1
|
Davidson AE, Straquadine NRW, Cook SA, Liu CG, Nie C, Spaulding MC, Ganz J. A Rapid F0 CRISPR Screen in Zebrafish to Identify Regulator Genes of Neuronal Development in the Enteric Nervous System. Neurogastroenterol Motil 2025; 37:e70009. [PMID: 40189908 PMCID: PMC11996052 DOI: 10.1111/nmo.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND The neural crest-derived enteric nervous system (ENS) provides the intrinsic innervation of the gut with diverse neuronal subtypes and glial cells. The ENS regulates all essential gut functions, such as motility, nutrient uptake, immune response, and microbiota colonization. Deficits in ENS neuron numbers and composition cause debilitating gut dysfunction. Yet, few studies have identified genes that control neuronal differentiation and the generation of the diverse neuronal subtypes in the ENS. METHODS Utilizing existing CRISPR/Cas9 genome editing technology in zebrafish, we have developed a rapid and scalable screening approach for identifying genes that regulate ENS neurogenesis. KEY RESULTS As a proof-of-concept, F0 guide RNA-injected larvae (F0 crispants) targeting the known ENS regulator genes sox10, ret, or phox2bb phenocopied known ENS phenotypes with high efficiency. We evaluated 10 transcription factor candidate genes as regulators of ENS neurogenesis and function. F0 crispants for five of the tested genes have fewer ENS neurons. Secondary assays in F0 crispants for a subset of the genes that had fewer neurons reveal no effect on enteric progenitor cell migration but differential changes in gut motility. CONCLUSIONS Our multistep, yet straightforward CRISPR screening approach in zebrafish tests the genetic basis of ENS developmental and disease gene functions that will facilitate the high-throughput evaluation of candidate genes from transcriptomic, genome-wide association, or other ENS-omics studies. Such in vivo ENS F0 crispant screens will contribute to a better understanding of ENS neuronal development regulation in vertebrates and what goes awry in ENS disorders.
Collapse
Affiliation(s)
- Ann E. Davidson
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Nora R. W. Straquadine
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Concordia UniversitySt. PaulMinnesotaUSA
| | - Sara A. Cook
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- College of Veterinary Medicine and Biological SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Christina G. Liu
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of DermatologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chuhao Nie
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- University of New EnglandCollege of Osteopathic MedicineBiddefordMaineUSA
| | - Matthew C. Spaulding
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Julia Ganz
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
McCluskey KE, Stovell KM, Law K, Kostyanovskaya E, Schmidt JD, Exner CRT, Dea J, Brimble E, State MW, Willsey AJ, Willsey HR. Autism gene variants disrupt enteric neuron migration and cause gastrointestinal dysmotility. Nat Commun 2025; 16:2238. [PMID: 40050271 PMCID: PMC11885846 DOI: 10.1038/s41467-025-57342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
The co-occurrence of autism and gastrointestinal distress is well-established, yet the molecular underpinnings remain unknown. The identification of high-confidence, large-effect autism genes offers the opportunity to identify convergent, underlying biology by studying these genes in the context of the gastrointestinal system. Here we show that the expression of these genes is enriched in human prenatal gut neurons and their migratory progenitors, suggesting that the development and/or function of these neurons may be disrupted by autism-associated genetic variants, leading to gastrointestinal dysfunction. Here we document the prevalence of gastrointestinal issues in patients with large-effect variants in sixteen autism genes, highlighting dysmotility, consistent with potential enteric neuron dysfunction. Using Xenopus tropicalis, we individually target five of these genes (SYNGAP1, CHD8, SCN2A, CHD2, and DYRK1A) and observe disrupted enteric neuronal progenitor migration for each. Further analysis of DYRK1A reveals that perturbation causes gut dysmotility in vivo, which can be ameliorated by treatment with either of two serotonin signaling modulators, identified by in vivo drug screening. This work suggests that atypical development of enteric neurons contributes to the gastrointestinal distress commonly seen in individuals with autism and that serotonin signaling may be a productive therapeutic pathway.
Collapse
Affiliation(s)
- Kate E McCluskey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Katherine M Stovell
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Karen Law
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - James D Schmidt
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Matthew W State
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences and the Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ngo JS, Amitabh P, Sokoloff JG, Trinh C, Wiles TJ, Guillemin K, Parthasarathy R. The Vibrio type VI secretion system induces intestinal macrophage redistribution and enhanced intestinal motility. mBio 2025; 16:e0241924. [PMID: 39576112 PMCID: PMC11708011 DOI: 10.1128/mbio.02419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Intestinal microbes, whether resident or transient, influence the physiology of their hosts, altering both the chemical and the physical characteristics of the gut. An example of the latter is the human pathogen Vibrio cholerae's ability to induce strong mechanical contractions, discovered in zebrafish. The underlying mechanism has remained unknown, but the phenomenon requires the actin crosslinking domain (ACD) of Vibrio's type VI secretion system (T6SS), a multicomponent protein syringe that pierces adjacent cells and delivers toxins. By using a zebrafish-native Vibrio and imaging-based assays of host intestinal mechanics and immune responses, we find evidence that macrophages mediate the connection between the T6SS ACD and intestinal activity. Inoculation with Vibrio gives rise to strong, ACD-dependent, gut contractions whose magnitude resembles those resulting from genetic depletion of macrophages. Vibrio also induces tissue damage and macrophage activation, both ACD-dependent, recruiting macrophages to the site of tissue damage and away from their unperturbed positions near enteric neurons that line the midgut and regulate intestinal motility. Given known crosstalk between macrophages and enteric neurons, our observations suggest that macrophage redistribution forms a key link between Vibrio activity and intestinal motility. In addition to illuminating host-directed actions of the widespread T6SS protein apparatus, our findings highlight how localized bacteria-induced injury can reshape neuro-immune cellular dynamics to impact whole-organ physiology. IMPORTANCE Gut microbes, whether beneficial, harmful, or neutral, can have dramatic effects on host activities. The human pathogen Vibrio cholerae can induce strong intestinal contractions, though how this is achieved has remained a mystery. Using a zebrafish-native Vibrio and live imaging of larval fish, we find evidence that immune cells mediate the connection between bacteria and host mechanics. A piece of Vibrio's type VI secretion system, a syringe-like apparatus that stabs cellular targets, induces localized tissue damage, activating macrophages and drawing them from their normal residence near neurons, whose stimulation of gut contractions they dampen, to the damage site. Our observations reveal a mechanism in which cellular rearrangements, rather than bespoke biochemical signaling, drives a dynamic neuro-immune response to bacterial activity.
Collapse
Affiliation(s)
- Julia S. Ngo
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Piyush Amitabh
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Jonah G. Sokoloff
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Calvin Trinh
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Travis J. Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
| | | |
Collapse
|
4
|
Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL, Liu Q. The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res 2024; 288:127838. [PMID: 39153466 DOI: 10.1016/j.micres.2024.127838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Wen-Wen Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhi-Qiang Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Kun Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - De-Zhi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tian-Lu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
5
|
Xia B, Lin T, Li Z, Wang J, Sun Y, Wang D, Ye J, Zhang Y, Kou R, Zhao B, Yi J, Bai G, Liu X. Lactiplantibacillus plantarum Regulates Intestinal Physiology and Enteric Neurons in IBS through Microbial Tryptophan Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17989-18002. [PMID: 39082086 DOI: 10.1021/acs.jafc.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.
