1
|
Litsios A, Grys BT, Kraus OZ, Friesen H, Ross C, Masinas MPD, Forster DT, Couvillion MT, Timmermann S, Billmann M, Myers C, Johnsson N, Churchman LS, Boone C, Andrews BJ. Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle. Cell 2024; 187:1490-1507.e21. [PMID: 38452761 PMCID: PMC10947830 DOI: 10.1016/j.cell.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.
Collapse
Affiliation(s)
- Athanasios Litsios
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin T Grys
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oren Z Kraus
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Catherine Ross
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Duncan T Forster
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie Timmermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | | | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; RIKEN Center for Sustainable Resource Science, Wako 351-0198 Saitama, Japan.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
González B, Mirzaei M, Basu S, Pujari AN, Vandermeulen MD, Prabhakar A, Cullen PJ. Turnover and bypass of p21-activated kinase during Cdc42-dependent MAPK signaling in yeast. J Biol Chem 2023; 299:105297. [PMID: 37774975 PMCID: PMC10641623 DOI: 10.1016/j.jbc.2023.105297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular behaviors, including the response to stress and cell differentiation, and are highly conserved across eukaryotes. MAPK pathways can be activated by the interaction between the small GTPase Cdc42p and the p21-activated kinase (Ste20p in yeast). By studying MAPK pathway regulation in yeast, we recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is regulated in a similar manner and is turned over by the 26S proteasome. This turnover did not occur when Ste20p was bound to Cdc42p, which presumably stabilized the protein to sustain MAPK pathway signaling. Although Ste20p is a major component of the fMAPK pathway, genetic approaches here identified a Ste20p-independent branch of signaling. Ste20p-independent signaling partially required the fMAPK pathway scaffold and Cdc42p-interacting protein, Bem4p, while Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p. Interestingly, Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p, Rga1p, which unexpectedly dampened basal but not active fMAPK pathway activity. These new regulatory features of the Rho GTPase and p21-activated kinase module may extend to related pathways in other systems.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mahnoosh Mirzaei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Sukanya Basu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Atindra N Pujari
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Matthew D Vandermeulen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Aditi Prabhakar
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul J Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
3
|
Gonz Lez B, Mirzaei M, Basu S, Prabhakar A, Cullen PJ. New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530426. [PMID: 36909494 PMCID: PMC10002611 DOI: 10.1101/2023.02.28.530426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
Collapse
|
4
|
Farkašovský M. Septin architecture and function in budding yeast. Biol Chem 2020; 401:903-919. [PMID: 31913844 DOI: 10.1515/hsz-2019-0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.
Collapse
Affiliation(s)
- Marian Farkašovský
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology SAS, Dubravska cesta 21, 84551 Bratislava, Slovak Republic
| |
Collapse
|
5
|
Abstract
The Rho GTPase Cdc42 is a central regulator of cell polarity in diverse cell types. The activity of Cdc42 is dynamically controlled in time and space to enable distinct polarization events, which generally occur along a single axis in response to spatial cues. Our understanding of the mechanisms underlying Cdc42 polarization has benefited largely from studies of the budding yeast Saccharomyces cerevisiae, a genetically tractable model organism. In budding yeast, Cdc42 activation occurs in two temporal steps in the G1 phase of the cell cycle to establish a proper growth site. Here, we review findings in budding yeast that reveal an intricate crosstalk among polarity proteins for biphasic Cdc42 regulation. The first step of Cdc42 activation may determine the axis of cell polarity, while the second step ensures robust Cdc42 polarization for growth. Biphasic Cdc42 polarization is likely to ensure the proper timing of events including the assembly and recognition of spatial landmarks and stepwise assembly of a new ring of septins, cytoskeletal GTP-binding proteins, at the incipient bud site. Biphasic activation of GTPases has also been observed in mammalian cells, suggesting that biphasic activation could be a general mechanism for signal-responsive cell polarization. Cdc42 activity is necessary for polarity establishment during normal cell division and development, but its activity has also been implicated in the promotion of aging. We also discuss negative polarity signaling and emerging concepts of Cdc42 signaling in cellular aging.
