1
|
Zbihley ONP, Johnson K, Frietze LR, Zhang W, Foo M, Tran HAV, Chevrier N, Pan T. Mammalian Queuosine tRNA Modification Impacts Translation to Enhance Cell Proliferation and MHC-II Expression. J Mol Biol 2025:169188. [PMID: 40339980 DOI: 10.1016/j.jmb.2025.169188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Queuosine (Q) is a conserved tRNA modification in the wobble anticodon position of tRNAs that read codons of Tyr/His/Asn/Asp. Eukaryotic tRNA Q-modification requires the metabolite queuine - derived from diet or catabolism of the gut microbiome - and a host-genome encoded enzyme complex, QTRT1/QTRT2. tRNA Q-modification has been shown to regulate translational efficiency, but the response of the mammalian transcriptome and tRNAome to tRNA Q-modification in the context of cell proliferation has not been thoroughly investigated. Using cells that differ only in their tRNA Q-modification levels, we found that both human HEK293T cultures and the primary, murine bone marrow-derived dendritic cells (BMDCs) proliferate faster when tRNA Q-modification level is high. We carried out tRNA-seq and mRNA-seq to elucidate the molecular mechanisms underlying this phenotype, revealing distinct tRNA modification and transcriptome changes associated with altered proliferation. In both cell types, the m22G tRNA modification is positively correlated to Q-modification, consistent with its reported role in enhancing translational efficiency. We also find that elevated Q-modification levels result in transcriptome changes, but in a context-dependent manner. In HEK293T cells, upregulated genes are in catabolic processes and signaling pathway activation; whereas in BMDCs, upregulated genes are in immune response mediation, proliferation, and immunoglobulin diversification. Codon usage analysis of differentially expressed transcripts is consistent with Q-modification enhancing the translation of ribosomal proteins, which increases cell proliferation. We also find that tRNA Q-modification increases surface presentation of MHC-II in BMDCs. Our results provide insights into the broader implications of tRNA Q-modifications in regulating diverse biological functions.
Collapse
Affiliation(s)
- Olivia N P Zbihley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Katherine Johnson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Luke R Frietze
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Foo
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Hoang Anh V Tran
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Nicolas Chevrier
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Kelley M, Rathore S, Chandrasegaran K, Herbert C, Sabile CEG, Wood T, Joves J, Palacios A, Susanto E, Uhran M, Ramirez AL, Chen SC, Tompkin J, Singh K, Khalid MS, Vinauger C, Buschbeck E, Limbach PA, Benoit JB. A microbiome-derived nutrient underlies tyrosine metabolism and predator avoidance in mosquito larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646203. [PMID: 40236032 PMCID: PMC11996489 DOI: 10.1101/2025.04.02.646203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The gut microbiome is a rich source of nutrients that are critical to the development and biology of eukaryotes. Transfer RNAs (tRNAs) are essential components of protein synthesis, and some chemical modifications to tRNA rely on the availability of microbiome-derived nutrients. In eukaryotes, the micronutrient queuosine (Q) is salvaged from the microbiome or diet and then incorporated into eukaryotic tRNA to influence the speed and efficiency of protein synthesis. Here, we examine the role of microbiome-derived Q in mosquito larval development and behavior. When mosquito larvae are grown with a microbiome incapable of synthesizing Q, there is a significant impact on tyrosine levels and processes, which correlate with defects in behavior and cuticle formation. Due to defects in movement and behavioral responses, Q-deficient larvae demonstrate impaired predator evasion, leading to higher instances of capture by predaceous beetle larvae. The broad effects of Q-deficiency in mosquito larvae highlight the importance of microbiome-derived nutrients for eukaryotic physiology and behavior.
Collapse
|
3
|
Bénitière F, Lefébure T, Duret L. Variation in the fitness impact of translationally optimal codons among animals. Genome Res 2025; 35:446-458. [PMID: 39929724 PMCID: PMC11960461 DOI: 10.1101/gr.279837.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Early studies in invertebrate model organisms (fruit flies, nematodes) showed that their synonymous codon usage is under selective pressure to optimize translation efficiency in highly expressed genes (a process called translational selection). In contrast, mammals show little evidence of selection for translationally optimal codons. To understand this difference, we examined the use of synonymous codons in 223 metazoan species, covering a wide range of animal clades. For each species, we predicted the set of optimal codons based on the pool of tRNA genes present in its genome, and we analyzed how the frequency of optimal codons correlates with gene expression to quantify the intensity of translational selection (S). We observed that few metazoans show clear signs of translational selection. As predicted by the nearly neutral theory, the highest values of S are observed in species with large effective population sizes (N e). Overall, however, N e appears to be a poor predictor of the intensity of translational selection, suggesting important differences in the fitness effect of synonymous codon usage across taxa. We propose that the few animal taxa that are clearly affected by translational selection correspond to organisms with strong constraints for a very rapid growth rate.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Tristan Lefébure
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France;
| |
Collapse
|
4
|
Reuter K, Ficner R. RNA-modification by Base Exchange: Structure, Function and Application of tRNA-guanine Transglycosylases. J Mol Biol 2025:168980. [PMID: 39956694 DOI: 10.1016/j.jmb.2025.168980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
tRNA-guanine transglycosylases (TGT) occur in all domains of life. They are unique among RNA-modifying enzymes as they exchange a guanine base in the primary RNA transcript by various 7-substituted 7-deazaguanines leading to the modified nucleosides queuosine and archaeosine. Archaeosine is found in the D-loop of archaeal tRNAs, queuosine in the anticodon of bacterial and eukaryotic tRNAs specific for Asp, Asn, His and Tyr. Structural and functional studies revealed a common base-exchange mechanism for all TGTs. Nonetheless, there are also significant differences between TGTs, which will be discussed here. It concerns the specificity for different 7-deazaguanine substrates as well as the recognition of substrate tRNAs. For queuosine TGT an anticodon stem-loop containing the UGU recognition motif is a minimal substrate sufficient for binding to the active site, however, full-length tRNA is bound with higher affinity due to multiple interactions with the dimeric enzyme. Archaeal TGT also binds tRNAs as homodimer, even though the interaction pattern is very different and results in a large change of tRNA conformation. Interestingly, a closely related enzyme, DpdA, exchanges guanine by 7-cyano-7-deazguanine (preQ0) in double stranded DNA of several bacteria. Bacterial TGT is a target for structure-based drug design, as the virulence of Shigella depends on TGT activity, and mammalian TGT has been used for the treatment of murine experimental autoimmune encephalomyelitis, a model for chronic multiple sclerosis. Furthermore, TGT has become a valuable tool in nucleic acid chemistry, as it facilitates the incorporation of non-natural bases in tRNA molecules, e.g. for labelling or cross-linking purposes.
Collapse
Affiliation(s)
- Klaus Reuter
- Institut für Pharmazeutische Chemie Philipps-Universität Marburg Marburg Germany.
| | - Ralf Ficner
- Institut für Mikrobiologie und Genetik GZMB Georg-August-Universität Göttingen Göttingen Germany.
| |
Collapse
|
5
|
Ehrenhofer-Murray AE. Queuine: A Bacterial Nucleobase Shaping Translation in Eukaryotes. J Mol Biol 2025:168985. [PMID: 39956693 DOI: 10.1016/j.jmb.2025.168985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
Queuosine (Q), a 7-deazaguanosine derivative, is among the most intricate tRNA modifications, and is located at position 34 (the Wobble position) of tRNAs with a GUN anticodon. Found in most eukaryotes and many bacteria, Q is unique among tRNA modifications because its full biosynthetic pathway exists only in bacteria. In contrast, eukaryotes are auxotrophic for Q, relying on dietary sources and gut microbiota to acquire Q and the nucleobase queuine. This dependency creates a nutritional link to translation in the host. Q enhances Wobble base pairing with U and helps balance translational speed between Q codons ending in C and U in eukaryotes. The absence of Q modification impacts oxidative stress response, impairs mitochondrial function and protein folding, and has been associated with neurodegeneration, cancer, and inflammation. This review discusses our current understanding of the cellular and organismal impacts of Q deficiency in eukaryotes. Additionally, it examines recent advancements in technologies for detecting Q modifications at single-base resolution and explores the potential applications of the Q modification system in biotechnology.
