1
|
Cloutier A, Chan DTC, Poon ESK, Sin SYW. The genetic consequences of historic climate change on the contemporary population structure of a widespread temperate North American songbird. Mol Phylogenet Evol 2024; 201:108216. [PMID: 39384123 DOI: 10.1016/j.ympev.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Studies of widely distributed species can inform our understanding of how past demographic events tied to historic glaciation and ongoing population genetic processes interact to shape contemporaneous patterns of biodiversity at a continental scale. In this study, we used whole-genome resequencing to investigate the current population structure and genetic signatures of past demographic events in the widespread migratory American goldfinch (Spinus tristis). Phylogenetic relationships inferred from whole mitochondrial genomes were poorly resolved. In contrast, a genome-wide panel of > 4.5 million single nucleotide polymorphisms (SNPs) strongly supported the existence of eastern and western populations separated by western mountain ranges and additional population structuring within the western clade. Demographic modeling estimated that the eastern and western populations diverged approximately one million years ago, and both populations experienced subsequent population bottlenecks during the last glacial period. Species distribution models showed a severe contraction of suitable habitat for the American goldfinch during this period, with predicted discontinuities that are consistent with multiple, isolated glacial refugia that coincide with present-day population structure. Low overall genetic differentiation between the eastern and western populations (FST ∼ 0.01) suggests ongoing gene flow accompanied divergence, and individuals with admixed genomic signatures were sampled along a potential contact zone. Nevertheless, outlier SNPs were identified near genes associated with feather color, song, and migratory behavior and provide strong candidates for further study of the mechanisms underlying reproductive isolation and speciation in birds.
Collapse
Affiliation(s)
- Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Wacker KS, Winger BM. An Elevational Phylogeographic Diversity Gradient in Neotropical Birds Is Decoupled from Speciation Rates. Am Nat 2024; 203:362-381. [PMID: 38358813 DOI: 10.1086/728598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractA key question about macroevolutionary speciation rates is whether they are controlled by microevolutionary processes operating at the population level. For example, does spatial variation in population genetic differentiation underlie geographical gradients in speciation rates? Previous work suggests that speciation rates increase with elevation in Neotropical birds, but underlying population-level gradients remain unexplored. Here, we characterize elevational phylogeographic diversity between montane and lowland birds in the megadiverse Andes-Amazonian system and assess its relationship to speciation rates to evaluate the link between population-level differentiation and species-level diversification. We aggregated and georeferenced nearly 7,000 mitochondrial DNA sequences across 103 species or species complexes in the Andes and Amazonia and used these sequences to describe phylogeographic differentiation across both regions. Our results show increased levels of both discrete and continuous metrics of population structure in the Andean mountains compared with the Amazonian lowlands. However, higher levels of population differentiation do not predict higher rates of speciation in our dataset. Multiple potential factors may lead to our observed decoupling of initial population divergence and speciation rates, including the ephemerality of incipient species and the multifaceted nature of the speciation process, as well as methodological challenges associated with estimating rates of population differentiation and speciation.
Collapse
|
3
|
Johnson O, Ribas CC, Aleixo A, Naka LN, Harvey MG, Brumfield RT. Amazonian birds in more dynamic habitats have less population genetic structure and higher gene flow. Mol Ecol 2023; 32:2186-2205. [PMID: 36798996 DOI: 10.1111/mec.16886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome-wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual-level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long-term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat-specific diversification dynamics over evolutionary time scales.
Collapse
Affiliation(s)
- Oscar Johnson
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Camila C Ribas
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Alexandre Aleixo
- Museu Paraense Emílio Goeldi (MPEG), Belém, Pará, Brazil.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Instituto Tecnológico Vale, Belém, Brazil
| | - Luciano N Naka
- Laboratório de Ecologia & Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Michael G Harvey
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Robb T Brumfield
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Kimmitt AA, Pegan TM, Jones AW, Wacker KS, Brennan CL, Hudon J, Kirchman JJ, Ruegg K, Benz BW, Herman R, Winger BM. Genetic evidence for widespread population size expansion in North American boreal birds prior to the Last Glacial Maximum. Proc Biol Sci 2023; 290:20221334. [PMID: 36695033 PMCID: PMC9874272 DOI: 10.1098/rspb.2022.1334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns.
Collapse
Affiliation(s)
- Abigail A. Kimmitt
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa M. Pegan
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew W. Jones
- Department of Ornithology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Kristen S. Wacker
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Courtney L. Brennan
- Department of Ornithology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA
| | - Jocelyn Hudon
- Royal Alberta Museum, Edmonton, Alberta Canada, T5J 0G2
| | | | - Kristen Ruegg
- Biology Department, Colorado State University, Fort Collins, CO 80521, USA
| | - Brett W. Benz
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachael Herman
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Princepe D, de Aguiar MAM, Plotkin JB. Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan. Nat Ecol Evol 2022; 6:1992-2002. [PMID: 36216905 DOI: 10.1038/s41559-022-01901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Mitochondrial and nuclear genomes must be co-adapted to ensure proper cellular respiration and energy production. Mito-nuclear incompatibility reduces individual fitness and induces hybrid infertility, which can drive reproductive barriers and speciation. Here, we develop a birth-death model for evolution in spatially extended populations under selection for mito-nuclear co-adaptation. Mating is constrained by physical and genetic proximity, and offspring inherit nuclear genomes from both parents, with recombination. The model predicts macroscopic patterns including a community's species diversity, species abundance distribution, speciation and extinction rates, as well as intraspecific and interspecific genetic variation. We explore how these long-term outcomes depend upon the parameters of reproduction: individual fitness governed by mito-nuclear compatibility, constraints on mating compatibility and ecological carrying capacity. We find that strong selection for mito-nuclear compatibility reduces the equilibrium number of species after a radiation, increasing species' abundances and simultaneously increasing both speciation and extinction rates. The negative correlation between species diversity and diversification rates in our model agrees with the broad empirical pattern of lower diversity and higher speciation/extinction rates in temperate regions, compared to the tropics. We conclude that these empirical patterns may be caused in part by latitudinal variation in metabolic demands and corresponding variation in selection for mito-nuclear function.