Collapse
Affiliation(s)
- Kristi E Miller
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Present address: Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
6
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
7
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
8
|
Brace JL, Doerfler MD, Weiss EL. A cell separation checkpoint that enforces the proper order of late cytokinetic events. J Cell Biol 2019; 218:150-170. [PMID: 30455324 PMCID: PMC6314563 DOI: 10.1083/jcb.201805100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/28/2018] [Accepted: 10/05/2018] [Indexed: 01/28/2023] Open
Abstract
Eukaryotic cell division requires dependency relationships in which late processes commence only after early ones are appropriately completed. We have discovered a system that blocks late events of cytokinesis until early ones are successfully accomplished. In budding yeast, cytokinetic actomyosin ring contraction and membrane ingression are coupled with deposition of an extracellular septum that is selectively degraded in its primary septum immediately after its completion by secreted enzymes. We find this secretion event is linked to septum completion and forestalled when the process is slowed. Delay of septum degradation requires Fir1, an intrinsically disordered protein localized to the cytokinesis site that is degraded upon septum completion but stabilized when septation is aberrant. Fir1 protects cytokinesis in part by inhibiting a separation-specific exocytosis function of the NDR/LATS kinase Cbk1, a key component of "hippo" signaling that induces mother-daughter separation. We term this system enforcement of cytokinesis order, a checkpoint ensuring proper temporal sequence of mechanistically incompatible processes of cytokinesis.
Collapse
Affiliation(s)
- Jennifer L Brace
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Matthew D Doerfler
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Eric L Weiss
- Department of Molecular Biosciences, Northwestern University, Evanston, IL
| |
Collapse
|
9
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|
10
|
Hapak SM, Rothlin CV, Ghosh S. PAR3-PAR6-atypical PKC polarity complex proteins in neuronal polarization. Cell Mol Life Sci 2018; 75:2735-2761. [PMID: 29696344 PMCID: PMC11105418 DOI: 10.1007/s00018-018-2828-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
Abstract
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3-PAR6-aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3-PAR6-aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Sophie M Hapak
- Department of Medicine, School of Medicine, University of Minnesota, 401 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Carla V Rothlin
- Department of Immunobiology, School of Medicine, Yale University, 300 Cedar Street, New Haven, CT, 06520, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Sourav Ghosh
- Department of Neurology, School of Medicine, Yale University, 300 George Street, New Haven, CT, 06511, USA
- Department of Pharmacology, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
11
|
Miller KE, Lo WC, Lee ME, Kang PJ, Park HO. Fine-tuning the orientation of the polarity axis by Rga1, a Cdc42 GTPase-activating protein. Mol Biol Cell 2017; 28:3773-3788. [PMID: 29074565 PMCID: PMC5739294 DOI: 10.1091/mbc.e17-01-0074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
In vivo and in vitro analyses reveal how a Cdc42 GTPase-activating protein (GAP) interacts with other negative polarity cues at old division sites in budding yeast. Mathematical modeling suggests that spatial distribution of a Cdc42 GAP in coordination with G1 progression is critical for fine-tuning the orientation of the polarity axis. In yeast and animal cells, signaling pathways involving small guanosine triphosphatases (GTPases) regulate cell polarization. In budding yeast, selection of a bud site directs polarity establishment and subsequently determines the plane of cell division. Rga1, a Cdc42 GTPase-activating protein, prevents budding within the division site by inhibiting Cdc42 repolarization. A protein complex including Nba1 and Nis1 is involved in preventing rebudding at old division sites, yet how these proteins and Rga1 might function in negative polarity signaling has been elusive. Here we show that Rga1 transiently localizes to the immediately preceding and older division sites by interacting with Nba1 and Nis1. The LIM domains of Rga1 are necessary for its interaction with Nba1, and loss of this interaction results in premature delocalization of Rga1 from the immediately preceding division site and, consequently, abnormal bud-site selection in daughter cells. However, such defects are minor in mother cells of these mutants, likely because the G1 phase is shorter and a new bud site is established prior to delocalization of Rga1. Indeed, our biphasic mathematical model of Cdc42 polarization predicts that premature delocalization of Rga1 leads to more frequent Cdc42 repolarization within the division site when the first temporal step in G1 is assumed to last longer. Spatial distribution of a Cdc42 GAP in coordination with G1 progression may thus be critical for fine-tuning the orientation of the polarity axis in yeast.