Collapse
Affiliation(s)
- Ann E Ehrenhofer-Murray
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin 10099 Berlin, Germany.
| |
Collapse
|
6
|
Davis ET, Raman R, Byrne SR, Ghanegolmohammadi F, Mathur C, Begley U, Dedon PC, Begley TJ. Genes and Pathways Comprising the Human and Mouse ORFeomes Display Distinct Codon Bias Signatures that Can Regulate Protein Levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636209. [PMID: 39974974 PMCID: PMC11838421 DOI: 10.1101/2025.02.03.636209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Arginine, glutamic acid and selenocysteine based codon bias has been shown to regulate the translation of specific mRNAs for proteins that participate in stress responses, cell cycle and transcriptional regulation. Defining codon-bias in gene networks has the potential to identify other pathways under translational control. Here we have used computational methods to analyze the ORFeome of all unique human (19,711) and mouse (22,138) open-reading frames (ORFs) to characterize codon-usage and codon-bias in genes and biological processes. We show that ORFeome-wide clustering of gene-specific codon frequency data can be used to identify ontology-enriched biological processes and gene networks, with developmental and immunological programs well represented for both humans and mice. We developed codon over-use ontology mapping and hierarchical clustering to identify multi-codon bias signatures in human and mouse genes linked to signaling, development, mitochondria and metabolism, among others. The most distinct multi-codon bias signatures were identified in human genes linked to skin development and RNA metabolism, and in mouse genes linked to olfactory transduction and ribosome, highlighting species-specific pathways potentially regulated by translation. Extreme codon bias was identified in genes that included transcription factors and histone variants. We show that re-engineering extreme usage of C- or U-ending codons for aspartic acid, asparagine, histidine and tyrosine in the transcription factors CEBPB and MIER1, respectively, significantly regulates protein levels. Our study highlights that multi-codon bias signatures can be linked to specific biological pathways and that extreme codon bias with regulatory potential exists in transcription factors for immune response and development.
Collapse
Affiliation(s)
| | - Rahul Raman
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shane R. Byrne
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Farzan Ghanegolmohammadi
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chetna Mathur
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Ulrike Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Thomas J. Begley
- The RNA Institute, University at Albany, Albany, NY
- Department of Biological Sciences, University at Albany, Albany, NY
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY
| |
Collapse
|
7
|
Li H, Wang G, Ye C, Zou Z, Jiang B, Yang F, He K, Ju C, Zhang L, Gao B, Liu S, Chen Y, Zhang J, He C. Quantitative RNA pseudouridine maps reveal multilayered translation control through plant rRNA, tRNA and mRNA pseudouridylation. NATURE PLANTS 2025; 11:234-247. [PMID: 39789092 DOI: 10.1038/s41477-024-01894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Pseudouridine (Ψ) is the most abundant RNA modification, yet studies of Ψ have been hindered by a lack of robust methods to profile comprehensive Ψ maps. Here we utilize bisulfite-induced deletion sequencing to generate transcriptome-wide Ψ maps at single-base resolution across various plant species. Integrating ribosomal RNA, transfer RNA and messenger RNA Ψ stoichiometry with mRNA abundance and polysome profiling data, we uncover a multilayered regulation of translation efficiency through Ψ modifications. rRNA pseudouridylation could globally control translation, although the effects vary at different rRNA Ψ sites. Ψ in the tRNA T-arm loop shows strong positive correlations between Ψ stoichiometry and the translation efficiency of their respective codons. We observed a general inverse correlation between Ψ level and mRNA stability, but a positive correlation with translation efficiency in Arabidopsis seedlings. In conclusion, our study provides critical resources for Ψ research in plants and proposes prevalent translation regulation through rRNA, tRNA and mRNA pseudouridylation.
Collapse
Affiliation(s)
- Haoxuan Li
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Guanqun Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chang Ye
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Zhongyu Zou
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Bochen Jiang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Fan Yang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Kayla He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chengwei Ju
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Lisheng Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Boyang Gao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yanming Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
| |
Collapse
|
8
|
Rashad S. Queuosine tRNA Modification: Connecting the Microbiome to the Translatome. Bioessays 2025; 47:e202400213. [PMID: 39600051 PMCID: PMC11755703 DOI: 10.1002/bies.202400213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Transfer RNA (tRNA) modifications play an important role in regulating mRNA translation at the codon level. tRNA modifications can influence codon selection and optimality, thus shifting translation toward specific sets of mRNAs in a dynamic manner. Queuosine (Q) is a tRNA modification occurring at the wobble position. In eukaryotes, queuosine is synthesized by the tRNA-guanine trans-glycosylase (TGT) complex, which incorporates the nucleobase queuine (or Qbase) into guanine of the GUN anticodons. Queuine is sourced from gut bacteria and dietary intake. Q was recently shown to be critical for cellular responses to oxidative and mitochondrial stresses, as well as its potential role in neurodegenerative diseases and brain health. These unique features of Q provide an interesting insight into the regulation of mRNA translation by gut bacteria, and the potential health implications. In this review, Q biology is examined in the light of recent literature and nearly 4 decades of research. Q's role in neuropsychiatric diseases and cancer is highlighted and discussed. Given the recent interest in Q, and the new findings, more research is needed to fully comprehend its biological function and disease relevance, especially in neurobiology.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational NeuroscienceTohoku University Graduate School of MedicineSendaiJapan
- Department of Neurosurgical Engineering and Translational NeuroscienceGraduate School of Biomedical EngineeringTohoku UniversitySendaiJapan
| |
Collapse
|
9
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
10
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Sievers K, Neumann P, Sušac L, Da Vela S, Graewert M, Trowitzsch S, Svergun D, Tampé R, Ficner R. Structural and functional insights into tRNA recognition by human tRNA guanine transglycosylase. Structure 2024; 32:316-327.e5. [PMID: 38181786 DOI: 10.1016/j.str.2023.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAsAsp,Asn,His,Tyr for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available. Here, we report a cryo-EM structure of eukaryotic TGT in complex with a complete tRNA, revealing the crucial role of the non-catalytic subunit in tRNA binding. We decipher the functional significance of these additional tRNA-binding sites, analyze solution state conformation, flexibility, and disorder of apo TGT, and examine conformational transitions upon tRNA binding.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany
| | - Lukas Sušac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Melissa Graewert
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, 22607 Hamburg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt/Main, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, GZMB, University of Göttingen, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
12
|
Pichler A, Hillmeier M, Heiss M, Peev E, Xefteris S, Steigenberger B, Thoma I, Müller M, Borsò M, Imhof A, Carell T. Synthesis and Structure Elucidation of Glutamyl-Queuosine. J Am Chem Soc 2023; 145:25528-25532. [PMID: 37967838 PMCID: PMC10690763 DOI: 10.1021/jacs.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Collapse
Affiliation(s)
- Alexander Pichler
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Hillmeier
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Matthias Heiss
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Elsa Peev
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stylianos Xefteris
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Barbara Steigenberger
- Mass
Spectrometry Core Facility, Max Planck Institute
of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Planegg, Germany
| | - Ines Thoma
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Müller
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Borsò
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Axel Imhof
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Thomas Carell
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
13
|
Zhou B, Xiong Y, Nevo Y, Kahan T, Yakovian O, Alon S, Bhattacharya S, Rosenshine I, Sinai L, Ben-Yehuda S. Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival. Mol Cell 2023; 83:4158-4173.e7. [PMID: 37949068 DOI: 10.1016/j.molcel.2023.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yifei Xiong
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tamar Kahan
- Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Oren Yakovian
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel; The Racah Institute of Physics, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Sima Alon
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| |
Collapse
|
14
|
Cirzi C, Dyckow J, Legrand C, Schott J, Guo W, Perez Hernandez D, Hisaoka M, Parlato R, Pitzer C, van der Hoeven F, Dittmar G, Helm M, Stoecklin G, Schirmer L, Lyko F, Tuorto F. Queuosine-tRNA promotes sex-dependent learning and memory formation by maintaining codon-biased translation elongation speed. EMBO J 2023; 42:e112507. [PMID: 37609797 PMCID: PMC10548180 DOI: 10.15252/embj.2022112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
Queuosine (Q) is a modified nucleoside at the wobble position of specific tRNAs. In mammals, queuosinylation is facilitated by queuine uptake from the gut microbiota and is introduced into tRNA by the QTRT1-QTRT2 enzyme complex. By establishing a Qtrt1 knockout mouse model, we discovered that the loss of Q-tRNA leads to learning and memory deficits. Ribo-Seq analysis in the hippocampus of Qtrt1-deficient mice revealed not only stalling of ribosomes on Q-decoded codons, but also a global imbalance in translation elongation speed between codons that engage in weak and strong interactions with their cognate anticodons. While Q-dependent molecular and behavioral phenotypes were identified in both sexes, female mice were affected more severely than males. Proteomics analysis confirmed deregulation of synaptogenesis and neuronal morphology. Together, our findings provide a link between tRNA modification and brain functions and reveal an unexpected role of protein synthesis in sex-dependent cognitive performance.
