1
|
Gonzalez KC, Negrean A, Liao Z, Terada S, Zhang G, Lee S, Ócsai K, Rózsa BJ, Lin MZ, Polleux F, Losonczy A. Synaptic basis of feature selectivity in hippocampal neurons. Nature 2025; 637:1152-1160. [PMID: 39695232 PMCID: PMC11988941 DOI: 10.1038/s41586-024-08325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
A central question in neuroscience is how synaptic plasticity shapes the feature selectivity of neurons in behaving animals1. Hippocampal CA1 pyramidal neurons display one of the most striking forms of feature selectivity by forming spatially and contextually selective receptive fields called place fields, which serve as a model for studying the synaptic basis of learning and memory. Various forms of synaptic plasticity have been proposed as cellular substrates for the emergence of place fields. However, despite decades of work, our understanding of how synaptic plasticity underlies place-field formation and memory encoding remains limited, largely due to a shortage of tools and technical challenges associated with the visualization of synaptic plasticity at the single-neuron resolution in awake behaving animals. To address this, we developed an all-optical approach to monitor the spatiotemporal tuning and synaptic weight changes of dendritic spines before and after the induction of a place field in single CA1 pyramidal neurons during spatial navigation. We identified a temporally asymmetric synaptic plasticity kernel resulting from bidirectional modifications of synaptic weights around the induction of a place field. Our work identified compartment-specific differences in the magnitude and temporal expression of synaptic plasticity between basal dendrites and oblique dendrites. Our results provide experimental evidence linking synaptic plasticity to the rapid emergence of spatial selectivity in hippocampal neurons, a critical prerequisite for episodic memory.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Allen Brain Institute, Seattle, WA, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Satoshi Terada
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Katalin Ócsai
- BrainVisionCenter, Budapest, Hungary
- Department of Algebra and Geometry, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs J Rózsa
- BrainVisionCenter, Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Beaurain M, Salabert AS, Payoux P, Gras E, Talmont F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals (Basel) 2024; 17:1265. [PMID: 39458906 PMCID: PMC11509972 DOI: 10.3390/ph17101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND N-methyl-D-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family. These ligand-gated channels are entwined with numerous fundamental neurological functions within the central nervous system (CNS), and numerous neuropsychiatric disorders may arise from their malfunction. METHODS The purpose of the present review is to provide a detailed description of NMDARs by addressing their molecular structures, activation mechanisms, and physiological roles in the mammalian brain. In the second part, their role in various neuropsychiatric disorders including stroke, epilepsy, anti-NMDA encephalitis, Alzheimer's and Huntington's diseases, schizophrenia, depression, neuropathic pain, opioid-induced tolerance, and hyperalgesia will be covered. RESULTS Finally, through a careful exploration of the main non-competitive NMDARs antagonists (channel-blockers). CONCLUSION We discuss the strengths and limitations of the various molecular structures developed for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Université de Toulouse, 31024 Toulouse, France; (M.B.); (A.-S.S.); (P.P.)
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA, UMR 5069), CNRS, UPS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, UPS, Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
3
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Carles A, Freyssin A, Perin-Dureau F, Rubinstenn G, Maurice T. Targeting N-Methyl-d-Aspartate Receptors in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:3733. [PMID: 38612544 PMCID: PMC11011887 DOI: 10.3390/ijms25073733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are the main class of ionotropic receptors for the excitatory neurotransmitter glutamate. They play a crucial role in the permeability of Ca2+ ions and excitatory neurotransmission in the brain. Being heteromeric receptors, they are composed of several subunits, including two obligatory GluN1 subunits (eight splice variants) and regulatory GluN2 (GluN2A~D) or GluN3 (GluN3A~B) subunits. Widely distributed in the brain, they regulate other neurotransmission systems and are therefore involved in essential functions such as synaptic transmission, learning and memory, plasticity, and excitotoxicity. The present review will detail the structure, composition, and localization of NMDARs, their role and regulation at the glutamatergic synapse, and their impact on cognitive processes and in neurodegenerative diseases (Alzheimer's, Huntington's, and Parkinson's disease). The pharmacology of different NMDAR antagonists and their therapeutic potentialities will be presented. In particular, a focus will be given on fluoroethylnormemantine (FENM), an investigational drug with very promising development as a neuroprotective agent in Alzheimer's disease, in complement to its reported efficacy as a tomography radiotracer for NMDARs and an anxiolytic drug in post-traumatic stress disorder.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| | - Aline Freyssin
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
- ReST Therapeutics, 34095 Montpellier, France; (F.P.-D.); (G.R.)
| | | | | | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, Montpellier, France; (A.C.); (A.F.)
| |
Collapse
|
5
|
Canepari M, Ross WN. Spatial and temporal aspects of neuronal calcium and sodium signals measured with low-affinity fluorescent indicators. Pflugers Arch 2024; 476:39-48. [PMID: 37798555 DOI: 10.1007/s00424-023-02865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Low-affinity fluorescent indicators for Ca2+ or Na+ allow measuring the dynamics of intracellular concentration of these ions with little perturbation from physiological conditions because they are weak buffers. When using synthetic indicators, which are small molecules with fast kinetics, it is also possible to extract spatial and temporal information on the sources of ion transients, their localization, and their disposition. This review examines these important aspects from the biophysical point of view, and how they have been recently exploited in neurophysiological studies. We first analyze the environment where Ca2+ and Na+ indicators are inserted, highlighting the interpretation of the two different signals. Then, we address the information that can be obtained by analyzing the rising phase and the falling phase of the Ca2+ and Na+ transients evoked by different stimuli, focusing on the kinetics of ionic currents and on the spatial interpretation of these measurements, especially on events in axons and dendritic spines. Finally, we suggest how Ca2+ or Na+ imaging using low-affinity synthetic fluorescent indicators can be exploited in future fundamental or applied research.
Collapse
Affiliation(s)
- Marco Canepari
- LIPhy, CNRS, Univ. Grenoble Alpes, F-38000, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Valbonne, France.
- Institut National de la Santé et Recherche Médicale, Paris, France.
| | - William N Ross
- Department of Physiology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
6
|
Zecevic D. Electrical properties of dendritic spines. Biophys J 2023; 122:4303-4315. [PMID: 37837192 PMCID: PMC10698282 DOI: 10.1016/j.bpj.2023.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Dendritic spines are small protrusions that mediate most of the excitatory synaptic transmission in the brain. Initially, the anatomical structure of spines has suggested that they serve as isolated biochemical and electrical compartments. Indeed, following ample experimental evidence, it is now widely accepted that a significant physiological role of spines is to provide biochemical compartmentalization in signal integration and plasticity in the nervous system. In contrast to the clear biochemical role of spines, their electrical role is uncertain and is currently being debated. This is mainly because spines are small and not accessible to conventional experimental methods of electrophysiology. Here, I focus on reviewing the literature on the electrical properties of spines, including the initial morphological and theoretical modeling studies, indirect experimental approaches based on measurements of diffusional resistance of the spine neck, indirect experimental methods using two-photon uncaging of glutamate on spine synapses, optical imaging of intracellular calcium concentration changes, and voltage imaging with organic and genetically encoded voltage-sensitive probes. The interpretation of evidence from different preparations obtained with different methods has yet to reach a consensus, with some analyses rejecting and others supporting an electrical role of spines in regulating synaptic signaling. Thus, there is a need for a critical comparison of the advantages and limitations of different methodological approaches. The only experimental study on electrical signaling monitored optically with adequate sensitivity and spatiotemporal resolution using voltage-sensitive dyes concluded that mushroom spines on basal dendrites of cortical pyramidal neurons in brain slices have no electrical role.
