1
|
Li M, Böke E, Yang J. Centrosome-assisted assembly of the Balbiani body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637656. [PMID: 39990491 PMCID: PMC11844453 DOI: 10.1101/2025.02.11.637656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The Balbiani body (Bb), which was discovered about 170 years ago, is a membraneless organelle in the oocyte in most species. In organisms like Xenopus and Zebrafish, Bb accumulates mitochondria, endoplasmic reticulum (ER), and germline determinants and regulates the proper localization of germline determinants. The Bb forms around the centrosome in the oocyte during early oogenesis. The mechanism behind its assembly has gained attention only very recently. Here, we report that overexpression of the germ plasm matrix protein Xvelo leads to the formation of a 'Bb-like' structure in somatic cells. The 'Bb-like' structure assembles around the centrosome and selectively recruits mitochondria, ER, and germline determinants. Taking advantage of this system, we investigated the roles of centrosome components on the assembly of Xvelo. Our results reveal that multiple components of the centrosome, including Sas6, Cenexin, and DZIP1, interact with Xvelo and promote its assembly, with Sas6 exhibiting the most prominent activity. Importantly, knocking down Sas6, Cenexin, and DZIP1 individually or in combination resulted in reduced Xvelo aggregates. Taken together, our work suggests that the centrosome may function as a nucleation center to promote the initiation of Xvelo assembly, resulting in the formation of the Bb around the centrosome.
Collapse
|
2
|
Kar S, Deis R, Ahmad A, Bogoch Y, Dominitz A, Shvaizer G, Sasson E, Mytlis A, Ben-Zvi A, Elkouby YM. The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis. Curr Biol 2025; 35:315-332.e7. [PMID: 39793567 DOI: 10.1016/j.cub.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear. Here, we elucidate mechanisms of Bb formation in zebrafish through developmental biomolecular condensation. Using super-resolution microscopy, live imaging, biochemical, and genetic analyses in vivo, we demonstrate that Bb formation is driven by molecular condensation through phase separation of the essential intrinsically disordered protein Bucky ball (Buc). Live imaging, molecular analyses, and fluorescence recovery after photobleaching (FRAP) experiments in vivo reveal Buc-dependent changes in the Bb condensate's dynamics and apparent material properties, transitioning from liquid-like condensates to a solid-like stable compartment. Furthermore, we identify a multistep regulation by microtubules that controls Bb condensation: first through dynein-mediated trafficking of early condensing Buc granules, then by scaffolding condensed granules, likely through molecular crowding, and finally by caging the mature Bb to prevent overgrowth and maintain shape. These regulatory steps ensure the formation of a single intact Bb, which is considered essential for oocyte polarization and embryonic development. Our work offers insight into the long-standing question of the origins of embryonic polarity in non-mammalian vertebrates, supports a paradigm of cellular control over molecular condensation by microtubules, and highlights biomolecular condensation as a key process in female reproduction.
Collapse
Affiliation(s)
- Swastik Kar
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avichai Dominitz
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Esther Sasson
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Ayal Ben-Zvi
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
3
|
Ahmad A, Bogoch Y, Shvaizer G, Guler N, Levy K, Elkouby YM. The piRNA protein Asz1 is essential for germ cell and gonad development in zebrafish and exhibits differential necessities in distinct types of germ granules. PLoS Genet 2025; 21:e1010868. [PMID: 39804923 PMCID: PMC11760641 DOI: 10.1371/journal.pgen.1010868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/24/2025] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood. Asz1 is a piRNA protein in Drosophila and mice. Zebrafish Asz1 localizes to both piRNA and Bb granules, with yet unknown functions. Here, we hypothesized that Asz1 functions in germ granules and germline development in zebrafish. We generated asz1 mutant fish to determine the roles of Asz1 in germ cell development. We show that Asz1 is dispensable for somatic development, but essential for germ cell and gonad development. asz1-/- fish developed exclusively as sterile males with severely underdeveloped testes that lacked germ cells. In asz1 mutant juvenile gonads, germ cells undergo extensive apoptosis, demonstrating that Asz1 is essential for germ cell survival. Mechanistically, we provide evidence to conclude that zygotic Asz1 is not required for primordial germ cell specification or migration to the gonad, but is essential during post-embryonic gonad development, likely by suppressing the expression of germline transposons. Increased transposon expression and mis-organized piRNA granules in asz1 mutants, argue that zebrafish Asz1 functions in the piRNA pathway. We generated asz1;tp53 fish to partially rescue ovarian development, revealing that Asz1 is also essential for oogenesis. We further showed that in contrast with piRNA granules, Asz1 is dispensable for Bb granule formation, as shown by normal Bb localization of Buc and dazl. By uncovering Asz1 as an essential regulator of germ cell survival and gonadogenesis in zebrafish, and determining its differential necessity in distinct germ granule types, our work advances our understanding of the developmental genetics of reproduction and fertility, as well as of germ granule biology.
Collapse
Affiliation(s)
- Adam Ahmad
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yoel Bogoch
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Gal Shvaizer
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Noga Guler
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein- Kerem Campus, Jerusalem, Israel
- Institute for Medical Research – Israel-Canada (IMRIC), Ein- Kerem Campus, Jerusalem, Israel
| |
Collapse
|
4
|
Elkouby YM. Germ cell development: Anchoring and pulling forces shape germline cyst construction. Curr Biol 2024; 34:R1228-R1230. [PMID: 39689689 DOI: 10.1016/j.cub.2024.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A new study reports a 'tug-of-war' mechanism in mouse germline cyst formation, where cell motility and intercellular bridges balance fragmentation and stabilization of the cyst. These dynamic and opposing forces that anchor and pull cells apart shape cyst construction, advancing our understanding of mammalian oogenesis and reproduction.
Collapse
Affiliation(s)
- Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
5
|
Kikuchi M, Yoshimoto M, Ishikawa T, Kanda Y, Mori K, Nishimura T, Tanaka M. Sexually dimorphic dynamics of the microtubule network in medaka (Oryzias latipes) germ cells. Development 2024; 151:dev201840. [PMID: 38471539 PMCID: PMC10984276 DOI: 10.1242/dev.201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024]
Abstract
Gametogenesis is the process through which germ cells differentiate into sexually dimorphic gametes, eggs and sperm. In the teleost fish medaka (Oryzias latipes), a germ cell-intrinsic sex determinant, foxl3, triggers germline feminization by activating two genetic pathways that regulate folliculogenesis and meiosis. Here, we identified a pathway involving a dome-shaped microtubule structure that may be the basis of oocyte polarity. This structure was first established in primordial germ cells in both sexes, but was maintained only during oogenesis and was destabilized in differentiating spermatogonia under the influence of Sertoli cells expressing dmrt1. Although foxl3 was dispensable for this pathway, dazl was involved in the persistence of the microtubule dome at the time of gonocyte development. In addition, disruption of the microtubule dome caused dispersal of bucky ball RNA, suggesting the structure may be prerequisite for the Balbiani body. Collectively, the present findings provide mechanistic insight into the establishment of sex-specific polarity through the formation of a microtubule structure in germ cells, as well as clarifying the genetic pathways implementing oocyte-specific characteristics.
