1
|
García-Navas V, Martín Del Campo A, Rodríguez-Rey M, Laiolo P. Syntopy promotes song divergence in a Neotropical avian radiation. Evolution 2025; 79:791-799. [PMID: 39946306 DOI: 10.1093/evolut/qpaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 05/17/2025]
Abstract
Theory predicts that selection against maladaptive hybridization leads to divergence of sexual characters in co-occurring closely related species. Consequently, signal disparity should be greater between sympatric vs. allopatric lineage pairs. However, this pattern may also result from species sorting or the greater evolutionary age of sympatric pairs. We used species pairs comparisons to examine the existence of acoustic divergence in a Neotropical montane radiation, the Rhinocryptidae, whose members tend to occupy different elevational ranges. Most rhinocryptids exhibit conservative morphology and are only differentiated by song attributes. Our results show that sympatric species pairs that overlap in elevation exhibited overall greater song divergence compared to allopatric species pairs after controlling for morphological differences, age and phylogenetic effects. Song divergence decreased when excluding sympatric pairs that do not overlap in elevation, suggesting that selection for improved species identification between co-occurring (syntopic) species accentuates signal differentiation. Comparative evolutionary models of signal differentiation over time revealed a similar pattern, which suggests that sexual selection in syntopy might have driven reproductive character displacement in this radiation. We conclude that selection against the production of unfit hybrids could favor acoustic traits that reliably signal species identity in tropical environments where many taxa are poorly differentiated by visual attributes.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alba Martín Del Campo
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | | | - Paola Laiolo
- Department of Biodiversity and Global Change, Biodiversity Research Institute (CSIC-UO-PA), Asturias, Spain
| |
Collapse
|
2
|
Xu L, Zakem E, Weissman JL. Improved maximum growth rate prediction from microbial genomes by integrating phylogenetic information. Nat Commun 2025; 16:4256. [PMID: 40335538 PMCID: PMC12059116 DOI: 10.1038/s41467-025-59558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Microbial maximum growth rates vary widely across species and are key parameters for ecosystem modeling. Measuring these rates is challenging, but genomic features like codon usage statistics provide useful signals for predicting growth rates for as-yet uncultivated organisms. Here we present Phydon, a framework for genome-based maximum growth rate prediction that combines codon statistics and phylogenetic information to enhance the precision of maximum growth rate estimates, especially when a close relative with a known growth rate is available. We use Phydon to construct a large and taxonomically broad database of temperature-corrected growth rate estimates for 111,349 microbial species. The results reveal a bimodal distribution of maximum growth rates, resolving distinct groups of fast and slow growers. Our work provides insight into the predictive power of taxonomic information versus mechanistic, gene-based inference.
Collapse
Affiliation(s)
- Liang Xu
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Emily Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - J L Weissman
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Gaboriau T, Marcionetti A, Garcia-Jimenez A, Schmid S, Fitzgerald LM, Micheli B, Titus B, Salamin N. Host use drives convergent evolution in clownfish. Proc Natl Acad Sci U S A 2025; 122:e2419716122. [PMID: 40279387 PMCID: PMC12054820 DOI: 10.1073/pnas.2419716122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/03/2025] [Indexed: 04/27/2025] Open
Abstract
Clownfishes (Amphiprioninae) are a fascinating example of a marine radiation. From a central Pacific ancestor, they quickly colonized the coral reefs of the Indo-Pacific and diversified independently on each side of the Indo-Australian Archipelago. Their association with sea anemones has been proposed to be a key innovation that enabled the clownfish radiation. However, this intuition has little empirical or theoretical support given our current knowledge of the group. To date, no ecological variable has been identified to explain clownfish niche partitioning, phenotypic evolution, species co-occurrence, and thus, the adaptive aspect of the group's radiation. Our study solves this long-standing mystery by testing the influence of sea anemone host use on phenotypic divergence. We provide a major revision of the known clownfish-sea anemone host associations, accounting for the biologically relevant aspects of host associations. We gathered whole-genome data for all 28 clownfish species and reconstructed a fully supported species tree for the Amphiprioninae. Integrating this data into comparative genomic approaches, we demonstrate that the host sea anemones are the drivers of convergent evolution in clownfish color pattern and morphology. During the diversification of this group, clownfishes in different regions that associate with the same hosts have evolved similar phenotypes. Comparative genomics also reveals several genes under convergent positive selection linked to host specialization events. Our findings reveal that the sea anemone host plays a crucial role in driving clownfish diversification. This highlights how a strong mutualistic interaction can promote the diversification of entire clades by influencing their phenotypes, defining their geographic distribution, and ultimately contributing to their evolutionary and ecological success.
Collapse
Affiliation(s)
- Théo Gaboriau
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| | - Anna Marcionetti
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| | | | - Sarah Schmid
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| | - Lucy M. Fitzgerald
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| | - Baptiste Micheli
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| | - Benjamin Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35487
- Dauphin Island Sea Lab, Daulphin Island, AL36528
| | - Nicolas Salamin
- Department of Computational Biology, Université de Lausanne, Lausanne1015, Switzerland
| |
Collapse
|
4
|
Lai C, Chen K, Huang HZ, Huang X, Zhang J, Wang YB, Chen Z, Hu F, Guo Z, Man HY, Du HY, Lu YM, Shu K, Liu D, Zhu LQ. Historical loss weakens competitive behavior by remodeling ventral hippocampal dynamics. Cell Discov 2025; 11:16. [PMID: 39994206 PMCID: PMC11850767 DOI: 10.1038/s41421-024-00751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 11/01/2024] [Indexed: 02/26/2025] Open
Abstract
Competitive interactions are pervasive within biological populations, where individuals engage in fierce disputes over vital resources for survival. Before the establishment of a social hierarchy within the population, this competition becomes even more intense. Historical experiences of competition significantly influence the competitive performance; individuals with a history of persistent loss are less likely to initiate attacks or win escalated contests. However, it remains unclear how historical loss directly affects the evolution of mental processes during competition and alters responses to ongoing competitive events. Here, we utilized a naturalistic food competition paradigm to track the competitive patterns of mutually unfamiliar competitors and found that a history of loss leads to reduced competitive performance. By tracking the activity of ventral hippocampal neuron ensembles, we identified clusters of neurons that responded differently to behavioral events during the competition, with their reactivity modulated by previous losses. Using a Recurrent Switch Linear Dynamical System (rSLDS), we revealed rotational dynamics in the ventral hippocampus (vHPC) during food competition, where different discrete internal states corresponded to different behavioral strategies. Moreover, historical loss modulates competitive behavior by remodeling the characteristic attributes of this rotational dynamic system. Finally, we found that an evolutionarily conserved glutamate receptor-associated protein, glutamate receptor-associated protein 1 (Grina), plays an important role in this process. By continuously monitoring the association between the attributes of the dynamic system and competitiveness, we found that restoring Grina expression effectively reversed the impact of historical loss on competitive performance. Together, our study reveals the rotational dynamics in the ventral hippocampus during competition and elucidates the underlying mechanisms through which historical loss shapes these processes.
Collapse
Affiliation(s)
- Chuan Lai
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - He-Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Zhang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu-Bo Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Hui-Yun Du
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You-Ming Lu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Dan Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Luypaert T, Bueno AS, Haugaasen T, Peres CA. Extending Species-Area Relationships Into the Realm of Ecoacoustics: The Soundscape-Area Relationship. Ecol Lett 2024; 27:e14529. [PMID: 39388200 DOI: 10.1111/ele.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
The rise in species richness with area is one of the few ironclad ecological relationships. Yet, little is known about the spatial scaling of alternative dimensions of diversity. Here, we provide empirical evidence for a relationship between the richness of acoustic traits emanating from a landscape, or soundscape richness, and island area, which we term the SoundScape-Area Relationship (SSAR). We show a positive relationship between the gamma soundscape richness and island area. This relationship breaks down at the smallest spatial scales, indicating a small-island effect. Moreover, we demonstrate a positive spatial scaling of the plot-scale alpha soundscape richness, but not the beta soundscape turnover, suggesting a direct effect of species on acoustic trait diversity. We conclude that the general scaling of biodiversity can be extended into the realm of ecoacoustics, implying soundscape metrics are sensitive to fundamental ecological patterns and useful in disentangling their complex mechanistic drivers.