Collapse
Affiliation(s)
- Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Ma H, Khaled HG, Wang X, Mandelberg NJ, Cohen SM, He X, Tsien RW. Excitation-transcription coupling, neuronal gene expression and synaptic plasticity. Nat Rev Neurosci 2023; 24:672-692. [PMID: 37773070 PMCID: PMC12024187 DOI: 10.1038/s41583-023-00742-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.
Collapse
Affiliation(s)
- Huan Ma
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China.
| | - Houda G Khaled
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Xiaohan Wang
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Nataniel J Mandelberg
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Samuel M Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA
| | - Xingzhi He
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Research Units for Emotion and Emotional Disorders, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard W Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
9
|
Righes Marafiga J, Calcagnotto ME. Electrophysiology of Dendritic Spines: Information Processing, Dynamic Compartmentalization, and Synaptic Plasticity. ADVANCES IN NEUROBIOLOGY 2023; 34:103-141. [PMID: 37962795 DOI: 10.1007/978-3-031-36159-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For many years, synaptic transmission was considered as information transfer between presynaptic neuron and postsynaptic cell. At the synaptic level, it was thought that dendritic arbors were only receiving and integrating all information flow sent along to the soma, while axons were primarily responsible for point-to-point information transfer. However, it is important to highlight that dendritic spines play a crucial role as postsynaptic components in central nervous system (CNS) synapses, not only integrating and filtering signals to the soma but also facilitating diverse connections with axons from many different sources. The majority of excitatory connections from presynaptic axonal terminals occurs on postsynaptic spines, although a subset of GABAergic synapses also targets spine heads. Several studies have shown the vast heterogeneous morphological, biochemical, and functional features of dendritic spines related to synaptic processing. In this chapter (adding to the relevant data on the biophysics of spines described in Chap. 1 of this book), we address the up-to-date functional dendritic characteristics assessed through electrophysiological approaches, including backpropagating action potentials (bAPs) and synaptic potentials mediated in dendritic and spine compartmentalization, as well as describing the temporal and spatial dynamics of glutamate receptors in the spines related to synaptic plasticity.
Collapse
Affiliation(s)
- Joseane Righes Marafiga
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Maria Elisa Calcagnotto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Fast Synaptically Activated Calcium and Sodium Kinetics in Hippocampal Pyramidal Neuron Dendritic Spines. eNeuro 2022; 9:ENEURO.0396-22.2022. [PMID: 36379712 PMCID: PMC9718353 DOI: 10.1523/eneuro.0396-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
An accurate assessment of the time course, components, and magnitude of postsynaptic currents is important for a quantitative understanding of synaptic integration and signaling in dendritic spines. These parameters have been studied in some detail in previous experiments, primarily using two-photon imaging of [Ca2+]i changes and two-photon uncaging of glutamate. However, even with these revolutionary techniques, there are some missing pieces in our current understanding, particularly related to the time courses of synaptically evoked [Ca2+]i and [Na+]i changes. In new experiments, we used low-affinity, linear Na+ and Ca2+ indicators, laser fluorescence stimulation, and a sensitive camera-based detection system, combined with electrical stimulation and two-photon glutamate uncaging, to extend measurements of these spine parameters. We found that (1) almost all synaptically activated Na+ currents in CA1 hippocampal pyramidal neuron spines in slices from mice of either sex are through AMPA receptors with little Na+ entry through voltage-gated sodium channels (VGSCs) or NMDA receptor channels; (2) a spectrum of sodium transient decay times was observed, suggesting a spectrum of spine neck resistances, even on the same dendrite; (3) synaptically activated [Ca2+]i changes are very fast and are almost entirely because of Ca2+ entry through NMDA receptors at the time when the Mg2+ block is relieved by the fast AMPA-mediated EPSP; (4) the [Ca2+]i changes evoked by uncaging glutamate are slower than the changes evoked by synaptic release, suggesting that the relative contribution of Ca2+ entering through NMDA receptors at rest following uncaging is higher than following electrical stimulation.
Collapse
|
11
|
Chipman PH, Fetter RD, Panzera LC, Bergerson SJ, Karmelic D, Yokoyama S, Hoppa MB, Davis GW. NMDAR-dependent presynaptic homeostasis in adult hippocampus: Synapse growth and cross-modal inhibitory plasticity. Neuron 2022; 110:3302-3317.e7. [PMID: 36070750 PMCID: PMC9588671 DOI: 10.1016/j.neuron.2022.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Homeostatic plasticity (HP) encompasses a suite of compensatory physiological processes that counteract neuronal perturbations, enabling brain resilience. Currently, we lack a complete description of the homeostatic processes that operate within the mammalian brain. Here, we demonstrate that acute, partial AMPAR-specific antagonism induces potentiation of presynaptic neurotransmitter release in adult hippocampus, a form of compensatory plasticity that is consistent with the expression of presynaptic homeostatic plasticity (PHP) documented at peripheral synapses. We show that this compensatory plasticity can be induced within minutes, requires postsynaptic NMDARs, and is expressed via correlated increases in dendritic spine volume, active zone area, and docked vesicle number. Further, simultaneous postsynaptic genetic reduction of GluA1, GluA2, and GluA3 in triple heterozygous knockouts induces potentiation of presynaptic release. Finally, induction of compensatory plasticity at excitatory synapses induces a parallel, NMDAR-dependent potentiation of inhibitory transmission, a cross-modal effect consistent with the anti-epileptic activity of AMPAR-specific antagonists used in humans.
Collapse
Affiliation(s)
- Peter H Chipman
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94941, USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94941, USA
| | - Lauren C Panzera
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Samuel J Bergerson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Karmelic
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94941, USA
| | - Sae Yokoyama
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94941, USA
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94941, USA.