Collapse
Affiliation(s)
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong
| | - Mid Eum Lee
- Molecular Cellular Developmental Biology Program and
| | - Pil Jung Kang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program and .,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
12
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
13
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
14
|
Javadi A, Deevi RK, Evergren E, Blondel-Tepaz E, Baillie GS, Scott MGH, Campbell FC. PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex. eLife 2017; 6:e24578. [PMID: 28749339 PMCID: PMC5576923 DOI: 10.7554/elife.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.
Collapse
Affiliation(s)
- Arman Javadi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Ravi K Deevi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Emma Evergren
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Elodie Blondel-Tepaz
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Mark GH Scott
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Frederick C Campbell
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| |
Collapse
|
15
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
16
|
Meitinger F, Pereira G. The septin-associated kinase Gin4 recruits Gps1 to the site of cell division. Mol Biol Cell 2017; 28:883-889. [PMID: 28148650 PMCID: PMC5385937 DOI: 10.1091/mbc.e16-09-0687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/24/2023] Open
Abstract
Gps1 is a regulator of Rho GTPases during cell division. Cell cycle–regulated recruitment of Gps1 to the cell division site is under control of the conserved kinase Gin4 and the bud neck–associated protein Nba1. This biphasic recruitment is required for the spatiotemporal activation of Rho1 and inhibition of Cdc42. Cell cycle–dependent morphogenesis of unicellular organisms depends on the spatiotemporal control of cell polarity. Rho GTPases are the major players that guide cells through structural reorganizations such as cytokinesis (Rho1 dependent) and polarity establishment (Cdc42 dependent). In budding yeast, the protein Gps1 plays a pivotal role in both processes. Gps1 resides at the bud neck to maintain Rho1 localization and restrict Cdc42 activity during cytokinesis. Here we analyze how Gps1 is recruited to the bud neck during the cell cycle. We show that different regions of Gps1 and the septin-associated kinase Gin4 are involved in maintaining Gps1 at the bud neck from late G1 phase until midanaphase. From midanaphase, the targeting function of Gin4 is taken over by the bud neck–associated protein Nba1. Our data show that Gps1 is targeted to the cell division site in a biphasic manner, via Gin4 and Nba1, to control the spatiotemporal activation of Rho1 and inhibition of Cdc42.
Collapse
Affiliation(s)
- Franz Meitinger
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Abstract
Cytokinesis is essential for the survival of all organisms. It requires concerted functions of cell signaling, force production, exocytosis, and extracellular matrix remodeling. Due to the conservation in core components and mechanisms between fungal and animal cells, the budding yeast Saccharomyces cerevisiae has served as an attractive model for studying this fundamental process. In this review, we discuss the mechanics and regulation of distinct events of cytokinesis in budding yeast, including the assembly, constriction, and disassembly of the actomyosin ring, septum formation, abscission, and their spatiotemporal coordination. We also highlight the key concepts and questions that are common to animal and fungal cytokinesis.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Abstract
Genetic variation among individuals within a population provides the raw material for phenotypic diversity upon which natural selection operates. Some given variants can act on multiple standing genomic variations simultaneously and release previously inaccessible phenotypes, leading to increased adaptive potential upon challenging environments. Previously, we identified such a variant related to a tRNA nonsense suppressor in yeast. When introduced into other genetic backgrounds, the suppressor led to an increased population phenotypic variance on various culture conditions, conferring background and environment specific selective advantages. Nonetheless, most isolates are intolerant to the suppressor on rich media due to a severe fitness cost. Here, we found that the tolerance to suppressor is related to a surprising level of fitness outburst, showing a trade-off effect to accommodate the cost of carrying the suppressor. To dissect the genetic basis of such trade-offs, we crossed strains with contrasting tolerance levels on rich media, and analyzed the fitness distribution patterns in the offspring. Combining quantitative tetrad analysis and bulk segregant analysis, we identified two genes, namely MKT1 and RGA1, involved in suppressor tolerance. We showed that alleles from the tolerant parent for both genes conferred a significant gain of fitness, which increased the suppressor tolerance. Our results present a detailed dissection of suppressor tolerance in yeast and provide insights into the molecular basis of trade-offs between fitness and evolutionary potential.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
19
|
Juanes MA, Piatti S. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae. Cell Mol Life Sci 2016; 73:3115-36. [PMID: 27085703 PMCID: PMC4951512 DOI: 10.1007/s00018-016-2220-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.