Collapse
Affiliation(s)
- Débora Princepe
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Burbrink FT. Uniting genetic and geographic databases to understand the relationship between latitude and population demography. Mol Ecol Resour 2022; 22:2827-2829. [PMID: 35837835 DOI: 10.1111/1755-0998.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| |
Collapse
|
7
|
Kim JY, Yoon J, Choi YS, Eo SH. The influencing factors for distribution patterns of resident and migrant bird species richness along elevational gradients. PeerJ 2022; 10:e13258. [PMID: 35509964 PMCID: PMC9059752 DOI: 10.7717/peerj.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
The latitudinal and elevational patterns of species richness of resident and migrant birds have been of interest to researchers over the past few decades, and various hypotheses have been proposed to explain the factors that may affect these patterns. This study aimed to shed light on the elevational distribution patterns of resident and migrant bird species richness by examining biotic and abiotic factors such as climate, and habitat heterogeneity using a piecewise structural equation model (pSEM). The overall pattern of resident species richness showed a decreasing trend with increasing elevation, whereas that of migrant species richness showed an increasing trend. The mid-peak pattern of species richness was affected by a combination of resident and migrant species and not by either resident or migrant species. Our results showed that resident species were distributed in lower elevation regions with higher mean spring temperatures, whereas migrant species were found in higher elevation regions with lower mean spring temperatures and higher overstory vegetation coverage. Although high elevation conditions might adversely affect the reproduction of migrant birds, higher overstory vegetation coverage at high elevations seemed to compensate for this by providing a better nesting and roosting environment. Despite the significance of habitat diversity and understory vegetation coverage in univariate linear regression models, multiple regression models of the interconnection of ecological processes demonstrated that mean spring temperature and overstory vegetation coverage were more explanatory than other variables.
Collapse
Affiliation(s)
- Jin-Yong Kim
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Jongmin Yoon
- Research Center for Endangered Species, National Institute of Ecology, Yeongyang, South Korea
| | - Yu-Seong Choi
- National Migratory Birds Center, National Institute of Biological Resources, Ongjin, South Korea
| | - Soo Hyung Eo
- Department of Forest Science, Kongju National University, Chungnam, South Korea
| |
Collapse
|
8
|
Musher LJ, Giakoumis M, Albert J, Del-Rio G, Rego M, Thom G, Aleixo A, Ribas CC, Brumfield RT, Smith BT, Cracraft J. River network rearrangements promote speciation in lowland Amazonian birds. SCIENCE ADVANCES 2022; 8:eabn1099. [PMID: 35394835 PMCID: PMC8993111 DOI: 10.1126/sciadv.abn1099] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Large Amazonian rivers impede dispersal for many species, but lowland river networks frequently rearrange, thereby altering the location and effectiveness of river barriers through time. These rearrangements may promote biotic diversification by facilitating episodic allopatry and secondary contact among populations. We sequenced genome-wide markers to evaluate the histories of divergence and introgression in six Amazonian avian species complexes. We first tested the assumption that rivers are barriers for these taxa and found that even relatively small rivers facilitate divergence. We then tested whether species diverged with gene flow and recovered reticulate histories for all species, including one potential case of hybrid speciation. Our results support the hypothesis that river rearrangements promote speciation and reveal that many rainforest taxa are micro-endemic, unrecognized, and thus threatened with imminent extinction. We propose that Amazonian hyper-diversity originates partly from fine-scale barrier displacement processes-including river dynamics-which allow small populations to differentiate and disperse into secondary contact.
Collapse
Affiliation(s)
- Lukas J. Musher
- Department of Ornithology, The Academy of Natural
Sciences of Drexel University, Philadelphia, PA 19103, USA
- Department of Ornithology, American Museum of Natural
History, New York, NY 10028, USA
- Corresponding author.
| | - Melina Giakoumis
- Department of Biology, City College of New York, New
York, NY 10031, USA
- Graduate Center, City University of New York, New
York, NY 10016, USA
| | - James Albert
- Department of Biology, University of Louisiana at
Lafayette, Lafayette, LA 70503, USA
| | - Glaucia Del-Rio
- Department of Biological Sciences, Louisiana State
University, Baton Rouge, LA 70803, USA
- Museum of Natural Science, Louisiana State
University, Baton Rouge, LA 70803, USA
| | - Marco Rego
- Department of Biological Sciences, Louisiana State
University, Baton Rouge, LA 70803, USA
- Museum of Natural Science, Louisiana State
University, Baton Rouge, LA 70803, USA
| | - Gregory Thom
- Department of Ornithology, American Museum of Natural
History, New York, NY 10028, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History of Helsinki,
University of Helsinki, Helsinki, Finland
- Museu Paraense Emílio Goeldi, Belém,
Brazil
- Instituto Tecnológico Vale, Belém,
Brazil
| | - Camila C. Ribas
- Instituto Nacional de Pesquisas da
Amazônia, INPA, Manaus, Brazil
| | - Robb T. Brumfield
- Department of Biological Sciences, Louisiana State
University, Baton Rouge, LA 70803, USA
- Museum of Natural Science, Louisiana State
University, Baton Rouge, LA 70803, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural
History, New York, NY 10028, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural
History, New York, NY 10028, USA
| |
Collapse
|
9
|
Singhal S, Derryberry GE, Bravo GA, Derryberry EP, Brumfield RT, Harvey MG. The dynamics of introgression across an avian radiation. Evol Lett 2021; 5:568-581. [PMID: 34917397 PMCID: PMC8645201 DOI: 10.1002/evl3.256] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023] Open
Abstract
Hybridization and resulting introgression can play both a destructive and a creative role in the evolution of diversity. Thus, characterizing when and where introgression is most likely to occur can help us understand the causes of diversification dynamics. Here, we examine the prevalence of and variation in introgression using phylogenomic data from a large (1300+ species), geographically widespread avian group, the suboscine birds. We first examine patterns of gene tree discordance across the geographic distribution of the entire clade. We then evaluate the signal of introgression in a subset of 206 species triads using Patterson's D‐statistic and test for associations between introgression signal and evolutionary, geographic, and environmental variables. We find that gene tree discordance varies across lineages and geographic regions. The signal of introgression is highest in cases where species occur in close geographic proximity and in regions with more dynamic climates since the Pleistocene. Our results highlight the potential of phylogenomic datasets for examining broad patterns of hybridization and suggest that the degree of introgression between diverging lineages might be predictable based on the setting in which they occur.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology California State University, Dominguez Hills Carson California 90747
| | - Graham E Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Gustavo A Bravo
- Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts 02138.,Museum of Comparative Zoology Harvard University Cambridge Massachusetts 02138
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996
| | - Robb T Brumfield
- Museum of Natural Science Louisiana State University Baton Rouge Louisiana 70803.,Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Michael G Harvey
- Department of Biological Sciences The University of Texas at El Paso El Paso Texas 79968.,Biodiversity Collections The University of Texas at El Paso El Paso Texas 79968
| |
Collapse
|
10
|
Thom G, Gehara M, Smith BT, Miyaki CY, do Amaral FR. Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest. Nat Commun 2021; 12:6269. [PMID: 34725329 PMCID: PMC8560783 DOI: 10.1038/s41467-021-26537-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Tropical mountains hold more biodiversity than their temperate counterparts, and this disparity is often associated with the latitudinal climatic gradient. However, distinguishing the impact of latitude versus the background effects of species history and traits is challenging due to the evolutionary distance between tropical and temperate assemblages. Here, we test whether microevolutionary processes are linked to environmental variation across a sharp latitudinal transition in 21 montane birds of the southern Atlantic Forest in Brazil. We find that effective dispersal within populations in the tropical mountains is lower and genomic differentiation is better predicted by the current environmental complexity of the region than within the subtropical populations. The concordant response of multiple co-occurring populations is consistent with spatial climatic variability as a major process driving population differentiation. Our results provide evidence for how a narrow latitudinal gradient can shape microevolutionary processes and contribute to broader scale biodiversity patterns. There are many hypotheses for why the tropics are more biodiverse than higher latitudes. Phylogenomic analyses of 21 montane birds finds that tropical birds disperse less and have more genetically structured populations than their counterparts at higher latitudes, possibly due to a larger elevational climate gradient in the tropics
Collapse
Affiliation(s)
- Gregory Thom
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA. .,Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil.