| |
Collapse
|
12
|
Tazerart S, Blanchard MG, Miranda-Rottmann S, Mitchell DE, Navea Pina B, Thomas CI, Kamasawa N, Araya R. Selective activation of BK channels in small-headed dendritic spines suppresses excitatory postsynaptic potentials. J Physiol 2022; 600:2165-2187. [PMID: 35194785 DOI: 10.1113/jp282303] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic spines are the main receptacles of excitatory information in the brain. Their particular morphology, with a small head connected to the dendrite by a slender neck, has inspired theoretical and experimental work to understand how these structural features affect the processing, storage and integration of synaptic inputs in pyramidal neurons (PNs). The activation of glutamate receptors in spines triggers a large voltage change as well as calcium signals at the spine head. Thus, voltage-gated and calcium-activated potassium channels located in the spine head likely play a key role in synaptic transmission. Here we study the presence and function of large conductance calcium-activated potassium (BK) channels in spines from layer 5 PNs. We found that BK channels are localized to dendrites and spines regardless of their size, but their activity can only be detected in spines with small head volumes (≤0.09 μm3 ), which reduces the amplitude of two-photon uncaging excitatory postsynaptic potentials recorded at the soma. In addition, we found that calcium signals in spines with small head volumes are significantly larger than those observed in spines with larger head volumes. In accordance with our experimental data, numerical simulations predict that synaptic inputs impinging onto spines with small head volumes generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, which are sufficient to activate spine BK channels. These results show that BK channels are selectively activated in small-headed spines, suggesting a new level of dendritic spine-mediated regulation of synaptic processing, integration and plasticity in cortical PNs. KEY POINTS: BK channels are expressed in the visual cortex and layer 5 pyramidal neuron somata, dendrites and spines regardless of their size. BK channels are selectively activated in small-headed spines (≤0.09 μm3 ), which reduces the amplitude of two-photon (2P) uncaging excitatory postsynaptic potentials (EPSPs) recorded at the soma. Two-photon imaging revealed that intracellular calcium responses in the head of 2P-activated spines are significantly larger in small-headed spines (≤0.09 μm3 ) than in spines with larger head volumes. In accordance with our experimental data, numerical simulations showed that synaptic inputs impinging onto spines with small head volumes (≤0.09 μm3 ) generate voltage responses and calcium signals within the spine head itself that are significantly larger than those observed in spines with larger head volumes, sufficient to activate spine BK channels and suppress EPSPs.
Collapse
Affiliation(s)
- Sabrina Tazerart
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Maxime G Blanchard
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Soledad Miranda-Rottmann
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Diana E Mitchell
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Bruno Navea Pina
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| | - Connon I Thomas
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Roberto Araya
- Département de Neurosciences, Université de Montréal, Montréal, Canada.,The CHU Sainte-Justine Research Center, Montréal, Canada
| |
Collapse
|
13
|
Murphy JG, Gutzmann JJ, Lin L, Hu J, Petralia RS, Wang YX, Hoffman DA. R-type voltage-gated Ca 2+ channels mediate A-type K + current regulation of synaptic input in hippocampal dendrites. Cell Rep 2022; 38:110264. [PMID: 35045307 PMCID: PMC10496648 DOI: 10.1016/j.celrep.2021.110264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023] Open
Abstract
The subthreshold voltage-gated transient K+ current (IA) carried by pore-forming Kv4.2 subunits regulates the propagation of synaptic input, dendritic excitability, and synaptic plasticity in CA1 pyramidal neuron dendrites of the hippocampus. We report that the Ca2+ channel subunit Cav2.3 regulates IA in this cell type. We initially identified Cav2.3 as a Kv4.2-interacting protein in a proteomic screen and we confirmed Cav2.3-Kv4.2 complex association using multiple techniques. Functionally, Cav2.3 Ca2+-entry increases Kv4.2-mediated whole-cell current due to an increase in Kv4.2 surface expression. Using pharmacology and Cav2.3 knockout mice, we show that Cav2.3 regulates the dendritic gradient of IA. Furthermore, the loss of Cav2.3 function leads to the enhancement of AMPA receptor-mediated synaptic currents and NMDA receptor-mediated spine Ca2+ influx. These results propose that Cav2.3 and Kv4.2 are integral constituents of an ion channel complex that affects synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jakob J Gutzmann
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lin Lin
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiahua Hu
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Tsubo T. Analysis of the mechanism of synaptic integration focusing on the charge held in the spine. Biophys Physicobiol 2022; 18:290-304. [PMID: 35004103 PMCID: PMC8685514 DOI: 10.2142/biophysico.bppb-v18.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/30/2021] [Indexed: 12/01/2022] Open
Abstract
Successful synaptic integration is said to require that multiple excitatory postsynaptic potentials (EPSPs) occur almost simultaneously over a short period of time, so that they overlap and increase. However, if brain function is based on a chain of successful synaptic integrations, then constraints on the spacing of multiple EPSP generation must be released to allow for a higher probability of successful synaptic integration. This paper demonstrates that Ca2+ ions retained in spines after EPSP generation polarize spine neck fluid and dendritic fluid as a dielectric medium, that polarization is transmitted through dendrites to the cell body (soma), that polarization is enhanced by the addition of polarization from each spine, and that I propose that synaptic integration is successful when the membrane potential, as determined by the enhanced polarization and membrane capacitance, reaches the threshold of voltage-gated Na+ channels. Furthermore, the approach taken in this study suggests that a single neuron can integrate synapses for many combinations of synaptic inputs, that successful synaptic integration depends on spine neck capacitance and spine head size, and that spines farther from the soma are able to contribute to successful synaptic integration, and led to the elucidation of a number of important issues, including the fact that inhibitory post-synapses on dendrites suppress s effectively synaptic integration.
Collapse
Affiliation(s)
- Takayoshi Tsubo
- Brain Basic Function Laboratory, Hachioji, Tokyo 192-0914, Japan
| |
Collapse
|
15
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
16
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Victor Hugo Cornejo
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Netanel Ofer
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
17
|
The glutamatergic synapse: a complex machinery for information processing. Cogn Neurodyn 2021; 15:757-781. [PMID: 34603541 DOI: 10.1007/s11571-021-09679-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain's information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.
Collapse
|
18
|
Gemin O, Serna P, Zamith J, Assendorp N, Fossati M, Rostaing P, Triller A, Charrier C. Unique properties of dually innervated dendritic spines in pyramidal neurons of the somatosensory cortex uncovered by 3D correlative light and electron microscopy. PLoS Biol 2021; 19:e3001375. [PMID: 34428203 PMCID: PMC8415616 DOI: 10.1371/journal.pbio.3001375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 09/03/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Pyramidal neurons (PNs) are covered by thousands of dendritic spines receiving excitatory synaptic inputs. The ultrastructure of dendritic spines shapes signal compartmentalization, but ultrastructural diversity is rarely taken into account in computational models of synaptic integration. Here, we developed a 3D correlative light-electron microscopy (3D-CLEM) approach allowing the analysis of specific populations of synapses in genetically defined neuronal types in intact brain circuits. We used it to reconstruct segments of basal dendrites of layer 2/3 PNs of adult mouse somatosensory cortex and quantify spine ultrastructural diversity. We found that 10% of spines were dually innervated and 38% of inhibitory synapses localized to spines. Using our morphometric data to constrain a model of synaptic signal compartmentalization, we assessed the impact of spinous versus dendritic shaft inhibition. Our results indicate that spinous inhibition is locally more efficient than shaft inhibition and that it can decouple voltage and calcium signaling, potentially impacting synaptic plasticity.