Collapse
Affiliation(s)
- Mariko Kikuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Miyo Yoshimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuto Kanda
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
7
|
Hwang H, Chen S, Ma M, Divyanshi, Fan HC, Borwick E, Böke E, Mei W, Yang J. Solubility phase transition of maternal RNAs during vertebrate oocyte-to-embryo transition. Dev Cell 2023; 58:2776-2788.e5. [PMID: 37922909 PMCID: PMC10841985 DOI: 10.1016/j.devcel.2023.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains largely unclear. In this work, we discover the dynamic solubility phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere, and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus identifies important remodeling mechanisms that act on RNAs to control vertebrate OET.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sijie Chen
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Meng Ma
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Hao-Chun Fan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Elizabeth Borwick
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
8
|
Li AYZ, Di Y, Rathore S, Chiang ACY, Jezek J, Ma H. Milton assembles large mitochondrial clusters, mitoballs, to sustain spermatogenesis. Proc Natl Acad Sci U S A 2023; 120:e2306073120. [PMID: 37579146 PMCID: PMC10450580 DOI: 10.1073/pnas.2306073120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Mitochondria are dynamic organelles that undergo frequent remodeling to accommodate developmental needs. Here, we describe a striking organization of mitochondria into a large ball-like structure adjacent to the nucleus in premeiotic Drosophila melanogaster spermatocytes, which we term "mitoball". Mitoballs are transient structures that colocalize with the endoplasmic reticulum, Golgi bodies, and the fusome. We observed similar premeiotic mitochondrial clusters in a wide range of insect species, including mosquitos and cockroaches. Through a genetic screen, we identified that Milton, an adaptor protein that links mitochondria to microtubule-based motors, mediates mitoball formation. Flies lacking a 54 amino acid region in the C terminus of Milton completely lacked mitoballs, had swollen mitochondria in their spermatocytes, and showed reduced male fertility. We suggest that the premeiotic mitochondrial clustering is a conserved feature of insect spermatogenesis that supports sperm development.
Collapse
Affiliation(s)
- Andy Y. Z. Li
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Ying Di
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Sumaera Rathore
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Ason C.-Y. Chiang
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Jan Jezek
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
| | - Hansong Ma
- Wellcome/Cancer Research UK Gurdon Institute, CambridgeCB2 1QN, United Kingdom
- Department of Genetics, University of Cambridge, CambridgeCB2 3EH, United Kingdom
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| |
Collapse
|
9
|
Wen Y, Zhan J, Li C, Li P, Wang C, Wu J, Xu Y, Zhang Y, Zhou Y, Li E, Nie H, Wu X. G-protein couple receptor (GPER1) plays an important role during ovarian folliculogenesis and early development of the Chinese Alligator. Anim Reprod Sci 2023; 255:107295. [PMID: 37422950 DOI: 10.1016/j.anireprosci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
The critical role of the G protein-coupled receptor 1 (GPER1), a member of the seven-transmembrane G protein-coupled receptor family, in the functional regulation of oocytes accumulated abundant theories in the early research on model animals. However, the full-length cDNA encoding GPER1 and its role in the folliculogenesis has not been illustrated in crocodilians. 0.5, 3, and 12 months old Alligator sinensis cDNA samples were used to clone the full-length cDNA encoding GPER1. Immunolocalization and quantitative analysis were performed using Immunofluorescence technique, RT-PCR and Western blot. Simultaneously, studies on GPER1's promoter deletion and cis-acting transcriptional regulation mechanism were conducted. Immunolocalization staining for the germline marker DDX4 and GPER1 demonstrated that DDX4-positive oocytes were clustered tightly together within the nests, whereas scarcely any detectable GPER1 was present in the oocytes nest in Stage I. After that, occasionally GPER1-positive immunosignal was observed in oocytes and somatic cells additional with the primordial follicles, and it was mainly located at the granulosa cells or thecal cells within the early PFs in the Stage III. The single mutation of the putative SP1 motif, double mutating of Ets/SP1 and SP1/CRE binding sites all depressed promoter activities. This result will help to investigate the role of GPER1 in the early folliculogenesis of A. sinensis.
Collapse
Affiliation(s)
- Yue Wen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jixiang Zhan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Changcheng Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Pengfei Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Chong Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Jie Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yunlu Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yuqian Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou 242000, People's Republic of China
| | - En Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China
| | - Haitao Nie
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China; Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, People's Republic of China.
| |
Collapse
|
10
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
11
|
Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg CP. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biol 2023; 21:e3002146. [PMID: 37289834 DOI: 10.1371/journal.pbio.3002146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irene Steccari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
12
|
Hwang H, Chen S, Ma M, Divyanshi, Fan HC, Borwick E, Böke E, Mei W, Yang J. Phase transition of maternal RNAs during vertebrate oocyte-to-embryo transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540463. [PMID: 37214813 PMCID: PMC10197690 DOI: 10.1101/2023.05.11.540463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains an open question. In this work, we discover the dynamic phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus uncovers novel remodeling mechanisms that act on RNAs to regulate vertebrate OET.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sijie Chen
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Meng Ma
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Hao-Chun Fan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Elizabeth Borwick
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
13
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
14
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|
15
|
Xie H, Wang X, Jin M, Li L, Zhu J, Kang Y, Chen Z, Sun Y, Zhao C. Cilia regulate meiotic recombination in zebrafish. J Mol Cell Biol 2022; 14:6671532. [PMID: 35981808 PMCID: PMC9764210 DOI: 10.1093/jmcb/mjac049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 01/14/2023] Open
Abstract
Meiosis is essential for evolution and genetic diversity in almost all sexual eukaryotic organisms. The mechanisms of meiotic recombination, such as synapsis, have been extensively investigated. However, it is still unclear whether signals from the cytoplasm or even from outside of the cell can regulate the meiosis process. Cilia are microtubule-based structures that protrude from the cell surface and function as signaling hubs to sense extracellular signals. Here, we reported an unexpected and critical role of cilia during meiotic recombination. During gametogenesis of zebrafish, cilia were specifically present in the prophase stages of both primary spermatocytes and primary oocytes. By developing a germ cell-specific CRISPR/Cas9 system, we demonstrated that germ cell-specific depletion of ciliary genes resulted in compromised double-strand break repair, reduced crossover formation, and increased germ cell apoptosis. Our study reveals a previously undiscovered role for cilia during meiosis and suggests that extracellular signals may regulate meiotic recombination via this particular organelle.
Collapse
Affiliation(s)
| | | | - Minjun Jin
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lanqin Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan 430072, China,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunsi Kang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China,Sars-Fang Centre, Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhe Chen
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | | | | |
Collapse
|
16
|
Olaya I, Burgess SM. When the anchor's away, meiotic telomeres go astray. Dev Cell 2022; 57:1563-1565. [PMID: 35820392 DOI: 10.1016/j.devcel.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During meiosis, microtubules emanate from the centrosome to cluster telomeres in the bouquet configuration and facilitate chromosome pairing. In a recent issue of Science, Mytlis et al. establish that a cilium in zebrafish anchors the centrosome and is important for telomere clustering and germ cell development.