Collapse
Affiliation(s)
- Thomas Luypaert
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Ås, Norway
| | - Anderson S Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, Júlio de Castilhos, RS, Brazil
| | - Torbjørn Haugaasen
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Ås, Norway
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Instituto Juruá, Manaus, AM, Brazil
| |
Collapse
|
6
|
van Holstein LA, Foley RA. Diversity-dependent speciation and extinction in hominins. Nat Ecol Evol 2024; 8:1180-1190. [PMID: 38632435 PMCID: PMC11166571 DOI: 10.1038/s41559-024-02390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
The search for drivers of hominin speciation and extinction has tended to focus on the impact of climate change. Far less attention has been paid to the role of interspecific competition. However, research across vertebrates more broadly has shown that both processes are often correlated with species diversity, suggesting an important role for interspecific competition. Here we ask whether hominin speciation and extinction conform to the expected patterns of negative and positive diversity dependence, respectively. We estimate speciation and extinction rates from fossil occurrence data with preservation variability priors in a validated Bayesian framework and test whether these rates are correlated with species diversity. We supplement these analyses with calculations of speciation rate across a phylogeny, again testing whether these are correlated with diversity. Our results are consistent with clade-wide diversity limits that governed speciation in hominins overall but that were not quite reached by the Australopithecus and Paranthropus subclade before its extinction. Extinction was not correlated with species diversity within the Australopithecus and Paranthropus subclade or within hominins overall; this is concordant with climate playing a greater part in hominin extinction than speciation. By contrast, Homo is characterized by positively diversity-dependent speciation and negatively diversity-dependent extinction-both exceedingly rare patterns across all forms of life. The genus Homo expands the set of reported associations between diversity and macroevolution in vertebrates, underscoring that the relationship between diversity and macroevolution is complex. These results indicate an important, previously underappreciated and comparatively unusual role of biotic interactions in Homo macroevolution, and speciation in particular. The unusual and unexpected patterns of diversity dependence in Homo speciation and extinction may be a consequence of repeated Homo range expansions driven by interspecific competition and made possible by recurrent innovations in ecological strategies. Exploring how hominin macroevolution fits into the general vertebrate macroevolutionary landscape has the potential to offer new perspectives on longstanding questions in vertebrate evolution and shed new light on evolutionary processes within our own lineage.
Collapse
Affiliation(s)
- Laura A van Holstein
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK.
| | - Robert A Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Drury JP, Clavel J, Tobias JA, Rolland J, Sheard C, Morlon H. Limited ecological opportunity influences the tempo of morphological evolution in birds. Curr Biol 2024; 34:661-669.e4. [PMID: 38218182 DOI: 10.1016/j.cub.2023.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
According to classic models of lineage diversification and adaptive radiation, phenotypic evolution should accelerate in the context of ecological opportunity and slow down when niches become saturated.1,2 However, only weak support for these ideas has been found in nature, perhaps because most analyses make the biologically unrealistic assumption that clade members contribute equally to reducing ecological opportunity, even when they occur in different continents or specialize on different habitats and diets. To view this problem through a different lens, we adapted a new phylogenetic modeling approach that accounts for the fact that competition for ecological opportunity only occurs between species that coexist and share similar habitats and diets. Applying this method to trait data for nearly all extant species of landbirds,3 we find a widespread signature of decelerating trait evolution in lineages adapted to similar habitats or diets. The strength of this pattern was consistent across latitudes when comparing tropical and temperate assemblages. Our results provide little support for the idea that increased diversity and tighter packing of niches accentuates evolutionary slowdowns in the tropics and instead suggest that limited ecological opportunity can be an important factor determining the rate of morphological diversification at a global scale.
Collapse
Affiliation(s)
- Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.
| | - Julien Clavel
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622 Villeurbanne, France
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot SL5 7PY, UK
| | - Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, 31062 Toulouse, France
| | - Catherine Sheard
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Hélène Morlon
- Institut de Biologie - École Normale Supérieure, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
8
|
Scott JE. The macroevolutionary dynamics of activity pattern in mammals: Primates in context. J Hum Evol 2023; 184:103436. [PMID: 37741141 DOI: 10.1016/j.jhevol.2023.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Activity pattern has played a prominent role in discussions of primate evolutionary history. Most primates are either diurnal or nocturnal, but a small number are active both diurnally and nocturnally. This pattern-cathemerality-also occurs at low frequency across mammals. Using a large sample of mammalian species, this study evaluates two macroevolutionary hypotheses proposed to explain why cathemerality is less common than diurnality and nocturnality: 1) that cathemeral lineages have higher extinction probabilities (differential diversification) and 2) that transitions out of cathemerality are more frequent, making it a less persistent state (differential state persistence). Rates of speciation, extinction, and transition between character states were estimated using hidden-rates models applied to a phylogenetic tree containing 3013 mammals classified by activity pattern. The models failed to detect consistent differences in diversification dynamics among activity patterns, but there is strong support for differential state persistence. Transition rates out of cathemerality tend to be much higher than transition rates out of nocturnality. Transition rates out of diurnality are similar to those for cathemerality in most clades, with two important exceptions: diurnality is unusually persistent in anthropoid primates and sciurid rodents. These two groups combine very low rates of transition out of diurnality with high speciation rates. This combination has no parallels among cathemeral lineages, explaining why diurnality has become more common than cathemerality in mammals. Similarly, the combination of rates found in anthropoids is sufficient to explain the low relative frequency of cathemerality in primates, making it unnecessary to appeal to high extinction probabilities in cathemeral lineages in this clade. These findings support the hypothesis that the distribution of activity patterns across mammals has been influenced primarily by differential state persistence, whereas the effect of differential diversification appears to have been more idiosyncratic.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
9
|
Eliason CM, McCullough JM, Hackett SJ, Andersen MJ. Complex plumages spur rapid color diversification in kingfishers (Aves: Alcedinidae). eLife 2023; 12:83426. [PMID: 37083474 PMCID: PMC10121218 DOI: 10.7554/elife.83426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Colorful signals in nature provide some of the most stunning examples of rapid phenotypic evolution. Yet, studying color pattern evolution has been historically difficult owing to differences in perceptual ability of humans and analytical challenges with studying how complex color patterns evolve. Island systems provide a natural laboratory for testing hypotheses about the direction and magnitude of phenotypic change. A recent study found that plumage colors of island species are darker and less complex than continental species. Whether such shifts in plumage complexity are associated with increased rates of color evolution remains unknown. Here, we use geometric morphometric techniques to test the hypothesis that plumage complexity and insularity interact to influence color diversity in a species-rich clade of colorful birds-kingfishers (Aves: Alcedinidae). In particular, we test three predictions: (1) plumage complexity enhances interspecific rates of color evolution, (2) plumage complexity is lower on islands, and (3) rates of plumage color evolution are higher on islands. Our results show that more complex plumages result in more diverse colors among species and that island species have higher rates of color evolution. Importantly, we found that island species did not have more complex plumages than their continental relatives. Thus, complexity may be a key innovation that facilitates evolutionary response of individual color patches to distinct selection pressures on islands, rather than being a direct target of selection itself. This study demonstrates how a truly multivariate treatment of color data can reveal evolutionary patterns that might otherwise go unnoticed.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, United States
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, United States
| | - Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
10
|
Basu DN, Bhaumik V, Kunte K. The tempo and mode of character evolution in the assembly of mimetic communities. Proc Natl Acad Sci U S A 2023; 120:e2203724120. [PMID: 36577073 PMCID: PMC9910590 DOI: 10.1073/pnas.2203724120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
Multitrait adaptive evolution is shaped by factors such as phylogenetic and functional constraints as well as the intensity and direction of selection. The tempo and mode of such multitrait evolution can differentially impact the assembly of biological communities. Batesian mimicry, in which undefended prey gain a fitness advantage by evolving a resemblance to aposematic models, involves adaptive evolution of multiple traits such as color patterns and flight morphology. To elucidate the evolutionary mechanisms of such multitrait adaptations, we evaluated the tempo and mode of adaptive convergence in flight morphology and color patterns in mimetic butterfly communities. We found that compared with Batesian mimics or nonmimetic sister species, models showed significantly faster rates of aposematic trait evolution, creating adaptive peaks for mimicry. At the community level, the degree of mimetic resemblance between mimics and models was positively correlated with the rate of character evolution, but independent of phylogenetic relatedness. Monomorphic mimics and female-limited mimics converged on the color patterns of models to a similar degree, showing that there were no constraints on mimetic trait evolution with respect to sex-specific selections. Convergence was driven by the greater lability of color patterns, which evolved at significantly faster rates than the phylogenetically conserved flight morphological traits, indicating that the two traits evolve under differential selection pressures and/or functional and genetic constraints. These community-wide patterns show that during the assembly of a community, the tempo of adaptive evolution is nonlinear, and specific to the underlying functional relationships and key traits that define the community.