Collapse
Affiliation(s)
- Olivier Gemin
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Pablo Serna
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Joseph Zamith
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Nora Assendorp
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Matteo Fossati
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Antoine Triller
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| | - Cécile Charrier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
19
|
Wang M, Yoon G, Song J, Jo J. Exendin-4 improves long-term potentiation and neuronal dendritic growth in vivo and in vitro obesity condition. Sci Rep 2021; 11:8326. [PMID: 33859286 PMCID: PMC8050263 DOI: 10.1038/s41598-021-87809-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome, which increases the risk of obesity and type 2 diabetes has emerged as a significant issue worldwide. Recent studies have highlighted the relationship between metabolic imbalance and neurological pathologies such as memory loss. Glucagon-like peptide 1 (GLP-1) secreted from gut L-cells and specific brain nuclei plays multiple roles including regulation of insulin sensitivity, inflammation and synaptic plasticity. Although GLP-1 and GLP-1 receptor agonists appear to have neuroprotective function, the specific mechanism of their action in brain remains unclear. We investigated whether exendin-4, as a GLP-1RA, improves cognitive function and brain insulin resistance in metabolic-imbalanced mice fed a high-fat diet. Considering the result of electrophysiological experiments, exendin-4 inhibits the reduction of long term potentiation (LTP) in high fat diet mouse brain. Further, we identified the neuroprotective effect of exendin-4 in primary cultured hippocampal and cortical neurons in in vitro metabolic imbalanced condition. Our results showed the improvement of IRS-1 phosphorylation, neuronal complexity, and the mature of dendritic spine shape by exendin-4 treatment in metabolic imbalanced in vitro condition. Here, we provides significant evidences on the effect of exendin-4 on synaptic plasticity, long-term potentiation, and neural structure. We suggest that GLP-1 is important to treat neuropathology caused by metabolic syndrome.
Collapse
Affiliation(s)
- Ming Wang
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
| | - Gwangho Yoon
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea
| | - Juhyun Song
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, 58128, Republic of Korea.
| | - Jihoon Jo
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 seoyangro, Hwasun, 58128, Republic of Korea.
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.
- Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
20
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
21
|
Maneshi MM, Toth AB, Ishii T, Hori K, Tsujikawa S, Shum AK, Shrestha N, Yamashita M, Miller RJ, Radulovic J, Swanson GT, Prakriya M. Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca 2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Rep 2020; 33:108464. [PMID: 33264616 PMCID: PMC7832685 DOI: 10.1016/j.celrep.2020.108464] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Store-operated Orai1 calcium channels function as highly Ca2+-selective ion channels and are broadly expressed in many tissues including the central nervous system, but their contributions to cognitive processing are largely unknown. Here, we report that many measures of synaptic, cellular, and behavioral models of learning are markedly attenuated in mice lacking Orai1 in forebrain excitatory neurons. Results with focal glutamate uncaging in hippocampal neurons support an essential role of Orai1 channels in amplifying NMDA-receptor-induced dendritic Ca2+ transients that drive activity-dependent spine morphogenesis and long-term potentiation at Schaffer collateral-CA1 synapses. Consistent with these signaling roles, mice lacking Orai1 in pyramidal neurons (but not interneurons) exhibit striking deficits in working and associative memory tasks. These findings identify Orai1 channels as essential regulators of dendritic spine Ca2+ signaling, synaptic plasticity, and cognition.
Collapse
Affiliation(s)
- Mohammad Mehdi Maneshi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna B Toth
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshiyuki Ishii
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrew K Shum
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nisha Shrestha
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jelena Radulovic
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Lee CT, Laughlin JG, Angliviel de La Beaumelle N, Amaro RE, McCammon JA, Ramamoorthi R, Holst M, Rangamani P. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries. PLoS Comput Biol 2020; 16:e1007756. [PMID: 32251448 PMCID: PMC7162555 DOI: 10.1371/journal.pcbi.1007756] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 04/16/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the finite element method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.
Collapse
Affiliation(s)
- Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Justin G. Laughlin
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Nils Angliviel de La Beaumelle
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Ravi Ramamoorthi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Michael Holst
- Department of Mathematics, University of California, San Diego, La Jolla, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
23
|
Mendes A, Vignoud G, Perez S, Perrin E, Touboul J, Venance L. Concurrent Thalamostriatal and Corticostriatal Spike-Timing-Dependent Plasticity and Heterosynaptic Interactions Shape Striatal Plasticity Map. Cereb Cortex 2020; 30:4381-4401. [DOI: 10.1093/cercor/bhaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The striatum integrates inputs from the cortex and thalamus, which display concomitant or sequential activity. The striatum assists in forming memory, with acquisition of the behavioral repertoire being associated with corticostriatal (CS) plasticity. The literature has mainly focused on that CS plasticity, and little remains known about thalamostriatal (TS) plasticity rules or CS and TS plasticity interactions. We undertook here the study of these plasticity rules. We found bidirectional Hebbian and anti-Hebbian spike-timing-dependent plasticity (STDP) at the thalamic and cortical inputs, respectively, which were driving concurrent changes at the striatal synapses. Moreover, TS- and CS-STDP induced heterosynaptic plasticity. We developed a calcium-based mathematical model of the coupled TS and CS plasticity, and simulations predict complex changes in the CS and TS plasticity maps depending on the precise cortex–thalamus–striatum engram. These predictions were experimentally validated using triplet-based STDP stimulations, which revealed the significant remodeling of the CS-STDP map upon TS activity, which is notably the induction of the LTD areas in the CS-STDP for specific timing regimes. TS-STDP exerts a greater influence on CS plasticity than CS-STDP on TS plasticity. These findings highlight the major impact of precise timing in cortical and thalamic activity for the memory engram of striatal synapses.
Collapse
Affiliation(s)
- Alexandre Mendes
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, 75005, France
| | - Gaetan Vignoud
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, 75005, France
- Department of Mathematics, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 2454-9110, USA
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, 75005, France
| | - Elodie Perrin
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, 75005, France
| | - Jonathan Touboul
- Department of Mathematics, Volen National Center for Complex Systems, Brandeis University, Waltham, MA 2454-9110, USA
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, 75005, France
| |
Collapse
|
24
|
Abstract
Synaptic plasticity, the activity-dependent change in neuronal connection strength, has long been considered an important component of learning and memory. Computational and engineering work corroborate the power of learning through the directed adjustment of connection weights. Here we review the fundamental elements of four broadly categorized forms of synaptic plasticity and discuss their functional capabilities and limitations. Although standard, correlation-based, Hebbian synaptic plasticity has been the primary focus of neuroscientists for decades, it is inherently limited. Three-factor plasticity rules supplement Hebbian forms with neuromodulation and eligibility traces, while true supervised types go even further by adding objectives and instructive signals. Finally, a recently discovered hippocampal form of synaptic plasticity combines the above elements, while leaving behind the primary Hebbian requirement. We suggest that the effort to determine the neural basis of adaptive behavior could benefit from renewed experimental and theoretical investigation of more powerful directed types of synaptic plasticity.
Collapse
Affiliation(s)
- Jeffrey C Magee
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA;
| | - Christine Grienberger
- Department of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
25
|
Ali F, Kwan AC. Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. NEUROPHOTONICS 2020; 7:011402. [PMID: 31372367 PMCID: PMC6664352 DOI: 10.1117/1.nph.7.1.011402] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Calcium imaging is emerging as a popular technique in neuroscience. A major reason is that intracellular calcium transients are reflections of electrical events in neurons. For example, calcium influx in the soma and axonal boutons accompanies spiking activity, whereas elevations in dendrites and dendritic spines are associated with synaptic inputs and local regenerative events. However, calcium transients have complex spatiotemporal dynamics, and since most optical methods visualize only one of the somatic, axonal, and dendritic compartments, a straightforward inference of the underlying electrical event is typically challenging. We highlight experiments that have directly calibrated in vivo calcium signals recorded using fluorescent indicators against electrophysiological events. We address commonly asked questions such as: Can calcium imaging be used to characterize neurons with high firing rates? Can the fluorescent signal report a decrease in spiking activity? What is the evidence that calcium transients in subcellular compartments correspond to distinct presynaptic axonal and postsynaptic dendritic events? By reviewing the empirical evidence and limitations, we suggest that, despite some caveats, calcium imaging is a versatile method to characterize a variety of neuronal events in vivo.
