously utilized tester strains. Recent work has shown that genomic insertion of short identification tags, called "barcodes" here, allows detection of chromosomally tagged strains by real-time PCR. Manual design of these barcodes is feasible for small sets, but expansion of the technique to larger pools of distinct and well-functioning assays would be significantly aided by software-guided design. RESULTS Here we introduce barCoder, a bioinformatics tool that facilitates the process of creating sets of uniquely identifiable barcoded strains. barCoder utilizes the genomic sequence of the target strain and a set of user-specified PCR parameters to generate a list of suggested barcode "modules" that consist of binding sites for primers and probes, and appropriate spacer sequences. Each module is designed to yield optimal PCR amplification and unique identification. Optimal amplification includes metrics such as ideal melting temperature and G+C content, appropriate spacing, and minimal stem-loop formation; unique identification includes low BLAST hits against the target organism, previously generated barcode modules, and databases (such as NCBI). We tested the ability of our algorithm to suggest appropriate barcodes by generating 12 modules for Bacillus thuringiensis serovar kurstaki-a simulant for the potential biowarfare agent Bacillus anthracis-and three each for other potential target organisms with variable G+C content. Real-time PCR detection assays directed at barcodes were specific and yielded minimal cross-reactivity with a panel of near-neighbor and potential contaminant materials. CONCLUSIONS The barCoder algorithm facilitates the generation of synthetically barcoded biological simulants by (a) eliminating the task of creating modules by hand, (b) minimizing optimization of PCR assays, and (c) reducing effort wasted on non-unique barcode modules.
Collapse
Affiliation(s)
- Casey B Bernhards
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.,Excet, Inc., Springfield, VA, 22150, USA
| | - Matthew W Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Sarah E Katoski
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Tyler D P Goralski
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA
| | - Alvin T Liem
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.,DCS Corporation, Abingdon, MD, 21009, USA
| | - Henry S Gibbons
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, MD, 21010, USA.
| |
Collapse
|
48
|
Qu Z, McMahon BH, Perkins DJ, Hyman JM. Staged progression epidemic models for the transmission of invasive nontyphoidal Salmonella (iNTS) with treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1529-1549. [PMID: 33757197 PMCID: PMC11064643 DOI: 10.3934/mbe.2021079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop and analyze a stage-progression compartmental model to study the emerging invasive nontyphoidal Salmonella (iNTS) epidemic in sub-Saharan Africa. iNTS bloodstream infections are often fatal, and the diverse and non-specific clinical features of iNTS make it difficult to diagnose. We focus our study on identifying approaches that can reduce the incidence of new infections. In sub-Saharan Africa, transmission and mortality are correlated with the ongoing HIV epidemic and severe malnutrition. We use our model to quantify the impact that increasing antiretroviral therapy (ART) for HIV infected adults and reducing malnutrition in children would have on mortality from iNTS in the population. We consider immunocompromised subpopulations in the region with major risk factors for mortality, such as malaria and malnutrition among children and HIV infection and ART coverage in both children and adults. We parameterize the progression rates between infection stages using the branching probabilities and estimated time spent at each stage. We interpret the basic reproduction number R0 as the total contribution from an infinite infection loop produced by the asymptomatic carriers in the infection chain. The results indicate that the asymptomatic HIV+ adults without ART serve as the driving force of infection for the iNTS epidemic. We conclude that the worst disease outcome is among the pediatric population, which has the highest infection rates and death counts. Our sensitivity analysis indicates that the most effective strategies to reduce iNTS mortality in the studied population are to improve the ART coverage among high-risk HIV+ adults and reduce malnutrition among children.
Collapse
Affiliation(s)
- Zhuolin Qu
- Department of Mathematics, University of Texas at San Antonio, San Antonio 78202, TX, USA
| | - Benjamin H. McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Douglas J. Perkins
- University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya
| | - James M. Hyman
- Department of Mathematics, Tulane University, New Orleans 70112, LA, USA
| |
Collapse
|
49
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
50
|
Mahmutovic A, Gillman AN, Lauksund S, Robson Moe NA, Manzi A, Storflor M, Abel Zur Wiesch P, Abel S. RESTAMP - Rate estimates by sequence-tag analysis of microbial populations. Comput Struct Biotechnol J 2021; 19:1035-1051. [PMID: 33613869 PMCID: PMC7878984 DOI: 10.1016/j.csbj.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
Microbial division rates determine the speed of mutation accumulation and thus the emergence of antimicrobial resistance. Microbial death rates are affected by antibiotic action and the immune system. Therefore, measuring these rates has advanced our understanding of host-pathogen interactions and antibiotic action. Several methods based on marker-loss or few inheritable neutral markers exist that allow estimating microbial division and death rates, each of which has advantages and limitations. Technical bottlenecks, i.e., experimental sampling events, during the experiment can distort the rate estimates and are typically unaccounted for or require additional calibration experiments. In this work, we introduce RESTAMP (Rate Estimates by Sequence Tag Analysis of Microbial Populations) as a method for determining bacterial division and death rates. This method uses hundreds of fitness neutral sequence barcodes to measure the rates and account for experimental bottlenecks at the same time. We experimentally validate RESTAMP and compare it to established plasmid loss methods. We find that RESTAMP has a number of advantages over plasmid loss or previous marker based techniques. (i) It enables to correct the distortion of rate estimates by technical bottlenecks. (ii) Rate estimates are independent of the sequence tag distribution in the starting culture allowing the use of an arbitrary number of tags. (iii) It introduces a bottleneck sensitivity measure that can be used to maximize the accuracy of the experiment. RESTAMP allows studying microbial population dynamics with great resolution over a wide dynamic range and can thus advance our understanding of host-pathogen interactions or the mechanisms of antibiotic action.
Collapse
Affiliation(s)
- Anel Mahmutovic
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aaron Nicholas Gillman
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Silje Lauksund
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Natasha-Anne Robson Moe
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Aime Manzi
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Merete Storflor
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA
| | - Pia Abel Zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, PA 16802, USA.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, 0318 Oslo, Norway.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|