Collapse
Affiliation(s)
- Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tongkui Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhiqing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jialin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuwei Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yajuan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Rongwei Kou
- School of Science, Xi'an University of Technology, Xi'an, 710048 Shaanxi, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan, China
| | - Gaiyan Bai
- Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, 710068 Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
6
|
Wang F, Yao Z, Jin T, Mao B, Shao S, Shao C. Research progress on Helicobacter pylori infection related neurological diseases. Ageing Res Rev 2024; 99:102399. [PMID: 38955263 DOI: 10.1016/j.arr.2024.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Helicobacter pylori, a type of gram-negative bacterium, infects roughly half of the global population. It is strongly associated with gastrointestinal disorders like gastric cancer, peptic ulcers, and chronic gastritis. Moreover, numerous studies have linked this bacterium to various extra-gastric conditions, including hematologic, cardiovascular, and neurological issues. Specifically, research has shown that Helicobacter pylori interacts with the brain through the microbiota-gut-brain axis, thereby increasing the risk of neurological disorders. The inflammatory mediators released by Helicobacter pylori-induced chronic gastritis may disrupt the function of the blood-brain barrier by interfering with the transmission or direct action of neurotransmitters. This article examines the correlation between Helicobacter pylori and a range of conditions, such as hyperhomocysteinemia, schizophrenia, Alzheimer's disease, Parkinson's disease, ischemic stroke, multiple sclerosis, migraine, and Guillain-Barré syndrome.
Collapse
Affiliation(s)
- Fan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Zhendong Yao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Tao Jin
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China
| | - Boneng Mao
- Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, China; Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| | - Chen Shao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Sree Kumar H, Wisner AS, Schiefer IT, Alviter Plata A, Zubcevic J. Chronotropic and vasoactive properties of the gut bacterial short-chain fatty acids in larval zebrafish. Physiol Genomics 2024; 56:426-435. [PMID: 38557279 PMCID: PMC11368569 DOI: 10.1152/physiolgenomics.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Short-chain fatty acids (SCFAs) produced by the gut bacteria have been associated with cardiovascular dysfunction in humans and rodents. However, studies exploring effects of SCFAs on cardiovascular parameters in the zebrafish, an increasingly popular model in cardiovascular research, remain limited. Here, we performed fecal bacterial 16S sequencing and gas chromatography/mass spectrometry (GC-MS) to determine the composition and abundance of gut microbiota and SCFAs in adult zebrafish. Following this, the acute effects of major SCFAs on heart rate and vascular tone were measured in anesthetized zebrafish larvae using fecal concentrations of butyrate, acetate, and propionate. Finally, we investigated if coincubation with butyrate may lessen the effects of angiotensin II (ANG II) and phenylephrine (PE) on vascular tone in anesthetized zebrafish larvae. We found that the abundance in Proteobacteria, Firmicutes, and Fusobacteria phyla in the adult zebrafish resembled those reported in rodents and humans. SCFA levels with highest concentration of acetate (27.43 µM), followed by butyrate (2.19 µM) and propionate (1.65 µM) were observed in the fecal samples of adult zebrafish. Immersion in butyrate and acetate produced a ∼20% decrease in heart rate (HR), respectively, with no observed effects of propionate. Butyrate alone also produced an ∼25% decrease in the cross-sectional width of the dorsal aorta (DA) at 60 min (*P < 0.05), suggesting compensatory vasoconstriction, with no effects of either acetate or propionate. In addition, butyrate significantly alleviated the decrease in DA cross-sectional width produced by both ANG II and PE. We demonstrate the potential for zebrafish in investigation of host-microbiota interactions in cardiovascular health.NEW & NOTEWORTHY We highlight the presence of a core gut microbiota and demonstrate in vivo short-chain fatty acid production in adult zebrafish. In addition, we show cardio-beneficial vasoactive and chronotropic properties of butyrate, and chronotropic properties of acetate in anesthetized zebrafish larvae.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Alexander S Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, United States
| | - Adriana Alviter Plata
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States
| |
Collapse
|
8
|
Panarese A, Dajti E, Eusebi LH, Vestito A, Zagari RM. Idiopathic chronic intestinal pseudo-obstruction syndrome is strongly associated with low serum levels of vitamin D. Eur J Gastroenterol Hepatol 2024; 36:584-587. [PMID: 38477850 PMCID: PMC11060052 DOI: 10.1097/meg.0000000000002757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Idiopathic chronic intestinal pseudo-obstruction (CIPO) is associated with intestinal inflammation and malabsorption and may cause serum vitamin D deficiency. We aimed to assess whether there is an association between idiopathic CIPO and serum levels of 25-hydroxy-vitamin D. Consecutive patients with confirmed diagnosis of idiopathic CIPO were prospectively enrolled and matched with healthy controls by gender, age, and BMI. Median serum level of 25-hydroxy-vitamin D of patients with CIPO was compared with that of healthy subjects using the Wilcoxon signed-rank test for matched samples. A total of 35 patients with CIPO and 35 matched healthy subjects were enrolled. All patients with CIPO had a 25-hydroxy-vitamin D deficiency with serum levels <12 ng/ml. The median serum level of vitamin D was significantly lower in patients with CIPO than in healthy controls (5.7 vs. 29.7 ng/ml, P < 0.0001). Serum level of vitamin D was not associated with gender ( P = 0.27), age ( P = 0.22), BMI ( P = 0.95), high (>10 000 × ml) WBC count ( P = 0.08), or high (>5 mg/l) C-reactive protein ( P = 0.87) among patients with CIPO. CIPO seems to be strongly associated with low serum levels of 25-hydroxy-vitamin D.
Collapse
Affiliation(s)
- Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital – Azienda Ospedaliera, Taranto
| | - Elton Dajti
- Department of Medical and Surgical Sciences, University of Bologna
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Leonardo Henry Eusebi
- Department of Medical and Surgical Sciences, University of Bologna
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Amanda Vestito
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna
| | - Rocco Maurizio Zagari
- Department of Medical and Surgical Sciences, University of Bologna
- Esophagus and Stomach Organic Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Zhang Y, Song F, Yang M, Chen C, Cui J, Xing M, Dai Y, Li M, Cao Y, Lu L, Zhu H, Liu Y, Ma C, Wei Q, Qin H, Li J. Gastrointestinal Dysmotility Predisposes to Colitis through Regulation of Gut Microbial Composition and Linoleic Acid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306297. [PMID: 38477534 PMCID: PMC11132037 DOI: 10.1002/advs.202306297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 03/14/2024]
Abstract
Disrupted gastrointestinal (GI) motility is highly prevalent in patients with inflammatory bowel disease (IBD), but its potential causative role remains unknown. Herein, the role and the mechanism of impaired GI motility in colitis pathogenesis are investigated. Increased colonic mucosal inflammation is found in patients with chronic constipation (CC). Mice with GI dysmotility induced by genetic mutation or chemical insult exhibit increased susceptibility to colitis, dependent on the gut microbiota. GI dysmotility markedly decreases the abundance of Lactobacillus animlalis and increases the abundance of Akkermansia muciniphila. The reduction in L. animlalis, leads to the accumulation of linoleic acid due to compromised conversion to conjugated linoleic acid. The accumulation of linoleic acid inhibits Treg cell differentiation and increases colitis susceptibility via inducing macrophage infiltration and proinflammatory cytokine expression in macrophage. Lactobacillus and A. muciniphila abnormalities are also observed in CC and IBD patients, and mice receiving fecal microbiota from CC patients displayed an increased susceptibility to colitis. These findings suggest that GI dysmotility predisposes host to colitis development by modulating the composition of microbiota and facilitating linoleic acid accumulation. Targeted modulation of microbiota and linoleic acid metabolism may be promising to protect patients with motility disorder from intestinal inflammation.