Collapse
Affiliation(s)
- Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, USA
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
17
|
Żelazowska M, Kujawa R. Microscopic study of the primary growth ovarian follicles of the pike-perch Sander lucioperca (Linnaeus 1758) (Actinopterygii, Perciformes). Micron 2022; 160:103318. [PMID: 35759902 DOI: 10.1016/j.micron.2022.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
The ovaries of Sander lucioperca (Actinopterygii, Perciformes) are made up of the germinal epithelium and ovarian follicles, in which primary oocytes grow. Each follicle is composed of an oocyte surrounded by flattened follicular cells, the basal lamina, and thecal cells. The early stages of oocyte development (primary growth = previtellogenesis) are not fully explained in this species. The results of research with the use of stereoscopic, light, fluorescence, and transmission electron microscopes on ovarian follicles containing developing primary oocytes of S. lucioperca are presented. The polarization and ultrastructure of oocytes are described and discussed. The deposition of egg envelopes during the primary growth and the ultrastructure of the eggshell in maturing follicles of S. lucioperca are also presented. Nuclei in primary oocytes comprise lampbrush chromosomes, nuclear bodies, and nucleoli. Numerous additional nucleoli arise in the nucleoplasm during primary growth and locate close to the nuclear envelope. The Balbiani body in the cytoplasm of oocytes (ooplasm) is composed of nuage aggregations of nuclear origin and mitochondria, endoplasmic reticulum (ER), and Golgi apparatus. The presence of the Balbiani body was reported in oocytes of numerous species of Actinopterygii; however, its ultrastructure was investigated in a limited number of species. In primary oocytes of S. lucioperca, the Balbiani body is initially located in the perinuclear ooplasm on one side of the nucleus. Next, it surrounds the nucleus, expands toward the plasma membrane of oocytes (oolemma), and becomes fragmented. Within the Balbiani body, the granular nuage condenses in the form of threads, locates near the oolemma, at the vegetal oocyte pole, and then dissolves. Mitochondria and cisternae of the rough endoplasmic reticulum (RER) are present between the threads. During primary growth micropylar cells differentiate in the follicular epithelium. They contain cisternae and vesicles of the RER and Golgi apparatus as well as numerous dense vesicles suggesting high synthetic and secretory activity. During the final step of primary growth several follicular cells delaminate from the follicular epithelium, migrate toward the oocyte and submerge in the most external egg envelope. In the ooplasm, three regions are distinguished: perinuclear, endoplasm, and periplasm. Cortical alveoli arise in the perinuclear ooplasm and in the endoplasm as a result of the fusion of RER vesicles with Golgi ones. They are evenly distributed. Lamellar bodies in the periplasm store the plasma membrane and release it into a space between the follicular cells and the oocyte. The developing eggshell in this space is made up of two egg envelopes (the internal one and the external) that are pierced by canals formed around the microvilli of oocytes and the processes of follicular cells. In the deposition of egg envelopes the oocyte itself and follicular cells are engaged. In maturing ovarian follicles the eggshell is solid and the internal egg envelope is covered with protuberances.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| | - Roman Kujawa
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| |
Collapse
|
18
|
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022; 10:826892. [PMID: 35733854 PMCID: PMC9207522 DOI: 10.3389/fcell.2022.826892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Collapse
Affiliation(s)
- Yoel Bogoch
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| |
Collapse
|
19
|
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes (Basel) 2022; 13:genes13050901. [PMID: 35627285 PMCID: PMC9140367 DOI: 10.3390/genes13050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
| | - Chenshu Liu
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
- Correspondence:
| |
Collapse
|
20
|
Mytlis A, Kumar V, Qiu T, Deis R, Hart N, Levy K, Masek M, Shawahny A, Ahmad A, Eitan H, Nather F, Adar-Levor S, Birnbaum RY, Elia N, Bachmann-Gagescu R, Roy S, Elkouby YM. Control of meiotic chromosomal bouquet and germ cell morphogenesis by the zygotene cilium. Science 2022; 376:eabh3104. [PMID: 35549308 DOI: 10.1126/science.abh3104] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope via microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet". Here, we identified the "zygotene cilium" in oocytes. This cilium provides a cable system for the bouquet machinery, extending throughout the germline cyst. Using zebrafish mutants and live manipulations, we demonstrate that the cilium anchors the centrosome to counterbalance telomere pulling. The cilium is essential for bouquet and synaptonemal complex formation, oogenesis, ovarian development, and fertility. Thus, a cilium represents a conserved player in zebrafish and mouse meiosis, which sheds light on reproductive aspects in ciliopathies, and suggests that cilia can control chromosomal dynamics.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Vineet Kumar
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Tao Qiu
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore
| | - Rachael Deis
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Neta Hart
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Markus Masek
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Amal Shawahny
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Adam Ahmad
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Hagai Eitan
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Farouq Nather
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Shai Adar-Levor
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ramon Y Birnbaum
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Natalie Elia
- Departments of Life Sciences, Ben-Gurion University of the Negev, Beer Shave 84105, Israel
| | - Ruxandra Bachmann-Gagescu
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland.,Institute of Medical Genetics, University of Zurich, 8952 Schlieren, Switzerland
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 138673 Singapore.,Department of Biological Sciences, National University of Singapore, 117543 Singapore.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119288 Singapore
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel.,Institute for Medical Research-Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| |
Collapse
|
21
|
Charitonidou K, Panteris E, Ganias K. Balbiani body formation and cytoplasmic zonation during early oocyte development in two Clupeiform fishes. JOURNAL OF FISH BIOLOGY 2022; 100:1223-1232. [PMID: 35244939 DOI: 10.1111/jfb.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The Balbiani body (Bb) was examined in primary growth phase oocytes for the first time in two clupeoid fish species, the Mediterranean sardine, Sardina pilchardus, and the European anchovy, Engraulis encrasicolus, which belong to different families, Clupeidae and Engraulidae, respectively. Cytoplasmic morphological changes of early secondary growth oocytes were also investigated using confocal laser scanning microscopy, light and transmission electron microscopy. The ultrastructural observations showed that the two species develop a distinct spherical Bb. However, differences in the cytoplasm, mainly in the perinuclear area, were observed. Briefly, in sardine the Bb coexists with a thick perinuclear ring containing mitochondria, nuage, endoplasmic reticulum and small vesicles, while in anchovy this perinuclear ring is thinner, consisting of complexes of nuage and mitochondria. After the disassembly of the Bb, a prominent cytoplasmic zonation develops in the secondary growth oocytes of sardine and anchovy, although with different organelle distribution between the two species. Sardine oocytes exhibit a thick zone of endoplasmic reticulum around the nucleus, whereas in those of anchovy, a thick mitochondria-rich ring surrounding the nucleus was observed. The cytoplasmic characteristics, such as the perinuclear ring in primary oocytes in sardine and the mitochondria-rich ring of early secondary oocytes in anchovy, are also discernible in histological sections by standard procedures and could thus be used as indicators of maturity or imminent spawning period in routine light microscopy observations, providing a valuable tool for applied fisheries biology.
Collapse
Affiliation(s)
- Katerina Charitonidou
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Ganias
- Laboratory of Ichthyology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Pan YJ, Tong SK, Hsu CW, Weng JH, Chung BC. Zebrafish Establish Female Germ Cell Identity by Advancing Cell Proliferation and Meiosis. Front Cell Dev Biol 2022; 10:866267. [PMID: 35445010 PMCID: PMC9013747 DOI: 10.3389/fcell.2022.866267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 01/05/2023] Open
Abstract
Zebrafish is a popular research model; but its mechanism of sex determination is unclear and the sex of juvenile fish cannot be distinguished. To obtain fish with defined sex, we crossed domesticated zebrafish with the Nadia strain that has a female-dominant W segment. These fish were placed on a ziwi:GFP background to facilitate sorting of fluorescent germ cells for transcriptomic analysis. We analyzed the transcriptomes of germ cells at 10–14 days postfertilization (dpf), when sex dimorphic changes started to appear. Gene ontology showed that genes upregulated in the 10-dpf presumptive females are involved in cell cycles. This correlates with our detection of increased germ cell numbers and proliferation. We also detected upregulation of meiotic genes in the presumptive females at 14 dpf. Disruption of a meiotic gene, sycp3, resulted in sex reversal to infertile males. The germ cells of sycp3 mutants could not reach diplotene and underwent apoptosis. Preventing apoptosis by disrupting tp53 restored female characteristics in sycp3 mutants, demonstrating that adequate germ cells are required for female development. Thus, our transcriptome and gene mutation demonstrate that initial germ cell proliferation followed by meiosis is the hallmark of female differentiation in zebrafish.