Collapse
Affiliation(s)
- Dipendra Nath Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
- SASTRA University, Tirumalaisamudram, Thanjavur613401, India
| | - Vaishali Bhaumik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| |
Collapse
|
11
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Alcocer I, Lima H, Sugai LSM, Llusia D. Acoustic indices as proxies for biodiversity: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:2209-2236. [PMID: 35978471 DOI: 10.1111/brv.12890] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
As biodiversity decreases worldwide, the development of effective techniques to track changes in ecological communities becomes an urgent challenge. Together with other emerging methods in ecology, acoustic indices are increasingly being used as novel tools for rapid biodiversity assessment. These indices are based on mathematical formulae that summarise the acoustic features of audio samples, with the aim of extracting meaningful ecological information from soundscapes. However, the application of this automated method has revealed conflicting results across the literature, with conceptual and empirical controversies regarding its primary assumption: a correlation between acoustic and biological diversity. After more than a decade of research, we still lack a statistically informed synthesis of the power of acoustic indices that elucidates whether they effectively function as proxies for biological diversity. Here, we reviewed studies testing the relationship between diversity metrics (species abundance, species richness, species diversity, abundance of sounds, and diversity of sounds) and the 11 most commonly used acoustic indices. From 34 studies, we extracted 364 effect sizes that quantified the magnitude of the direct link between acoustic and biological estimates and conducted a meta-analysis. Overall, acoustic indices had a moderate positive relationship with the diversity metrics (r = 0.33, CI [0.23, 0.43]), and showed an inconsistent performance, with highly variable effect sizes both within and among studies. Over time, studies have been increasingly disregarding the validation of the acoustic estimates and those examining this link have been progressively reporting smaller effect sizes. Some of the studied indices [acoustic entropy index (H), normalised difference soundscape index (NDSI), and acoustic complexity index (ACI)] performed better in retrieving biological information, with abundance of sounds (number of sounds from identified or unidentified species) being the best estimated diversity facet of local communities. We found no effect of the type of monitored environment (terrestrial versus aquatic) and the procedure for extracting biological information (acoustic versus non-acoustic) on the performance of acoustic indices, suggesting certain potential to generalise their application across research contexts. We also identified common statistical issues and knowledge gaps that remain to be addressed in future research, such as a high rate of pseudoreplication and multiple unexplored combinations of metrics, taxa, and regions. Our findings confirm the limitations of acoustic indices to efficiently quantify alpha biodiversity and highlight that caution is necessary when using them as surrogates of diversity metrics, especially if employed as single predictors. Although these tools are able partially to capture changes in diversity metrics, endorsing to some extent the rationale behind acoustic indices and suggesting them as promising bases for future developments, they are far from being direct proxies for biodiversity. To guide more efficient use and future research, we review their principal theoretical and practical shortcomings, as well as prospects and challenges of acoustic indices in biodiversity assessment. Altogether, we provide the first comprehensive and statistically based overview on the relation between acoustic indices and biodiversity and pave the way for a more standardised and informed application for biodiversity monitoring.
Collapse
Affiliation(s)
- Irene Alcocer
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Herlander Lima
- Department of Life Sciences, GloCEE Global Change Ecology and Evolution Research Group, University of Alcalá, Alcalá de Henares, 28805, Madrid, Spain
| | - Larissa Sayuri Moreira Sugai
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY, 14850, USA
| | - Diego Llusia
- Terrestrial Ecology Group, Departamento de Ecología, Universidad Autónoma de Madrid, C/ Darwin, 2, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Edificio de Biología, 28049, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid, C/ Darwin 2, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, Goiás, Brazil
| |
Collapse
|
13
|
Pavón-Vázquez CJ, Brennan IG, Skeels A, Keogh JS. Competition and geography underlie speciation and morphological evolution in Indo-Australasian monitor lizards. Evolution 2022; 76:476-495. [PMID: 34816437 DOI: 10.1111/evo.14403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 01/21/2023]
Abstract
How biotic and abiotic factors act together to shape biological diversity is a major question in evolutionary biology. The recent availability of large datasets and development of new methodological approaches provide new tools to evaluate the predicted effects of ecological interactions and geography on lineage diversification and phenotypic evolution. Here, we use a near complete phylogenomic-scale phylogeny and a comprehensive morphological dataset comprising more than a thousand specimens to assess the role of biotic and abiotic processes in the diversification of monitor lizards (Varanidae). This charismatic group of lizards shows striking variation in species richness among its clades and multiple instances of endemic radiation in Indo-Australasia (i.e., the Indo-Australian Archipelago and Australia), one of Earth's most biogeographically complex regions. We found heterogeneity in diversification dynamics across the family. Idiosyncratic biotic and geographic conditions appear to have driven diversification and morphological evolution in three endemic Indo-Australasian radiations. Furthermore, incumbency effects partially explain patterns in the biotic exchange between Australia and New Guinea. Our results offer insight into the dynamic history of Indo-Australasia, the evolutionary significance of competition, and the long-term consequences of incumbency effects.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.,Current Address: Department of Biological Sciences, New York City College of Technology, City University of New York, Brooklyn, New York, 11201
| | - Ian G Brennan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alexander Skeels
- Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, CH-8092, Switzerland.,Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, CH-8903, Switzerland
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
14
|
Tobias JA. A bird in the hand: Global-scale morphological trait datasets open new frontiers of ecology, evolution and ecosystem science. Ecol Lett 2022; 25:573-580. [PMID: 35199920 DOI: 10.1111/ele.13960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
15
|
Tobias JA, Sheard C, Pigot AL, Devenish AJM, Yang J, Sayol F, Neate-Clegg MHC, Alioravainen N, Weeks TL, Barber RA, Walkden PA, MacGregor HEA, Jones SEI, Vincent C, Phillips AG, Marples NM, Montaño-Centellas FA, Leandro-Silva V, Claramunt S, Darski B, Freeman BG, Bregman TP, Cooney CR, Hughes EC, Capp EJR, Varley ZK, Friedman NR, Korntheuer H, Corrales-Vargas A, Trisos CH, Weeks BC, Hanz DM, Töpfer T, Bravo GA, Remeš V, Nowak L, Carneiro LS, Moncada R AJ, Matysioková B, Baldassarre DT, Martínez-Salinas A, Wolfe JD, Chapman PM, Daly BG, Sorensen MC, Neu A, Ford MA, Mayhew RJ, Fabio Silveira L, Kelly DJ, Annorbah NND, Pollock HS, Grabowska-Zhang AM, McEntee JP, Carlos T Gonzalez J, Meneses CG, Muñoz MC, Powell LL, Jamie GA, Matthews TJ, Johnson O, Brito GRR, Zyskowski K, Crates R, Harvey MG, Jurado Zevallos M, Hosner PA, Bradfer-Lawrence T, Maley JM, Stiles FG, Lima HS, Provost KL, Chibesa M, Mashao M, Howard JT, Mlamba E, Chua MAH, Li B, Gómez MI, García NC, Päckert M, Fuchs J, Ali JR, Derryberry EP, Carlson ML, Urriza RC, Brzeski KE, Prawiradilaga DM, Rayner MJ, Miller ET, Bowie RCK, Lafontaine RM, Scofield RP, Lou Y, Somarathna L, Lepage D, Illif M, Neuschulz EL, Templin M, Dehling DM, et alTobias JA, Sheard C, Pigot AL, Devenish AJM, Yang J, Sayol F, Neate-Clegg MHC, Alioravainen N, Weeks TL, Barber RA, Walkden PA, MacGregor HEA, Jones SEI, Vincent C, Phillips AG, Marples NM, Montaño-Centellas FA, Leandro-Silva V, Claramunt S, Darski B, Freeman BG, Bregman TP, Cooney CR, Hughes EC, Capp EJR, Varley ZK, Friedman NR, Korntheuer H, Corrales-Vargas A, Trisos CH, Weeks BC, Hanz DM, Töpfer T, Bravo GA, Remeš V, Nowak L, Carneiro LS, Moncada R AJ, Matysioková B, Baldassarre DT, Martínez-Salinas A, Wolfe JD, Chapman PM, Daly BG, Sorensen MC, Neu A, Ford MA, Mayhew RJ, Fabio Silveira L, Kelly DJ, Annorbah NND, Pollock HS, Grabowska-Zhang AM, McEntee JP, Carlos T Gonzalez J, Meneses CG, Muñoz MC, Powell LL, Jamie GA, Matthews TJ, Johnson O, Brito GRR, Zyskowski K, Crates R, Harvey MG, Jurado Zevallos M, Hosner PA, Bradfer-Lawrence T, Maley JM, Stiles FG, Lima HS, Provost KL, Chibesa M, Mashao M, Howard JT, Mlamba E, Chua MAH, Li B, Gómez MI, García NC, Päckert M, Fuchs J, Ali JR, Derryberry EP, Carlson ML, Urriza RC, Brzeski KE, Prawiradilaga DM, Rayner MJ, Miller ET, Bowie RCK, Lafontaine RM, Scofield RP, Lou Y, Somarathna L, Lepage D, Illif M, Neuschulz EL, Templin M, Dehling DM, Cooper JC, Pauwels OSG, Analuddin K, Fjeldså J, Seddon N, Sweet PR, DeClerck FAJ, Naka LN, Brawn JD, Aleixo A, Böhning-Gaese K, Rahbek C, Fritz SA, Thomas GH, Schleuning M. AVONET: morphological, ecological and geographical data for all birds. Ecol Lett 2022; 25:581-597. [PMID: 35199922 DOI: 10.1111/ele.13898] [Show More Authors] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023]