Collapse
Affiliation(s)
- Farhan Ali
- Yale University, Department of Psychiatry, School of Medicine, New Haven, Connecticut, United States
| | - Alex C. Kwan
- Yale University, Department of Psychiatry, School of Medicine, New Haven, Connecticut, United States
- Yale University, Department of Neuroscience, School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
26
|
Coincidence Detection within the Excitable Rat Olfactory Bulb Granule Cell Spines. J Neurosci 2019; 39:584-595. [PMID: 30674614 DOI: 10.1523/jneurosci.1798-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
In the mammalian olfactory bulb, the inhibitory axonless granule cells (GCs) feature reciprocal synapses that interconnect them with the principal neurons of the bulb, mitral, and tufted cells. These synapses are located within large excitable spines that can generate local action potentials (APs) upon synaptic input ("spine spike"). Moreover, GCs can fire global APs that propagate throughout the dendrite. Strikingly, local postsynaptic Ca2+ entry summates mostly linearly with Ca2+ entry due to coincident global APs generated by glomerular stimulation, although some underlying conductances should be inactivated. We investigated this phenomenon by constructing a compartmental GC model to simulate the pairing of local and global signals as a function of their temporal separation Δt. These simulations yield strongly sublinear summation of spine Ca2+ entry for the case of perfect coincidence Δt = 0 ms. Summation efficiency (SE) sharply rises for both positive and negative Δt. The SE reduction for coincident signals depends on the presence of voltage-gated Na+ channels in the spine head, while NMDARs are not essential. We experimentally validated the simulated SE in slices of juvenile rat brain (both sexes) by pairing two-photon uncaging of glutamate at spines and APs evoked by somatic current injection at various intervals Δt while imaging spine Ca2+ signals. Finally, the latencies of synaptically evoked global APs and EPSPs were found to correspond to Δt ≈ 10 ms, explaining the observed approximately linear summation of synaptic local and global signals. Our results provide additional evidence for the existence of the GC spine spike.SIGNIFICANCE STATEMENT Here we investigate the interaction of local synaptic inputs and global activation of a neuron by a backpropagating action potential within a dendritic spine with respect to local Ca2+ signaling. Our system of interest, the reciprocal spine of the olfactory bulb granule cell, is known to feature a special processing mode, namely, a synaptically triggered action potential that is restricted to the spine head. Therefore, coincidence detection of local and global signals follows different rules than in more conventional synapses. We unravel these rules using both simulations and experiments and find that signals coincident within ≈±7 ms around 0 ms result in sublinear summation of Ca2+ entry because of synaptic activation of voltage-gated Na+ channels within the spine.
Collapse
|
27
|
Mitchell DE, Martineau É, Tazerart S, Araya R. Probing Single Synapses via the Photolytic Release of Neurotransmitters. Front Synaptic Neurosci 2019; 11:19. [PMID: 31354469 PMCID: PMC6640007 DOI: 10.3389/fnsyn.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of two-photon microscopy has revolutionized our understanding of how synapses are formed and how they transform synaptic inputs in dendritic spines-tiny protrusions that cover the dendrites of pyramidal neurons that receive most excitatory synaptic information in the brain. These discoveries have led us to better comprehend the neuronal computations that take place at the level of dendritic spines as well as within neuronal circuits with unprecedented resolution. Here, we describe a method that uses a two-photon (2P) microscope and 2P uncaging of caged neurotransmitters for the activation of single and multiple spines in the dendrites of cortical pyramidal neurons. In addition, we propose a cost-effective description of the components necessary for the construction of a one laser source-2P microscope capable of nearly simultaneous 2P uncaging of neurotransmitters and 2P calcium imaging of the activated spines and nearby dendrites. We provide a brief overview on how the use of these techniques have helped researchers in the last 15 years unravel the function of spines in: (a) information processing; (b) storage; and (c) integration of excitatory synaptic inputs.
Collapse
Affiliation(s)
- Diana E. Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Éric Martineau
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
28
|
Eskandary A, Moazedi AA, Najaph Zade H, Akhond MR. Effects of Donepezil Hydrochloride on Neuronal Response of Pyramidal Neurons of the CA1 Hippocampus in Rat Model of Alzheimer's Disease. Basic Clin Neurosci 2019; 10:109-117. [PMID: 31031898 PMCID: PMC6484192 DOI: 10.32598/bcn.9.10.305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/25/2018] [Accepted: 11/10/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Donepezil (DON), an Acetylcholinesterase Inhibitor (AChEI), is widely used in the treatment of Alzheimer's Disease (AD). The current study aimed at evaluating the effect of donepezil hydrochloride on pyramidal neuron response in CA1 region of a rat model of AD. Methods In the current experimental study, adult male Wistar rats were randomly divided into four groups: Nucleus Basalis Magnocellularis (NBM) lesion (the lesions were induced by an electrical method of 0.5 m A, for 3 s in NBM) and three donepezil groups (lesions plus 5, 10, and 15 mg/kg donepezil intraperitoneal injection). Neuronal spontaneous activity to injection of the donepezil and saline were recorded in CA1 region of hippocampal. Results The obtained results showed that IntraPeritoneal (IP) injection of donepezil (10 and 15 mg/kg) increased neuronal spontaneous activity in the rat model of AD. Conclusion The current study results suggested that acute IP injection of donepezil increased neuronal response in CA1 region of hippocampal in a rat model of AD.
Collapse
Affiliation(s)
- Azade Eskandary
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ahmad Ali Moazedi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hosein Najaph Zade
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohamad Reza Akhond
- Department of Statistics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
29
|
More JY, Bruna BA, Lobos PE, Galaz JL, Figueroa PL, Namias S, Sánchez GL, Barrientos GC, Valdés JL, Paula-Lima AC, Hidalgo C, Adasme T. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory. Antioxid Redox Signal 2018; 29:1125-1146. [PMID: 29357673 DOI: 10.1089/ars.2017.7277] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.