Collapse
Affiliation(s)
- You-Jiun Pan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institue of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sok-Keng Tong
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-wei Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jui-Hsia Weng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Bon-chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Bon-chu Chung,
| |
Collapse
|
23
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Yang C, Dominique GM, Champion MM, Huber PW. Remnants of the Balbiani body are required for formation of RNA transport granules in Xenopus oocytes. iScience 2022; 25:103878. [PMID: 35243240 PMCID: PMC8861640 DOI: 10.1016/j.isci.2022.103878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
The Balbiani body (Bb), an organelle comprised of mitochondria, ER, and RNA, is found in the oocytes of most organisms. In Xenopus, the structure is initially positioned immediately adjacent to the nucleus, extends toward the vegetal pole, and eventually disperses, leaving behind a region highly enriched in mitochondria. This area is later transversed by RNP complexes that are being localized to the vegetal cortex. Inhibition of mitochondrial ATP synthesis prevents perinuclear formation of the transport complexes that can be reversed by a nonhydrolyzable ATP analog, indicating the nucleotide is acting as a hydrotrope. The protein composition, sensitivity to hexanediol, and coalescence in the absence of transport provide evidence that the transport RNP complexes are biocondensates. The breakdown of the Bb engenders regions of clustered mitochondria that are used not to meet extraordinary energy demands, but rather to promote a liquid-liquid phase separation.
Collapse
Affiliation(s)
- Chao Yang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gena M. Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W. Huber
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Imai Y, Olaya I, Sakai N, Burgess SM. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol 2021; 9:757445. [PMID: 34692709 PMCID: PMC8531508 DOI: 10.3389/fcell.2021.757445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Recent studies in zebrafish have revealed key features of meiotic chromosome dynamics, including clustering of telomeres in the bouquet configuration, biogenesis of chromosome axis structures, and the assembly and disassembly of the synaptonemal complex that aligns homologs end-to-end. The telomere bouquet stage is especially pronounced in zebrafish meiosis and sub-telomeric regions play key roles in mediating pairing and homologous recombination. In this review, we discuss the temporal progression of these events in meiosis prophase I and highlight the roles of proteins associated with meiotic chromosome architecture in homologous recombination. Finally, we discuss the interplay between meiotic mutants and gonadal sex differentiation and future research directions to study meiosis in living cells, including cell culture.
Collapse
Affiliation(s)
- Yukiko Imai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Ivan Olaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States.,Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Noriyoshi Sakai
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan.,Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| | - Sean M Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
26
|
Islam KN, Modi MM, Siegfried KR. The Zebrafish Meiotic Cohesin Complex Protein Smc1b Is Required for Key Events in Meiotic Prophase I. Front Cell Dev Biol 2021; 9:714245. [PMID: 34434933 PMCID: PMC8381726 DOI: 10.3389/fcell.2021.714245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The eukaryotic structural maintenance of chromosomes (SMC) proteins are involved in key processes of chromosome structure and dynamics. SMC1β was identified as a component of the meiotic cohesin complex in vertebrates, which aids in keeping sister chromatids together prior to segregation in meiosis II and is involved in association of homologous chromosomes in meiosis I. The role of SMC1β in meiosis has primarily been studied in mice, where mutant male and female mice are infertile due to germ cell arrest at pachytene and metaphase II stages, respectively. Here, we investigate the function of zebrafish Smc1b to understand the role of this protein more broadly in vertebrates. We found that zebrafish smc1b is necessary for fertility and has important roles in meiosis, yet has no other apparent roles in development. Therefore, smc1b functions primarily in meiosis in both fish and mammals. In zebrafish, we showed that smc1b mutant spermatocytes initiated telomere clustering in leptotene, but failed to complete this process and progress into zygotene. Furthermore, mutant spermatocytes displayed a complete failure of synapsis between homologous chromosomes and homolog pairing only occurred at chromosome ends. Interestingly, meiotic DNA double strand breaks occurred in the absence of Smc1b despite failed pairing and synapsis. Overall, our findings point to an essential role of Smc1b in the leptotene to zygotene transition during zebrafish spermatogenesis. In addition, ovarian follicles failed to form in smc1b mutants, suggesting an essential role in female meiosis as well. Our results indicate that there are some key differences in Smc1b requirement in meiosis among vertebrates: while Smc1b is not required for homolog pairing and synapsis in mice, it is essential for these processes in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, MA, United States
| | - Maitri Mitesh Modi
- Biology Department, University of Massachusetts Boston, Boston, MA, United States
| | | |
Collapse
|
27
|
Dymek AM, Pecio A, Piprek RP. Diversity of Balbiani body formation in internally and externally fertilizing representatives of Osteoglossiformes (Teleostei: Osteoglossomorpha). J Morphol 2021; 282:1313-1329. [PMID: 34145919 DOI: 10.1002/jmor.21387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 01/30/2023]
Abstract
During the early stages of oogenesis, the Balbiani body is formed in the primary oocytes. It consists of the Golgi apparatus, endoplasmic reticulum (ER), and numerous mitochondria aggregated with germ plasm, but its form may differ among animals. Hypothetically, during oogenesis oocytes become adapted to future development in two different environments depending on internal or external fertilization. We aimed to investigate, using light and transmission electron microscopy, the development of the Balbiani body during oogenesis in representatives of Osteoglossiformes, one of the most basal Teleostei groups. We analyzed the structure of oogonia and primary oocytes in the internally fertilizing butterflyfish Pantodon buchholzi and the externally fertilizing Osteoglossum bicirrhosum and Arapaima gigas to compare formation of the Balbiani body in relation to modes of fertilization. We demonstrated that the presence of the germ plasm as well as the fusion and fission of mitochondria are the conserved features of the Bb. However, each species exhibited also some peculiar features, including the presence of three types of ooplasm with different electron density and mitochondria-associated membranes in P. buchholzi; annulate lamellae, complexes of the Golgi apparatus, ER network, and lysosome-like bodies in O. bicirrhosum; as well as karmellae and whorls formed by the lamellae of the ER in A. gigas. Moreover, the form of the germ plasm observed in close contact with mitochondria differed between osteoglossiforms, with a "net-like" structure in P. buchholzi, the presence of numerous strings in O. bicirrhosum, and irregular accumulations in A. gigas. These unique features indicate that the extreme diversity of gamete structure observed so far only in the spermatozoa of osteoglossiforms is also characteristic for oocyte development in these basal teleosts. Possible reason of this variability is a period of about 150 million years of independent evolution of the lineages.