Collapse
Affiliation(s)
- Youhua Zhang
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Feifei Song
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Muqing Yang
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Jiaqu Cui
- Department of Colorectal DiseaseShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Mengyu Xing
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Yuna Dai
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Man Li
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Yuan Cao
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Ling Lu
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Huiyuan Zhu
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Ying Liu
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Chunlian Ma
- Department of Colorectal DiseaseShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Qing Wei
- Department of PathologyShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Huanlong Qin
- Department of Gastrointestinal SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
| | - Jiyu Li
- Department of General SurgeryShanghai Tenth People's Hospital, Tongji University School of MedicineShanghai200072China
- Geriatric Cancer CenterHuaDong Hospital Affiliated to Fudan
UniversityShanghai200040China
| |
Collapse
|
10
|
Yilmaz O, Okullu SO, Catakci M, Elmas MA, Pinheiro Y, Arbak S, Demir E, Schaefer KH, Kolgazi M. Akkermansia muciniphila improves chronic colitis-induced enteric neuroinflammation in mice. Neurogastroenterol Motil 2024; 36:e14745. [PMID: 38263790 DOI: 10.1111/nmo.14745] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic diseases that are not fully understood. Drugs in use can only be applied for a short time due to their side effects. Therefore, research is needed to develop new treatment approaches. In addition, it has been proven that IBD causes degeneration in the enteric nervous system (ENS). In recent years, it has been discussed that probiotics may have positive effects in the prevention and treatment of inflammatory enteric degeneration. Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium found in the mucin layer of the intestinal microbiota. It has been found that the population of A. muciniphila decreases in the case of different diseases. In light of this information, the curative effect of A. muciniphila application on colitis-induced inflammation and enteric degeneration was investigated. METHODS In this study, 5 weeks of A. muciniphila treatment in Trinitro-benzene-sulfonic acid (TNBS)-induced chronic colitis model was investigated. Colon samples were examined at microscopic, biochemical, and molecular levels. Fecal samples were collected before, during, and after treatment to evaluate the population changes in the microbiota. Specific proteins secreted from the ENS were evaluated, and enteric degeneration was examined. RESULTS As a result of the research, the ameliorative effects of A. muciniphila were shown in the TNBS colitis model-induced inflammation and ENS damage. DISCUSSION In light of these results, A. muciniphila can potentially be evaluated as a microbiome-based treatment for IBD with further clinical and experimental studies.
Collapse
Affiliation(s)
- Ozgur Yilmaz
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sinem Oktem Okullu
- Department of Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Catakci
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Yuri Pinheiro
- Research Unit of Comparative Microbiome Analysis, Helmholtz Zentrum Muenchen, Munich, Germany
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ekin Demir
- Department of Surgery, School of Medicine Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Karl Herbert Schaefer
- Research and Transfer Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Meltem Kolgazi
- Department of Physiology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
11
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
12
|
Lu T, Huang C, Weng R, Wang Z, Sun H, Ma X. Enteric glial cells contribute to chronic stress-induced alterations in the intestinal microbiota and barrier in rats. Heliyon 2024; 10:e24899. [PMID: 38317901 PMCID: PMC10838753 DOI: 10.1016/j.heliyon.2024.e24899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Background Emerging evidence has demonstrated the impact of psychological stress on intestinal microbiota, however, the precise mechanisms are not fully understood. Enteric glia, a unique type of peripheral glia found within the enteric nervous system (ENS), play an active role in enteric neural circuits and have profound effects on gut functions. In the present study, we tested the hypothesis that enteric glia are involved in the alterations in the intestinal microflora and barrier induced by chronic water-avoidance stress (WAS) in the gut. Methods and results Western blotting and immunohistochemical (IHC) staining were used to examine the expression of glial fibrillary acidic protein (GFAP), nitric oxide synthetase (NOS) and choline acety1transferase (ChAT) in colon tissues. 16S rDNA sequencing was performed to analyse the composition of the intestinal microbiota in rats. Changes in the tight junction proteins Occludin, Claudin1 and proliferating cell nuclear antigen (PCNA) in the colon tissues were detected after WAS. The abundance of Firmicutes, Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136 decreased significantly, whereas the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenellaceae-R-7 increased significantly in stressed rats. Meanwhile, the expression of Occludin, Claudin1 and PCNA significantly decreased after WAS. Treatment with L-A-aminohexanedioic acid (L-AA), a gliotoxin that blunts astrocytic function, obviously decreased the abundance of Actinobacteria, Ruminococcaceae_UCG-005 and Christensenel-laceae_R-7 in stressed rats and significantly increased the abundance of Proteobacteria, Lactobacillus and Lachnospiraceae_NK4A136. In addition, the protein expression of colon Occludin, Claudin1, and PCNA increased after intraperitoneal injection of L-AA. Furthermore, the expression level of NOS in colon tissues was significantly decreased, whereas that of ChAT was significantly increased following L-AA treatment. Conclusions Our results showed that enteric glial cells may contribute to WAS-induced changes in the intestinal microbiota and barrier function by modulating the activity of NOS and cholinergic neurones in the ENS.
Collapse
Affiliation(s)
- Tong Lu
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Chenxu Huang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Rongxin Weng
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Zepeng Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, 88 Wenhua Road, Jinan, 250014, China
| | - Xiaoli Ma
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
13
|
Hu X, He Z, Zhao C, He Y, Qiu M, Xiang K, Zhang N, Fu Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated "gastroenterogenic mastitis". J Adv Res 2024; 55:159-171. [PMID: 36822391 PMCID: PMC10770137 DOI: 10.1016/j.jare.2023.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
14
|
Peng S, Ye L, Li Y, Wang F, Sun T, Wang L, Hao W, Zhao J, Dong Z. Microbiota regulates life-cycle transition and nematocyte dynamics in jellyfish. iScience 2023; 26:108444. [PMID: 38125018 PMCID: PMC10730743 DOI: 10.1016/j.isci.2023.108444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Jellyfish represent one of the most basal animal groups with complex life cycles. The polyp-to-medusa transition, termed strobilation, is the pivotal process that determines the switch in swimming behavior and jellyfish blooms. Their microbiota plays an essential role in strobilation. Here, we investigated microbiota-mediated host phenotype dynamics during strobilation in the jellyfish Aurelia coerulea via antibiotic-induced microbiome alteration. Microbial depletion delayed the initiation of strobilation and resulted in fewer segments and ephyrae, which could be restored via microbial recolonization. Jellyfish-associated cyanobacteria, which were eliminated by antibiotics in the polyp stage, had the potential to supply retinal and trigger the retinoic acid signaling cascade, which drove the strobilation process. The microbiota regulated nematocyte development and differentiation, influencing the feeding and growth of the jellyfish. The findings improve our understanding of jellyfish-microbe interactions and provide new insights into the role of the microbiota in shaping feeding behavior through nematocyte dynamics.