Collapse
Affiliation(s)
- Maria Angeles Juanes
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Simonetta Piatti
- Centre de Recherche en Biologie Cellulaire de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
20
|
Kuznetsov E, Váchová L, Palková Z. Cellular localization of Sun4p and its interaction with proteins in the yeast birth scar. Cell Cycle 2016; 15:1898-907. [PMID: 27229769 PMCID: PMC4968892 DOI: 10.1080/15384101.2016.1189043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022] Open
Abstract
Yeast harbor several proteins with predicted glucanase activity that are potentially involved in cell wall remodeling during different processes, including mitosis. Here, we showed that 2 of these putative glucanases, Sun4p and Dse2p, co-localize to the yeast birth scar, dependently on presence of the third glucanase, Egt2p. The absence of these glucanases results in inefficient mother-daughter cell separation. The Sun4p, Dse2p and Egt2p localize to the daughter side of the bud neck, possibly forming a complex, and are involved in the separation of the virgin daughter from the mother cell during mitosis. The formation of properly assembled birth scars that delimitate cell wall area restricted in the next budding is dependent on the presence of Aim44p and its transcriptional regulator, Swi5p. AIM44 or SWI5 deletion caused the "budding within the birth scar" phenotype, together with altered localization of the birth scar proteins Sun4p and Dse2p, indicating the impairment of birth scar protein complexes.
Collapse
Affiliation(s)
- Evgeny Kuznetsov
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Libuše Váchová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Zdena Palková
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
21
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
22
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|
23
|
Meitinger F, Pereira G. Visualization of Cytokinesis Events in Budding Yeast by Transmission Electron Microscopy. Methods Mol Biol 2016; 1369:87-95. [PMID: 26519307 DOI: 10.1007/978-1-4939-3145-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In yeast cells, cytokinesis is accompanied by morphological changes due to cell wall growth during furrow ingression and abscission. The characteristics of the growing cell wall can be used as an indicator for the function of the contractile actomyosin ring, the Rho-GTPases Rho1 and Cdc42 and/or other factors that drive cytokinesis. The ultrastructural information of the cell wall can be easily acquired by transmission electron microscopy, which makes this technique an invaluable tool to analyze cell division in yeast cells. Here, we describe the process of embedding and staining budding yeast cells for transmission electron microscopic analysis of cytokinetic events.
Collapse
Affiliation(s)
- Franz Meitinger
- DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), University of Heidelberg, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Ludwig Institute for Cancer Research, 9500 Gilman Drive, CMM East, La Jolla, CA, 92093, USA
| | - Gislene Pereira
- DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), University of Heidelberg, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Lee ME, Lo WC, Miller KE, Chou CS, Park HO. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. J Cell Sci 2015; 128:2106-17. [PMID: 25908844 DOI: 10.1242/jcs.166538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/30/2015] [Indexed: 01/05/2023] Open
Abstract
Cdc42 plays a central role in establishing polarity in yeast and animals, yet how polarization of Cdc42 is achieved in response to spatial cues is poorly understood. Using live-cell imaging, we found distinct dynamics of Cdc42 polarization in haploid budding yeast in correlation with two temporal steps of the G1 phase. The position at which the Cdc42-GTP cluster develops changes rapidly around the division site during the first step but becomes stabilized in the second step, suggesting that an axis of polarized growth is determined in mid G1. Cdc42 polarization in the first step and its proper positioning depend on Rsr1 and its GTPase-activating protein (GAP) Bud2. Interestingly, Rga1, a Cdc42 GAP, exhibits transient localization to a site near the bud neck and to the division site during cytokinesis and G1, and this temporal change of Rga1 distribution is necessary for determination of a proper growth site. Mathematical modeling suggests that a proper axis of Cdc42 polarization in haploid cells might be established through a biphasic mechanism involving sequential positive feedback and transient negative feedback.