| | - Marcelo Gehara
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.,Department of Earth and Environmental Sciences, Rutgers University Newark, 195 University Ave, Newark, NJ, 07102, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Cristina Y Miyaki
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Fábio Raposo do Amaral
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, Jardim Eldorado, Diadema, SP, CEP 09972-270, Brazil
| |
Collapse
|
11
|
Low neutral and immunogenetic diversity in northern fringe populations of the green toad Bufotes viridis: implications for conservation. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGenetic variation is often lower at high latitudes, which may compromise the adaptability and hence survival of organisms. Here we show that genetic variability is negatively correlated with northern latitude in European green toads (Bufotes viridis). The result holds true for both putatively neutral microsatellite variation and supposedly adaptive MHC Class IIB variation. In particular, our findings have bearing on the conservation status of this species in Sweden, on the northern limit of its distribution where local populations are small and fragmented. These genetically impoverished populations are closely related to other populations found around the Baltic Sea basin. The low neutral and adaptive variation in these fringe populations compared to population at central ranges confirms a pattern shared across all other amphibians so far studied. In Sweden, the situation of green toads is of concern as the remaining populations may not have the evolutionary potential to cope with present and future environmental challenges.
Collapse
|
12
|
Abstract
The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.
Collapse
|
13
|
Pârâu LG, Wink M. Common patterns in the molecular phylogeography of western palearctic birds: a comprehensive review. JOURNAL OF ORNITHOLOGY 2021; 162:937-959. [PMID: 34007780 PMCID: PMC8118378 DOI: 10.1007/s10336-021-01893-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
A plethora of studies have offered crucial insights in the phylogeographic status of Western Palearctic bird species. However, an overview integrating all this information and analyzing the combined results is still missing. In this study, we compiled all published peer-reviewed and grey literature available on the phylogeography of Western Palearctic bird species. Our literature review indicates a total number of 198 studies, with the overwhelming majority published as journal articles (n = 186). In total, these literature items offer information on 145 bird species. 85 of these species are characterized by low genetic differentiation, 46 species indicate genetic variation but no geographic structuring i.e. panmixia, while 14 species show geographically distinct lineages and haplotypes. Majority of bird species inhabiting the Western Palearctic display genetic admixture. The glaciation cycles in the past few million years were pivotal factors in shaping this situation: during warm periods many species expanded their distribution range to the north over wide areas of Eurasia; whereas, during ice ages most areas were no longer suitable and species retreated to refugia, where lineages mixed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10336-021-01893-x.
Collapse
Affiliation(s)
- Liviu G. Pârâu
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
- Present Address: SARS-CoV-2 Data Evaluation Office, Eurofins Genomics Europe Applied Genomics GmbH, Anzinger Straße 7a, 85560 Ebersberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Department Biology, Heidelberg University, Im Neuenheimer Feld 364, 4 OG, Heidelberg, Germany
| |
Collapse
|
14
|
Sukumaran J, Holder MT, Knowles LL. Incorporating the speciation process into species delimitation. PLoS Comput Biol 2021; 17:e1008924. [PMID: 33983918 PMCID: PMC8118268 DOI: 10.1371/journal.pcbi.1008924] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
The "multispecies" coalescent (MSC) model that underlies many genomic species-delimitation approaches is problematic because it does not distinguish between genetic structure associated with species versus that of populations within species. Consequently, as both the genomic and spatial resolution of data increases, a proliferation of artifactual species results as within-species population lineages, detected due to restrictions in gene flow, are identified as distinct species. The toll of this extends beyond systematic studies, getting magnified across the many disciplines that rely upon an accurate framework of identified species. Here we present the first of a new class of approaches that addresses this issue by incorporating an extended speciation process for species delimitation. We model the formation of population lineages and their subsequent development into independent species as separate processes and provide for a way to incorporate current understanding of the species boundaries in the system through specification of species identities of a subset of population lineages. As a result, species boundaries and within-species lineages boundaries can be discriminated across the entire system, and species identities can be assigned to the remaining lineages of unknown affinities with quantified probabilities. In addition to the identification of species units in nature, the primary goal of species delimitation, the incorporation of a speciation model also allows us insights into the links between population and species-level processes. By explicitly accounting for restrictions in gene flow not only between, but also within, species, we also address the limits of genetic data for delimiting species. Specifically, while genetic data alone is not sufficient for accurate delimitation, when considered in conjunction with other information we are able to not only learn about species boundaries, but also about the tempo of the speciation process itself.
Collapse
Affiliation(s)
- Jeet Sukumaran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Mark T. Holder
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Colihueque N, Gantz A, Parraguez M. Revealing the biodiversity of Chilean birds through the COI barcode approach. Zookeys 2021; 1016:143-161. [PMID: 33628081 PMCID: PMC7892532 DOI: 10.3897/zookeys.1016.51866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022] Open
Abstract
The mitochondrial cytochrome c oxidase subunit I (COI) gene is an effective molecular tool for the estimation of genetic variation and the identification of bird species. This molecular marker is used to differentiate among Chilean bird species by analyzing barcodes for 76 species (197 individuals), comprising 28 species with no previous barcode data and 48 species with sequences retrieved from the BOLD and GenBank databases. The DNA barcodes correctly identified 94.7% of the species analyzed (72 of 76 species). Mean intraspecific K2P distance was 0.3% (range 0-8.7%). Within the intraspecific divergence range, three species, Phrygilus gayi, Sephanoides sephanoides and Curaeus curaeus, showed relatively high intraspecific divergence (1.5-8.7%), possibly due to the presence of a species complex or geographic isolation of sub-populations. Mean interspecific K2P distance was 24.7% (range 1.3-43.5%). Consequently, the intraspecific K2P distance showed limited overlap with interspecific K2P distance. The mean intraspecific divergence in our study was similar to that found in temperate regions of South America (0.24%). However, it was approximately one order of magnitude lower than values reported for bird species in tropical regions of northern South America (1.8-2.13%). This result suggests that bird species from Chile show low levels of genetic structure and divergence. The small overlap between intra- and inter-specific distances implies that COI barcodes could be used as an effective tool to identify nearly all the Chilean bird species analyzed.