Collapse
Affiliation(s)
- Jamileth Y More
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Barbara A Bruna
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pedro E Lobos
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Galaz
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula L Figueroa
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Silvia Namias
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina L Sánchez
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Genaro C Barrientos
- 2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José L Valdés
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile
| | - Andrea C Paula-Lima
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,4 Institute for Research in Dental Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,2 Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile .,3 Department of Neuroscience, Faculty of Medicine, Universidad de Chile , Santiago, Chile .,5 Center for Exercise , Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Tatiana Adasme
- 1 Biomedical Neuroscience Institute , Faculty of Medicine, Universidad de Chile, Santiago, Chile .,6 Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins , Santiago, Chile
| |
Collapse
|
30
|
Sancho L, Bloodgood BL. Functional Distinctions between Spine and Dendritic Synapses Made onto Parvalbumin-Positive Interneurons in Mouse Cortex. Cell Rep 2018; 24:2075-2087. [DOI: 10.1016/j.celrep.2018.07.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 07/19/2018] [Indexed: 11/29/2022] Open
|
31
|
Theis AK, Rózsa B, Katona G, Schmitz D, Johenning FW. Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function. Front Cell Neurosci 2018; 12:109. [PMID: 29755321 PMCID: PMC5932410 DOI: 10.3389/fncel.2018.00109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs). For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T- and R-type VGCCs were the dominant depolarization-associated Ca2+conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
Collapse
Affiliation(s)
- Anne-Kathrin Theis
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Gergely Katona
- Faculty of Information Technology and Bionics, Pázmány Péter University, Budapest, Hungary
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany.,Cluster of Excellence "Neurocure", Berlin, Germany.,DZNE-German Center for Neurodegenerative Disease, Berlin, Germany
| | - Friedrich W Johenning
- Neuroscience Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
32
|
McDonough PM, Prigozhina NL, Basa RCB, Price JH. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment. Assay Drug Dev Technol 2018; 15:220-236. [PMID: 28723268 DOI: 10.1089/adt.2017.797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Postchemotherapy cognitive impairment (PCCI) is commonly exhibited by cancer patients treated with a variety of chemotherapeutic agents, including the endocrine disruptor tamoxifen (TAM). The etiology of PCCI is poorly understood. Our goal was to develop high-throughput assay methods to test the effects of chemicals on neuronal function applicable to PCCI. Rat hippocampal neurons (RHNs) were plated in 96- or 384-well dishes and exposed to test compounds (forskolin [FSK], 17β-estradiol [ES]), TAM or fulvestrant [FUL], aka ICI 182,780) for 6-14 days. Kinetic Image Cytometry™ (KIC™) methods were developed to quantify spontaneously occurring intracellular calcium transients representing the activity of the neurons, and high-content analysis (HCA) methods were developed to quantify the expression, colocalization, and puncta formed by synaptic proteins (postsynaptic density protein-95 [PSD-95] and presynaptic protein Synapsin-1 [Syn-1]). As quantified by KIC, FSK increased the occurrence and synchronization of the calcium transients indicating stimulatory effects on RHN activity, whereas TAM had inhibitory effects. As quantified by HCA, FSK also increased PSD-95 puncta and PSD-95:Syn-1 colocalization, whereas ES increased the puncta of both PSD-95 and Syn-1 with little effect on colocalization. The estrogen receptor antagonist FUL also increased PSD-95 puncta. In contrast, TAM reduced Syn-1 and PSD-95:Syn-1 colocalization, consistent with its inhibitory effects on the calcium transients. Thus TAM reduced activity and synapse formation by the RHNs, which may relate to the ability of this agent to cause PCCI. The results illustrate that KIC and HCA can be used to quantify neurotoxic and neuroprotective effects of chemicals in RHNs to investigate mechanisms and potential therapeutics for PCCI.
Collapse
Affiliation(s)
| | | | | | - Jeffrey H Price
- 1 Vala Sciences Inc. , San Diego, California.,3 The Scintillon Institute , San Diego, California
| |
Collapse
|
33
|
Beaulieu-Laroche L, Harnett MT. Dendritic Spines Prevent Synaptic Voltage Clamp. Neuron 2017; 97:75-82.e3. [PMID: 29249288 DOI: 10.1016/j.neuron.2017.11.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 11/27/2022]
Abstract
Synapses are the fundamental units of information processing in the mammalian brain. Much of our understanding of their functional properties comes from voltage-clamp analysis, the predominant approach for investigating synaptic physiology. Here, we reveal that voltage clamp is completely ineffective for most excitatory synapses due to spine electrical compartmentalization. Under local dendritic voltage clamp, single-spine activation produced large spine head depolarizations that severely distorted measurements and recruited voltage-dependent channels. To overcome these voltage-clamp errors, we developed an approach to provide new, accurate measurements of synaptic conductance. Single-synapse AMPA conductance was much larger than previously appreciated, producing saturation effects on synaptic currents. We conclude that electrical compartmentalization profoundly shapes both synaptic function and how that function can be assessed with electrophysiological methods.
Collapse
Affiliation(s)
- Lou Beaulieu-Laroche
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mark T Harnett
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Henry FE, Hockeimer W, Chen A, Mysore SP, Sutton MA. Mechanistic target of rapamycin is necessary for changes in dendritic spine morphology associated with long-term potentiation. Mol Brain 2017; 10:50. [PMID: 29084578 PMCID: PMC5663037 DOI: 10.1186/s13041-017-0330-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/18/2017] [Indexed: 11/10/2022] Open
Abstract
Alterations in the strength of excitatory synapses in the hippocampus is believed to serve a vital function in the storage and recall of new information in the mammalian brain. These alterations involve the regulation of both functional and morphological features of dendritic spines, the principal sites of excitatory synaptic contact. New protein synthesis has been implicated extensively in the functional changes observed following long-term potentiation (LTP), and changes to spine morphology have similarly been documented extensively following synaptic potentiation. However, mechanistic links between de novo translation and the structural changes of potentiated spines are less clear. Here, we assess explicitly the potential contribution of new protein translation under control of the mechanistic target of rapamycin (mTOR) to LTP-associated changes in spine morphology. Utilizing genetic and pharmacological manipulations of mTORC1 function in combination with confocal microscopy in live dissociated hippocampal cultures, we demonstrate that chemically-induced LTP (cLTP) requires do novo protein synthesis and intact mTORC1 signaling. We observed a striking diversity in response properties across morphological classes, with mushroom spines displaying a particular sensitivity to altered mTORC1 signaling across varied levels of synaptic activity. Notably, while pharmacological inhibition of mTORC1 signaling significantly diminished glycine-induced changes in spine morphology, transient genetic upregulation of mTORC1 signaling was insufficient to produce spine enlargements on its own. In contrast, genetic upregulation of mTORC1 signaling promoted rapid expansion in spine head diameter when combined with otherwise sub-threshold synaptic stimulation. These results suggest that synaptic activity-derived signaling pathways act in combination with mTORC1-dependent translational control mechanisms to ultimately regulate changes in spine morphology. As several monogenic neurodevelopmental disorders with links to Autism and Intellectual Disability share a common feature of dysregulated mTORC1 signaling, further understanding of the role of this signaling pathway in regulating synapse function and morphology will be essential in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Fredrick E Henry
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - William Hockeimer
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shreesh P Mysore
- Department of Pyschological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Michael A Sutton
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA. .,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA. .,Molecular and Behavioral Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, 5067 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
35
|
Increased Prevalence of Calcium Transients across the Dendritic Arbor during Place Field Formation. Neuron 2017; 96:490-504.e5. [PMID: 29024668 DOI: 10.1016/j.neuron.2017.09.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Hippocampal place cell ensembles form a cognitive map of space during exposure to novel environments. However, surprisingly little evidence exists to support the idea that synaptic plasticity in place cells is involved in forming new place fields. Here we used high-resolution functional imaging to determine the signaling patterns in CA1 soma, dendrites, and axons associated with place field formation when mice are exposed to novel virtual environments. We found that putative local dendritic spikes often occur prior to somatic place field firing. Subsequently, the first occurrence of somatic place field firing was associated with widespread regenerative dendritic events, which decreased in prevalence with increased novel environment experience. This transient increase in regenerative events was likely facilitated by a reduction in dendritic inhibition. Since regenerative dendritic events can provide the depolarization necessary for Hebbian potentiation, these results suggest that activity-dependent synaptic plasticity underlies the formation of many CA1 place fields.