Collapse
Affiliation(s)
- Saijun Peng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijing Ye
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yongxue Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanghan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lei Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Wenjin Hao
- School of Life Science, Nantong University, Nantong, Jiangsu 226019, China
| | - Jianmin Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijun Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Geng ZH, Zhu Y, Chen WF, Fu PY, Xu JQ, Wang TY, Yao L, Liu ZQ, Li XQ, Zhang ZC, Wang Y, Ma LY, Lin SL, He MJ, Zhao C, Li QL, Zhou PH. The role of type II esophageal microbiota in achalasia: Activation of macrophages and degeneration of myenteric neurons. Microbiol Res 2023; 276:127470. [PMID: 37574627 DOI: 10.1016/j.micres.2023.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVE The gut microbiota plays a critical role in the appropriate development and maintenance of the enteric nervous system (ENS). Esophageal achalasia (EA) is a rare motility disorder characterized by the selective degeneration of inhibitory neurons in the esophageal myenteric plexus. This study aimed to evaluate the composition of the esophageal microbiota in achalasia and explore the potential microbial mechanisms involved in its pathogenesis. DESIGN The lower esophageal mucosal microbiota was analyzed in patients with achalasia and control participants using 16 S rRNA sequencing. The association between the esophageal microbiota and achalasia was validated by inducing esophageal dysbiosis in C57BL/10 J and C57BL/10ScNJ (TLR4KO) mice via chronic exposure to ampicillin sodium in their drinking water. RESULTS The esophageal microbiota in EA patients had lower diversity and a predominance of Gram-negative bacteria (Type II microbiota) compared to that in the healthy controls. Additionally, the relative abundance of Rhodobacter decreased significantly in patients with achalasia, which correlated with an enrichment of lipopolysaccharide (LPS) biosynthesis based on the COG database. Antibiotic-treated mice showed an esophageal microbiota characterized by increased abundance of Gram-negative bacteria (Type II microbiome), decreased abundance of Rhodobacter, and enriched LPS biosynthesis. Compared to the control and TLR4KO mice, the antibiotic-treated wild-type mice had higher LES resting pressure, increased LES contraction rate after carbachol stimulation, and decreased relaxation response to L-arginine. Moreover, the number of myenteric neurons decreased, while the number of lamina propria macrophages (LpMs) increased after antibiotic exposure. Furthermore, the TLR4-MYD88-NF-κB pathway was up-regulated, and the production of TNF-α, IL-1β, and IL-6 increased in the antibiotic-treated mice. CONCLUSIONS Patients with achalasia exhibit esophageal dysbiosis, which may induce aberrant esophageal motility.
Collapse
Affiliation(s)
- Zi-Han Geng
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Yan Zhu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Wei-Feng Chen
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Pei-Yao Fu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Jia-Qi Xu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Tong-Yao Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Yao
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Zu-Qiang Liu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Xiao-Qing Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Zhao-Chao Zhang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Yun Wang
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Li-Yun Ma
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Sheng-Li Lin
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Meng-Jiang He
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Quan-Lin Li
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| | - Ping-Hong Zhou
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Collaborative Innovation Center of Endoscopy, Shanghai, China.
| |
Collapse
|
16
|
van Baarle L, Stakenborg M, Matteoli G. Enteric neuro-immune interactions in intestinal health and disease. Semin Immunol 2023; 70:101819. [PMID: 37632991 DOI: 10.1016/j.smim.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
The enteric nervous system is an autonomous neuronal circuit that regulates many processes far beyond the peristalsis in the gastro-intestinal tract. This circuit, consisting of enteric neurons and enteric glial cells, can engage in many intercellular interactions shaping the homeostatic microenvironment in the gut. Perhaps the most well documented interactions taking place, are the intestinal neuro-immune interactions which are essential for the fine-tuning of oral tolerance. In the context of intestinal disease, compelling evidence demonstrates both protective and detrimental roles for this bidirectional neuro-immune signaling. This review discusses the different immune cell types that are recognized to engage in neuronal crosstalk during intestinal health and disease. Highlighting the molecular pathways involved in the neuro-immune interactions might inspire novel strategies to target intestinal disease.
Collapse
Affiliation(s)
- Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Michelle Stakenborg
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Herestraat 49, O&N1 box 701, 3000 Leuven, Belgium.
| |
Collapse
|
17
|
Zheng Y, Bonfili L, Wei T, Eleuteri AM. Understanding the Gut-Brain Axis and Its Therapeutic Implications for Neurodegenerative Disorders. Nutrients 2023; 15:4631. [PMID: 37960284 PMCID: PMC10648099 DOI: 10.3390/nu15214631] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The gut-brain axis (GBA) is a complex bidirectional communication network connecting the gut and brain. It involves neural, immune, and endocrine communication pathways between the gastrointestinal (GI) tract and the central nervous system (CNS). Perturbations of the GBA have been reported in many neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), among others, suggesting a possible role in disease pathogenesis. The gut microbiota is a pivotal component of the GBA, and alterations in its composition, known as gut dysbiosis, have been associated with GBA dysfunction and neurodegeneration. The gut microbiota might influence the homeostasis of the CNS by modulating the immune system and, more directly, regulating the production of molecules and metabolites that influence the nervous and endocrine systems, making it a potential therapeutic target. Preclinical trials manipulating microbial composition through dietary intervention, probiotic and prebiotic supplementation, and fecal microbial transplantation (FMT) have provided promising outcomes. However, its clear mechanism is not well understood, and the results are not always consistent. Here, we provide an overview of the major components and communication pathways of the GBA, as well as therapeutic approaches targeting the GBA to ameliorate NDDs.
Collapse
Affiliation(s)
- Yadong Zheng
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| | - Tao Wei
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, MC, Italy; (Y.Z.); (L.B.)
| |
Collapse
|
18
|
Chen Y, Pan R, Mei L, Tian P, Wang L, Zhao J, Chen W, Wang G. Colon-Targeted Delivery of Indole Acetic Acid Helps Regulate Gut Motility by Activating the AHR Signaling Pathway. Nutrients 2023; 15:4282. [PMID: 37836566 PMCID: PMC10574622 DOI: 10.3390/nu15194282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal peristalsis is vital for gastrointestinal physiology and host homeostasis and is frequently dysregulated in intestinal disorders. Gut microbiota can regulate gut motility, especially through the tryptophan metabolism pathway. However, the role of indoles as microbial tryptophan metabolites in colonic function requires further exploration. Here, we show that the delivery of indole acetic acid (IAA) targeting the colon can improve gut motility by activating the aryl hydrocarbon receptor (AHR). To achieve colon-targeted delivery, Eudragit S-100 (ES) and chitosan (CS) were used as drug carriers. After optimisation, IAA-loaded ES-coated CS nanoparticles exhibited an encapsulation efficiency of 83% and a drug-loading capacity of 16%. These nanoparticles exhibited pH-dependent characteristics and remained stable in acidic conditions and the upper intestine. In simulated intestinal fluid (pH 7.4) and colonic lumen, considerable amounts of IAA were released after approximately 4 h. Compared with free IAA, the nanoparticles exerted enhanced therapeutic effects on gut movement disorders induced by loperamide. The efficacy of IAA treatment was attributable to the activation of the AHR signalling pathway and increased levels of AHR agonists. Furthermore, the oral administration of IAA-loaded nanoparticles promoted serotonin secretion and maintained the intestinal barrier function. The experimental outcomes demonstrate the efficiency of the proposed colon-specific delivery system and highlight the role of IAA, produced by gut microbiota metabolism, in regulating gut peristalsis through AHR activation.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruili Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liya Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.C.); (R.P.); (L.M.); (P.T.); (L.W.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
19
|
Zhang B, Niu L, Huang X. Lonicera Caerulea Juice Alleviates Alcoholic Liver Disease by Regulating Intestinal Flora and the FXR-FGF15 Signaling Pathway. Nutrients 2023; 15:4025. [PMID: 37764808 PMCID: PMC10534805 DOI: 10.3390/nu15184025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Alcoholic liver disease (ALD) is a growing public health issue with high financial, social, and medical costs. Lonicera caerulea, which is rich in polyphenolic compounds, has been shown to exert anti-oxidative and anti-inflammatory effects. This study aimed to explore the effects and mechanisms of concentrated Lonicera caerulea juice (LCJ) on ALD in mice. ALD was established in mice via gradient alcohol feeding for 30 days. The mice in the experimental group were given LCJ by gavage. The reduction of aspartate transaminase (AST) and alanine transaminase (ALT) in the serum of mice indicated that LCJ has a liver-protective effect. LCJ improved the expression of AMPK, PPARα, and CPT1b in ALD mice to reduce the liver lipid content. Additionally, LCJ increased the expression of farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), and fibroblast growth factor receptor 4 (FGFR4), which lowers the expression of cytochrome P450 7A1 (CYP7A1) and lessens bile acid deposition in the liver. In mice, LCJ improved the intestinal barrier by upregulating the expression of mucins and tight junction proteins in the small intestine. Moreover, it accelerated the restoration of microbial homeostasis in both the large and small intestines and increased short-chain fatty acids in the cecum. In conclusion, LCJ alleviates ALD by reducing liver and serum lipid accumulation and modulating the FXR-FGF15 signaling pathway mediated by gut microbes.