Collapse
Affiliation(s)
- Cansu Cirzi
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Julia Dyckow
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
| | - Carine Legrand
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Université Paris Cité, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRSParisFrance
| | - Johanna Schott
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Wei Guo
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | | | - Miharu Hisaoka
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational NeurosciencesHeidelberg UniversityMannheimGermany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core (INBC), Medical Faculty HeidelbergHeidelberg UniversityHeidelbergGermany
| | | | - Gunnar Dittmar
- Department of Infection and ImmunityLuxembourg Institute of HealthStrassenLuxembourg
- Department of Life Sciences and MedicineUniversity of LuxembourgLuxembourg
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Science (IPBS)Johannes Gutenberg‐University MainzMainzGermany
| | - Georg Stoecklin
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Interdisciplinary Center for NeurosciencesHeidelberg UniversityHeidelbergGermany
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Frank Lyko
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ‐ZMBH AllianceGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Center for Molecular Biology of Heidelberg University (ZMBH)DKFZ‐ZMBH AllianceHeidelbergGermany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Mannheim Cancer Center (MCC), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
15
|
Zhang J, Zhang Y, McGrenaghan CJ, Kelly VP, Xia Y, Sun J. Disruption to tRNA Modification by Queuine Contributes to Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 15:1371-1389. [PMID: 36801450 PMCID: PMC10140797 DOI: 10.1016/j.jcmgh.2023.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUNDS AND AIMS Transfer RNA (tRNA) is the most extensively modified RNA in cells. Queuosine modification is a fundamental process for ensuring the fidelity and efficiency of translation from RNA to protein. In eukaryotes, Queuosine tRNA (Q-tRNA) modification relies on the intestinal microbial product queuine. However, the roles and potential mechanisms of Q-containing tRNA (Q-tRNA) modifications in inflammatory bowel disease (IBD) are unknown. METHODS We explored the Q-tRNA modifications and expression of QTRT1 (queuine tRNA-ribosyltransferase 1) in patients with IBD by investigating human biopsies and reanalyzing datasets. We used colitis models, QTRT1 knockout mice, organoids, and cultured cells to investigate the molecular mechanisms of Q-tRNA modifications in intestinal inflammation. RESULTS QTRT1 expression was significantly downregulated in ulcerative colitis and Crohn's disease patients. The 4 Q-tRNA-related tRNA synthetases (asparaginyl-, aspartyl-, histidyl-, and tyrosyl-tRNA synthetase) were decreased in IBD patients. This reduction was further confirmed in a dextran sulfate sodium-induced colitis model and interleukin-10-deficient mice. Reduced QTRT1 was significantly correlated with cell proliferation and intestinal junctions, including downregulation of β-catenin and claudin-5 and the upregulation of claudin-2. These alterations were confirmed in vitro by deleting the QTRT1 gene from cells and in vivo using QTRT1 knockout mice. Queuine treatment significantly enhanced cell proliferation and junction activity in cell lines and organoids. Queuine treatment also reduced inflammation in epithelial cells. Moreover, altered QTRT1-related metabolites were found in human IBD. CONCLUSIONS tRNA modifications play an unexplored novel role in the pathogenesis of intestinal inflammation by altering epithelial proliferation and junction formation. Further investigation of the role of tRNA modifications will uncover novel molecular mechanisms for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Callum J McGrenaghan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; UIC Cancer Center, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center Chicago, Chicago, Illinois.
| |
Collapse
|
16
|
Hung SH, Elliott GI, Ramkumar TR, Burtnyak L, McGrenaghan CJ, Alkuzweny S, Quaiyum S, Iwata-Reuyl D, Pan X, Green BD, Kelly VP, de Crécy-Lagard V, Swairjo M. Structural basis of Qng1-mediated salvage of the micronutrient queuine from queuosine-5'-monophosphate as the biological substrate. Nucleic Acids Res 2023; 51:935-951. [PMID: 36610787 PMCID: PMC9881137 DOI: 10.1093/nar/gkac1231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic life benefits from-and ofttimes critically relies upon-the de novo biosynthesis and supply of vitamins and micronutrients from bacteria. The micronutrient queuosine (Q), derived from diet and/or the gut microbiome, is used as a source of the nucleobase queuine, which once incorporated into the anticodon of tRNA contributes to translational efficiency and accuracy. Here, we report high-resolution, substrate-bound crystal structures of the Sphaerobacter thermophilus queuine salvage protein Qng1 (formerly DUF2419) and of its human ortholog QNG1 (C9orf64), which together with biochemical and genetic evidence demonstrate its function as the hydrolase releasing queuine from queuosine-5'-monophosphate as the biological substrate. We also show that QNG1 is highly expressed in the liver, with implications for Q salvage and recycling. The essential role of this family of hydrolases in supplying queuine in eukaryotes places it at the nexus of numerous (patho)physiological processes associated with queuine deficiency, including altered metabolism, proliferation, differentiation and cancer progression.
Collapse
Affiliation(s)
- Shr-Hau Hung
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
- The Viral Information Institute, San Diego State University, San Diego, CA, USA
| | - Gregory I Elliott
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | - Thakku R Ramkumar
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Lyubomyr Burtnyak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Callum J McGrenaghan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sana Alkuzweny
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, PO Box 751 Portland State University, Portland, OR 97207, USA
| | - Xiaobei Pan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Brian D Green
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute, Gainesville, FL 32610, USA
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
- The Viral Information Institute, San Diego State University, San Diego, CA, USA
| |
Collapse
|
17
|
Bessler L, Kaur N, Vogt LM, Flemmich L, Siebenaller C, Winz ML, Tuorto F, Micura R, Ehrenhofer-Murray A, Helm M. Functional integration of a semi-synthetic azido-queuosine derivative into translation and a tRNA modification circuit. Nucleic Acids Res 2022; 50:10785-10800. [PMID: 36169220 PMCID: PMC9561289 DOI: 10.1093/nar/gkac822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Navpreet Kaur
- Institute of Biology, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Laurin Flemmich
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Carmen Siebenaller
- Department of Chemistry – Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Marie-Luise Winz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ronald Micura
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
18
|
Liu Y, Zhou J, Li X, Zhang X, Shi J, Wang X, Li H, Miao S, Chen H, He X, Dong L, Lee GR, Zheng J, Liu RJ, Su B, Ye Y, Flavell RA, Yi C, Wu Y, Li HB. tRNA-m 1A modification promotes T cell expansion via efficient MYC protein synthesis. Nat Immunol 2022; 23:1433-1444. [PMID: 36138184 DOI: 10.1038/s41590-022-01301-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Naive T cells undergo radical changes during the transition from dormant to hyperactive states upon activation, which necessitates de novo protein production via transcription and translation. However, the mechanism whereby T cells globally promote translation remains largely unknown. Here, we show that on exit from quiescence, T cells upregulate transfer RNA (tRNA) m1A58 'writer' proteins TRMT61A and TRMT6, which confer m1A58 RNA modification on a specific subset of early expressed tRNAs. These m1A-modified early tRNAs enhance translation efficiency, enabling rapid and necessary synthesis of MYC and of a specific group of key functional proteins. The MYC protein then guides the exit of naive T cells from a quiescent state into a proliferative state and promotes rapid T cell expansion after activation. Conditional deletion of the Trmt61a gene in mouse CD4+ T cells causes MYC protein deficiency and cell cycle arrest, disrupts T cell expansion upon cognate antigen stimulation and alleviates colitis in a mouse adoptive transfer colitis model. Our study elucidates for the first time, to our knowledge, the in vivo physiological roles of tRNA-m1A58 modification in T cell-mediated pathogenesis and reveals a new mechanism of tRNA-m1A58-controlled T cell homeostasis and signal-dependent translational control of specific key proteins.