Collapse
Affiliation(s)
- Anna M Dymek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| | - Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
28
|
Petrushko MP, Buderatska NO, Gontar JV, Yurchuk TO. Morphological and Molecular Cytogenetic Characteristics of Giant Human Oocytes. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Cytokinetic abscission is part of the midblastula transition in early zebrafish embryogenesis. Proc Natl Acad Sci U S A 2021; 118:2021210118. [PMID: 33837152 PMCID: PMC8053991 DOI: 10.1073/pnas.2021210118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this work, we show that the last step of cytokinesis, termed abscission, is delayed in early zebrafish embryos. As a result, sibling cells remain connected to one another by a thin membrane bridge for several cycles, forming clusters of interconnected cells. Bridge severing (i.e., abscission) commences at the 10th cell cycle when embryos enter the midblastula transition switch, in which embryonic cells become individualized and exhibit the characteristics of mature cells. Cells connected by intercellular bridges shared similar cellular behaviors, such as transcription onset and cell shape. Our data suggest that cell–cell connectivity is maintained in early embryos through persistent bridge connections that allow cells to coordinate their behavior during embryonic development. Animal cytokinesis ends with the formation of a thin intercellular membrane bridge that connects the two newly formed sibling cells, which is ultimately resolved by abscission. While mitosis is completed within 15 min, the intercellular bridge can persist for hours, maintaining a physical connection between sibling cells and allowing exchange of cytosolic components. Although cell–cell communication is fundamental for development, the role of intercellular bridges during embryogenesis has not been fully elucidated. In this work, we characterized the spatiotemporal characteristics of the intercellular bridge during early zebrafish development. We found that abscission is delayed during the rapid division cycles that occur in the early embryo, giving rise to the formation of interconnected cell clusters. Abscission was accelerated when the embryo entered the midblastula transition (MBT) phase. Components of the ESCRT machinery, which drives abscission, were enriched at intercellular bridges post-MBT and, interfering with ESCRT function, extended abscission beyond MBT. Hallmark features of MBT, including transcription onset and cell shape modulations, were more similar in interconnected sibling cells compared to other neighboring cells. Collectively, our findings suggest that delayed abscission in the early embryo allows clusters of cells to coordinate their behavior during embryonic development.
Collapse
|
30
|
Detection of the Polar Body After Fertilization. Methods Mol Biol 2021. [PMID: 33606230 DOI: 10.1007/978-1-0716-0970-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The polar body, with haploid DNA, is a small cell produced during the meiosis of an oocyte. Here, we describe the detailed procedures for the detection of the second polar body in zebrafish (Danio rerio) embryos after 10 min post fertilization. A polar body can be easily distinguished as a small dot with a DAPI-stained nucleus surrounded by Phalloidin-labeled F-actin in each fertilized zebrafish embryo.
Collapse
|
31
|
Mytlis A, Elkouby YM. Live and Time-Lapse Imaging of Early Oogenesis and Meiotic Chromosomal Dynamics in Cultured Juvenile Zebrafish Ovaries. Methods Mol Biol 2021; 2218:137-155. [PMID: 33606229 DOI: 10.1007/978-1-0716-0970-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Oocyte production is crucial for sexual reproduction. Recent findings in zebrafish and other established model organisms emphasize that the early steps of oogenesis involve the coordination of simultaneous and tightly sequential processes across cellular compartments and between sister cells. To fully understand the mechanistic framework of these coordinated processes, cellular and morphological analysis in high temporal resolution is required. Here, we provide a protocol for four-dimensional live time-lapse analysis of cultured juvenile zebrafish ovaries. We describe how multiple-stage oocytes can be simultaneously analyzed in single ovaries, and several ovaries can be processed in single experiments. In addition, we detail adequate conditions for quantitative image acquisition. Finally, we demonstrate that using this protocol, we successfully capture rapid meiotic chromosomal movements in early prophase for the first time in zebrafish oocytes, in four dimensions and in vivo. Our protocol expands the use of the zebrafish as a model system to understand germ cell and ovarian development in postembryonic stages.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem, Faculty of Medicine, Institute for Medical Research - Israel-Canada (IMRIC), Jerusalem, Israel.
| |
Collapse
|
32
|
Pennarossa G, Gandolfi F, Brevini TAL. "Biomechanical Signaling in Oocytes and Parthenogenetic Cells". Front Cell Dev Biol 2021; 9:646945. [PMID: 33644079 PMCID: PMC7905081 DOI: 10.3389/fcell.2021.646945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Oocyte-specific competence remains one of the major targets of current research in the field of reproduction. Several mechanisms are involved in meiotic maturation and the molecular signature of an oocyte is considered to reflect its quality and to predict its subsequent developmental and functional capabilities. In the present minireview, we focus on the possible role of mechanotransduction and mechanosensor signaling pathways, namely the Hippo and the RhoGTPase, in the maturing oocyte. Due to the limited access to female gametes, we propose the use of cells isolated from parthenogenetic embryos as a promising model to characterize and dissect the oocyte distinctive molecular signatures, given their exclusive maternal origin. The brief overview here reported suggests a role of the mechanosensing related pathways in oocyte quality and developmental competence and supports the use of uniparental cells as a useful tool for oocyte molecular signature characterization.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
33
|
M'kacher R, Colicchio B, Marquet V, Borie C, Najar W, Hempel WM, Heidingsfelder L, Oudrhiri N, Al Jawhari M, Wilhelm-Murer N, Miguet M, Dieterlen A, Deschênes G, Tabet AC, Junker S, Grynberg M, Fenech M, Bennaceur-Griscelli A, Voisin P, Carde P, Jeandidier E, Yardin C. Telomere aberrations, including telomere loss, doublets, and extreme shortening, are increased in patients with infertility. Fertil Steril 2020; 115:164-173. [PMID: 33272625 DOI: 10.1016/j.fertnstert.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To test the hypothesis that telomere shortening and/or loss are risk factors for infertility. DESIGN Retrospective analysis of the telomere status in patients with infertility using conventional cytogenetic data collected prospectively. SETTING Academic centers. PATIENT(S) Cytogenetic slides with cultured peripheral lymphocytes from 50 patients undergoing fertility treatment and 150 healthy donors, including 100 donors matched for age. INTERVENTION(S) Cytogenetic slides were used to detect chromosomal and telomere aberrations. MAIN OUTCOME MEASURE(S) Telomere length and telomere aberrations were analyzed after telomere and centromere staining. RESULT(S) The mean telomere length of patients consulting for infertility was significantly less than that of healthy donors of similar age. Moreover, patients with infertility showed significantly more extreme telomere loss and telomere doublet formation than healthy controls. Telomere shortening and/or telomere aberrations were more pronounced in patients with structural chromosomal aberrations. Dicentric chromosomes were identified in 6/13 patients, with constitutional chromosomal aberrations leading to chromosomal instability that correlated with chromosomal end-to-end fusions. CONCLUSION(S) Our findings demonstrate the feasibility of analyzing telomere aberrations in addition to chromosomal aberrations, using cytogenetic slides. Telomere attrition and/or dysfunction represent the main common cytogenetic characteristic of patients with infertility, leading to potential implications for fertility assessment. Pending further studies, these techniques that correlate the outcome of assisted reproduction and telomere integrity status may represent a novel and useful diagnostic and/or prognostic tool for medical care in this field.