Collapse
|
20
|
Macpherson AJ, Pachnis V, Prinz M. Boundaries and integration between microbiota, the nervous system, and immunity. Immunity 2023; 56:1712-1726. [PMID: 37557080 DOI: 10.1016/j.immuni.2023.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The enteric nervous system is largely autonomous, and the central nervous system is compartmentalized behind the blood-brain barrier. Yet the intestinal microbiota shapes gut function, local and systemic immune responses, and central nervous system functions including cognition and mood. In this review, we address how the gut microbiota can profoundly influence neural and immune networks. Although many of the interactions between these three systems originate in the intestinal mucosa, intestinal function and immunity are modulated by neural pathways that connect the gut and brain. Furthermore, a subset of microbe-derived penetrant molecules enters the brain and regulates central nervous system function. Understanding how these seemingly isolated entities communicate has the potential to open up new avenues for therapies and interventions.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, The Francis Crick Institute, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Faculty of Medicine, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
22
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Sree Kumar H, Wisner AS, Refsnider JM, Martyniuk CJ, Zubcevic J. Small fish, big discoveries: zebrafish shed light on microbial biomarkers for neuro-immune-cardiovascular health. Front Physiol 2023; 14:1186645. [PMID: 37324381 PMCID: PMC10267477 DOI: 10.3389/fphys.2023.1186645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Zebrafish (Danio rerio) have emerged as a powerful model to study the gut microbiome in the context of human conditions, including hypertension, cardiovascular disease, neurological disorders, and immune dysfunction. Here, we highlight zebrafish as a tool to bridge the gap in knowledge in linking the gut microbiome and physiological homeostasis of cardiovascular, neural, and immune systems, both independently and as an integrated axis. Drawing on zebrafish studies to date, we discuss challenges in microbiota transplant techniques and gnotobiotic husbandry practices. We present advantages and current limitations in zebrafish microbiome research and discuss the use of zebrafish in identification of microbial enterotypes in health and disease. We also highlight the versatility of zebrafish studies to further explore the function of human conditions relevant to gut dysbiosis and reveal novel therapeutic targets.
Collapse
Affiliation(s)
- Hemaa Sree Kumar
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
- Department of Neuroscience and Neurological Disorders, University of Toledo, Toledo, OH, United States
| | - Alexander S. Wisner
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH, United States
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, University of Toledo, Toledo, OH, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, OH, United States
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| |
Collapse
|
24
|
Cai Y, Liu P, Zhou X, Yuan J, Chen Q. Probiotics therapy show significant improvement in obesity and neurobehavioral disorders symptoms. Front Cell Infect Microbiol 2023; 13:1178399. [PMID: 37249983 PMCID: PMC10213414 DOI: 10.3389/fcimb.2023.1178399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity is a complex metabolic disease, with cognitive impairment being an essential complication. Gut microbiota differs markedly between individuals with and without obesity. The microbial-gut-brain axis is an important pathway through which metabolic factors, such as obesity, affect the brain. Probiotics have been shown to alleviate symptoms associated with obesity and neurobehavioral disorders. In this review, we evaluated previously published studies on the effectiveness of probiotic interventions in reducing cognitive impairment, depression, and anxiety associated with obesity or a high-fat diet. Most of the probiotics studied have beneficial health effects on obesity-induced cognitive impairment and anxiety. They positively affect immune regulation, the hypothalamic-pituitary-adrenal axis, hippocampal function, intestinal mucosa protection, and glucolipid metabolism regulation. Probiotics can influence changes in the composition of the gut microbiota and the ratio between various flora. However, probiotics should be used with caution, particularly in healthy individuals. Future research should further explore the mechanisms underlying the gut-brain axis, obesity, and cognitive function while overcoming the significant variation in study design and high risk of bias in the current evidence.
Collapse
|
25
|
Pendse M, De Selle H, Vo N, Quinn G, Dende C, Li Y, Salinas CN, Srinivasan T, Propheter DC, Crofts AA, Koo E, Hassell B, Ruhn KA, Raj P, Obata Y, Hooper LV. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 2023; 12:e78558. [PMID: 37159507 PMCID: PMC10185340 DOI: 10.7554/elife.78558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.
Collapse
Affiliation(s)
- Mihir Pendse
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haley De Selle
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristine N Salinas
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander A Crofts
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Eugene Koo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
26
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
27
|
Ganz J, Ratcliffe EM. Who's talking to whom: microbiome-enteric nervous system interactions in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G196-G206. [PMID: 36625480 PMCID: PMC9988524 DOI: 10.1152/ajpgi.00166.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal tract (GI) and regulates important GI functions, including motility, nutrient uptake, and immune response. The development of the ENS begins during early organogenesis and continues to develop once feeding begins, with ongoing plasticity into adulthood. There has been increasing recognition that the intestinal microbiota and ENS interact during critical periods, with implications for normal development and potential disease pathogenesis. In this review, we focus on insights from mouse and zebrafish model systems to compare and contrast how each model can serve in elucidating the bidirectional communication between the ENS and the microbiome. At the end of this review, we further outline implications for human disease and highlight research innovations that can lead the field forward.
Collapse
Affiliation(s)
- Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, United States
| | | |
Collapse
|
28
|
Tian D, Xu W, Pan W, Zheng B, Yang W, Jia W, Liu Y, Garstka MA, Gao Y, Yu H. Fecal microbiota transplantation enhances cell therapy in a rat model of hypoganglionosis by SCFA-induced MEK1/2 signaling pathway. EMBO J 2023; 42:e111139. [PMID: 36382711 PMCID: PMC9811615 DOI: 10.15252/embj.2022111139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Hirschsprung disease (HSCR), one of several neurocristopathies in children, is characterized by nerve loss in the large intestine and is mainly treated by surgery, which causes severe complications. Enteric neural crest-derived cell (ENCC) transplantation is a potential therapeutic strategy; however, so far with poor efficacy. Here, we assessed whether and how fecal microbiota transplantation (FMT) could improve ENCC transplantation in a rat model of hypoganglionosis; a condition similar to HSCR, with less intestinal innervation. We found that the hypoganglionosis intestinal microenvironment negatively influenced the ENCC functional phenotype in vitro and in vivo. Combining 16S rDNA sequencing and targeted mass spectrometry revealed microbial dysbiosis and reduced short-chain fatty acid (SCFA) production in the hypoganglionic gut. FMT increased the abundance of Bacteroides and Clostridium, SCFA production, and improved outcomes following ENCC transplantation. SCFAs alone stimulated ENCC proliferation, migration, and supported ENCC transplantation. Transcriptome-wide mRNA sequencing identified MAPK signaling as the top differentially regulated pathway in response to SCFA exposure, and inhibition of MEK1/2 signaling abrogated the SCFA-mediated effects on ENCC. This study demonstrates that FMT improves cell therapy for hypoganglionosis via short-chain fatty acid metabolism-induced MEK1/2 signaling.