Collapse
Affiliation(s)
- Nelson Colihueque
- Laboratorio de Biología Molecular y Citogenética, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avenida Alcalde Fuchslocher 1305, Casilla 933, Osorno, Chile Universidad de Los Lagos Osorno Chile
| | - Alberto Gantz
- Laboratorio de Ecología, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile Universidad de Los Lagos Osorno Chile
| | - Margarita Parraguez
- Laboratorio de Genética, Acuicultura y Biodiversidad, Universidad de Los Lagos, Osorno, Chile Universidad de Los Lagos Osorno Chile
| |
Collapse
|
16
|
Smith BT, Gehara M, Harvey MG. The demography of extinction in eastern North American birds. Proc Biol Sci 2021; 288:20201945. [PMID: 33529556 DOI: 10.1098/rspb.2020.1945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated. Although these extinctions are most often attributed to post-colonial human activity, other factors such as declining ancestral populations prior to European colonization could have made these species particularly susceptible. We used population genomic data from these extinct birds and compared them with those from four codistributed extant species. We found extinct species harboured lower genetic diversity and effective population sizes than extant species, but both extinct and non-extinct birds had similar demographic histories of population expansion. These demographic patterns are consistent with population size changes associated with glacial-interglacial cycles. The lack of support for overall population declines during the Pleistocene corroborates the view that, although species that went extinct may have been vulnerable due to low diversity or small population size, their disappearance was driven by human activities in the Anthropocene.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University Newark, 195 University Avenue, Newark, NJ 07102, USA
| | - Michael G Harvey
- Department of Biological Sciences, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
17
|
Barrow LN, Masiero da Fonseca E, Thompson CEP, Carstens BC. Predicting amphibian intraspecific diversity with machine learning: Challenges and prospects for integrating traits, geography, and genetic data. Mol Ecol Resour 2020; 21:2818-2831. [PMID: 33249725 DOI: 10.1111/1755-0998.13303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
The growing availability of genetic data sets, in combination with machine learning frameworks, offers great potential to answer long-standing questions in ecology and evolution. One such question has intrigued population geneticists, biogeographers, and conservation biologists: What factors determine intraspecific genetic diversity? This question is challenging to answer because many factors may influence genetic variation, including life history traits, historical influences, and geography, and the relative importance of these factors varies across taxonomic and geographic scales. Furthermore, interpreting the influence of numerous, potentially correlated variables is difficult with traditional statistical approaches. To address these challenges, we analysed repurposed data using machine learning and investigated predictors of genetic diversity, focusing on Nearctic amphibians as a case study. We aggregated species traits, range characteristics, and >42,000 genetic sequences for 299 species using open-access scripts and various databases. After identifying important predictors of nucleotide diversity with random forest regression, we conducted follow-up analyses to examine the roles of phylogenetic history, geography, and demographic processes on intraspecific diversity. Although life history traits were not important predictors for this data set, we found significant phylogenetic signal in genetic diversity within amphibians. We also found that salamander species at northern latitudes contained low genetic diversity. Data repurposing and machine learning provide valuable tools for detecting patterns with relevance for conservation, but concerted efforts are needed to compile meaningful data sets with greater utility for understanding global biodiversity.
Collapse
Affiliation(s)
- Lisa N Barrow
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Coleen E P Thompson
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Tobias JA, Ottenburghs J, Pigot AL. Avian Diversity: Speciation, Macroevolution, and Ecological Function. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-025023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin, distribution, and function of biological diversity are fundamental themes of ecology and evolutionary biology. Research on birds has played a major role in the history and development of these ideas, yet progress was for many decades limited by a focus on patterns of current diversity, often restricted to particular clades or regions. Deeper insight is now emerging from a recent wave of integrative studies combining comprehensive phylogenetic, environmental, and functional trait data at unprecedented scales. We review these empirical advances and describe how they are reshaping our understanding of global patterns of bird diversity and the processes by which it arises, with implications for avian biogeography and functional ecology. Further expansion and integration of data sets may help to resolve longstanding debates about the evolutionary origins of biodiversity and offer a framework for understanding and predicting the response of ecosystems to environmental change.
Collapse
Affiliation(s)
- Joseph A. Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, United Kingdom
| | - Jente Ottenburghs
- Department of Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
19
|
Nakadai R. Idea paper: Elucidation of the long‐term properties of food webs based on the intraspecific genetic diversity of hub species populations. Ecol Res 2020. [DOI: 10.1111/1440-1703.12153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryosuke Nakadai
- Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
- Department of Ecosystem Studies Graduate School of Agricultural and Life Sciences, The University of Tokyo Tokyo Japan
| |
Collapse
|
20
|
Lim HC, Shakya SB, Harvey MG, Moyle RG, Fleischer RC, Braun MJ, Sheldon FH. Opening the door to greater phylogeographic inference in Southeast Asia: Comparative genomic study of five codistributed rainforest bird species using target capture and historical DNA. Ecol Evol 2020; 10:3222-3247. [PMID: 32273983 PMCID: PMC7141000 DOI: 10.1002/ece3.5964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome-wide set of 753-4,501 variable loci and 3,919-18,472 single nucleotide polymorphisms. The formation of major within-species lineages occurred within a similar span of time (0.5-1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east-west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high-throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of BiologyGeorge Mason UniversityFairfaxVirginia
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Subir B. Shakya
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Michael G. Harvey
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Michael J. Braun
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
| | - Frederick H. Sheldon
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
21
|
Linck E, Epperly K, Van Els P, Spellman GM, Bryson RW, McCormack JE, Canales-Del-Castillo R, Klicka J. Dense Geographic and Genomic Sampling Reveals Paraphyly and a Cryptic Lineage in a Classic Sibling Species Complex. Syst Biol 2020; 68:956-966. [PMID: 31135028 DOI: 10.1093/sysbio/syz027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 01/13/2023] Open
Abstract
Incomplete or geographically biased sampling poses significant problems for research in phylogeography, population genetics, phylogenetics, and species delimitation. Despite the power of using genome-wide genetic markers in systematics and related fields, approaches such as the multispecies coalescent remain unable to easily account for unsampled lineages. The Empidonax difficilis/Empidonax occidentalis complex of small tyrannid flycatchers (Aves: Tyrannidae) is a classic example of widely distributed species with limited phenotypic geographic variation that was broken into two largely cryptic (or "sibling") lineages following extensive study. Though the group is well-characterized north of the US Mexico border, the evolutionary distinctiveness and phylogenetic relationships of southern populations remain obscure. In this article, we use dense genomic and geographic sampling across the majority of the range of the E. difficilis/E. occidentalis complex to assess whether current taxonomy and species limits reflect underlying evolutionary patterns, or whether they are an artifact of historically biased or incomplete sampling. We find that additional samples from Mexico render the widely recognized species-level lineage E. occidentalis paraphyletic, though it retains support in the best-fit species delimitation model from clustering analyses. We further identify a highly divergent unrecognized lineage in a previously unsampled portion of the group's range, which a cline analysis suggests is more reproductively isolated than the currently recognized species E. difficilis and E. occidentalis. Our phylogeny supports a southern origin of these taxa. Our results highlight the pervasive impacts of biased geographic sampling, even in well-studied vertebrate groups like birds, and illustrate what is a common problem when attempting to define species in the face of recent divergence and reticulate evolution.