Collapse
Affiliation(s)
- Radhia M'kacher
- Cell Environment, DNA Damage Research & Development, Paris, France.
| | - Bruno Colicchio
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | - Valentine Marquet
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France
| | - Claire Borie
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Wala Najar
- Cell Environment, DNA Damage Research & Development, Paris, France; Faculté de médecine Paris Centre, Université de Paris, Paris, France
| | - William M Hempel
- Cell Environment, DNA Damage Research & Development, Paris, France
| | | | - Noufissa Oudrhiri
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | | | - Nadège Wilhelm-Murer
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Marguerite Miguet
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Alain Dieterlen
- Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, Mulhouse, France
| | | | | | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Hôpital Antoine Béclère, Clamart, France
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia
| | - Annelise Bennaceur-Griscelli
- Assitance Pubique-Hopitaux de Paris (APHP)-Service d'hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay/INSERM 935, Villejuif, France
| | - Philippe Voisin
- Cell Environment, DNA Damage Research & Development, Paris, France
| | - Patrice Carde
- Department of Hematology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eric Jeandidier
- Service de génétique Groupe Hospitalier de la Région de Mulhouse et Sud Alsace, Mulhouse, France
| | - Catherine Yardin
- Service de Cytogénétique, Génétique Médicale, et Biologie de la Reproduction Hôpital de la Mère et de l'Enfant, Centre hospitalo-universitaire Dupuytren, Limoges, France; CNRS, XLIM, UMR 7252, University of Limoges, Limoges, France
| |
Collapse
|
34
|
Venuto MT, Martorell-Ribera J, Bochert R, Harduin-Lepers A, Rebl A, Galuska SP. Characterization of the Polysialylation Status in Ovaries of the Salmonid Fish Coregonus maraena and the Percid Fish Sander lucioperca. Cells 2020; 9:cells9112391. [PMID: 33142835 PMCID: PMC7693511 DOI: 10.3390/cells9112391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022] Open
Abstract
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, such as the reproductive tract. Interestingly, trout fish eggs have polySia, but we know little of its cellular distribution and role during oogenesis. Therefore, we localized α2,8-linked N-acetylneuraminic acid polymers in the ovaries of Coregonus maraena by immunohistochemistry and found that prevalent clusters of oogonia showed polySia signals on their surfaces. Remarkably, the genome of this salmonid fish contains two st8sia2 genes and one st8sia4 gene, that is, three polysialyltransferases. The expression analysis revealed that for st8sia2-r2, 60 times more mRNA was present than st8sia2-r1 and st8sia4. To compare polysialylation status regarding various polySiaT configurations, we performed a comparable analysis in Sander lucioperca. The genome of this perciform fish contains only one st8sia2 and no st8sia4 gene. Here, too, clusters of oogonia showed polysialylated cell surfaces, and we detected high mRNA values for st8sia2. These results suggest that in teleosts, polySia is involved in the cellular processes of oogonia during oogenesis.
Collapse
Affiliation(s)
- Marzia Tindara Venuto
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Joan Martorell-Ribera
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.M.-R.); (A.R.)
| | - Ralf Bochert
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA-MV), 18375 Born, Germany;
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France;
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (J.M.-R.); (A.R.)
| | - Sebastian Peter Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
- Correspondence: ; Tel.: +49-382-0868-769
| |
Collapse
|
35
|
Biedzinski S, Agsu G, Vianay B, Delord M, Blanchoin L, Larghero J, Faivre L, Théry M, Brunet S. Microtubules control nuclear shape and gene expression during early stages of hematopoietic differentiation. EMBO J 2020; 39:e103957. [PMID: 33089509 DOI: 10.15252/embj.2019103957] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPC) can differentiate into all hematopoietic lineages to support hematopoiesis. Cells from the myeloid and lymphoid lineages fulfill distinct functions with specific shapes and intra-cellular architectures. The role of cytokines in the regulation of HSPC differentiation has been intensively studied but our understanding of the potential contribution of inner cell architecture is relatively poor. Here, we show that large invaginations are generated by microtubule constraints on the swelling nucleus of human HSPC during early commitment toward the myeloid lineage. These invaginations are associated with a local reduction of lamin B density, local loss of heterochromatin H3K9me3 and H3K27me3 marks, and changes in expression of specific hematopoietic genes. This establishes the role of microtubules in defining the unique lobulated nuclear shape observed in myeloid progenitor cells and suggests that this shape is important to establish the gene expression profile specific to this hematopoietic lineage. It opens new perspectives on the implications of microtubule-generated forces, in the early commitment to the myeloid lineage.
Collapse
Affiliation(s)
- Stefan Biedzinski
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Gökçe Agsu
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Benoit Vianay
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Marc Delord
- Recherche Clinique et Investigation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Laurent Blanchoin
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Jerome Larghero
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lionel Faivre
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,Unité de Thérapie Cellulaire, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Manuel Théry
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| | - Stéphane Brunet
- INSERM, CEA, U976 - HIPI, Institut de Recherche Saint Louis, Université de Paris, Paris, France.,CEA, INRA, CNRS, UMR5168 - LPCV, Interdisciplinary Research Institute of Grenoble, Université Grenoble-Alpes, Grenoble, France
| |
Collapse
|
36
|
Żelazowska M, Halajian A. Asymmetry in the cytoplasm of oocytes of largescale yellowfish Labeobarbus marequensis Smith 1841 (Teleostei: Cypriniformes: Cyprinidae). J Morphol 2020; 281:997-1009. [PMID: 32562511 DOI: 10.1002/jmor.21228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/13/2020] [Accepted: 06/05/2020] [Indexed: 11/08/2022]
Abstract
The ovaries of the largescale yellowfish, Labeobarbus marequensis (Teleostei: Cypriniformes: Cyprinidae), are made up of the germinal epithelium, nests of late chromatin nucleolus stage oocytes, and ovarian follicles. Each follicle is composed of a single oocyte, which is surrounded by somatic follicular cells and a basal lamina covered by thecal cells. We describe polarization and ultrastructure of oocytes during the primary growth stage. The oocyte nucleus contains lampbrush chromosomes, nuclear bodies and fibrillar material in which multiple nucleoli arise. Nuage aggregations composed of material of a nuclear origin are present in the perinuclear cytoplasm. The Balbiani body (Bb) contains aggregations of nuage, rough endoplasmic reticulum, individual mitochondria and complexes of mitochondria with nuage (cement). Some mitochondria in the Bb come into close contact with endoplasmic reticulum cisternae and vesicles that contain granular material. At the start of primary growth, the Bb is present in the cytoplasm close to the nucleus. Next, it expands towards the oocyte plasma membrane. In these oocytes, a spherical structure, the so-called yolk nucleus, arises in the Bb. It consists of granular nuage in which mitochondria and vesicles containing granular material are immersed. Later, the Bb becomes fragmented and a fully grown yolk nucleus is present in the vegetal region. It contains numerous threads composed of granular nuage, mitochondria, lysosome-like organelles and autophagosomes. We discuss the formation of autophagosomes in the cytoplasm of primary growth oocytes. During the final step of primary growth, the cortical alveoli arise in the cytoplasm and are distributed evenly. The eggshell is deposited on the external surface of the oocyte plasma membrane and is made up of two egg envelopes that are pierced by numerous pore canals. The external egg envelope is covered in protuberances. During primary growth no lipid droplets are synthesized or stored in the oocytes.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ali Halajian