Collapse
Affiliation(s)
- Donghao Tian
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Wenyao Xu
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Weikang Pan
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Baijun Zheng
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Weili Yang
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Wanying Jia
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yong Liu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| | - Malgorzata A Garstka
- Core Research Laboratory, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Hui Yu
- Department of Pediatric Surgery, The Second Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Chinese Ministry of EducationXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
29
|
Banse AV, VanBeuge S, Smith TJ, Logan SL, Guillemin K. Secreted Aeromonas GlcNAc binding protein GbpA stimulates epithelial cell proliferation in the zebrafish intestine. Gut Microbes 2023; 15:2183686. [PMID: 36859771 PMCID: PMC9988336 DOI: 10.1080/19490976.2023.2183686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
In response to microbiota colonization, the intestinal epithelia of many animals exhibit increased rates of cell proliferation. We used gnotobiotic larval zebrafish to identify a secreted factor from the mutualist Aeromonas veronii that is sufficient to promote intestinal epithelial cell proliferation. This secreted A. veronii protein is a homologue of the Vibrio cholerae GlcNAc binding protein GbpA, which was identified as a chitin-binding colonization factor in mice. GbpA was subsequently shown to be a lytic polysaccharide monooxygenase (LPMO) that can degrade recalcitrant chitin. Our phenotypic characterization of gbpA deficient A. veronii found no alterations in these cells' biogeography in the zebrafish intestine and only a modest competitive disadvantage in chitin-binding and colonization fitness when competed against the wild-type strain. These results argue against the model of GbpA being a secreted adhesin that binds simultaneously to bacterial cells and GlcNAc, and instead suggests that GbpA is part of a bacterial GlcNAc utilization program. We show that the host proliferative response to GbpA occurs in the absence of bacteria upon exposure of germ-free zebrafish to preparations of native GbpA secreted from either A. veronii or V. cholerae or recombinant A. veronii GbpA. Furthermore, domain 1 of A. veronii GbpA, containing the predicted LPMO activity, is sufficient to stimulate intestinal epithelial proliferation. We propose that intestinal epithelial tissues upregulate their rates of renewal in response to secreted bacterial GbpA proteins as an adaptive strategy for coexisting with bacteria that can degrade glycan constituents of the protective intestinal lining.
Collapse
Affiliation(s)
- Allison V. Banse
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Stephanie VanBeuge
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - T. Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
31
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
32
|
Moesch M, Usemann J, Bruder E, Romero P, Schwab C, Niesler B, Tapia-Laliena MA, Khasanov R, Nisar T, Holland-Cunz S, Keck S. Associations of Mucosal Nerve Fiber Innervation Density with Hirschsprung-Associated Enterocolitis: A Retrospective Three-Center Cohort Study. Eur J Pediatr Surg 2022. [PMID: 35777734 DOI: 10.1055/a-1889-6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Hirschsprung's disease (HSCR) is a congenital intestinal neurodevelopmental disorder characterized by the absence of enteric ganglion cells in the distal colon. Although Hirschsprung-associated enterocolitis (HAEC) is the most frequent life-threatening complication in HSCR, to date reliable biomarkers predicting the likelihood of HAEC are yet to be established. We established a three-center retrospective study including 104 HSCR patients surgically treated between 1998 and 2019. MATERIALS AND METHODS Patient-derived cryopreserved or paraffin-preserved colonic tissue at surgery was analyzed via βIII-tubulin immunohistochemistry. We subsequently determined extrinsic mucosal nerve fiber density in resected rectosigmoid specimens and classified HSCR patients accordingly into nerve fiber-high or fiber-low groups. We compared the distribution of clinical parameters obtained from medical records between the fiber-high (n = 36) and fiber-low (n = 68) patient groups. We assessed the association between fiber phenotype and enterocolitis using univariate and multivariate logistic regression adjusted for age at operation. RESULTS Enterocolitis was more prevalent in patients with sparse mucosal nerve fiber innervation (fiber-low phenotype, 87%) compared with the fiber-high phenotype (13%; p = 0.002). In addition, patients developing enterocolitis had a younger age at surgery (3 vs. 7 months; p = 0.016). In the univariate analysis, the odds for enterocolitis development in the fiber-low phenotype was 5.26 (95% confidence interval [CI], 1.67-16.59; p = 0.005) and 4.01 (95% CI, 1.22-13.17; p = 0.022) when adjusted for age. CONCLUSION Here, we showed that HSCR patients with a low mucosal nerve fiber innervation grade in the distal aganglionic colon have a higher risk of developing HAEC. Consequently, histopathologic analysis of the nerve fiber innervation grade could serve as a novel sensitive prognostic marker associated with the development of enterocolitis in HSCR patients.
Collapse
Affiliation(s)
- Michèle Moesch
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, BS, Switzerland
| | - Jakob Usemann
- Department of Pediatric Pulmonology, UKBB Ringgold Standard Institution, Basel, BS, Switzerland
| | - Elisabeth Bruder
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Philipp Romero
- Division of Pediatric Surgery, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Constantin Schwab
- Institute of Pathology, University Hospital Heidelberg Institute of Pathology Ringgold Standard Institution, Heidelberg, Baden-Württemberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University Hospital Heidelberg Institute of Human Genetics Ringgold Standard Institution, Heidelberg, Baden-Württemberg, Germany
| | | | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tauseef Nisar
- Department of Pediatric Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, BS, Switzerland
| | - Simone Keck
- Department of Pediatric Surgery, University Children's Hospital Basel, Basel, BS, Switzerland
| |
Collapse
|
33
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
34
|
Rueckert H, Ganz J. How to Heal the Gut's Brain: Regeneration of the Enteric Nervous System. Int J Mol Sci 2022; 23:ijms23094799. [PMID: 35563190 PMCID: PMC9105052 DOI: 10.3390/ijms23094799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
The neural-crest-derived enteric nervous system (ENS) is the intrinsic nervous system of the gastrointestinal (GI) tract and controls all gut functions, including motility. Lack of ENS neurons causes various ENS disorders such as Hirschsprung Disease. One treatment option for ENS disorders includes the activation of resident stem cells to regenerate ENS neurons. Regeneration in the ENS has mainly been studied in mammalian species using surgical or chemically induced injury methods. These mammalian studies showed a variety of regenerative responses with generally limited regeneration of ENS neurons but (partial) regrowth and functional recovery of nerve fibers. Several aspects might contribute to the variety in regenerative responses, including observation time after injury, species, and gut region targeted. Zebrafish have recently emerged as a promising model system to study ENS regeneration as larvae possess the ability to generate new neurons after ablation. As the next steps in ENS regeneration research, we need a detailed understanding of how regeneration is regulated on a cellular and molecular level in animal models with both high and low regenerative capacity. Understanding the regulatory programs necessary for robust ENS regeneration will pave the way for using neural regeneration as a therapeutic approach to treating ENS disorders.