Abstract
Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Collapse
Affiliation(s)
- Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Catherine Sheard
- Department of Zoology, University of Oxford, Oxford, UK.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Alex L Pigot
- Department of Zoology, University of Oxford, Oxford, UK.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ferran Sayol
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Montague H C Neate-Clegg
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Nico Alioravainen
- Department of Zoology, University of Oxford, Oxford, UK.,Natural Resources Institute Finland, Natural resources - Migratory fish and regulated rivers, Oulu, Finland
| | - Thomas L Weeks
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Robert A Barber
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Patrick A Walkden
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Hannah E A MacGregor
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Samuel E I Jones
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Claire Vincent
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Anna G Phillips
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Nicola M Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Flavia A Montaño-Centellas
- Instituto de Ecología, Universidad Mayor de San Andres, La Paz, Bolivia.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Victor Leandro-Silva
- Laboratório de Ecologia e Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bianca Darski
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Benjamin G Freeman
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom P Bregman
- Department of Zoology, University of Oxford, Oxford, UK.,Future-Fit Foundation, Spitalfields, London, UK
| | | | - Emma C Hughes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Elliot J R Capp
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zoë K Varley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| | - Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Heiko Korntheuer
- Department of Ecology, Institute of Zoology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Corrales-Vargas
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Christopher H Trisos
- Department of Zoology, University of Oxford, Oxford, UK.,African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa.,Centre for Statistics in Ecology, the Environment and Conservation, University of Cape Town, Cape Town, South Africa
| | - Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA.,Department of Ornithology, American Museum of Natural History, New York, New York, USA
| | - Dagmar M Hanz
- Biogeography and Biodiversity Lab, Institute of Physical Geography, Goethe University Frankfurt, , Frankfurt am Main, Germany
| | - Till Töpfer
- Ornithology Section, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Gustavo A Bravo
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Vladimír Remeš
- Department of Zoology, Palacký University, Olomouc, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Larissa Nowak
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lincoln S Carneiro
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Amilkar J Moncada R
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), Cartago, Turrialba, Costa Rica
| | | | | | | | - Jared D Wolfe
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Marjorie C Sorensen
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alexander Neu
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Ford
- South African Ringing Unit, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Rebekah J Mayhew
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Luis Fabio Silveira
- Museu de Zoologia da Universidade de Sao Paulo (MZUSP), São Paulo, SP, Brazil
| | - David J Kelly
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Nathaniel N D Annorbah
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Jay P McEntee
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Juan Carlos T Gonzalez
- Department of Zoology, University of Oxford, Oxford, UK.,Museum of Natural History, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines.,Animal Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines
| | - Camila G Meneses
- Museum of Natural History, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines
| | - Marcia C Muñoz
- Programa de Biología, Universidad de la Salle, Bogotá, Colombia
| | - Luke L Powell
- Institute of Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK.,Biodiversity Initiative, Houghton, Michigan, USA.,CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Gabriel A Jamie
- Department of Zoology, University of Cambridge, Cambridge, UK.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Thomas J Matthews
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.,CE3C (Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade, dos Açores), Depto de Ciências Agráriase Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
| | - Oscar Johnson
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisina, USA
| | - Guilherme R R Brito
- Depto. de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA
| | - Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - Michael G Harvey
- Department of Biological Sciences and Biodiversity Collections, The University of Texas at El Paso, El Paso, Texas, USA
| | | | - Peter A Hosner
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California, USA
| | - F Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hevana S Lima
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Kaiya L Provost
- Department of Ornithology, American Museum of Natural History, New York, New York, USA.,Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Moses Chibesa
- Department of Zoology and Aquatic Sciences, Copperbelt University, Kitwe, Zambia
| | | | - Jeffrey T Howard
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisina, USA.,Louisiana State University, Health Sciences Center Shreveport, Shreveport, Louisina, USA
| | - Edson Mlamba
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Marcus A H Chua
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore.,Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Bicheng Li
- Natural History Research Center, Shanghai Natural History Museum, Shanghai, China
| | - M Isabel Gómez
- Colección Boliviana de Fauna - Museo Nacional de Historia Natural, Ministerio de Medio Ambiente y Agua, La Paz, Bolivia
| | - Natalia C García
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", CONICET, Buenos Aires, Argentina
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Dresden, Germany
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Jarome R Ali
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Monica L Carlson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Rolly C Urriza
- Ornithology Section, Zoology Division, Philippine National Museum, Rizal Park, Manila, Philippines
| | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia
| | - Matt J Rayner
- Auckland Museum, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - René-Marie Lafontaine
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | | | - Yingqiang Lou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lankani Somarathna
- Natural History Section, Department of National Museum, Colombo, Sri Lanka
| | | | | | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Mathias Templin
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Olivier S G Pauwels
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Kangkuso Analuddin
- Department of Biotechnology, Halu Oleo University, Kendari, Sulawesi Tenggara, Indonesia
| | - Jon Fjeldså
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Seddon
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
| | - Paul R Sweet
- Department of Ornithology, American Museum of Natural History, New York, New York, USA
| | - Fabrice A J DeClerck
- Bioversity International, CGIAR, Parc Scientifique Agropolis II, Montpellier, France
| | - Luciano N Naka
- Laboratório de Ecologia e Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carsten Rahbek
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.,Institute of Ecology, Peking University, Beijing, China
| | - Susanne A Fritz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Gavin H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| |
Collapse
|
16
|
Drury JP, Clavel J, Tobias JA, Rolland J, Sheard C, Morlon H. Tempo and mode of morphological evolution are decoupled from latitude in birds. PLoS Biol 2021; 19:e3001270. [PMID: 34428214 PMCID: PMC8384433 DOI: 10.1371/journal.pbio.3001270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The latitudinal diversity gradient is one of the most striking patterns in nature, yet its implications for morphological evolution are poorly understood. In particular, it has been proposed that an increased intensity of species interactions in tropical biota may either promote or constrain trait evolution, but which of these outcomes predominates remains uncertain. Here, we develop tools for fitting phylogenetic models of phenotypic evolution in which the impact of species interactions-namely, competition-can vary across lineages. Deploying these models on a global avian trait dataset to explore differences in trait divergence between tropical and temperate lineages, we find that the effect of latitude on the mode and tempo of morphological evolution is weak and clade- or trait dependent. Our results indicate that species interactions do not disproportionately impact morphological evolution in tropical bird families and question the validity of previously reported patterns of slower trait evolution in the tropics.