- DST-NRF SARChI Research Chair (Ecosystem Health), Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| |
Collapse
|
37
|
Fuentes R, Tajer B, Kobayashi M, Pelliccia JL, Langdon Y, Abrams EW, Mullins MC. The maternal coordinate system: Molecular-genetics of embryonic axis formation and patterning in the zebrafish. Curr Top Dev Biol 2020; 140:341-389. [PMID: 32591080 DOI: 10.1016/bs.ctdb.2020.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Axis specification of the zebrafish embryo begins during oogenesis and relies on proper formation of well-defined cytoplasmic domains within the oocyte. Upon fertilization, maternally-regulated cytoplasmic flow and repositioning of dorsal determinants establish the coordinate system that will build the structure and developmental body plan of the embryo. Failure of specific genes that regulate the embryonic coordinate system leads to catastrophic loss of body structures. Here, we review the genetic principles of axis formation and discuss how maternal factors orchestrate axis patterning during zebrafish early embryogenesis. We focus on the molecular identity and functional contribution of genes controlling critical aspects of oogenesis, egg activation, blastula, and gastrula stages. We examine how polarized cytoplasmic domains form in the oocyte, which set off downstream events such as animal-vegetal polarity and germ line development. After gametes interact and form the zygote, cytoplasmic segregation drives the animal-directed reorganization of maternal determinants through calcium- and cell cycle-dependent signals. We also summarize how maternal genes control dorsoventral, anterior-posterior, mesendodermal, and left-right cell fate specification and how signaling pathways pattern these axes and tissues during early development to instruct the three-dimensional body plan. Advances in reverse genetics and phenotyping approaches in the zebrafish model are revealing positional patterning signatures at the single-cell level, thus enhancing our understanding of genotype-phenotype interactions in axis formation. Our emphasis is on the genetic interrogation of novel and specific maternal regulatory mechanisms of axis specification in the zebrafish.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jose L Pelliccia
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Elliott W Abrams
- Department of Biology, Purchase College, State University of New York, Harrison, NY, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
39
|
Żelazowska M, Fopp-Bayat D. Germline cysts and asymmetry in early previtellogenic ovarian follicles in cultured albino females of sterlet Acipenser ruthenus L. 1758 (Chondrostei, Acipenseriformes). PROTOPLASMA 2019; 256:1229-1244. [PMID: 31020396 PMCID: PMC6713787 DOI: 10.1007/s00709-019-01376-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
It is a first report on the structure of germline cells in ovaries of albino sterlet Acipenser ruthenus L. 1758. Ovarian nests, follicles, and germinal epithelium have been examined in gynogenetic and control specimens of this species. The structure of oogonia (named the cystoblasts) and of germline cysts in the nests has been described in detail. Also, the asymmetry in the cytoplasm and early growth of cystocytes in the cysts and of early previtellogenic oocytes has been described. In the cytoplasm of cystoblasts and in all cystocytes, a precursor of granular cytoplasm (Balbiani cytoplasm) is present and defines future vegetal region in the oocytes. Interestingly, the nuclei in cystoblasts comprise a large dense body that contains deoxyribonucleic acid (DNA). The role of this body in formation of multiple nucleoli has been explained. During the zygotene and pachytene stages, massive extrachromosomal amplification of DNA begins in the nucleoplasm of all cystocytes. As a result of the accumulation of extra DNA, an irregularly shaped DNA-body is formed. Multiple nucleoli arise in this DNA-body and around fragments of dense bodies. The asymmetry of the early previtellogenic oocyte cytoplasm is well marked by the presence of the granular cytoplasm. Moreover, the cisternae of the rough endoplasmic reticulum, dictyosomes, mitochondria, complexes of mitochondria with cement, nuage accumulations, and lipid droplets are located in specific zones in the granular cytoplasm. The follicular epithelium is composed of two subpopulations of somatic follicular cells (FCs): the main body cells and future micropylar cells.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Dorota Fopp-Bayat
- Department of Ichthyology, Faculty of Environmental Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-917, Olsztyn, Poland
| |
Collapse
|
40
|
Oh D, Houston DW. RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages. Results Probl Cell Differ 2019; 63:189-208. [PMID: 28779319 PMCID: PMC6538070 DOI: 10.1007/978-3-319-60855-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA localization is a fundamental mechanism for controlling cell structure and function. Early development in fish and amphibians requires the localization of specific mRNAs to establish the initial differences in cell fates prior to the onset of zygotic genome activation. RNA localization in these oocytes (e.g., Xenopus and zebrafish) requires that animal-vegetal polarity be established early in oogenesis, mediated by formation of the Balbiani body/mitochondrial cloud. This structure serves as a platform for assembly and transport of germline determinants to the future vegetal pole and also sets up the machinery for the localization of non-germline transcripts later in oogenesis. Understanding these polarization and localization mechanisms is critical for understanding the basis for early embryonic development in these organisms and also for understanding the role of RNA compartmentalization in animal gametogenesis. Here we outline recent advances in elucidating the molecular basis for the establishment of oocyte polarity at the level of Balbiani body assembly as well as the formation of RNP assemblies for early and late pathway mRNA localization in the oocyte.
Collapse
Affiliation(s)
- Denise Oh
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA
| | - Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
41
|
Bornens M. [Cell polarity and the innovation of the primary cilium/centrosome organ in Metazoa]. Med Sci (Paris) 2019; 35:452-461. [PMID: 31115328 DOI: 10.1051/medsci/2019092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is inherited from ancestral unicellular organisms. We assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception and that the integration of these two activities corresponds to an evolutionary constrained cell function. While conserving the ancestral flagellum, Metazoans have co-opted a primary cilium/centrosome organ from it, ensuring similar functions, but in different cells, or in the same cell at different moments. We propose that the remodeling necessary to reach a new higher-level unit of selection in multi-cellular organisms, has been triggered by conflicts among individual cell polarities to reach an organismic polarity. We shall provisionally conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans has far reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, CNRS - UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
42
|
Lateral Inhibition in Cell Specification Mediated by Mechanical Signals Modulating TAZ Activity. Cell 2019; 176:1379-1392.e14. [PMID: 30773315 DOI: 10.1016/j.cell.2019.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/18/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz-/- follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.
Collapse
|
43
|
Abstract
Approaches to visualize the Balbiani body of zebrafish primary oocytes using protein, RNA, and mitochondrial markers are described. The method involves isolation, histology, staining, and microscopic examination of early zebrafish oocytes. These techniques can be applied to visualize gene products that are localized to the Balbiani body, and when applied to mutants can be used to decipher molecular and genetic pathways acting in Balbiani body development in early oocytes.