Collapse
|
36
|
Sodium Dynamics in Pyramidal Neuron Dendritic Spines: Synaptically Evoked Entry Predominantly through AMPA Receptors and Removal by Diffusion. J Neurosci 2017; 37:9964-9976. [PMID: 28904093 DOI: 10.1523/jneurosci.1758-17.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 11/21/2022] Open
Abstract
Dendritic spines are key elements underlying synaptic integration and cellular plasticity, but many features of these important structures are not known or are controversial. We examined these properties using newly developed simultaneous sodium and calcium imaging with single-spine resolution in pyramidal neurons in rat hippocampal slices from either sex. Indicators for both ions were loaded through the somatic patch pipette, which also recorded electrical responses. Fluorescence changes were detected with a high-speed, low-noise CCD camera. Following subthreshold electrical stimulation, postsynaptic sodium entry is almost entirely through AMPA receptors with little contribution from entry through NMDA receptors or voltage-gated sodium channels. Sodium removal from the spine head is through rapid diffusion out to the dendrite through the spine neck with a half-removal time of ∼16 ms, which suggests the neck has low resistance. Peak [Na+]i changes during single EPSPs are ∼5 mm Stronger electrical stimulation evoked small plateau potentials that had significant longer-lasting localized [Na+]i increases mediated through NMDA receptors.SIGNIFICANCE STATEMENT Dendritic spines, small structures that are difficult to investigate, are important elements in the fundamental processes of synaptic integration and plasticity. The main tool for examining these structures has been calcium imaging. However, the kinds of information that calcium imaging reveals is limited. We used newly developed, high-speed, simultaneous sodium and calcium imaging to examine ion dynamics in spines in hippocampal pyramidal neurons. We found that following single subthreshold synaptic activation most sodium entry was through AMPA receptors and not through NMDA receptors or through voltage-gated sodium channels and that the spine neck is not a significant resistance barrier. Most spine mechanisms are linear. However, regenerative NMDA conductances can be activated with stronger stimulation.
Collapse
|
37
|
Pchelintseva E, Djamgoz MBA. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels. J Cell Physiol 2017; 233:3755-3768. [PMID: 28776687 DOI: 10.1002/jcp.26120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in modern medicine for which understanding the mechanisms controlling their differentiation is fundamental. Ion channels offer novel insights to this process because of their role in modulating membrane potential and intracellular milieu. Here, we evaluate the contribution of calcium-activated potassium (KCa ) channels to the three main components of MSC differentiation: initiation, proliferation, and migration. First, we demonstrate the importance of the membrane potential (Vm ) and the apparent association of hyperpolarization with differentiation. Of KCa subtypes, most evidence points to activity of big-conductance channels in inducing initiation. On the other hand, intermediate-conductance currents have been shown to promote progression through the cell cycle. While there is no information on the role of KCa channels in migration of MSCs, work from other stem cells and cancer cells suggest that intermediate-conductance and to a lesser extent big-conductance channels drive migration. In all cases, these effects depend on species, tissue origin and lineage. Finally, we present a conceptual model that demonstrates how KCa activity could influence differentiation by regulating Vm and intracellular Ca2+ oscillations. We conclude that KCa channels have significant involvement in MSC differentiation and could potentially enable novel tissue engineering approaches and therapies.
Collapse
Affiliation(s)
- Ekaterina Pchelintseva
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK.,Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, Neuroscience Solution to Cancer Research Group, London, UK
| |
Collapse
|
38
|
Titley HK, Brunel N, Hansel C. Toward a Neurocentric View of Learning. Neuron 2017; 95:19-32. [PMID: 28683265 PMCID: PMC5519140 DOI: 10.1016/j.neuron.2017.05.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/29/2023]
Abstract
Synaptic plasticity (e.g., long-term potentiation [LTP]) is considered the cellular correlate of learning. Recent optogenetic studies on memory engram formation assign a critical role in learning to suprathreshold activation of neurons and their integration into active engrams ("engram cells"). Here we review evidence that ensemble integration may result from LTP but also from cell-autonomous changes in membrane excitability. We propose that synaptic plasticity determines synaptic connectivity maps, whereas intrinsic plasticity-possibly separated in time-amplifies neuronal responsiveness and acutely drives engram integration. Our proposal marks a move away from an exclusively synaptocentric toward a non-exclusive, neurocentric view of learning.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nicolas Brunel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Jayant K, Hirtz JJ, Plante IJL, Tsai DM, De Boer WDAM, Semonche A, Peterka DS, Owen JS, Sahin O, Shepard KL, Yuste R. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. NATURE NANOTECHNOLOGY 2017; 12:335-342. [PMID: 27941898 PMCID: PMC5901699 DOI: 10.1038/nnano.2016.268] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/02/2016] [Indexed: 05/21/2023]
Abstract
Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.
Collapse
Affiliation(s)
- Krishna Jayant
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Correspondence and requests for materials should be addressed to K.J.,
| | - Jan J. Hirtz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Ilan Jen-La Plante
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - David M. Tsai
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Wieteke D. A. M. De Boer
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Alexa Semonche
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Darcy S. Peterka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| | - Jonathan S. Owen
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
- Department of Biomedical Engineering, New York, New York 10027, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
- NeuroTechnology Center, Columbia University, New York, New York 10027, USA
- Kavli Institute of Brain Science, Columbia University, New York, New York 10027, USA
| |
Collapse
|
40
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
41
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
42
|
EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro 2016; 3:eN-NWR-0050-15. [PMID: 27257618 PMCID: PMC4874537 DOI: 10.1523/eneuro.0050-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 12/16/2022] Open
Abstract
EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5–30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23–420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean Rneck estimate of 204 MΩ (range, 52–521 MΩ; N = 34).
Collapse
|
43
|
Hage TA, Sun Y, Khaliq ZM. Electrical and Ca(2+) signaling in dendritic spines of substantia nigra dopaminergic neurons. eLife 2016; 5. [PMID: 27163179 PMCID: PMC4900803 DOI: 10.7554/elife.13905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca(2+) imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca(2+) signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca(2+) signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca(2+) midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca(2+) signaling during pacemaking.
Collapse
Affiliation(s)
- Travis A Hage
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Yujie Sun
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Zayd M Khaliq
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
44
|
Weber JP, Andrásfalvy BK, Polito M, Magó Á, Ujfalussy BB, Makara JK. Location-dependent synaptic plasticity rules by dendritic spine cooperativity. Nat Commun 2016; 7:11380. [PMID: 27098773 PMCID: PMC4844677 DOI: 10.1038/ncomms11380] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/18/2016] [Indexed: 11/09/2022] Open
Abstract
Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns.