Collapse
Affiliation(s)
- Mid Eum Lee
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Wing-Cheong Lo
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Kristi E Miller
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Ching-Shan Chou
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Prolactin-induced protein is required for cell cycle progression in breast cancer. Neoplasia 2015; 16:329-42.e1-14. [PMID: 24862759 DOI: 10.1016/j.neo.2014.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/06/2014] [Accepted: 03/24/2014] [Indexed: 11/21/2022] Open
Abstract
Prolactin-induced protein (PIP) is expressed in the majority of breast cancers and is used for the diagnostic evaluation of this disease as a characteristic biomarker; however, the molecular mechanisms of PIP function in breast cancer have remained largely unknown. In this study, we carried out a comprehensive investigation of PIP function using PIP silencing in a broad group of breast cancer cell lines, analysis of expression microarray data, proteomic analysis using mass spectrometry, and biomarker studies on breast tumors. We demonstrated that PIP is required for the progression through G1 phase, mitosis, and cytokinesis in luminal A, luminal B, and molecular apocrine breast cancer cells. In addition, PIP expression is associated with a transcriptional signature enriched with cell cycle genes and regulates key genes in this process including cyclin D1, cyclin B1, BUB1, and forkhead box M1 (FOXM1). It is notable that defects in mitotic transition and cytokinesis following PIP silencing are accompanied by an increase in aneuploidy of breast cancer cells. Importantly, we have identified novel PIP-binding partners in breast cancer and shown that PIP binds to β-tubulin and is necessary for microtubule polymerization. Furthermore, PIP interacts with actin-binding proteins including Arp2/3 and is needed for inside-out activation of integrin-β1 mediated through talin. This study suggests that PIP is required for cell cycle progression in breast cancer and provides a rationale for exploring PIP inhibition as a therapeutic approach in breast cancer that can potentially target microtubule polymerization.
Collapse
|
26
|
Schuberth C, Wedlich-Söldner R. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:767-74. [PMID: 25541280 DOI: 10.1016/j.bbamcr.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/01/2014] [Accepted: 12/14/2014] [Indexed: 01/03/2023]
Abstract
The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Christian Schuberth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany.
| |
Collapse
|
27
|
Abstract
Cell polarity establishment has been studied in great detail, but much less is known about mechanisms that prevent polarization. Reporting recently in Cell, Meitinger et al. (2014) identify an elaborate mechanism in yeast cells that efficiently inhibits Cdc42 activation in cytokinesis remnants. Failure of this "anti-polarization" memory increases replicative aging.
Collapse
Affiliation(s)
- Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging and Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Von Esmarchstrasse 56, 48149 Muenster, Germany.
| |
Collapse
|
28
|
Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G. A memory system of negative polarity cues prevents replicative aging. Cell 2014; 159:1056-1069. [PMID: 25416945 DOI: 10.1016/j.cell.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Cdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a two-step mechanism of loading the Cdc42 antagonist Nba1 into CRMs to mark these compartments as refractory for a second round of Cdc42 activation. Our data indicate that Nba1 together with a cortically tethered adaptor protein confers memory of previous polarization events to translate this spatial legacy into a biochemical signal that ensures the local singularity of Cdc42 activation. "Memory loss" mutants that repeatedly use the same polarity site over multiple generations display nuclear segregation defects and a shorter lifespan. Our work thus established CRMs as negative polarity cues that prevent Cdc42 reactivation to sustain the fitness of replicating cells.
Collapse
Affiliation(s)
- Franz Meitinger
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Anton Khmelinskii
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Saravanan Palani
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Amparo Andres-Pons
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Birgit Hub
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| |
Collapse
|
29
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
30
|
Wolken DMA, McInnes J, Pon LA. Aim44p regulates phosphorylation of Hof1p to promote contractile ring closure during cytokinesis in budding yeast. Mol Biol Cell 2014; 25:753-62. [PMID: 24451263 PMCID: PMC3952846 DOI: 10.1091/mbc.e13-06-0317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim44p undergoes septin-dependent localization to the actomyosin ring and regulates contractile ring closure and the abundance, phosphorylation, and dynamics of Hof1p, a regulator of actomyosin ring closure. It also interacts directly with Hof1p. Thus Aim44p is a novel regulator of contractile ring closure in budding yeast. Whereas actomyosin and septin ring organization and function in cytokinesis are thoroughly described, little is known regarding the mechanisms by which the actomyosin ring interacts with septins and associated proteins to coordinate cell division. Here we show that the protein product of YPL158C, Aim44p, undergoes septin-dependent recruitment to the site of cell division. Aim44p colocalizes with Myo1p, the type II myosin of the contractile ring, throughout most of the cell cycle. The Aim44p ring does not contract when the actomyosin ring closes. Instead, it forms a double ring that associates with septin rings on mother and daughter cells after cell separation. Deletion of AIM44 results in defects in contractile ring closure. Aim44p coimmunoprecipitates with Hof1p, a conserved F-BAR protein that binds both septins and type II myosins and promotes contractile ring closure. Deletion of AIM44 results in a delay in Hof1p phosphorylation and altered Hof1p localization. Finally, overexpression of Dbf2p, a kinase that phosphorylates Hof1p and is required for relocalization of Hof1p from septin rings to the contractile ring and for Hof1p-triggered contractile ring closure, rescues the cytokinesis defect observed in aim44∆ cells. Our studies reveal a novel role for Aim44p in regulating contractile ring closure through effects on Hof1p.