Collapse
Affiliation(s)
- Jonathan P. Drury
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Julien Clavel
- Natural History Museum, London, United Kingdom
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023, LEHNA, Villeurbanne, France
| | - Joseph A. Tobias
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Jonathan Rolland
- Zoology Department, University of British Columbia, Vancouver, Canada
| | - Catherine Sheard
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Hélène Morlon
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Paris, France
| |
Collapse
|
17
|
Character displacement drives trait divergence in a continental fauna. Proc Natl Acad Sci U S A 2021; 118:2021209118. [PMID: 33963076 DOI: 10.1073/pnas.2021209118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coexisting (sympatric) pairs of closely related species are often characterized by exaggerated trait differences. This widespread pattern is consistent with adaptation for reduced similarity due to costly interactions (i.e., "character displacement")-a classic hypothesis in evolutionary theory. But it is equally consistent with a community assembly bias in which lineages with greater trait differences are more likely to establish overlapping ranges in the first place (i.e., "species sorting"), as well as with null expectations of trait divergence through time. Few comparative analyses have explicitly modeled these alternatives, and it remains unclear whether trait divergence is a general prerequisite for sympatry or a consequence of interactions between sympatric species. Here, we develop statistical models that allow us to distinguish the signature of these processes based on patterns of trait divergence in closely related lineage pairs. We compare support for each model using a dataset of bill shape differences in 207 pairs of New World terrestrial birds representing 30 avian families. We find that character displacement models are overwhelmingly supported over species sorting and null expectations, indicating that exaggerated bill shape differences in sympatric pairs result from enhanced divergent selection in sympatry. We additionally detect a latitudinal gradient in character displacement, which appears strongest in the tropics. Our analysis implicates costly species interactions as powerful drivers of trait divergence in a major vertebrate fauna. These results help substantiate a long-standing but equivocally supported linchpin of evolutionary theory.
Collapse
|
18
|
Sugai LSM, Llusia D, Siqueira T, Silva TSF. Revisiting the drivers of acoustic similarities in tropical anuran assemblages. Ecology 2021; 102:e03380. [PMID: 33937979 DOI: 10.1002/ecy.3380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023]
Abstract
Acoustic signaling is key in mediating mate choice, which directly impacts individual fitness. Because background noise and habitat structure can impair signal transmission, the acoustic space of mixed-species assemblages has long been hypothesized to reflect selective pressures against signal interference and degradation. However, other potential drivers that received far less attention can drive similar outputs on the acoustic space. Phylogenetic niche conservatism and allometric constraints may also modulate species acoustic features, and the acoustic space of communities could be a side-effect of ecological assembly processes involving other traits (e.g., environmental filtering). Additionally, the acoustic space can also reflect the sorting of species relying on public information through extended communication networks. Using an integrative approach, we revisit the potential drivers of the acoustic space by addressing the distribution of acoustic traits, body size, and phylogenetic relatedness in tropical anuran assemblages across gradients of environmental heterogeneity in the Pantanal wetlands. We found the overall acoustic space to be aggregated compared with null expectations, even when accounting for confounding effects of body size. Across assemblages, acoustic and phylogenetic differences were positively related, while acoustic and body size similarities were negatively related, although to a minor extent. We suggest that acoustic partitioning, acoustic adaptation, and allometric constraints play a minor role in shaping the acoustic output of tropical anuran assemblages and that phylogenetic niche conservatism and public information use would influence between-assemblage variation. Our findings highlight an overlooked multivariate nature of the acoustic dimension and underscore the importance of including the ecological context of communities to understand drivers of the acoustic space.
Collapse
Affiliation(s)
- Larissa Sayuri Moreira Sugai
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil.,Terrestrial Ecology Group (TEG), Departamento de Ecología, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 2, Edificio de Biología, C-211, Madrid, 28049, Spain
| | - Diego Llusia
- Terrestrial Ecology Group (TEG), Departamento de Ecología, Ciudad Universitaria de Cantoblanco, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin, 2, Edificio de Biología, C-211, Madrid, 28049, Spain.,Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, Goiânia, Goiás, CEP, 74001-970, Brazil.,Centro de Investigación en Biodiversidad y Cambio Global, Ciudad Universitaria de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, Madrid, E-28049, Spain
| | - Tadeu Siqueira
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil
| | - Thiago S F Silva
- Instituto de Biociências, Universidade Estadual Paulista (Unesp), Rio Claro, São Paulo, 13506-900, Brazil.,Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
19
|
Vinciguerra NT, Burns KJ. Species diversification and ecomorphological evolution in the radiation of tanagers (Passeriformes: Thraupidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Ecological opportunity is hypothesized to cause an early burst of species diversification and trait evolution followed by a slowdown in diversification rates as niches are filled. Nonetheless, few studies have tested these predictions empirically with ecomorphological data at the large spatial scales relevant to most of biodiversity. Tanagers (Passeriformes: Thraupidae), the largest family of songbirds, show an early burst of species diversification and provide an excellent opportunity to test one of the hallmarks of adaptive radiation: rapid ecomorphological evolution. Here, we test for an early-burst pattern of a resource-exploiting trait (bill morphology) across the radiation of tanagers using a time-calibrated molecular phylogeny and high-resolution three-dimensional surface scans of bill structure from museum study skins. Using recently developed methods of multivariate trait evolution, we find evidence for a rapid burst of bill shape evolution early in the radiation of tanagers, followed by a subsequent decrease in rates toward the present. Likewise, we show that morphological disparity is distributed among (rather than within) subclades, indicating that most of the observed bill shape disparity evolved early in the radiation of tanagers and has slowed through time. The diversification dynamics of tanagers match patterns expected from adaptive radiation and the filling of ecomorphospace.