Collapse
Affiliation(s)
- Helen Rueckert
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Ganz
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA;
- Correspondence:
| |
Collapse
|
35
|
Zhong X, Li J, Lu F, Zhang J, Guo L. Application of zebrafish in the study of the gut microbiome. Animal Model Exp Med 2022; 5:323-336. [PMID: 35415967 PMCID: PMC9434591 DOI: 10.1002/ame2.12227] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
Zebrafish (Danio rerio) have attracted much attention over the past decade as a reliable model for gut microbiome research. Owing to their low cost, strong genetic and development coherence, efficient preparation of germ-free (GF) larvae, availability in high-throughput chemical screening, and fitness for intravital imaging in vivo, zebrafish have been extensively used to investigate microbiome-host interactions and evaluate the toxicity of environmental pollutants. In this review, the advantages and disadvantages of zebrafish for studying the role of the gut microbiome compared with warm-blooded animal models are first summarized. Then, the roles of zebrafish gut microbiome on host development, metabolic pathways, gut-brain axis, and immune disorders and responses are addressed. Furthermore, their applications for the toxicological assessment of aquatic environmental pollutants and exploration of the molecular mechanism of pathogen infections are reviewed. We highlight the great potential of the zebrafish model for developing probiotics for xenobiotic detoxification, resistance against bacterial infection, and disease prevention and cure. Overall, the zebrafish model promises a brighter future for gut microbiome research.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Furong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.,Dongguan Innovation Institute, Guangdong Medical University, Dongguan, China
| |
Collapse
|
36
|
Microbiota and Pain: Save Your Gut Feeling. Cells 2022; 11:cells11060971. [PMID: 35326422 PMCID: PMC8946251 DOI: 10.3390/cells11060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, a growing body of evidence has emerged regarding the interplay between microbiota and the nervous system. This relationship has been associated with several pathological conditions and also with the onset and regulation of pain. Dysregulation of the axis leads to a huge variety of diseases such as visceral hypersensitivity, stress-induced hyperalgesia, allodynia, inflammatory pain and functional disorders. In pain management, probiotics have shown promising results. This narrative review describes the peripheral and central mechanisms underlying pain processing and regulation, highlighting the role of the gut-brain axis in the modulation of pain. We summarized the main findings in regard to the stress impact on microbiota’s composition and its influence on pain perception. We also focused on the relationship between gut microbiota and both visceral and inflammatory pain and we provided a summary of the main evidence regarding the mechanistic effects and probiotics use.
Collapse
|
37
|
Hamilton MK, Wall ES, Robinson CD, Guillemin K, Eisen JS. Enteric nervous system modulation of luminal pH modifies the microbial environment to promote intestinal health. PLoS Pathog 2022; 18:e1009989. [PMID: 35143593 PMCID: PMC8830661 DOI: 10.1371/journal.ppat.1009989] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
The enteric nervous system (ENS) controls many aspects of intestinal homeostasis, including parameters that shape the habitat of microbial residents. Previously we showed that zebrafish lacking an ENS, due to deficiency of the sox10 gene, develop intestinal inflammation and bacterial dysbiosis, with an expansion of proinflammatory Vibrio strains. To understand the primary defects resulting in dysbiosis in sox10 mutants, we investigated how the ENS shapes the intestinal environment in the absence of microbiota and associated inflammatory responses. We found that intestinal transit, intestinal permeability, and luminal pH regulation are all aberrant in sox10 mutants, independent of microbially induced inflammation. Treatment with the proton pump inhibitor, omeprazole, corrected the more acidic luminal pH of sox10 mutants to wild type levels. Omeprazole treatment also prevented overabundance of Vibrio and ameliorated inflammation in sox10 mutant intestines. Treatment with the carbonic anhydrase inhibitor, acetazolamide, caused wild type luminal pH to become more acidic, and increased both Vibrio abundance and intestinal inflammation. We conclude that a primary function of the ENS is to regulate luminal pH, which plays a critical role in shaping the resident microbial community and regulating intestinal inflammation.
Collapse
Affiliation(s)
- M. Kristina Hamilton
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Elena S. Wall
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Catherine D. Robinson
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Humans and the Microbiome Program, CIFAR, Toronto, Ontario, Canada
- * E-mail: (KG); (JSE)
| | - Judith S. Eisen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- * E-mail: (KG); (JSE)
| |
Collapse
|
38
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Kramer P. Mitochondria-Microbiota Interaction in Neurodegeneration. Front Aging Neurosci 2022; 13:776936. [PMID: 35002678 PMCID: PMC8733591 DOI: 10.3389/fnagi.2021.776936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s and Parkinson’s are the two best-known neurodegenerative diseases. Each is associated with the excessive aggregation in the brain and elsewhere of its own characteristic amyloid proteins. Yet the two afflictions have much in common and often the same amyloids play a role in both. These amyloids need not be toxic and can help regulate bile secretion, synaptic plasticity, and immune defense. Moreover, when they do form toxic aggregates, amyloids typically harm not just patients but their pathogens too. A major port of entry for pathogens is the gut. Keeping the gut’s microbe community (microbiota) healthy and under control requires that our cells’ main energy producers (mitochondria) support the gut-blood barrier and immune system. As we age, these mitochondria eventually succumb to the corrosive byproducts they themselves release, our defenses break down, pathogens or their toxins break through, and the side effects of inflammation and amyloid aggregation become problematic. Although it gets most of the attention, local amyloid aggregation in the brain merely points to a bigger problem: the systemic breakdown of the entire human superorganism, exemplified by an interaction turning bad between mitochondria and microbiota.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
40
|
Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol 2022; 15:27-39. [PMID: 34471248 PMCID: PMC8732275 DOI: 10.1038/s41385-021-00443-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 02/04/2023]
Abstract
The enteric nervous system (ENS) of the gastrointestinal (GI) tract interacts with the local immune system bidirectionally. Recent publications have demonstrated that such interactions can maintain normal GI functions during homeostasis and contribute to pathological symptoms during infection and inflammation. Infection can also induce long-term changes of the ENS resulting in the development of post-infectious GI disturbances. In this review, we discuss how the ENS can regulate and be regulated by immune responses and how such interactions control whole tissue physiology. We also address the requirements for the proper regeneration of the ENS and restoration of GI function following the resolution of infection.
Collapse
|
41
|
Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, Crema F, Maggi F, Karousou E, Viola M, Passi A, Vigetti D, Giaroni C, Baj A. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis. Cells 2021; 11:cells11010126. [PMID: 35011688 PMCID: PMC8750446 DOI: 10.3390/cells11010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332-217412; Fax: +39-0332-217111
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| |
Collapse
|
42
|
Liu C, Zhao LP, Shen YQ. A systematic review of advances in intestinal microflora of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:2041-2053. [PMID: 34750711 DOI: 10.1007/s10695-021-01027-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/13/2021] [Indexed: 05/26/2023]
Abstract
Intestinal flora is closely related to the health of organisms and the occurrence and development of diseases. The study of intestinal flora will provide a reference for the research and treatment of disease pathogenesis. Upon hatching, fish begin to acquire a microbial community in the intestine. In response to the environment and the host itself, the fish gut eventually develops a unique set of microflora, with some microorganisms being common to different fish. The existence of intestinal microorganisms creates an excellent microecological environment for the host, while the fish symbiotically provides conditions for the growth and reproduction of intestinal microflora. The intestinal flora and the host are interdependent and mutually restrictive. This review mainly describes the formation of fish intestinal flora, the function of normal intestinal flora, factors affecting intestinal flora, and a series of fish models.