Collapse
Affiliation(s)
- Ethan Linck
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kevin Epperly
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Paul Van Els
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands.,Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, CO 80205, USA
| | - Robert W Bryson
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Ricardo Canales-Del-Castillo
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León 66455, México
| | - John Klicka
- Burke Museum of Natural History and Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Tucker CM, Aze T, Cadotte MW, Cantalapiedra JL, Chisholm C, Díaz S, Grenyer R, Huang D, Mazel F, Pearse WD, Pennell MW, Winter M, Mooers AO. Assessing the utility of conserving evolutionary history. Biol Rev Camb Philos Soc 2019; 94:1740-1760. [PMID: 31149769 PMCID: PMC6852562 DOI: 10.1111/brv.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 01/05/2023]
Abstract
It is often claimed that conserving evolutionary history is more efficient than species-based approaches for capturing the attributes of biodiversity that benefit people. This claim underpins academic analyses and recommendations about the distribution and prioritization of species and areas for conservation, but evolutionary history is rarely considered in practical conservation activities. One impediment to implementation is that arguments related to the human-centric benefits of evolutionary history are often vague and the underlying mechanisms poorly explored. Herein we identify the arguments linking the prioritization of evolutionary history with benefits to people, and for each we explicate the purported mechanism, and evaluate its theoretical and empirical support. We find that, even after 25 years of academic research, the strength of evidence linking evolutionary history to human benefits is still fragile. Most - but not all - arguments rely on the assumption that evolutionary history is a useful surrogate for phenotypic diversity. This surrogacy relationship in turn underlies additional arguments, particularly that, by capturing more phenotypic diversity, evolutionary history will preserve greater ecosystem functioning, capture more of the natural variety that humans prefer, and allow the maintenance of future benefits to humans. A surrogate relationship between evolutionary history and phenotypic diversity appears reasonable given theoretical and empirical results, but the strength of this relationship varies greatly. To the extent that evolutionary history captures unmeasured phenotypic diversity, maximizing the representation of evolutionary history should capture variation in species characteristics that are otherwise unknown, supporting some of the existing arguments. However, there is great variation in the strength and availability of evidence for benefits associated with protecting phenotypic diversity. There are many studies finding positive biodiversity-ecosystem functioning relationships, but little work exists on the maintenance of future benefits or the degree to which humans prefer sets of species with high phenotypic diversity or evolutionary history. Although several arguments link the protection of evolutionary history directly with the reduction of extinction rates, and with the production of relatively greater future biodiversity via increased adaptation or diversification, there are few direct tests. Several of these putative benefits have mismatches between the relevant spatial scales for conservation actions and the spatial scales at which benefits to humans are realized. It will be important for future work to fill in some of these gaps through direct tests of the arguments we define here.
Collapse
Affiliation(s)
- Caroline M. Tucker
- Department of BiologyUniversity of North Carolina at Chapel Hill, Coker Hall, CB #3280 120 South RoadChapel Hill, NC 27599‐3280U.S.A.
- Centre d'Écologie Fonctionnelle et Évolutive (UMR 5175), CNRS34090 MontpellierFrance
| | - Tracy Aze
- School of Earth and Environment, Maths/Earth and Environment BuildingUniversity of LeedsLeedsLS2 9JTU.K.
| | - Marc W. Cadotte
- Department of Biological SciencesUniversity of Toronto Scarborough, 1265 Military TrailTorontoONM1C 1A4Canada
- Department of Ecology and Evolutionary BiologyUniversity of Toronto, 25 Willcocks StreetTorontoONM5S 3B2Canada
| | - Juan L. Cantalapiedra
- Museum für Naturkunde, Leibniz‐Institut für Evolutions und Biodiversitätsforschung, Invalidenstraße 4310115BerlinGermany
- Departamento de Ciencias de la VidaUniversidad de Alcalá28805Alcalá de HenaresMadridSpain
| | - Chelsea Chisholm
- Department of Ecology and EvolutionQuartier UNIL‐Sorge Batiment Biophore CH‐1015 LausanneSwitzerland
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de Córdoba, Casilla de Correo 4955000CórdobaArgentina
| | - Richard Grenyer
- School of Geography and the EnvironmentSouth Parks Road, University of OxfordOxfordOX1 3QYU.K.
| | - Danwei Huang
- Department of Biological Sciences and Tropical Marine Science InstituteNational University of Singapore, 16 Science Drive 4, 117558Singapore
| | - Florent Mazel
- Department of Biological Sciences8888 University Drive, Simon Fraser UniversityBurnabyBCV5A 1S6, Canada
- Department of Botany2329 West Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Biodiversity Research Centre2212 Main Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - William D. Pearse
- Department of Biology & Ecology Center5205 Old Main Hill, Utah State UniversityLoganUT84322, U.S.A.