Collapse
Affiliation(s)
| | - Kevin J Burns
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
20
|
Pouchon C, Lavergne S, Fernández Á, Alberti A, Aubert S, Mavárez J. Phylogenetic signatures of ecological divergence and leapfrog adaptive radiation in Espeletia. AMERICAN JOURNAL OF BOTANY 2021; 108:113-128. [PMID: 33426651 DOI: 10.1002/ajb2.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Events of accelerated species diversification represent one of Earth's most celebrated evolutionary outcomes. Northern Andean high-elevation ecosystems, or páramos, host some plant lineages that have experienced the fastest diversification rates, likely triggered by ecological opportunities created by mountain uplifts, local climate shifts, and key trait innovations. However, the mechanisms behind rapid speciation into the new adaptive zone provided by these opportunities have long remained unclear. METHODS We address this issue by studying the Venezuelan clade of Espeletia, a species-rich group of páramo-endemics showing a dazzling ecological and morphological diversity. We performed several comparative analyses to study both lineage and trait diversification, using an updated molecular phylogeny of this plant group. RESULTS We showed that sets of either vegetative or reproductive traits have conjointly diversified in Espeletia along different vegetation belts, leading to adaptive syndromes. Diversification in vegetative traits occurred earlier than in reproductive ones. The rate of species and morphological diversification showed a tendency to slow down over time, probably due to diversity dependence. We also found that closely related species exhibit significantly more overlap in their geographic distributions than distantly related taxa, suggesting that most events of ecological divergence occurred at close geographic proximity within páramos. CONCLUSIONS These results provide compelling support for a scenario of small-scale ecological divergence along multiple ecological niche dimensions, possibly driven by competitive interactions between species, and acting sequentially over time in a leapfrog pattern.
Collapse
Affiliation(s)
- Charles Pouchon
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| | - Ángel Fernández
- Herbario IVIC. Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas, 1020-A, Venezuela
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Serge Aubert
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
- Université Grenoble Alpes, CNRS, Université Savoie Mont Blanc, SAJF, Station Alpine Joseph Fourier, 38000, Grenoble, France
| | - Jesús Mavárez
- Laboratoire d'Ecologie Alpine (LECA), Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-38000, Grenoble, France
| |
Collapse
|
21
|
Reaney AM, Bouchenak‐Khelladi Y, Tobias JA, Abzhanov A. Ecological and morphological determinants of evolutionary diversification in Darwin's finches and their relatives. Ecol Evol 2020; 10:14020-14032. [PMID: 33391699 PMCID: PMC7771120 DOI: 10.1002/ece3.6994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023] Open
Abstract
Darwin's finches are a classic example of adaptive radiation, a process by which multiple ecologically distinct species rapidly evolve from a single ancestor. Such evolutionary diversification is typically explained by adaptation to new ecological opportunities. However, the ecological diversification of Darwin's finches following their dispersal to Galápagos was not matched on the same archipelago by other lineages of colonizing land birds, which diversified very little in terms of both species number and morphology. To better understand the causes underlying the extraordinary variation in Darwin's finches, we analyze the evolutionary dynamics of speciation and trait diversification in Thraupidae, including Coerebinae (Darwin's finches and relatives) and, their closely related clade, Sporophilinae. For all traits, we observe an early pulse of speciation and morphological diversification followed by prolonged periods of slower steady-state rates of change. The primary exception is the apparent recent increase in diversification rate in Darwin's finches coupled with highly variable beak morphology, a potential key factor explaining this adaptive radiation. Our observations illustrate how the exploitation of ecological opportunity by contrasting means can produce clades with similarly high diversification rate yet strikingly different degrees of ecological and morphological differentiation.
Collapse
Affiliation(s)
- Ashley M. Reaney
- Science and Solutions for a Changing Planet DTPDepartment of Life SciencesImperial College LondonAscotUK
- Natural History MuseumLondonUK
| | | | | | - Arkhat Abzhanov
- Natural History MuseumLondonUK
- Department of Life SciencesImperial College LondonAscotUK
| |
Collapse
|
22
|
Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH. The signature of competition in ecomorphological traits across the avian radiation. Proc Biol Sci 2020; 287:20201585. [PMID: 33171084 PMCID: PMC7735287 DOI: 10.1098/rspb.2020.1585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Competition for shared resources represents a fundamental driver of biological diversity. However, the tempo and mode of phenotypic evolution in deep-time has been predominantly investigated using trait evolutionary models which assume that lineages evolve independently from each other. Consequently, the role of species interactions in driving macroevolutionary dynamics remains poorly understood. Here, we quantify the prevalence for signatures of competition between related species in the evolution of ecomorphological traits across the bird radiation. We find that mechanistic trait models accounting for the effect of species interactions on phenotypic divergence provide the best fit for the data on at least one trait axis in 27 out of 59 clades ranging between 21 and 195 species. Where it occurs, the signature of competition generally coincides with positive species diversity-dependence, driven by the accumulation of lineages with similar ecologies, and we find scarce evidence for trait-dependent or negative diversity-dependent phenotypic evolution. Overall, our results suggest that the footprint of interspecific competition is often eroded in long-term patterns of phenotypic diversification, and that other selection pressures may predominantly shape ecomorphological diversity among extant species at macroevolutionary scales.
Collapse
Affiliation(s)
- A M Chira
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - C R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - J A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - E J R Capp
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - E C Hughes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C J A Moody
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - L O Nouri
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Z K Varley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - G H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, Hertfordshire, UK
| |
Collapse
|
23
|
Hembry DH, Weber MG. Ecological Interactions and Macroevolution: A New Field with Old Roots. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-121505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Linking interspecific interactions (e.g., mutualism, competition, predation, parasitism) to macroevolution (evolutionary change on deep timescales) is a key goal in biology. The role of species interactions in shaping macroevolutionary trajectories has been studied for centuries and remains a cutting-edge topic of current research. However, despite its deep historical roots, classic and current approaches to this topic are highly diverse. Here, we combine historical and contemporary perspectives on the study of ecological interactions in macroevolution, synthesizing ideas across eras to build a zoomed-out picture of the big questions at the nexus of ecology and macroevolution. We discuss the trajectory of this important and challenging field, dividing research into work done before the 1970s, research between 1970 and 2005, and work done since 2005. We argue that in response to long-standing questions in paleobiology, evidence accumulated to date has demonstrated that biotic interactions (including mutualism) can influence lineage diversification and trait evolution over macroevolutionary timescales, and we outline major open questions for future research in the field.
Collapse
Affiliation(s)
- David H. Hembry
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Marjorie G. Weber
- Department of Plant Biology; Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
24
|
Tobias JA, Ottenburghs J, Pigot AL. Avian Diversity: Speciation, Macroevolution, and Ecological Function. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-025023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin, distribution, and function of biological diversity are fundamental themes of ecology and evolutionary biology. Research on birds has played a major role in the history and development of these ideas, yet progress was for many decades limited by a focus on patterns of current diversity, often restricted to particular clades or regions. Deeper insight is now emerging from a recent wave of integrative studies combining comprehensive phylogenetic, environmental, and functional trait data at unprecedented scales. We review these empirical advances and describe how they are reshaping our understanding of global patterns of bird diversity and the processes by which it arises, with implications for avian biogeography and functional ecology. Further expansion and integration of data sets may help to resolve longstanding debates about the evolutionary origins of biodiversity and offer a framework for understanding and predicting the response of ecosystems to environmental change.
Collapse
Affiliation(s)
- Joseph A. Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, United Kingdom
| | - Jente Ottenburghs
- Department of Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Garcia M, Theunissen F, Sèbe F, Clavel J, Ravignani A, Marin-Cudraz T, Fuchs J, Mathevon N. Evolution of communication signals and information during species radiation. Nat Commun 2020; 11:4970. [PMID: 33009414 PMCID: PMC7532446 DOI: 10.1038/s41467-020-18772-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023] Open
Abstract
Communicating species identity is a key component of many animal signals. However, whether selection for species recognition systematically increases signal diversity during clade radiation remains debated. Here we show that in woodpecker drumming, a rhythmic signal used during mating and territorial defense, the amount of species identity information encoded remained stable during woodpeckers' radiation. Acoustic analyses and evolutionary reconstructions show interchange among six main drumming types despite strong phylogenetic contingencies, suggesting evolutionary tinkering of drumming structure within a constrained acoustic space. Playback experiments and quantification of species discriminability demonstrate sufficient signal differentiation to support species recognition in local communities. Finally, we only find character displacement in the rare cases where sympatric species are also closely related. Overall, our results illustrate how historical contingencies and ecological interactions can promote conservatism in signals during a clade radiation without impairing the effectiveness of information transfer relevant to inter-specific discrimination.