Collapse
Affiliation(s)
- Yongbo Liu
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhou
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jintong Shi
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Miao
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China. .,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Yuzhang Wu
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Chongqing International Institute for Immunology, Chongqing, China. .,Department of Geriatrics, Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Metallomics 2022; 14:mfac065. [PMID: 36066904 PMCID: PMC9508795 DOI: 10.1093/mtomcs/mfac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Intekhab Hossain
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Pedro Salguero García
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia 46022, Spain
| | - Cécile Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melody Sze
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY 12222, USA
| | - Antoine Danchin
- Kodikos Labs, 23 rue Baldassini, Lyon 69007, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, Pokfulam, SAR Hong Kong
| | - Daniel P Aalberts
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | | | - John Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10024, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Res 2022; 50:e99. [PMID: 35713550 PMCID: PMC9508811 DOI: 10.1093/nar/gkac517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas in mammals the substrate for Q-modification in tRNA is queuine, the catabolic product of the Q-base of gut bacteria. This gut microbiome dependent tRNA modification may play pivotal roles in translational regulation in different cellular contexts, but extensive studies of Q-modification biology are hindered by the lack of high throughput sequencing methods for its detection and quantitation. Here, we describe a periodate-treatment method that enables single base resolution profiling of Q-modification in tRNAs by Nextgen sequencing from biological RNA samples. Periodate oxidizes the Q-base, which results in specific deletion signatures in the RNA-seq data. Unexpectedly, we found that periodate-treatment also enables the detection of several 2-thio-modifications including τm5s2U, mcm5s2U, cmnm5s2U, and s2C by sequencing in human and E. coli tRNA. We term this method periodate-dependent analysis of queuosine and sulfur modification sequencing (PAQS-seq). We assess Q- and 2-thio-modifications at the tRNA isodecoder level, and 2-thio modification changes in stress response. PAQS-seq should be widely applicable in the biological studies of Q- and 2-thio-modifications in mammalian and microbial tRNAs.
Collapse
Affiliation(s)
- Christopher D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Reyer
- Program of Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Samuel Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Arsenite toxicity is regulated by queuine availability and oxidation-induced reprogramming of the human tRNA epitranscriptome. Proc Natl Acad Sci U S A 2022; 119:e2123529119. [PMID: 36095201 PMCID: PMC9499598 DOI: 10.1073/pnas.2123529119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.
Collapse
|
22
|
Tittle JM, Schwark DG, Biddle W, Schmitt MA, Fisk JD. Impact of queuosine modification of endogenous E. coli tRNAs on sense codon reassignment. Front Mol Biosci 2022; 9:938114. [PMID: 36120552 PMCID: PMC9471426 DOI: 10.3389/fmolb.2022.938114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which alteration of endogenous tRNA modifications may be exploited to improve genetic code expansion efforts has not been broadly investigated. Modifications of tRNAs are strongly conserved evolutionarily, but the vast majority of E. coli tRNA modifications are not essential. We identified queuosine (Q), a non-essential, hypermodified guanosine nucleoside found in position 34 of the anticodons of four E. coli tRNAs as a modification that could potentially be utilized to improve sense codon reassignment. One suggested purpose of queuosine modification is to reduce the preference of tRNAs with guanosine (G) at position 34 of the anticodon for decoding cytosine (C) ending codons over uridine (U) ending codons. We hypothesized that introduced orthogonal translation machinery with adenine (A) at position 34 would reassign U-ending codons more effectively in queuosine-deficient E. coli. We evaluated the ability of introduced orthogonal tRNAs with AUN anticodons to reassign three of the four U-ending codons normally decoded by Q34 endogenous tRNAs: histidine CAU, asparagine AAU, and aspartic acid GAU in the presence and absence of queuosine modification. We found that sense codon reassignment efficiencies in queuosine-deficient strains are slightly improved at Asn AAU, equivalent at His CAU, and less efficient at Asp GAU codons. Utilization of orthogonal pair-directed sense codon reassignment to evaluate competition events that do not occur in the standard genetic code suggests that tRNAs with inosine (I, 6-deaminated A) at position 34 compete much more favorably against G34 tRNAs than Q34 tRNAs. Continued evaluation of sense codon reassignment following targeted alterations to endogenous tRNA modifications has the potential to shed new light on the web of interactions that combine to preserve the fidelity of the genetic code as well as identify opportunities for exploitation in systems with expanded genetic codes.
Collapse
|
23
|
Queuosine salvage in fission yeast by Qng1-mediated hydrolysis to queuine. Biochem Biophys Res Commun 2022; 624:146-150. [DOI: 10.1016/j.bbrc.2022.07.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
24
|
Zhang W, Foo M, Eren AM, Pan T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol Cell 2022; 82:891-906. [PMID: 35032425 PMCID: PMC8897278 DOI: 10.1016/j.molcel.2021.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
Abstract
tRNA is the most extensively modified RNA in cells. On average, a bacterial tRNA contains 8 modifications per molecule and a eukaryotic tRNA contains 13 modifications per molecule. Recent studies reveal that tRNA modifications are highly dynamic and respond extensively to environmental conditions. Functions of tRNA modification dynamics include enhanced, on-demand decoding of specific codons in response genes and regulation of tRNA fragment biogenesis. This review summarizes recent advances in the studies of tRNA modification dynamics in biological processes, tRNA modification erasers, and human-associated bacteria. Furthermore, we use the term "metaepitranscriptomics" to describe the potential and approach of tRNA modification studies in natural biological communities such as microbiomes. tRNA is highly modified in cells, and tRNA modifications respond extensively to environmental conditions to enhance translation of specific genes and produce tRNA fragments on demand. We review recent advances in tRNA sequencing methods, tRNA modification dynamics in biological processes, and tRNA modification studies in natural communities such as the microbiomes.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Foo
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - A. Murat Eren
- Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA;,Department of Medicine, University of Chicago, Chicago, IL 60637, USA;,Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Khalique A, Mattijssen S, Maraia RJ. A versatile tRNA modification-sensitive northern blot method with enhanced performance. RNA (NEW YORK, N.Y.) 2022; 28:418-432. [PMID: 34930808 PMCID: PMC8848930 DOI: 10.1261/rna.078929.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The 22 mitochondrial and ∼45 cytosolic tRNAs in human cells contain several dozen different post-transcriptional modified nucleotides such that each carries a unique constellation that complements its function. Many tRNA modifications are linked to altered gene expression, and deficiencies due to mutations in tRNA modification enzymes (TMEs) are responsible for numerous diseases. Easily accessible methods to detect tRNA hypomodifications can facilitate progress in advancing such molecular studies. Our laboratory developed a northern blot method that can quantify relative levels of base modifications on multiple specific tRNAs ∼10 yr ago, which has been used to characterize four different TME deficiencies and is likely further extendable. The assay method depends on differential annealing efficiency of a DNA-oligo probe to the modified versus unmodified tRNA. The signal of this probe is then normalized by a second probe elsewhere on the same tRNA. This positive hybridization in the absence of modification (PHAM) assay has proven useful for i6A37, t6A37, m3C32, and m2,2G26 in multiple laboratories. Yet, over the years we have observed idiosyncratic inconsistency and variability in the assay. Here we document these for some tRNAs and probes and illustrate principles and practices for improved reliability and uniformity in performance. We provide an overview of the method and illustrate benefits of the improved conditions. This is followed by data that demonstrate quantitative validation of PHAM using a TME deletion control, and that nearby modifications can falsely alter the calculated apparent modification efficiency. Finally, we include a calculator tool for matching probe and hybridization conditions.