Collapse
Affiliation(s)
- Chang Liu
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Li-Ping Zhao
- Wuxi Medical School of Jiangnan University, Wuxi, China
| | - Yan-Qin Shen
- Wuxi Medical School of Jiangnan University, Wuxi, China.
| |
Collapse
|
43
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Li X, Li C, Li Y, Liu C, Liang X, Liu T, Liu Z. Sodium nitroprusside protects HFD induced gut dysfunction via activating AMPKα/SIRT1 signaling. BMC Gastroenterol 2021; 21:359. [PMID: 34600475 PMCID: PMC8487517 DOI: 10.1186/s12876-021-01934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Activation of Adenosine 5′-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the mechanism. Methods SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intestinal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 pathway and gut barrier indicators were investigated. Results SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal permeability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and the activated AMPKα/SIRT1 signaling. Conclusions The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by activating the AMPKα/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuanqi Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Cong Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, Innovation Center for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| |
Collapse
|
45
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
46
|
Stavely R, Abalo R, Nurgali K. Targeting Enteric Neurons and Plexitis for the Management of Inflammatory Bowel Disease. Curr Drug Targets 2021; 21:1428-1439. [PMID: 32416686 DOI: 10.2174/1389450121666200516173242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are pathological conditions with an unknown aetiology that are characterised by severe inflammation of the intestinal tract and collectively referred to as inflammatory bowel disease (IBD). Current treatments are mostly ineffective due to their limited efficacy or toxicity, necessitating surgical resection of the affected bowel. The management of IBD is hindered by a lack of prognostic markers for clinical inflammatory relapse. Intestinal inflammation associates with the infiltration of immune cells (leukocytes) into, or surrounding the neuronal ganglia of the enteric nervous system (ENS) termed plexitis or ganglionitis. Histological observation of plexitis in unaffected intestinal regions is emerging as a vital predictive marker for IBD relapses. Plexitis associates with alterations to the structure, cellular composition, molecular expression and electrophysiological function of enteric neurons. Moreover, plexitis often occurs before the onset of gross clinical inflammation, which may indicate that plexitis can contribute to the progression of intestinal inflammation. In this review, the bilateral relationships between the ENS and inflammation are discussed. These include the effects and mechanisms of inflammation-induced enteric neuronal loss and plasticity. Additionally, the role of enteric neurons in preventing antigenic/pathogenic insult and immunomodulation is explored. While all current treatments target the inflammatory pathology of IBD, interventions that protect the ENS may offer an alternative avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Rhian Stavely
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas
(CSIC), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences,
The University of Melbourne, Melbourne, Victoria, Australia,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
47
|
Hill AE, Wade-Martins R, Burnet PWJ. What Is Our Understanding of the Influence of Gut Microbiota on the Pathophysiology of Parkinson's Disease? Front Neurosci 2021; 15:708587. [PMID: 34512244 PMCID: PMC8432298 DOI: 10.3389/fnins.2021.708587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Microbiota have increasingly become implicated in predisposition to human diseases, including neurodegenerative disorders such as Parkinson's disease (PD). Traditionally, a central nervous system (CNS)-centric approach to understanding PD has predominated; however, an association of the gut with PD has existed since Parkinson himself reported the disease. The gut-brain axis refers to the bidirectional communication between the gastrointestinal tract (GIT) and the brain. Gut microbiota dysbiosis, reported in PD patients, may extend this to a microbiota-gut-brain axis. To date, mainly the bacteriome has been investigated. The change in abundance of bacterial products which accompanies dysbiosis is hypothesised to influence PD pathophysiology via multiple mechanisms which broadly centre on inflammation, a cause of alpha-synuclein (a-syn) misfolding. Two main routes are hypothesised by which gut microbiota can influence PD pathophysiology, the neural and humoral routes. The neural route involves a-syn misfolding peripherally in the enteric nerves which can then be transported to the brain via the vagus nerve. The humoral route involves transportation of bacterial products and proinflammatory cytokines from the gut via the circulation which can cause central a-syn misfolding by inducing neuroinflammation. This article will assess whether the current literature supports gut bacteria influencing PD pathophysiology via both routes.
Collapse
Affiliation(s)
- Amaryllis E. Hill
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
48
|
Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut Microbiota and Neuroplasticity. Cells 2021; 10:2084. [PMID: 34440854 PMCID: PMC8392499 DOI: 10.3390/cells10082084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has led to a paradigm shift in the neurosciences. Understanding the neurobiological mechanisms supporting the relevance of actions mediated by the gut microbiota for brain physiology and neuronal functioning is a key research area. In this review, we discuss the literature showing how the microbiota is emerging as a key regulator of the brain's function and behavior, as increasing amounts of evidence on the importance of the bidirectional communication between the intestinal bacteria and the brain have accumulated. Based on recent discoveries, we suggest that the interaction between diet and the gut microbiota, which might ultimately affect the brain, represents an unprecedented stimulus for conducting new research that links food and mood. We also review the limited work in the clinical arena to date, and we propose novel approaches for deciphering the gut microbiota-brain axis and, eventually, for manipulating this relationship to boost mental wellness.
Collapse
Affiliation(s)
- Julia Murciano-Brea
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Martin Garcia-Montes
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, School of Medicine, University of Torino, 10124 Torino, Italy;
| | - Celia Herrera-Rincon
- Department of Biodiversity, Ecology & Evolution, Biomathematics Unit, Complutense University of Madrid, 28040 Madrid, Spain; (J.M.-B.); (M.G.-M.)
- Modeling, Data Analysis and Computational Tools for Biology Research Group, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
49
|
Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr Opin Support Palliat Care 2021; 14:293-300. [PMID: 32769620 DOI: 10.1097/spc.0000000000000515] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Chemotherapy is a first-line treatment for many cancers; however, its use is hampered by a long list of side-effects. Gastrointestinal mucositis is a common and debilitating side-effect of anticancer therapy contributing to dose reductions, delays and cessation of treatment, greatly impacting clinical outcomes. The underlying pathophysiology of gastrointestinal mucositis is complex and likely involves several overlapping inflammatory, secretory and neural mechanisms, yet research investigating the role of innervation in gastrointestinal mucositis is scarce. This review provides an overview of the current literature surrounding chemotherapy-induced enteric neurotoxicity and discusses its implications on gastrointestinal mucositis. RECENT FINDINGS Damage to the intrinsic nervous system of the gastrointestinal tract, the enteric nervous system (ENS), occurs following chemotherapeutic administration, leading to altered gastrointestinal functions. Chemotherapeutic drugs have various mechanisms of actions on the ENS. Oxidative stress, direct toxicity and inflammation have been identified as mechanisms involved in chemotherapy-induced ENS damage. Enteric neuroprotection has proven to be beneficial to reduce gastrointestinal dysfunction in animal models of oxaliplatin-induced enteric neuropathy. SUMMARY Understanding of the ENS role in chemotherapy-induced mucositis requires further investigation and might lead to the development of more effective therapeutic interventions for prevention and treatment of chemotherapy-induced gastrointestinal side-effects.
Collapse
|
50
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|