Collapse
Affiliation(s)
- Maxime Garcia
- Equipe Neuro-Ethologie Sensorielle ENES/CRNL, CNRS, INSERM, University of Lyon/Saint-Etienne, Saint-Étienne, France.
- Animal Behaviour, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.
| | - Frédéric Theunissen
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Department of Psychology and Integrative Biology, University of California, Berkeley, USA
| | - Frédéric Sèbe
- Equipe Neuro-Ethologie Sensorielle ENES/CRNL, CNRS, INSERM, University of Lyon/Saint-Etienne, Saint-Étienne, France
| | - Julien Clavel
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Andrea Ravignani
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, 6525 XD, Nijmegen, The Netherlands
| | - Thibaut Marin-Cudraz
- Equipe Neuro-Ethologie Sensorielle ENES/CRNL, CNRS, INSERM, University of Lyon/Saint-Etienne, Saint-Étienne, France
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Nicolas Mathevon
- Equipe Neuro-Ethologie Sensorielle ENES/CRNL, CNRS, INSERM, University of Lyon/Saint-Etienne, Saint-Étienne, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
26
|
Feijó A, Ge D, Wen Z, Xia L, Yang Q. Divergent adaptations in resource‐use traits explain how pikas thrive on the roof of the world. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| |
Collapse
|
27
|
Brennan IG, Lemmon AR, Lemmon EM, Portik DM, Weijola V, Welton L, Donnellan SC, Keogh JS. Phylogenomics of Monitor Lizards and the Role of Competition in Dictating Body Size Disparity. Syst Biol 2020; 70:120-132. [PMID: 32521014 DOI: 10.1093/sysbio/syaa046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Organismal interactions drive the accumulation of diversity by influencing species ranges, morphology, and behavior. Interactions vary from agonistic to cooperative and should result in predictable patterns in trait and range evolution. However, despite a conceptual understanding of these processes, they have been difficult to model, particularly on macroevolutionary timescales and across broad geographic spaces. Here, we investigate the influence of biotic interactions on trait evolution and community assembly in monitor lizards (Varanus). Monitors are an iconic radiation with a cosmopolitan distribution and the greatest size disparity of any living terrestrial vertebrate genus. Between the colossal Komodo dragon Varanus komodoensis and the smallest Australian dwarf goannas, Varanus length and mass vary by multiple orders of magnitude. To test the hypothesis that size variation in this genus was driven by character displacement, we extended existing phylogenetic comparative methods which consider lineage interactions to account for dynamic biogeographic history and apply these methods to Australian monitors and marsupial predators. Incorporating both exon-capture molecular and morphological data sets we use a combined evidence approach to estimate the relationships among living and extinct varaniform lizards. Our results suggest that communities of Australian Varanus show high functional diversity as a result of continent-wide interspecific competition among monitors but not with faunivorous marsupials. We demonstrate that patterns of trait evolution resulting from character displacement on continental scales are recoverable from comparative data and highlight that these macroevolutionary patterns may develop in parallel across widely distributed sympatric groups.[Character displacement; comparative methods; phylogenetics; trait evolution; Varanus.].
Collapse
Affiliation(s)
- Ian G Brennan
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Alan R Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Daniel M Portik
- Department of Ecology and Evolution, University of Arizona, Biosciences West Rm 310, 1041 E. Lowell St, Tucson, AZ 85745 USA
| | - Valter Weijola
- Zoological Museum, Biodiversity Unit, FI-20014 University of Turku, Finland
| | - Luke Welton
- Univeristy of Kansas Biodiversity Institute & Natural History Museum, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA
| | - Stephen C Donnellan
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.,South Australian Museum, North Terrace, Adelaide SA 5000 Australia
| | - J Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
28
|
Drury JP, Cowen MC, Grether GF. Competition and hybridization drive interspecific territoriality in birds. Proc Natl Acad Sci U S A 2020; 117:12923-12930. [PMID: 32457140 PMCID: PMC7293658 DOI: 10.1073/pnas.1921380117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costly interactions between species that arise as a by-product of ancestral similarities in communication signals are expected to persist only under specific evolutionary circumstances. Territorial aggression between species, for instance, is widely assumed to persist only when extrinsic barriers prevent niche divergence or selection in sympatry is too weak to overcome gene flow from allopatry. However, recent theoretical and comparative studies have challenged this view. Here we present a large-scale, phylogenetic analysis of the distribution and determinants of interspecific territoriality. We find that interspecific territoriality is widespread in birds and strongly associated with hybridization and resource overlap during the breeding season. Contrary to the view that territoriality only persists between species that rarely breed in the same areas or where niche divergence is constrained by habitat structure, we find that interspecific territoriality is positively associated with breeding habitat overlap and unrelated to habitat structure. Furthermore, our results provide compelling evidence that ancestral similarities in territorial signals are maintained and reinforced by selection when interspecific territoriality is adaptive. The territorial signals linked to interspecific territoriality in birds depend on the evolutionary age of interacting species, plumage at shallow (within-family) timescales, and song at deeper (between-family) timescales. Evidently, territorial interactions between species have persisted and shaped phenotypic diversity on a macroevolutionary timescale.
Collapse
Affiliation(s)
- Jonathan P Drury
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom;
| | - Madeline C Cowen
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Gregory F Grether
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
29
|
Morlon H, Rolland J, Condamine FL. Response to technical comment 'A cautionary note for users of linear diversification dependencies'. Ecol Lett 2020; 23:1172-1174. [PMID: 32419323 DOI: 10.1111/ele.13513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 11/27/2022]
Abstract
The comment by Gamisch (2020) draws the attention of users of the R-package RPANDA (Methods Ecol. Evol., 7, 2016, 589) on situations when properly interpreting the results of linear diversification dependencies requires caution. Here we provide clarifications to help users interpreting their results when using any type of functional diversification dependencies with time or the environment.
Collapse
Affiliation(s)
- Hélène Morlon
- Institut de Biologie de l'ENS (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Jonathan Rolland
- Department of Zoology, University of British Columbia, University Blvd, #4200-6270, Vancouver, B.C, Canada.,Department of Computational Biology, University of Lausanne, Quartier Sorge, 1015, Lausanne, Switzerland
| | - Fabien L Condamine
- Institut des Sciences de l'Évolution de Montpellier, Université de Montpellier , Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
30
|
Sottas C, Reif J, Kreisinger J, Schmiedová L, Sam K, Osiejuk TS, Reifová R. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10050-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Madzia D, Cau A. Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas. PeerJ 2020; 8:e8941. [PMID: 32322442 PMCID: PMC7164395 DOI: 10.7717/peerj.8941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/30/2022] Open
Abstract
Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species-level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the predators/scavengers and polycotylids as their prey. The first mosasauroids differed from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence suggests that early representatives of Mosasauroidea diversified after competitions with plesiosaurs. Nevertheless, some mosasauroids, such as tylosaurines, might have seized the opportunity and occupied the niche previously inhabited by brachauchenines, around or immediately after they became extinct, and by polycotylids that decreased their phylogenetic diversity and disparity around the time the large-sized tylosaurines started to flourish.