| | - Matthew W. Pennell
- Biodiversity Research Centre2212 Main Mall, University of British ColumbiaVancouverBCV6T 1Z4Canada
- Department of ZoologySouth Parks Road, University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv)Deutscher Platz 5E, 04103 LeipzigGermany
| | - Arne O. Mooers
- Department of Biological Sciences8888 University Drive, Simon Fraser UniversityBurnabyBCV5A 1S6, Canada
| |
Collapse
|
23
|
Kunz F, Gamauf A, Zachos FE, Haring E. Mitochondrial phylogenetics of the goshawk
Accipiter
[
gentilis
] superspecies. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Florian Kunz
- Central Research Laboratories Natural History Museum Vienna Vienna Austria
- Institute of Wildlife Biology and Game Management University of Natural Resources and Life Sciences Vienna Vienna Austria
| | - Anita Gamauf
- 1st Zoological Department Natural History Museum Vienna Vienna Austria
- Department of Integrative Zoology University of Vienna Vienna Austria
| | - Frank E. Zachos
- 1st Zoological Department Natural History Museum Vienna Vienna Austria
- Department of Integrative Zoology University of Vienna Vienna Austria
| | - Elisabeth Haring
- Central Research Laboratories Natural History Museum Vienna Vienna Austria
- Department of Integrative Zoology University of Vienna Vienna Austria
| |
Collapse
|
24
|
Cadena CD, Pérez-emán JL, Cuervo AM, Céspedes LN, Epperly KL, Klicka JT. Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carlos Daniel Cadena
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Jorge L Pérez-emán
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
- Colección Ornitológica Phelps, Caracas, Venezuela
| | - Andrés M Cuervo
- Louisiana State University Museum of Natural Science, Baton Rouge, LA, USA
- Instituto de Investigación en Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | - Laura N Céspedes
- Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de Los Andes, Bogotá, Colombia
| | - Kevin L Epperly
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - John T Klicka
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Provost KL, Mauck WM, Smith BT. Genomic divergence in allopatric Northern Cardinals of the North American warm deserts is linked to behavioral differentiation. Ecol Evol 2018; 8:12456-12478. [PMID: 30619558 PMCID: PMC6309012 DOI: 10.1002/ece3.4596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
Biogeographic barriers are considered important in initiating speciation through geographic isolation, but they rarely indiscriminately and completely reduce gene flow across entire communities. Explicitly demonstrating which factors are associated with gene-flow levels across barriers would help elucidate how speciation is initiated and isolation maintained. Here, we investigated the association of behavioral isolation on population differentiation in Northern Cardinals (Cardinalis cardinalis) distributed across the Cochise Filter Barrier, a region of transitional habitat which separates the Sonoran and Chihuahuan deserts of North America. Using genomewide markers, we modeled demographic history by fitting the data to isolation and isolation-with-migration models. The best-fit model indicated that desert populations diverged in the Pleistocene with low, historic, and asymmetric gene flow across the barrier. We then tested behavioral isolation using reciprocal call-broadcast experiments to compare song recognition between deserts, controlling for song dialect changes within deserts. We found that male Northern Cardinals in both deserts were most aggressive to local songs and failed to recognize across-barrier songs. A correlation of genomic differentiation and strong song discrimination is consistent with a model where speciation is initiated across a barrier and maintained by behavioral isolation.
Collapse
Affiliation(s)
- Kaiya L. Provost
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew York
- Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkNew York
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNew York
| | - William M. Mauck
- Department of OrnithologyAmerican Museum of Natural HistoryNew YorkNew York
- Present address:
New York Genome CenterNew YorkNew York
| | | |
Collapse
|
26
|
Antonelli A, Ariza M, Albert J, Andermann T, Azevedo J, Bacon C, Faurby S, Guedes T, Hoorn C, Lohmann LG, Matos-Maraví P, Ritter CD, Sanmartín I, Silvestro D, Tejedor M, ter Steege H, Tuomisto H, Werneck FP, Zizka A, Edwards SV. Conceptual and empirical advances in Neotropical biodiversity research. PeerJ 2018; 6:e5644. [PMID: 30310740 PMCID: PMC6174874 DOI: 10.7717/peerj.5644] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/27/2018] [Indexed: 01/23/2023] Open
Abstract
The unparalleled biodiversity found in the American tropics (the Neotropics) has attracted the attention of naturalists for centuries. Despite major advances in recent years in our understanding of the origin and diversification of many Neotropical taxa and biotic regions, many questions remain to be answered. Additional biological and geological data are still needed, as well as methodological advances that are capable of bridging these research fields. In this review, aimed primarily at advanced students and early-career scientists, we introduce the concept of "trans-disciplinary biogeography," which refers to the integration of data from multiple areas of research in biology (e.g., community ecology, phylogeography, systematics, historical biogeography) and Earth and the physical sciences (e.g., geology, climatology, palaeontology), as a means to reconstruct the giant puzzle of Neotropical biodiversity and evolution in space and time. We caution against extrapolating results derived from the study of one or a few taxa to convey general scenarios of Neotropical evolution and landscape formation. We urge more coordination and integration of data and ideas among disciplines, transcending their traditional boundaries, as a basis for advancing tomorrow's ground-breaking research. Our review highlights the great opportunities for studying the Neotropical biota to understand the evolution of life.
Collapse
Affiliation(s)
- Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Gothenburg Botanical Garden, Gothenburg, Sweden
- Department of Organismic Biology and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - María Ariza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Laboratory Ecologie et Biologie des Interactions, Team “Ecologie, Evolution, Symbiose”, Université de Poitiers, Poitiers, France
| | - James Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Tobias Andermann
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Josué Azevedo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Christine Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Thais Guedes
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Federal University of São Paulo, Diadema, Brazil
- Museum of Zoology, University of São Paulo, São Paulo, Brazil
| | - Carina Hoorn
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Universidad Regional Amazonica IKIAM, Napo, Ecuador
| | - Lúcia G. Lohmann
- Instituto de Biociências, Departamento de Botânica, Universidade de São Paulo, São Paulo, Brazil
- Integrative Biology, University of California, Berkeley, CA, USA
| | - Pável Matos-Maraví
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Camila D. Ritter
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | | | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marcelo Tejedor
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Instituto Patagónico de Geología y Paleontología, Puerto Madryn, Guatemala
| | - Hans ter Steege
- Naturalis Biodiversity Center, Leiden, Netherlands
- Systems Ecology, Free University, Amsterdam, Netherlands
| | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | | | - Alexander Zizka
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Scott V. Edwards
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Organismic Biology and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Li J, Huang JP, Sukumaran J, Knowles LL. Microevolutionary processes impact macroevolutionary patterns. BMC Evol Biol 2018; 18:123. [PMID: 30097006 PMCID: PMC6086068 DOI: 10.1186/s12862-018-1236-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/01/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Macroevolutionary modeling of species diversification plays important roles in inferring large-scale biodiversity patterns. It allows estimation of speciation and extinction rates and statistically testing their relationships with different ecological factors. However, macroevolutionary patterns are ultimately generated by microevolutionary processes acting at population levels, especially when speciation and extinction are considered protracted instead of point events. Neglecting the connection between micro- and macroevolution may hinder our ability to fully understand the underlying mechanisms that drive the observed patterns. RESULTS In this simulation study, we used the protracted speciation framework to demonstrate that distinct microevolutionary scenarios can generate very similar biodiversity patterns (e.g., latitudinal diversity gradient). We also showed that current macroevolutionary models may not be able to distinguish these different scenarios. CONCLUSIONS Given the compounded nature of speciation and extinction rates, one needs to be cautious when inferring causal relationships between ecological factors and macroevolutioanry rates. Future studies that incorporate microevolutionary processes into current modeling approaches are in need.