Collapse
Affiliation(s)
- Dana M Alessi Wolken
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10027 School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany
| | | | | |
Collapse
|
31
|
Atkins BD, Yoshida S, Saito K, Wu CF, Lew DJ, Pellman D. Inhibition of Cdc42 during mitotic exit is required for cytokinesis. ACTA ACUST UNITED AC 2013; 202:231-40. [PMID: 23878274 PMCID: PMC3718968 DOI: 10.1083/jcb.201301090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A decrease in Cdc42 activation during mitotic exit is necessary to allow localization of key cytokinesis regulators and proper septum formation. The role of Cdc42 and its regulation during cytokinesis is not well understood. Using biochemical and imaging approaches in budding yeast, we demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to down-regulate Cdc42 during mitotic exit impairs the normal localization of key cytokinesis regulators—Iqg1 and Inn1—at the division site, and results in an abnormal septum. The effects of Cdc42 hyperactivation are largely mediated by the Cdc42 effector p21-activated kinase Ste20. Inhibition of Cdc42 and related Rho guanosine triphosphatases may be a general feature of cytokinesis in eukaryotes.
Collapse
Affiliation(s)
- Benjamin D Atkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Styles E, Youn JY, Mattiazzi Usaj M, Andrews B. Functional genomics in the study of yeast cell polarity: moving in the right direction. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130118. [PMID: 24062589 PMCID: PMC3785969 DOI: 10.1098/rstb.2013.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has been used extensively for the study of cell polarity, owing to both its experimental tractability and the high conservation of cell polarity and other basic biological processes among eukaryotes. The budding yeast has also served as a pioneer model organism for virtually all genome-scale approaches, including functional genomics, which aims to define gene function and biological pathways systematically through the analysis of high-throughput experimental data. Here, we outline the contributions of functional genomics and high-throughput methodologies to the study of cell polarity in the budding yeast. We integrate data from published genetic screens that use a variety of functional genomics approaches to query different aspects of polarity. Our integrated dataset is enriched for polarity processes, as well as some processes that are not intrinsically linked to cell polarity, and may provide new areas for future study.
Collapse
Affiliation(s)
- Erin Styles
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Ji-Young Youn
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
- Department of Molecular Genetics, University of Toronto, 160 College St., Toronto, Ontario, CanadaM5S 3E1
| |
Collapse
|
33
|
Wu CF, Savage NS, Lew DJ. Interaction between bud-site selection and polarity-establishment machineries in budding yeast. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130006. [PMID: 24062579 PMCID: PMC3785959 DOI: 10.1098/rstb.2013.0006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Saccharomyces cerevisiae yeast cells polarize in order to form a single bud in each cell cycle. Distinct patterns of bud-site selection are observed in haploid and diploid cells. Genetic approaches have identified the molecular machinery responsible for positioning the bud site: during bud formation, specific locations are marked with immobile landmark proteins. In the next cell cycle, landmarks act through the Ras-family GTPase Rsr1 to promote local activation of the conserved Rho-family GTPase, Cdc42. Additional Cdc42 accumulates by positive feedback, creating a concentrated patch of GTP-Cdc42, which polarizes the cytoskeleton to promote bud emergence. Using time-lapse imaging and mathematical modelling, we examined the process of bud-site establishment. Imaging reveals unexpected effects of the bud-site-selection system on the dynamics of polarity establishment, raising new questions about how that system may operate. We found that polarity factors sometimes accumulate at more than one site among the landmark-specified locations, and we suggest that competition between clusters of polarity factors determines the final location of the Cdc42 cluster. Modelling indicated that temporally constant landmark-localized Rsr1 would weaken or block competition, yielding more than one polarity site. Instead, we suggest that polarity factors recruit Rsr1, effectively sequestering it from other locations and thereby terminating landmark activity.
Collapse
Affiliation(s)
- Chi-Fang Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Natasha S. Savage
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|