Collapse
Affiliation(s)
- Jens P Weber
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - Bertalan K Andrásfalvy
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - Marina Polito
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - Ádám Magó
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - Balázs B Ujfalussy
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | - Judit K Makara
- Momentum Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| |
Collapse
|
45
|
Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases. Neural Plast 2016; 2016:3025948. [PMID: 26989514 PMCID: PMC4775798 DOI: 10.1155/2016/3025948] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders.
Collapse
|
46
|
Tigaret CM, Olivo V, Sadowski JHLP, Ashby MC, Mellor JR. Coordinated activation of distinct Ca(2+) sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity. Nat Commun 2016; 7:10289. [PMID: 26758963 PMCID: PMC4735496 DOI: 10.1038/ncomms10289] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023] Open
Abstract
At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. During STDP, the magnitude of postsynaptic Ca2+ transients is hypothesized to determine the strength of synaptic plasticity. Here, the authors find that STDP in mature hippocampal synapses does not obey this rule but instead relies on the coordinated activation of NMDARs and VGCCs and their regulation by mGluRs and SK channels.
Collapse
Affiliation(s)
- Cezar M Tigaret
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Valeria Olivo
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Josef H L P Sadowski
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Michael C Ashby
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
47
|
Dendritic integration: 60 years of progress. Nat Neurosci 2015; 18:1713-21. [PMID: 26605882 DOI: 10.1038/nn.4157] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Understanding how individual neurons integrate the thousands of synaptic inputs they receive is critical to understanding how the brain works. Modeling studies in silico and experimental work in vitro, dating back more than half a century, have revealed that neurons can perform a variety of different passive and active forms of synaptic integration on their inputs. But how are synaptic inputs integrated in the intact brain? With the development of new techniques, this question has recently received substantial attention, with new findings suggesting that many of the forms of synaptic integration observed in vitro also occur in vivo, including in awake animals. Here we review six decades of progress, which collectively highlights the complex ways that single neurons integrate their inputs, emphasizing the critical role of dendrites in information processing in the brain.
Collapse
|
48
|
Popovic MA, Carnevale N, Rozsa B, Zecevic D. Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat Commun 2015; 6:8436. [PMID: 26436431 PMCID: PMC4594633 DOI: 10.1038/ncomms9436] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022] Open
Abstract
Thousands of dendritic spines on individual neurons process information and mediate plasticity by generating electrical input signals using a sophisticated assembly of transmitter receptors and voltage-sensitive ion channel molecules. Our understanding, however, of the electrical behaviour of spines is limited because it has not been possible to record input signals from these structures with adequate sensitivity and spatiotemporal resolution. Current interpretation of indirect data and speculations based on theoretical considerations are inconclusive. Here we use an electrochromic voltage-sensitive dye which acts as a transmembrane optical voltmeter with a linear scale to directly monitor electrical signals from individual spines on thin basal dendrites. The results show that synapses on these spines are not electrically isolated by the spine neck to a significant extent. Electrically, they behave as if they are located directly on dendrites.
Collapse
Affiliation(s)
- Marko A Popovic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Institute for Multidisciplinary Research, Belgrade University, Belgrade 11030, Serbia
| | - Nicholas Carnevale
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Balazs Rozsa
- Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest H-1083, Hungary.,The Faculty of Information Technology, Pázmány Péter University, Budapest H-1083, Hungary
| | - Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
49
|
Abstract
The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning, and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling are regulated in a complicated manner because of geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity.
Collapse
Affiliation(s)
- Jun Nishiyama
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL 33458, USA.
| |
Collapse
|
50
|
Johenning FW, Theis AK, Pannasch U, Rückl M, Rüdiger S, Schmitz D. Ryanodine Receptor Activation Induces Long-Term Plasticity of Spine Calcium Dynamics. PLoS Biol 2015; 13:e1002181. [PMID: 26098891 PMCID: PMC4476683 DOI: 10.1371/journal.pbio.1002181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/12/2015] [Indexed: 12/16/2022] Open
Abstract
A key feature of signalling in dendritic spines is the synapse-specific transduction of short electrical signals into biochemical responses. Ca2+ is a major upstream effector in this transduction cascade, serving both as a depolarising electrical charge carrier at the membrane and an intracellular second messenger. Upon action potential firing, the majority of spines are subject to global back-propagating action potential (bAP) Ca2+ transients. These transients translate neuronal suprathreshold activation into intracellular biochemical events. Using a combination of electrophysiology, two-photon Ca2+ imaging, and modelling, we demonstrate that bAPs are electrochemically coupled to Ca2+ release from intracellular stores via ryanodine receptors (RyRs). We describe a new function mediated by spine RyRs: the activity-dependent long-term enhancement of the bAP-Ca2+ transient. Spines regulate bAP Ca2+ influx independent of each other, as bAP-Ca2+ transient enhancement is compartmentalized and independent of the dendritic Ca2+ transient. Furthermore, this functional state change depends exclusively on bAPs travelling antidromically into dendrites and spines. Induction, but not expression, of bAP-Ca2+ transient enhancement is a spine-specific function of the RyR. We demonstrate that RyRs can form specific Ca2+ signalling nanodomains within single spines. Functionally, RyR mediated Ca2+ release in these nanodomains induces a new form of Ca2+ transient plasticity that constitutes a spine specific storage mechanism of neuronal suprathreshold activity patterns. A combination of two-photon calcium imaging, electrophysiology, and modelling shows how ryanodine receptors (a type of intracellular calcium channel) generate a signalling nanodomain within individual dendritic spines, enabling compartmentalized plasticity of calcium dynamics. Experiences change neuronal circuits, and these circuit changes outlast the initial experiences. This means that, in neurons, the fast electrical activity encoding experiences needs to be transduced into longer-lived biochemical and structural changes. A key mediator between these two timescales of neuronal activity is the Ca2+ ion. Ca2+ serves both as an electric charge carrier mediating fast voltage changes at the membrane and as a second messenger activating intracellular signalling cascades. Even within the spatial confines of dendritic spines, the specialized domains of dendrites that receive synaptic connections, Ca2+ encodes a versatile array of specific functions. In this study, we first demonstrate that voltage-gated Ca2+ channels and ryanodine receptors, intracellular channels located on the membrane of the endoplasmic reticulum through which Ca2+ can be released into the cytosol, are electrochemically coupled in single dendritic spines. We identify how ryanodine receptors induce enhancement of the Ca2+ influx, mediated by the opening of voltage-gated Ca2+ channels, induced by action potentials in a compartmentalized, spine-specific manner. Within the femtoliter volume of a single spine, specificity of this route of Ca2+-signalling is achieved by a signalling nanodomain centred on the ryanodine receptor. Our work stresses the role of the ryanodine receptor not only as an ion channel releasing Ca2+ from the endoplasmic reticulum but also as a macromolecular complex generating specificity of Ca2+-signalling within the spatial constraints of a single spine.
Collapse
Affiliation(s)
- Friedrich W. Johenning
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail:
| | - Anne-Kathrin Theis
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Ulrike Pannasch
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Martin Rückl
- Institute of Physics, Humboldt Universität, Berlin, Germany
| | - Sten Rüdiger
- Institute of Physics, Humboldt Universität, Berlin, Germany
| | - Dietmar Schmitz
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Cluster of Excellence ‘NeuroCure’, Charité-Universitätsmedizin, Berlin, Germany
- DZNE- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|