Collapse
Affiliation(s)
- Abdul Khalique
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sandy Mattijssen
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Dixit S, Kessler AC, Henderson J, Pan X, Zhao R, D'Almeida GS, Kulkarni S, Rubio MAT, Hegedűsová E, Ross RL, Limbach PA, Green BD, Paris Z, Alfonzo JD. Dynamic queuosine changes in tRNA couple nutrient levels to codon choice in Trypanosoma brucei. Nucleic Acids Res 2021; 49:12986-12999. [PMID: 34883512 PMCID: PMC8682783 DOI: 10.1093/nar/gkab1204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022] Open
Abstract
Every type of nucleic acid in cells undergoes programmed chemical post-transcriptional modification. Generally, modification enzymes use substrates derived from intracellular metabolism, one exception is queuine (q)/queuosine (Q), which eukaryotes obtain from their environment; made by bacteria and ultimately taken into eukaryotic cells via currently unknown transport systems. Here, we use a combination of molecular, cell biology and biophysical approaches to show that in Trypanosoma brucei tRNA Q levels change dynamically in response to concentration variations of a sub-set of amino acids in the growth media. Most significant were variations in tyrosine, which at low levels lead to increased Q content for all the natural tRNAs substrates of tRNA-guanine transglycosylase (TGT). Such increase results from longer nuclear dwell time aided by retrograde transport following cytoplasmic splicing. In turn high tyrosine levels lead to rapid decrease in Q content. Importantly, the dynamic changes in Q content of tRNAs have negligible effects on global translation or growth rate but, at least, in the case of tRNATyr it affected codon choice. These observations have implications for the occurrence of other tunable modifications important for ‘normal’ growth, while connecting the intracellular localization of modification enzymes, metabolites and tRNAs to codon selection and implicitly translational output.
Collapse
Affiliation(s)
- Sameer Dixit
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Alan C Kessler
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Jeremy Henderson
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Xiaobei Pan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Ruoxia Zhao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Robert L Ross
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Brian D Green
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Hillmeier M, Wagner M, Ensfelder T, Korytiakova E, Thumbs P, Müller M, Carell T. Synthesis and structure elucidation of the human tRNA nucleoside mannosyl-queuosine. Nat Commun 2021; 12:7123. [PMID: 34880214 PMCID: PMC8654956 DOI: 10.1038/s41467-021-27371-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Queuosine (Q) is a structurally complex, non-canonical RNA nucleoside. It is present in many eukaryotic and bacterial species, where it is part of the anticodon loop of certain tRNAs. In higher vertebrates, including humans, two further modified queuosine-derivatives exist - galactosyl- (galQ) and mannosyl-queuosine (manQ). The function of these low abundant hypermodified RNA nucleosides remains unknown. While the structure of galQ was elucidated and confirmed by total synthesis, the reported structure of manQ still awaits confirmation. By combining total synthesis and LC-MS-co-injection experiments, together with a metabolic feeding study of labelled hexoses, we show here that the natural compound manQ isolated from mouse liver deviates from the literature-reported structure. Our data show that manQ features an α-allyl connectivity of its sugar moiety. The yet unidentified glycosylases that attach galactose and mannose to the Q-base therefore have a maximally different constitutional connectivity preference. Knowing the correct structure of manQ will now pave the way towards further elucidation of its biological function.
Collapse
Affiliation(s)
- Markus Hillmeier
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Mirko Wagner
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Timm Ensfelder
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Eva Korytiakova
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Peter Thumbs
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Markus Müller
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Thomas Carell
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany.
| |
Collapse
|
28
|
Li Q, Zallot R, MacTavish BS, Montoya A, Payan DJ, Hu Y, Gerlt JA, Angerhofer A, de Crécy-Lagard V, Bruner SD. Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry 2021; 60:3152-3161. [PMID: 34652139 DOI: 10.1021/acs.biochem.1c00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Queuosine is a structurally unique and functionally important tRNA modification, widely distributed in eukaryotes and bacteria. The final step of queuosine biosynthesis is the reduction/deoxygenation of epoxyqueuosine to form the cyclopentene motif of the nucleobase. The chemistry is performed by the structurally and functionally characterized cobalamin-dependent QueG. However, the queG gene is absent from several bacteria that otherwise retain queuosine biosynthesis machinery. Members of the IPR003828 family (previously known as DUF208) have been recently identified as nonorthologous replacements of QueG, and this family was renamed QueH. Here, we present the structural characterization of QueH from Thermotoga maritima. The structure reveals an unusual active site architecture with a [4Fe-4S] metallocluster along with an adjacent coordinated iron metal. The juxtaposition of the cofactor and coordinated metal ion predicts a unique mechanism for a two-electron reduction/deoxygenation of epoxyqueuosine. To support the structural characterization, in vitro biochemical and genomic analyses are presented. Overall, this work reveals new diversity in the chemistry of iron/sulfur-dependent enzymes and novel insight into the last step of this widely conserved tRNA modification.
Collapse
Affiliation(s)
- Qiang Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rémi Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian S MacTavish
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel J Payan
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - You Hu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alexander Angerhofer
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States.,University of Florida Genetics Institute, Gainesville, Florida 32611, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
29
|
Dynamic changes in tRNA modifications and abundance during T cell activation. Proc Natl Acad Sci U S A 2021; 118:2106556118. [PMID: 34642250 DOI: 10.1073/pnas.2106556118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.