Collapse
Affiliation(s)
- Daniel Madzia
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
32
|
Lewitus E, Aristide L, Morlon H. Characterizing and Comparing Phylogenetic Trait Data from Their Normalized Laplacian Spectrum. Syst Biol 2020; 69:234-248. [PMID: 31529071 DOI: 10.1093/sysbio/syz061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
The dissection of the mode and tempo of phenotypic evolution is integral to our understanding of global biodiversity. Our ability to infer patterns of phenotypes across phylogenetic clades is essential to how we infer the macroevolutionary processes governing those patterns. Many methods are already available for fitting models of phenotypic evolution to data. However, there is currently no comprehensive nonparametric framework for characterizing and comparing patterns of phenotypic evolution. Here, we build on a recently introduced approach for using the phylogenetic spectral density profile (SDP) to compare and characterize patterns of phylogenetic diversification, in order to provide a framework for nonparametric analysis of phylogenetic trait data. We show how to construct the SDP of trait data on a phylogenetic tree from the normalized graph Laplacian. We demonstrate on simulated data the utility of the SDP to successfully cluster phylogenetic trait data into meaningful groups and to characterize the phenotypic patterning within those groups. We furthermore demonstrate how the SDP is a powerful tool for visualizing phenotypic space across traits and for assessing whether distinct trait evolution models are distinguishable on a given empirical phylogeny. We illustrate the approach in two empirical data sets: a comprehensive data set of traits involved in song, plumage, and resource-use in tanagers, and a high-dimensional data set of endocranial landmarks in New World monkeys. Considering the proliferation of morphometric and molecular data collected across the tree of life, we expect this approach will benefit big data analyses requiring a comprehensive and intuitive framework.
Collapse
Affiliation(s)
- Eric Lewitus
- Ecole Normale Superieure Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'Ecole Normale Superieure (IBENS) CNRS UMR 8197 INSERM U1024 46rue d'Ulm,F-75005, Paris, France.,Henry M. Jackson Foundation in support of the US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Leandro Aristide
- Ecole Normale Superieure Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'Ecole Normale Superieure (IBENS) CNRS UMR 8197 INSERM U1024 46rue d'Ulm,F-75005, Paris, France
| | - Hélène Morlon
- Ecole Normale Superieure Paris Sciences et Lettres (PSL) Research University, Institut de Biologie de l'Ecole Normale Superieure (IBENS) CNRS UMR 8197 INSERM U1024 46rue d'Ulm,F-75005, Paris, France
| |
Collapse
|
33
|
Biedma L, Calzada J, Godoy JA, Román J. Local habitat specialization as an evolutionary response to interspecific competition between two sympatric shrews. J Mammal 2019. [DOI: 10.1093/jmammal/gyz203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Interspecific competition affects population dynamics, distributional ranges, and evolution of competing species. The competitive exclusion principle states that ecologically similar species cannot coexist unless they exhibit niche segregation. Herein, we assess whether niche segregation allows the coexistence of Crocidura russula and C. suaveolens in southwestern Iberia and whether segregation is the result of current (ecological effect) or past (evolutionary effect) competition. We performed an annual live-trapping cycle in the two main habitats of the Odiel Marshes Natural Reserve (OMNR), the tidal marsh and the Mediterranean forest, both in syntopic (i.e., where both species co-occur) and allotopic (where only one of the two species occurs) sites within this Reserve. We modeled the presence–absence of each species in both habitats and sites by generalized linear mixed models. The coexistence of both species was favored by spatial and temporal niche segregation. Crocidura suaveolens was restricted to tidal marsh and did not occupy Mediterranean forest, even when C. russula was absent. We interpret this to be the result of competition in the past triggering an evolutionary response in C. suaveolens towards its specialization in tidal marsh. Moreover, the specialist C. suaveolens currently is outcompeting C. russula in tidal marshes, reversing the dominance pattern observed elsewhere. The degree of co-occurrence between both species in syntopic sites was low, as they showed inverse dynamics of seasonal abundances. Interspecific competition leading to habitat specialization favors the coexistence of these ecologically similar species.
Collapse
Affiliation(s)
- Luis Biedma
- Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Javier Calzada
- Department of Integrated Sciences, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - José A Godoy
- Department of Integrative Ecology, Doñana Biological Station, CSIC, Sevilla, Spain
| | - Jacinto Román
- Department of Conservation Biology, Doñana Biological Station, CSIC, Sevilla, Spain
| |
Collapse
|
34
|
Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE, Martins AB, Melián CJ, Narwani A, Nuismer SL, Pennell MW, Rudman SM, Seehausen O, Silvestro D, Weber M, Matthews B. Detecting the macroevolutionary signal of species interactions. J Evol Biol 2019; 32:769-782. [DOI: 10.1111/jeb.13477] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Luke J. Harmon
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Department of Biological Sciences University of Idaho Moscow Idaho
| | | | - Florence Débarre
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IRD, INRA, Université Paris Diderot, Institute of Ecology and Environmental Sciences (UMR7618) Paris France
| | | | - Emma E. Goldberg
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul Minnesota
| | - Ayana B. Martins
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Instituto de Física ‘Gleb Wataghin’ Universidade Estadual de Campinas Campinas Brazil
| | - Carlos J. Melián
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology Eawag Dübendorf Switzerland
| | - Scott L. Nuismer
- Department of Biological Sciences University of Idaho Moscow Idaho
| | - Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver British Columbia
| | - Seth M. Rudman
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences Global Gothenburg Biodiversity Centre University of Gothenburg Gothenburg Sweden
| | - Marjorie Weber
- Department of Plant Biology & Program in Ecology, Evolution, and Behavior Michigan State University East Lansing Michigan
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
35
|
Jones MEH, Button DJ, Barrett PM, Porro LB. Digital dissection of the head of the rock dove ( Columba livia) using contrast-enhanced computed tomography. ZOOLOGICAL LETTERS 2019; 5:17. [PMID: 31205748 PMCID: PMC6558907 DOI: 10.1186/s40851-019-0129-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The rock dove (or common pigeon), Columba livia, is an important model organism in biological studies, including research focusing on head muscle anatomy, feeding kinematics, and cranial kinesis. However, no integrated computer-based biomechanical model of the pigeon head has yet been attempted. As an initial step towards achieving this goal, we present the first three-dimensional digital dissection of the pigeon head based on a contrast-enhanced computed tomographic dataset achieved using iodine potassium iodide as a staining agent. Our datasets enable us to visualize the skeletal and muscular anatomy, brain and cranial nerves, and major sense organs of the pigeon, including very small and fragile features, as well as maintaining the three-dimensional topology of anatomical structures. This work updates and supplements earlier anatomical work on this widely used laboratory organism. We resolve several key points of disagreement arising from previous descriptions of pigeon anatomy, including the precise arrangement of the external adductor muscles and their relationship to the posterior adductor. Examination of the eye muscles highlights differences between avian taxa and shows that pigeon eye muscles are more similar to those of a tinamou than they are to those of a house sparrow. Furthermore, we present our three-dimensional data as publicly accessible files for further research and education purposes. Digital dissection permits exceptional visualisation and will be a valuable resource for further investigations into the head anatomy of other bird species, as well as efforts to reconstruct soft tissues in fossil archosaurs.
Collapse
Affiliation(s)
- Marc E. H. Jones
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - David J. Button
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD UK
| | - Laura B. Porro
- Department of Cell and Developmental Biology, UCL, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
36
|
Marcondes RS, Brumfield RT. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 2019; 73:704-719. [DOI: 10.1111/evo.13707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Rafael S. Marcondes
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| | - Robb T. Brumfield
- Museum of Natural Science and Department of Biological Sciences Louisiana State University Baton Rouge Louisiana 70803
| |
Collapse
|
37
|
Richardson LA. Birds, blooms, and evolving diversity. PLoS Biol 2018; 16:e3000020. [PMID: 30286070 PMCID: PMC6171793 DOI: 10.1371/journal.pbio.3000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In this Open Highlight, Senior Editor Lauren Richardson features exciting new Open Access research into how species evolve their characteristic traits.
Collapse
Affiliation(s)
- Lauren A. Richardson
- Public Library of Science, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol Lett 2018; 21:1505-1514. [PMID: 30133084 PMCID: PMC6175488 DOI: 10.1111/ele.13131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species‐specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species.
Collapse
Affiliation(s)
- A M Chira
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - C R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - J A Bright
- School of Geosciences, University of South Florida, Tampa, FL, USA
| | - E J R Capp
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - E C Hughes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - C J A Moody
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - L O Nouri
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Z K Varley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - G H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, Hertfordshire, UK
| |
Collapse
|