Collapse
Affiliation(s)
- KathyAnn L Lee
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florence L Marlow
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
44
|
Żelazowska M, Halajian A. Previtellogenic oocytes of South African largemouth bass Micropterus salmoides
Lacépède 1802 (Actinopterygii, Perciformes) - the Balbiani body, cortical alveoli and developing eggshell. J Morphol 2019; 280:360-369. [DOI: 10.1002/jmor.20948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research; Jagiellonian University; Kraków Poland
| | - Ali Halajian
- Department of Biodiversity; University of Limpopo; Sovenga South Africa
| |
Collapse
|
45
|
Bilinski SM, Jaglarz MK, Tworzydlo W. Organelle assemblages implicated in the transfer of oocyte components to the embryo: an insect perspective. CURRENT OPINION IN INSECT SCIENCE 2019; 31:1-7. [PMID: 31109662 DOI: 10.1016/j.cois.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Besides reserve materials (yolk spheres, lipid droplets), ribosomes and various mRNA species, insect oocytes contain large easily morphologically recognizable organelle assemblages: the Balbiani body and the oosome (pole plasm). These assemblages are implicated in the transfer of oocyte components (mitochondria, polar granules) to the embryo that is to offspring. Here, we review present knowledge of morphology, morphogenesis, molecular composition and function/s of these assemblages. We discuss also the morphogenesis and presumed function of unconventional organelle assemblages, dormant stacks of endoplasmic reticulum, recently described in the oocytes and early embryos of a viviparous dermapteran, Hemimerus talpoides.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
46
|
Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genet 2019; 15:e1007730. [PMID: 30653507 PMCID: PMC6336226 DOI: 10.1371/journal.pgen.1007730] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022] Open
Abstract
Meiosis is a cellular program that generates haploid gametes for sexual reproduction. While chromosome events that contribute to reducing ploidy (homologous chromosome pairing, synapsis, and recombination) are well conserved, their execution varies across species and even between sexes of the same species. The telomere bouquet is a conserved feature of meiosis that was first described nearly a century ago, yet its role is still debated. Here we took advantage of the prominent telomere bouquet in zebrafish, Danio rerio, and super-resolution microscopy to show that axis morphogenesis, synapsis, and the formation of double-strand breaks (DSBs) all take place within the immediate vicinity of telomeres. We established a coherent timeline of events and tested the dependence of each event on the formation of Spo11-induced DSBs. First, we found that the axis protein Sycp3 loads adjacent to telomeres and extends inward, suggesting a specific feature common to all telomeres seeds the development of the axis. Second, we found that newly formed axes near telomeres engage in presynaptic co-alignment by a mechanism that depends on DSBs, even when stable juxtaposition of homologous chromosomes at interstitial regions is not yet evident. Third, we were surprised to discover that ~30% of telomeres in early prophase I engage in associations between two or more chromosome ends and these interactions decrease in later stages. Finally, while pairing and synapsis were disrupted in both spo11 males and females, their reproductive phenotypes were starkly different; spo11 mutant males failed to produce sperm while females produced offspring with severe developmental defects. Our results support zebrafish as an important vertebrate model for meiosis with implications for differences in fertility and genetically derived birth defects in males and females. Inherent to reproduction is the transmission of genetic information from one generation to the next. In sexually reproducing organisms, each parent contributes an equal amount of genetic information, packaged in chromosomes, to the offspring. Diploid organisms, like humans, have two copies of every chromosome, while their haploid gametes (e.g. eggs and sperm) have only one. This reduction in ploidy depends on the segregation of chromosomes during meiosis, resulting in gametes with one copy of each chromosome. Missegregation of the chromosomes in the parents leads to abnormal chromosome numbers in the offspring, which is usually lethal or has detrimental developmental effects. While it has been known for over a century that homologous chromosomes pair and recombine to facilitate proper segregation, how homologs find their partners has remained elusive. A structure that has been central to the discussion of homolog pairing is the bouquet, or the dynamic clustering of telomeres during early stages of meiosis. Here we use zebrafish to show that the telomere bouquet is the site where key events leading to homologous chromosome pairing are coordinated. Furthermore, we show that deletion of spo11, a gene required for proper recombination in most studied organisms, resulted in very different effects in males and females where males were sterile while females produced deformed progeny.
Collapse
Affiliation(s)
- Yana P. Blokhina
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, United States of America
| | - An D. Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
47
|
Gomes Fernandes M, He N, Wang F, Van Iperen L, Eguizabal C, Matorras R, Roelen BAJ, Chuva De Sousa Lopes SM. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis. Hum Reprod 2019; 33:258-269. [PMID: 29237021 PMCID: PMC5850288 DOI: 10.1093/humrep/dex365] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/23/2017] [Indexed: 01/30/2023] Open
Abstract
STUDY QUESTION What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. WHAT IS KNOWN ALREADY In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. STUDY DESIGN, SIZE, DURATION This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). PARTICIPANTS/MATERIALS, SETTING, METHODS Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. MAIN RESULTS AND THE ROLE OF CHANCE PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. LARGE SCALE DATA Non-applicable. LIMITATIONS, REASONS FOR CAUTION This study is limited by the restricted number of samples and consequently stages analyzed. WIDER IMPLICATIONS OF THE FINDINGS In the germline, PIWILs ensure the integrity of the human genome protecting it from ‘parasitic sequences’. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. STUDY FUNDING/COMPETING INTEREST(S) M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Fang Wang
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Reproductive Medical Centre, First Affiliated Hospital Zhengzhou University, No.1 Jianshe east road, Zhengzhou 450052, China
| | - Liesbeth Van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden2333 ZC, The Netherlands
| | - Cristina Eguizabal
- Cell Therapy and Stem Cells Group, Basque Centre for Blood Transfusion and Human Tissues, Barrio Labeaga s/n, Galdakao 48960, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country, Plaza de Cruces s/n, Barakaldo 48903, Spain
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, Utrecht3584 CM, The Netherlands
| | - Susana M Chuva De Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
48
|
Jamieson-Lucy A, Mullins MC. The vertebrate Balbiani body, germ plasm, and oocyte polarity. Curr Top Dev Biol 2019; 135:1-34. [DOI: 10.1016/bs.ctdb.2019.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Dosch R. Workshop on Germ Cells. Front Cell Dev Biol 2018; 6:157. [PMID: 30525036 PMCID: PMC6258713 DOI: 10.3389/fcell.2018.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Germ cell research in vertebrates has traditionally been challenging, but recent breakthroughs have overcome technical difficulties, demonstrating and expanding the power of the zebrafish experimental system for their analysis in vivo. Exploiting the transparency of the zebrafish embryo, germ cell migration was the first topic that moved the germ cells of this organism into the spotlight of modern research. In recent years, research on teleost germ cells has expanded into additional fields, manifested by a session dedicated to this cell type at the European Zebrafish PI meeting in Trento.
Collapse
Affiliation(s)
- Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany.,Institute of Human Genetics, University Medical Center, Göttingen, Germany
| |
Collapse
|
50
|
Dingare C, Niedzwetzki A, Klemmt PA, Godbersen S, Fuentes R, Mullins MC, Lecaudey V. The Hippo pathway effector Taz is required for cell morphogenesis and fertilization in zebrafish. Development 2018; 145:dev.167023. [PMID: 30327325 DOI: 10.1242/dev.167023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Hippo signaling is a critical pathway that integrates extrinsic and intrinsic mechanical cues to regulate organ size. Despite its essential role in organogenesis, little is known about its role in cell fate specification and differentiation. Here, we unravel a novel and unexpected role of the Hippo pathway effector Taz (wwtr1) in controlling the size, shape and fate of a unique cell in the zebrafish ovary. We show that wwtr1 mutant females are infertile. In teleosts, fertilization occurs through the micropyle, a funnel-like opening in the chorion, formed by a unique enlarged follicle cell, the micropylar cell (MC). We describe here, for the first time, the mechanism that underlies the differentiation of the MC. Our genetic analyses show that Taz is essential for MC fate acquisition and subsequent micropyle formation in zebrafish. We identify Taz as the first bona fide MC marker and show that Taz is specifically and strongly enriched in the MC precursor. Altogether, we performed the first genetic and molecular characterization of the MC and propose that Taz is a key regulator of MC fate.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chaitanya Dingare
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Alina Niedzwetzki
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Petra A Klemmt
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Svenja Godbersen
- Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Virginie Lecaudey
- Institute of Cell Biology and Neuroscience, Department of Developmental Biology of Vertebrates, Goethe Universität Frankfurt am Main, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany .,Developmental Biology, Institute for Biology I, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|