Collapse
Affiliation(s)
- Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA. .,Museum of Natural History, University of Colorado Boulder, Boulder, USA. .,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA.
| | - Jen-Pen Huang
- Integrative Research Center, The Field Museum, Chicago, USA.,Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - Jeet Sukumaran
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| | - L Lacey Knowles
- Museum of Zoology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, USA
| |
Collapse
|
28
|
Buckley SJ, Domingos FMCB, Attard CRM, Brauer CJ, Sandoval-Castillo J, Lodge R, Unmack PJ, Beheregaray LB. Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172125. [PMID: 30110415 PMCID: PMC6030323 DOI: 10.1098/rsos.172125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Pygmy perches (Percichthyidae) are a group of poorly dispersing freshwater fishes that have a puzzling biogeographic disjunction across southern Australia. Current understanding of pygmy perch phylogenetic relationships suggests past east-west migrations across a vast expanse of now arid habitat in central southern Australia, a region lacking contemporary rivers. Pygmy perches also represent a threatened group with confusing taxonomy and potentially cryptic species diversity. Here, we present the first study of the evolutionary history of pygmy perches based on genome-wide information. Data from 13 991 ddRAD loci and a concatenated sequence of 1 075 734 bp were generated for all currently described and potentially cryptic species. Phylogenetic relationships, biogeographic history and cryptic diversification were inferred using a framework that combines phylogenomics, species delimitation and estimation of divergence times. The genome-wide phylogeny clarified the biogeographic history of pygmy perches, demonstrating multiple east-west events of divergence within the group across the Australian continent. These results also resolved discordance between nuclear and mitochondrial data from a previous study. In addition, we propose three cryptic species within a southwestern species complex. The finding of potentially new species demonstrates that pygmy perches may be even more susceptible to ecological and demographic threats than previously thought. Our results have substantial implications for improving conservation legislation of pygmy perch lineages, especially in southwestern Western Australia.
Collapse
Affiliation(s)
- Sean J. Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabricius M. C. B. Domingos
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT 78698-000, Brazil
| | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Chris J. Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Ryan Lodge
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
29
|
Smith BT, Bryson RW, Mauck WM, Chaves J, Robbins MB, Aleixo A, Klicka J. Species delimitation and biogeography of the gnatcatchers and gnatwrens (Aves: Polioptilidae). Mol Phylogenet Evol 2018; 126:45-57. [PMID: 29551521 DOI: 10.1016/j.ympev.2018.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/31/2018] [Accepted: 03/09/2018] [Indexed: 01/05/2023]
Abstract
The New World avian family Polioptilidae (gnatcatchers and gnatwrens) is distributed from Argentina to Canada and includes 15 species and more than 60 subspecies. No study to date has evaluated phylogenetic relationships within this family and the historical pattern of diversification within the group remains unknown. Moreover, species limits, particularly in widespread taxa that show geographic variation, remain unclear. In this study, we delimited species and estimated phylogenetic relationships using multilocus data for the entire family. We then used the inferred diversity along with alternative taxonomic classification schemes to evaluate how lumping and splitting of both taxa and geographical areas influenced biogeographic inference. Species-tree analyses grouped Polioptilidae into four main clades: Microbates, Ramphocaenus, a Polioptila guianensis complex, and the remaining members of Polioptila. Ramphocaenus melanurus was sister to the clade containing M. cinereiventris and M. collaris, which formed a clade sister to all species within Polioptila. Polioptila was composed of two clades, the first of which included the P. guianensis complex; the other contained all remaining species in the genus. Using multispecies coalescent modeling, we inferred a more than 3-fold increase in species diversity, of which 87% represent currently recognized species or subspecies. Much of this diversity corresponded to subspecies that occur in the Neotropics. We identified three polyphyletic species, and delimited 4-6 previously undescribed candidate taxa. Probabilistic modeling of geographic ranges on the species tree indicated that the family likely had an ancestral origin in South America, with all three genera independently colonizing North America. Support for this hypothesis, however, was sensitive to the taxonomic classification scheme used and the number of geographical areas allowed. Our study proposes the first phylogenetic hypothesis for Polioptilidae and provides genealogical support for the reclassification of species limits. Species limits and the resolution of geographical areas that taxa inhabit influence the inferred spatial diversification history.
Collapse
Affiliation(s)
- Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA; Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Robert W Bryson
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - William M Mauck
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Jaime Chaves
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales - Extensión Galápagos, Campus Cumbayá, Casilla Postal 17-1200-841, Quito, Ecuador
| | - Mark B Robbins
- University of Kansas Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7561, USA
| | - Alexandre Aleixo
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Caixa Postal 399, CEP 66040-170 Belém, Brazil
| | - John Klicka
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Global elevational diversity and diversification of birds. Nature 2018; 555:246-250. [PMID: 29466335 DOI: 10.1038/nature25794] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/31/2018] [Indexed: 11/08/2022]
Abstract
Mountain ranges harbour exceptionally high biodiversity, which is now under threat from rapid environmental change. However, despite decades of effort, the limited availability of data and analytical tools has prevented a robust and truly global characterization of elevational biodiversity gradients and their evolutionary origins. This has hampered a general understanding of the processes involved in the assembly and maintenance of montane communities. Here we show that a worldwide mid-elevation peak in bird richness is driven by wide-ranging species and disappears when we use a subsampling procedure that ensures even species representation in space and facilitates evolutionary interpretation. Instead, richness corrected for range size declines linearly with increasing elevation. We find that the more depauperate assemblages at higher elevations are characterized by higher rates of diversification across all mountain regions, rejecting the idea that lower recent diversification rates are the general cause of less diverse biota. Across all elevations, assemblages on mountains with high rates of past temperature change exhibit more rapid diversification, highlighting the importance of climatic fluctuations in driving the evolutionary dynamics of mountain biodiversity. While different geomorphological and climatic attributes of mountain regions have been pivotal in determining the remarkable richness gradients observed today, our results underscore the role of ongoing and often very recent diversification processes in maintaining the unique and highly adapted biodiversity of higher elevations.