Collapse
|
30
|
Das AS, Alfonzo JD, Accornero F. The importance of RNA modifications: From cells to muscle physiology. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1700. [PMID: 34664402 DOI: 10.1002/wrna.1700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022]
Abstract
Naturally occurring post-transcriptional chemical modifications serve critical roles in impacting RNA structure and function. More directly, modifications may affect RNA stability, intracellular transport, translational efficiency, and fidelity. The combination of effects caused by modifications are ultimately linked to gene expression regulation at a genome-wide scale. The latter is especially true in systems that undergo rapid metabolic and or translational remodeling in response to external stimuli, such as the presence of stressors, but beyond that, modifications may also affect cell homeostasis. Although examples of the importance of RNA modifications in translation are accumulating rapidly, still what these contribute to the function of complex physiological systems such as muscle is only recently emerging. In the present review, we will introduce key information on various modifications and highlight connections between those and cellular malfunctions. In passing, we will describe well-documented roles for modifications in the nervous system and use this information as a stepping stone to emphasize a glaring paucity of knowledge on the role of RNA modifications in heart and skeletal muscle, with particular emphasis on mitochondrial function in those systems. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA.,The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
31
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
32
|
Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis 2021; 8:581-589. [PMID: 34291130 PMCID: PMC8278537 DOI: 10.1016/j.gendis.2020.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
The microbiota plays essential roles in health and disease, in both the intestine and the extra-intestine. Dysbiosis of the gut microbiota causes dysfunction in the intestine, which leads to inflammatory, immune, and infectious diseases. Dysbiosis is also associated with diseases beyond the intestine via microbial translocation or metabolisms. The in situ breast microbiome, which may be sourced from the gut through lactation and sexual contact, could be altered and cause breast diseases. In this review, we summarize the recent progress in understanding the interactions among the gut microbiome, breast microbiome, and breast diseases. We discuss the intestinal microbiota, microbial metabolites, and roles of microbiota in immune system. We emphasize the novel roles and mechanisms of the microbiome (both in situ and gastrointestinal sourced) and bacterial products in the development and progression of breast cancer. The intestinal microbial translocation suggests that the gut microbiome is translocated to the skin and subsequently to the breast tissue. The gut bacterial translocation is also due to the increased intestinal permeability. The breast and intestinal microbiota are important factors in maintaining healthy breasts. Micronutrition queuine (Q) is derived from a de novo synthesized metabolite in bacteria. All human cells use queuine and incorporate it into the wobble anticodon position of specific transfer RNAs. We have demonstrated that Q modification regulates genes critical in tight junctions and migration in human breast cancer cells and a breast tumor model. We further discuss the challenges and future perspectives that can move the field forward for prevention, diagnosis, and treatment of breast diseases.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
33
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
34
|
Richard P, Kozlowski L, Guillorit H, Garnier P, McKnight NC, Danchin A, Manière X. Queuine, a bacterial-derived hypermodified nucleobase, shows protection in in vitro models of neurodegeneration. PLoS One 2021; 16:e0253216. [PMID: 34379627 PMCID: PMC8357117 DOI: 10.1371/journal.pone.0253216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/29/2021] [Indexed: 11/26/2022] Open
Abstract
Growing evidence suggests that human gut bacteria, which comprise the microbiome, are linked to several neurodegenerative disorders. An imbalance in the bacterial population in the gut of Parkinson's disease (PD) and Alzheimer's disease (AD) patients has been detected in several studies. This dysbiosis very likely decreases or increases microbiome-derived molecules that are protective or detrimental, respectively, to the human body and those changes are communicated to the brain through the so-called 'gut-brain-axis'. The microbiome-derived molecule queuine is a hypermodified nucleobase enriched in the brain and is exclusively produced by bacteria and salvaged by humans through their gut epithelium. Queuine replaces guanine at the wobble position (position 34) of tRNAs with GUN anticodons and promotes efficient cytoplasmic and mitochondrial mRNA translation. Queuine depletion leads to protein misfolding and activation of the endoplasmic reticulum stress and unfolded protein response pathways in mice and human cells. Protein aggregation and mitochondrial impairment are often associated with neural dysfunction and neurodegeneration. To elucidate whether queuine could facilitate protein folding and prevent aggregation and mitochondrial defects that lead to proteinopathy, we tested the effect of chemically synthesized queuine, STL-101, in several in vitro models of neurodegeneration. After neurons were pretreated with STL-101 we observed a significant decrease in hyperphosphorylated alpha-synuclein, a marker of alpha-synuclein aggregation in a PD model of synucleinopathy, as well as a decrease in tau hyperphosphorylation in an acute and a chronic model of AD. Additionally, an associated increase in neuronal survival was found in cells pretreated with STL-101 in both AD models as well as in a neurotoxic model of PD. Measurement of queuine in the plasma of 180 neurologically healthy individuals suggests that healthy humans maintain protective levels of queuine. Our work has identified a new role for queuine in neuroprotection uncovering a therapeutic potential for STL-101 in neurological disorders.
Collapse
Affiliation(s)
- Patricia Richard
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | - Hélène Guillorit
- Stellate Therapeutics SAS, Paris, France
- Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Nicole C. McKnight
- Stellate Therapeutics Inc., JLABS @ NYC, New York, New York, United States of America
| | | | | |
Collapse
|
35
|
Sievers K, Welp L, Urlaub H, Ficner R. Structural and functional insights into human tRNA guanine transgylcosylase. RNA Biol 2021; 18:382-396. [PMID: 34241577 DOI: 10.1080/15476286.2021.1950980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic tRNA guanine transglycosylase (TGT) is an RNA modifying enzyme incorporating queuine, a hypermodified guanine derivative, into the tRNAsAsp,Asn,His,Tyr. While both subunits of the functional heterodimer have been crystallized individually, much of our understanding of its dimer interface or recognition of a target RNA has been inferred from its more thoroughly studied bacterial homolog. However, since bacterial TGT, by incorporating queuine precursor preQ1, deviates not only in function, but as a homodimer, also in its subunit architecture, any inferences regarding the subunit association of the eukaryotic heterodimer or the significance of its unique catalytically inactive subunit are based on unstable footing. Here, we report the crystal structure of human TGT in its heterodimeric form and in complex with a 25-mer stem loop RNA, enabling detailed analysis of its dimer interface and interaction with a minimal substrate RNA. Based on a model of bound tRNA, we addressed a potential functional role of the catalytically inactive subunit QTRT2 by UV-crosslinking and mutagenesis experiments, identifying the two-stranded βEβF-sheet of the QTRT2 subunit as an additional RNA-binding motif.
Collapse
Affiliation(s)
- Katharina Sievers
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany
| | - Luisa Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (Mbexc), University of Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Abstract
Queuosine (Q) in humans is a microbiome-dependent modification in the wobble anticodon position of tRNATyr, tRNAHis, tRNAAsn, and tRNAAsp. These tRNAs share a G34U35N36 anticodon consensus. In humans, the Q base in tRNATyr and tRNAAsp is further glycosylated to generate galactosyl-Q (galQ) and mannosyl-Q (manQ) modifications. Q-tRNA modification is known to regulate translation in a codon dependent manner, but the function of Q glycosylation is unknown. A sensitive and quantitative detection method for Q-glycosylation in tRNA is essential to investigate its biological function. Although LC/MS was used in the characterization of glyco-Q tRNA, the requirements of large amount of input material and LC/MS expertise limit its application. We recently developed an acid denaturing gel and Northern blot method to sensitively detect galQ and manQ-tRNA modification and quantify their modification fractions using just microgram amounts of total RNA. This method uses the same acid denaturing gel system for separating charged from uncharged tRNA; however, deacylated, galQ and manQ modified tRNAs are also separated from unmodified tRNAs because of the positive charge carried by the secondary amine and the large chemical moiety of the glyco-Q base. Our method enables rapid investigation of glycosylated Q modification in tRNA, and also has the potential to investigate other large tRNA modifications that carry a positive charge under acid denaturing gel conditions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL, United States
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
37
|
Kulkarni S, Rubio MAT, Hegedűsová E, Ross RL, Limbach PA, Alfonzo JD, Paris Z. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res 2021; 49:8247-8260. [PMID: 34244755 PMCID: PMC8373054 DOI: 10.1093/nar/gkab567] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.
Collapse
Affiliation(s)
- Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mary Anne T Rubio
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Robert L Ross
- Metabolomics Mass Spectrometry Core, Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
38
|
Huang J, Chen W, Zhou F, Pang Z, Wang L, Pan T, Wang X. Tissue-specific reprogramming of host tRNA transcriptome by the microbiome. Genome Res 2021; 31:947-957. [PMID: 33858843 PMCID: PMC8168588 DOI: 10.1101/gr.272153.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Transfer RNAs (tRNAs) are essential for translation, and tRNA expression and modifications are regulated by many factors. However, the interplay between the microbiome and host tRNA profiles through host-microbiome interactions has not been explored. In this study, we investigated host-microbiome interactions via the tRNA profiling of four tissue types from germ-free and specific pathogen-free mice. Our analyses reveal that cytosolic and mitochondrial tRNA expression and tRNA modifications in the host are reprogrammed in a tissue-specific and microbiome-dependent manner. In terms of tRNA expression, the intestines and brains are more sensitive to the influence of the microbiome than the livers and kidneys. In terms of tRNA modifications, cytosolic tRNAs show more obvious changes in the livers and kidneys in the presence of the microbiome. Our findings reveal a previously unexplored relationship among the microbiome, tRNA abundance, and epitranscriptome in a mammalian host.
Collapse
Affiliation(s)
- Jia Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjun Chen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Fan Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhichang Pang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Luoluo Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
39
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
40
|
Abstract
Queuosine (Q) is a hypermodified base that occurs at the wobble position of transfer RNAs (tRNAs) with a GUN anticodon. Q-tRNA modification is widespread among eukaryotes, yet bacteria are the original source of Q. Eukaryotes acquire Q from their diet, or from the gut microbiota (in multicellular organisms). Despite decades of study, the detailed roles of Q-tRNA modification remain to be elucidated, especially regarding its specific mechanisms of action. Here, we describe a method for the fast and reliable detection of Q-tRNA modification levels in individual tRNAs using a few micrograms of total RNA as starting material. The methodology is based on the co-polymerization of boronic acid (N-acryloyl-3-aminophenylboronic acid (APB)) in polyacrylamide gels, and on the interplay between this derivative and free cis-diol groups of the tRNA. During electrophoresis, the cis-diol groups slow down the Q-modified tRNA, which then can be separated from unmodified tRNA and quantified using Northern blot analysis.
Collapse
Affiliation(s)
- Cansu Cirzi
- Division of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany and Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, and Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
| |
Collapse
|
41
|
Gregorova P, Sipari NH, Sarin LP. Broad-range RNA modification analysis of complex biological samples using rapid C18-UPLC-MS. RNA Biol 2020; 18:1382-1389. [PMID: 33356826 PMCID: PMC8494288 DOI: 10.1080/15476286.2020.1853385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional RNA modifications play an important role in cellular metabolism with homoeostatic disturbances manifesting as a wide repertoire of phenotypes, reduced stress tolerance and translational perturbation, developmental defects, and diseases, such as type II diabetes, leukaemia, and carcinomas. Hence, there has been an intense effort to develop various methods for investigating RNA modifications and their roles in various organisms, including sequencing-based approaches and, more frequently, liquid chromatography–mass spectrometry (LC-MS)-based methods. Although LC-MS offers numerous advantages, such as being highly sensitive and quantitative over a broad detection range, some stationary phase chemistries struggle to resolve positional isomers. Furthermore, the demand for detailed analyses of complex biological samples often necessitates long separation times, hampering sample-to-sample turnover and making multisample analyses time consuming. To overcome this limitation, we have developed an ultra-performance LC-MS (UPLC-MS) method that uses an octadecyl carbon chain (C18)-bonded silica matrix for the efficient separation of 50 modified ribonucleosides, including positional isomers, in a single 9-min sample-to-sample run. To validate the performance and versatility of our method, we analysed tRNA modification patterns of representative microorganisms from each domain of life, namely Archaea (Methanosarcina acetivorans), Bacteria (Pseudomonas syringae), and Eukarya (Saccharomyces cerevisiae). Additionally, our method is flexible and readily applicable for detection and relative quantification using stable isotope labelling and targeted approaches like multiple reaction monitoring (MRM). In conclusion, this method represents a fast and robust tool for broad-range exploration and quantification of ribonucleosides, facilitating future homoeostasis studies of RNA modification in complex biological samples.
Collapse
Affiliation(s)
- Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina H Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki Finland
| | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Wang Y, Liu L, Li M, Lin L, Su P, Tang H, Fan X, Li X. Chicken cecal DNA methylome alteration in the response to Salmonella enterica serovar Enteritidis inoculation. BMC Genomics 2020; 21:814. [PMID: 33225883 PMCID: PMC7681971 DOI: 10.1186/s12864-020-07174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (SE) is one of the pathogenic bacteria, which affects poultry production and poses a severe threat to public health. Chicken meat and eggs are the main sources of human salmonellosis. DNA methylation is involved in regulatory processes including gene expression, chromatin structure and genomic imprinting. To understand the methylation regulation in the response to SE inoculation in chicken, the genome-wide DNA methylation profile following SE inoculation was analyzed through whole-genome bisulfite sequencing in the current study. RESULTS There were 185,362,463 clean reads and 126,098,724 unique reads in the control group, and 180,530,750 clean reads and 126,782,896 unique reads in the inoculated group. The methylation density in the gene body was higher than that in the upstream and downstream regions of the gene. There were 8946 differentially methylated genes (3639 hypo-methylated genes, 5307 hyper-methylated genes) obtained between inoculated and control groups. Methylated genes were mainly enriched in immune-related Gene Ontology (GO) terms and metabolic process terms. Cytokine-cytokine receptor interaction, TGF-beta signaling pathway, FoxO signaling pathway, Wnt signaling pathway and several metabolism-related pathways were significantly enriched. The density of differentially methylated cytosines in miRNAs was the highest. HOX genes were widely methylated. CONCLUSIONS The genome-wide DNA methylation profile in the response to SE inoculation in chicken was analyzed. SE inoculation promoted the DNA methylation in the chicken cecum and caused methylation alteration in immune- and metabolic- related genes. Wnt signal pathway, miRNAs and HOX gene family may play crucial roles in the methylation regulation of SE inoculation in chicken. The findings herein will deepen the understanding of epigenetic regulation in the response to SE inoculation in chicken.
Collapse
Affiliation(s)
- Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Liying Liu
- College of Life Science, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Min Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Lili Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Pengcheng Su
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Hui Tang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xinzhong Fan
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an, 271018 Shandong China
| |
Collapse
|
43
|
Accornero F, Ross RL, Alfonzo JD. From canonical to modified nucleotides: balancing translation and metabolism. Crit Rev Biochem Mol Biol 2020; 55:525-540. [PMID: 32933330 DOI: 10.1080/10409238.2020.1818685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Every type of nucleic acid in cells may undergo some kind of post-replicative or post-transcriptional chemical modification. Recent evidence has highlighted their importance in biology and their chemical complexity. In the following pages, we will describe new discoveries of modifications, with a focus on tRNA and mRNA. We will highlight current challenges and advances in modification detection and we will discuss how changes in nucleotide post-transcriptional modifications may affect cell homeostasis leading to malfunction. Although, RNA modifications prevail in all forms of life, the present review will focus on eukaryotic systems, where the great degree of intracellular compartmentalization provides barriers and filters for the level at which a given RNA is modified and will of course affect its fate and function. Additionally, although we will mention rRNA modification and modifications of the mRNA 5'-CAP structure, this will only be discussed in passing, as many substantive reviews have been written on these subjects. Here we will not spend much time describing all the possible modifications that have been observed; truly a daunting task. For reference, Bujnicki and coworkers have created MODOMICS, a useful repository for all types of modifications and their associated enzymes. Instead we will discuss a few examples, which illustrate our arguments on the connection of modifications, metabolism and ultimately translation. The fact remains, a full understanding of the long reach of nucleic acid modifications in cells requires both a global and targeted study of unprecedented scale, which at the moment may well be limited only by technology.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Robert L Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Zhang W, Xu R, Matuszek Ż, Cai Z, Pan T. Detection and quantification of glycosylated queuosine modified tRNAs by acid denaturing and APB gels. RNA (NEW YORK, N.Y.) 2020; 26:1291-1298. [PMID: 32439717 PMCID: PMC7430669 DOI: 10.1261/rna.075556.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Queuosine (Q) is a conserved tRNA modification in bacteria and eukaryotes. Eukaryotic Q-tRNA modification occurs through replacing the guanine base with the scavenged metabolite queuine at the wobble position of tRNAs with G34U35N36 anticodon (Tyr, His, Asn, Asp) by the QTRT1/QTRT2 heterodimeric enzyme encoded in the genome. In humans, Q-modification in tRNATyr and tRNAAsp are further glycosylated with galactose and mannose, respectively. Although galactosyl-Q (galQ) and mannosyl-Q (manQ) can be measured by LC/MS approaches, the difficulty of detecting and quantifying these modifications with low sample inputs has hindered their biological investigations. Here we describe a simple acid denaturing gel and nonradioactive northern blot method to detect and quantify the fraction of galQ/manQ-modified tRNA using just microgram amounts of total RNA. Our method relies on the secondary amine group of galQ/manQ becoming positively charged to slow their migration in acid denaturing gels commonly used for tRNA charging studies. We apply this method to determine the Q and galQ/manQ modification kinetics in three human cells lines. For Q-modification, tRNAAsp is modified the fastest, followed by tRNAHis, tRNATyr, and tRNAAsn Compared to Q-modification, glycosylation occurs at a much slower rate for tRNAAsp, but at a similar rate for tRNATyr Our method enables easy access to study the function of these enigmatic tRNA modifications.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Ruyi Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institute of Hematology, Zhejiang University, Zhejiang, 310006, China
| | - Żaneta Matuszek
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
- Institute of Hematology, Zhejiang University, Zhejiang, 310006, China
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
45
|
Kimura S, Srisuknimit V, Waldor MK. Probing the diversity and regulation of tRNA modifications. Curr Opin Microbiol 2020; 57:41-48. [PMID: 32663792 DOI: 10.1016/j.mib.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are non-coding RNAs essential for protein synthesis. tRNAs are heavily decorated with a variety of post-transcriptional modifications (tRNA modifications). Recent methodological advances provide new tools for rapid profiling of tRNA modifications and have led to discoveries of novel modifications and their regulation. Here, we provide an overview of the techniques for investigating tRNA modifications and of the expanding knowledge of their chemistry and regulation.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States.