Collapse
|
31
|
De Santis V, Mwinami T, Chesire D, Musina J, Zaccara S, Kioko E, Owino JJ, Oduma JA, Ayiemba W, Harper DM, Crosa G. Molecular pilot study on peripheral populations of Kenyan greenbul in an afromontane fragmented forest. Afr J Ecol 2018. [DOI: 10.1111/aje.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vanessa De Santis
- Department of Theoretical and Applied Sciences; University of Insubria; Varese Italy
| | - Timothy Mwinami
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
- Department of Animal Production; Faculty of Veterinary Medicine; University of Nairobi; Nairobi Kenya
| | - Dominic Chesire
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
| | - John Musina
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
| | - Serena Zaccara
- Department of Theoretical and Applied Sciences; University of Insubria; Varese Italy
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
| | - Esther Kioko
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
| | - Junga J. Owino
- Department of Animal Production; Faculty of Veterinary Medicine; University of Nairobi; Nairobi Kenya
| | - Jemimah A. Oduma
- Department of Veterinary Anatomy and Physiology; University of Nairobi; Nairobi Kenya
| | | | - David M. Harper
- Department of Zoology, Ornithology Section; National Museums of Kenya; Nairobi Kenya
- Department of Animal Production; Faculty of Veterinary Medicine; University of Nairobi; Nairobi Kenya
- Department of Genetics; University of Leicester; Leicester UK
- Aquatic Ecosystem Services Ltd; Aylsham UK
| | - Giuseppe Crosa
- Department of Theoretical and Applied Sciences; University of Insubria; Varese Italy
| |
Collapse
|
32
|
Mattsson BJ, Dubovsky JA, Thogmartin WE, Bagstad KJ, Goldstein JH, Loomis JB, Diffendorfer JE, Semmens DJ, Wiederholt R, López-Hoffman L. Recreation economics to inform migratory species conservation: Case study of the northern pintail. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:971-979. [PMID: 29223107 DOI: 10.1016/j.jenvman.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/27/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Quantification of the economic value provided by migratory species can aid in targeting management efforts and funding to locations yielding the greatest benefits to society and species conservation. Here we illustrate a key step in this process by estimating hunting and birding values of the northern pintail (Anas acuta) within primary breeding and wintering habitats used during the species' annual migratory cycle in North America. We used published information on user expenditures and net economic values (consumer surplus) for recreational viewing and hunting to determine the economic value of pintail-based recreation in three primary breeding areas and two primary wintering areas. Summed expenditures and consumer surplus for northern pintail viewing were annually valued at $70M, and annual sport hunting totaled $31M (2014 USD). Expenditures for viewing ($42M) were more than twice as high than those for hunting ($18M). Estimates of consumer surplus, defined as the amount consumers are willing to pay above their current expenditures, were $15M greater for viewing ($28M) than for hunting ($13M). We discovered substantial annual consumer surplus ($41M) available for pintail conservation from birders and hunters. We also found spatial differences in economic value among the primary regions used by pintails, with viewing generally valued more in breeding regions than in wintering regions and the reverse being true for hunting. The economic value of pintail-based recreation in the Western wintering region ($26M) exceeded that in any other region by at least a factor of three. Our approach of developing regionally explicit economic values can be extended to other taxonomic groups, and is particularly suitable for migratory game birds because of the availability of large amounts of data. When combined with habitat-linked population models, regionally explicit values could inform development of more effective conservation finance and policy mechanisms to enhance environmental management and societal benefits across the geographically dispersed areas used by migratory species.
Collapse
Affiliation(s)
- Brady J Mattsson
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - James A Dubovsky
- Division of Migratory Bird Management, U.S. Fish and Wildlife Service, Lakewood, CO, USA
| | - Wayne E Thogmartin
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, La Crosse, WI, USA
| | - Kenneth J Bagstad
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, CO, USA
| | - Joshua H Goldstein
- Office of the Chief Scientist, The Nature Conservancy, Fort Collins, CO, USA
| | - John B Loomis
- Department of Agricultural and Resource Economics, Colorado State University, Fort Collins, CO, USA
| | - James E Diffendorfer
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, CO, USA
| | - Darius J Semmens
- Geosciences and Environmental Change Science Center, U.S. Geological Survey, Denver, CO, USA
| | | | - Laura López-Hoffman
- School of Natural Resources and Environment and Udall Center for Studies in Public Policy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
33
|
Smith BT, Seeholzer GF, Harvey MG, Cuervo AM, Brumfield RT. Correction: A latitudinal phylogeographic diversity gradient in birds. PLoS Biol 2017; 15:e1002610. [PMID: 28708829 PMCID: PMC5510780 DOI: 10.1371/journal.pbio.1002610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Harvey MG, Seeholzer GF, Smith BT, Rabosky DL, Cuervo AM, Brumfield RT. Positive association between population genetic differentiation and speciation rates in New World birds. Proc Natl Acad Sci U S A 2017; 114:6328-6333. [PMID: 28559330 PMCID: PMC5474768 DOI: 10.1073/pnas.1617397114] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An implicit assumption of speciation biology is that population differentiation is an important stage of evolutionary diversification, but its significance as a rate-limiting control on phylogenetic speciation dynamics remains largely untested. If population differentiation within a species is related to its speciation rate over evolutionary time, the causes of differentiation could also be driving dynamics of organismal diversity across time and space. Alternatively, geographic variants might be short-lived entities with rates of formation that are unlinked to speciation rates, in which case the causes of differentiation would have only ephemeral impacts. By pairing population genetics datasets from 173 New World bird species (>17,000 individuals) with phylogenetic estimates of speciation rate, we show that the population differentiation rates within species are positively correlated with their speciation rates over long timescales. Although population differentiation rate explains relatively little of the variation in speciation rate among lineages, the positive relationship between differentiation rate and speciation rate is robust to species-delimitation schemes and to alternative measures of both rates. Population differentiation occurs at least three times faster than speciation, which suggests that most populations are ephemeral. Speciation and population differentiation rates are more tightly linked in tropical species than in temperate species, consistent with a history of more stable diversification dynamics through time in the Tropics. Overall, our results suggest that the processes responsible for population differentiation are tied to those that underlie broad-scale patterns of diversity.
Collapse
Affiliation(s)
- Michael G Harvey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803;
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| | - Glenn F Seeholzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803
| | - Brian Tilston Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803
- Department of Ornithology, American Museum of Natural History, New York, NY 10024
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| | - Andrés M Cuervo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118
| | - Robb T Brumfield
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|