| | - Veerasak Srisuknimit
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, United States; Department of Microbiology, Harvard Medical School, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
46
|
Hayes P, Fergus C, Ghanim M, Cirzi C, Burtnyak L, McGrenaghan CJ, Tuorto F, Nolan DP, Kelly VP. Queuine Micronutrient Deficiency Promotes Warburg Metabolism and Reversal of the Mitochondrial ATP Synthase in Hela Cells. Nutrients 2020; 12:nu12030871. [PMID: 32213952 PMCID: PMC7146442 DOI: 10.3390/nu12030871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 01/01/2023] Open
Abstract
Queuine is a eukaryotic micronutrient, derived exclusively from eubacteria. It is incorporated into both cytosolic and mitochondrial transfer RNA to generate a queuosine nucleotide at position 34 of the anticodon loop. The transfer RNA of primary tumors has been shown to be hypomodified with respect to queuosine, with decreased levels correlating with disease progression and poor patient survival. Here, we assess the impact of queuine deficiency on mitochondrial bioenergetics and substrate metabolism in HeLa cells. Queuine depletion is shown to promote a Warburg type metabolism, characterized by increased aerobic glycolysis and glutaminolysis, concomitant with increased ammonia and lactate production and elevated levels of lactate dehydrogenase activity but in the absence of significant changes to proliferation. In intact cells, queuine deficiency caused an increased rate of mitochondrial proton leak and a decreased rate of ATP synthesis, correlating with an observed reduction in cellular ATP levels. Data from permeabilized cells demonstrated that the activity of individual complexes of the mitochondrial electron transport chain were not affected by the micronutrient. Notably, in queuine free cells that had been adapted to grow in galactose medium, the re-introduction of glucose permitted the mitochondrial F1FO-ATP synthase to operate in the reverse direction, acting to hyperpolarize the mitochondrial membrane potential; a commonly observed but poorly understood cancer trait. Together, our data suggest that queuosine hypomodification is a deliberate and advantageous adaptation of cancer cells to facilitate the metabolic switch between oxidative phosphorylation and aerobic glycolysis.
Collapse
Affiliation(s)
- Patti Hayes
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Magda Ghanim
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Cansu Cirzi
- Division of Epigenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (C.C.); (F.T.)
- Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lyubomyr Burtnyak
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Callum J. McGrenaghan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Francesca Tuorto
- Division of Epigenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (C.C.); (F.T.)
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty, Heidelberg University, 68167 Mannheim, Germany
| | - Derek P. Nolan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
| | - Vincent P. Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland; (P.H.); (C.F.); (M.G.); (L.B.); (C.J.M.); (D.P.N.)
- Correspondence: ; Tel.: +353-1-8963507
| |
Collapse
|
47
|
Zhang J, Lu R, Zhang Y, Matuszek Ż, Zhang W, Xia Y, Pan T, Sun J. tRNA Queuosine Modification Enzyme Modulates the Growth and Microbiome Recruitment to Breast Tumors. Cancers (Basel) 2020; 12:E628. [PMID: 32182756 PMCID: PMC7139606 DOI: 10.3390/cancers12030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme Q tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Queuine is a micronutrient from diet and microbiome. Although tRNA Q-modification has been studied for a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis and the microbiome is still poorly understood. RESULTS We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. We also established a QTRT1-knockdown breast MDA-MB-231 cell line. The impacts of QTRT1 deletion or reduction on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using a xenograft BALB/c nude mouse model. We found that QTRT1 deficiency in human breast cancer cells could change the functions of regulation genes, which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo. We identified that several core bacteria, such as Lachnospiraceae, Lactobacillus, and Alistipes, were markedly changed in mice post injection with breast cancer cells. The relative abundance of bacteria in tumors induced from wildtype cells was significantly higher than those of QTRT1 deficiency cells. CONCLUSIONS Our results demonstrate that the QTRT1 gene and tRNA Q-modification altered cell proliferation, junctions, and microbiome in tumors and the intestine, thus playing a critical role in breast cancer development.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Żaneta Matuszek
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
48
|
Müller M, Legrand C, Tuorto F, Kelly VP, Atlasi Y, Lyko F, Ehrenhofer-Murray AE. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res 2019; 47:3711-3727. [PMID: 30715423 PMCID: PMC6468285 DOI: 10.1093/nar/gkz063] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, the wobble position of tRNA with a GUN anticodon is modified to the 7-deaza-guanosine derivative queuosine (Q34), but the original source of Q is bacterial, since Q is synthesized by eubacteria and salvaged by eukaryotes for incorporation into tRNA. Q34 modification stimulates Dnmt2/Pmt1-dependent C38 methylation (m5C38) in the tRNAAsp anticodon loop in Schizosaccharomyces pombe. Here, we show by ribosome profiling in S. pombe that Q modification enhances the translational speed of the C-ending codons for aspartate (GAC) and histidine (CAC) and reduces that of U-ending codons for asparagine (AAU) and tyrosine (UAU), thus equilibrating the genome-wide translation of synonymous Q codons. Furthermore, Q prevents translation errors by suppressing second-position misreading of the glycine codon GGC, but not of wobble misreading. The absence of Q causes reduced translation of mRNAs involved in mitochondrial functions, and accordingly, lack of Q modification causes a mitochondrial defect in S. pombe. We also show that Q-dependent stimulation of Dnmt2 is conserved in mice. Our findings reveal a direct mechanism for the regulation of translational speed and fidelity in eukaryotes by a nutrient originating from bacteria.
Collapse
Affiliation(s)
- Martin Müller
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College Dublin, Dublin, Ireland
| | - Yaser Atlasi
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Molekulare Zellbiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
49
|
Kuznetsova SA, Petrukov KS, Pletnev FI, Sergiev PV, Dontsova OA. RNA (C5-cytosine) Methyltransferases. BIOCHEMISTRY (MOSCOW) 2019; 84:851-869. [PMID: 31522668 DOI: 10.1134/s0006297919080029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.
Collapse
Affiliation(s)
- S A Kuznetsova
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.
| | - K S Petrukov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - F I Pletnev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - P V Sergiev
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
| | - O A Dontsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
50
|
Yuan Y, Zallot R, Grove TL, Payan DJ, Martin-Verstraete I, Šepić S, Balamkundu S, Neelakandan R, Gadi VK, Liu CF, Swairjo MA, Dedon PC, Almo SC, Gerlt JA, de Crécy-Lagard V. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A 2019; 116:19126-19135. [PMID: 31481610 PMCID: PMC6754566 DOI: 10.1073/pnas.1909604116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Rémi Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Daniel J Payan
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Isabelle Martin-Verstraete
- Laboratoire de Pathogénèse des Bactéries Anaérobies, Institut Pasteur et Université de Paris, F-75015 Paris, France
| | - Sara Šepić
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Seetharamsingh Balamkundu
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Ramesh Neelakandan
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Vinod K Gadi
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Chuan-Fa Liu
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182
- The Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
- Department of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611;
- University of Florida Genetics Institute, Gainesville, FL 32610
| |
Collapse
|