1
|
Adam KCS, Klatt LI, Miller JA, Rösner M, Fukuda K, Kiyonaga A. Beyond Routine Maintenance: Current Trends in Working Memory Research. J Cogn Neurosci 2025; 37:1035-1052. [PMID: 39792640 DOI: 10.1162/jocn_a_02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Working memory (WM) is an evolving concept. Our understanding of the neural functions that support WM develops iteratively alongside the approaches used to study it, and both can be profoundly shaped by available tools and prevailing theoretical paradigms. Here, the organizers of the 2024 Working Memory Symposium-inspired by this year's meeting-highlight current trends and looming questions in WM research. This review is organized into sections describing (1) ongoing efforts to characterize WM function across sensory modalities, (2) the growing appreciation that WM representations are malleable to context and future actions, (3) the enduring problem of how multiple WM items and features are structured and integrated, and (4) new insights about whether WM shares function with other cognitive processes that have conventionally been considered distinct. This review aims to chronicle where the field is headed and calls attention to issues that are paramount for future research.
Collapse
|
2
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Liebe S, Niediek J, Pals M, Reber TP, Faber J, Boström J, Elger CE, Macke JH, Mormann F. Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks. Nat Neurosci 2025; 28:873-882. [PMID: 40128390 PMCID: PMC11976290 DOI: 10.1038/s41593-025-01893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/15/2025] [Indexed: 03/26/2025]
Abstract
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials (921 channels) in the medial temporal lobe of 16 patients with epilepsy performing a working-memory task for temporal order. During memory maintenance, we observe theta oscillations, preferential firing of single neurons to theta phase and a close relationship between phase of firing and item position. However, the firing order did not match item order. Training recurrent neural networks to perform an analogous task, we also show the generation of theta oscillations, theta phase-dependent firing related to item position and, again, no match between firing and item order. Rather, our results suggest a mechanistic link between phase order, stimulus timing and oscillation frequency. In both biological and artificial neural networks, we provide evidence supporting the role of phase of firing in working-memory processing.
Collapse
Grants
- This work was supported by the German Research Foundation (DFG): SPP 2241 (PN 520287829), Germany’s Excellence Strategy (EXC-Number 2064/1)
- German Research Foundation (DFG): SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG): MO 930/4-2 (PN 212842712), MO 930/15/1 (PN 545587701), SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG) SFB 1089, SFB 1233 (PN 276693517), SPP 2205, the Volkswagen Foundation: 86 507; the NRW network program iBehave;
Collapse
Affiliation(s)
- Stefanie Liebe
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
- University Hospital Tübingen, Department of Neurology and Epileptology, Tübingen, Germany.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Matthijs Pals
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
| | - Thomas P Reber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Jennifer Faber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
4
|
Cavanah PJ, Fiebelkorn IC. A domain-general process for theta-rhythmic sampling of either environmental information or internally stored information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625454. [PMID: 39651220 PMCID: PMC11623605 DOI: 10.1101/2024.11.26.625454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Many everyday tasks, such as shopping for groceries, require the sampling of both environmental information and internally stored information. Selective attention involves the preferential processing and sampling of behaviorally important information from the external environment, while working memory involves the preferential processing and sampling of behaviorally important, internally stored information. These essential cognitive processes share neural resources within a large-scale network that includes frontal, parietal, and sensory cortices, and these shared neural resources can lead to between-domain interactions. Previous research has linked external sampling during selective attention and internal sampling during working memory to theta-rhythmic (3-8 Hz) neural activity in higher-order (e.g., frontal cortices) and sensory regions (e.g., visual cortices). Such theta-rhythmic neural activity might help to resolve the competition for shared neural resources by isolating neural activity associated with different functions over time. Here, we used EEG and a dual-task design (i.e., a task that required both external and internal sampling) to directly compare (i) theta-dependent fluctuations in behavioral performance during external sampling with (ii) theta-dependent fluctuations in behavioral performance during internal sampling. Our findings are consistent with a domain-general, theta-rhythmic process for sampling either external information or internal information. We further demonstrate that interactions between external and internal information-specifically, when to-be-detected information matches to-be-remembered information-are not dependent on theta-band activity (i.e., theta phase). Given that these theta-independent 'match effects' occur during early processing stages (peaking at 75 ms), we propose that theta-rhythmic sampling modulates external and internal information during later processing stages.
Collapse
|
5
|
Sattelberger J, Haque H, Juvonen JJ, Siebenhühner F, Palva JM, Palva S. Local and interareal alpha and low-beta band oscillation dynamics underlie the bilateral field advantage in visual working memory. Cereb Cortex 2024; 34:bhae448. [PMID: 39540759 PMCID: PMC11561930 DOI: 10.1093/cercor/bhae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Visual working memory has a limited maximum capacity, which can be larger if stimuli are presented bilaterally vs. unilaterally. However, the neuronal mechanisms underlying this bilateral field advantage are not known. Visual working memory capacity is predicted by oscillatory delay-period activity, specifically, by a decrease in alpha (8 to 12 Hz) band amplitudes in posterior brain regions reflecting attentional deployment and related shifts in excitation, as well as a concurrent increase of prefrontal oscillation amplitudes and interareal synchronization in multiple frequencies reflecting active maintenance of information. Here, we asked whether posterior alpha suppression or prefrontal oscillation enhancement explains the bilateral field advantage. We recorded brain activity with high-density electroencephalography, while subjects (n = 26, 14 males) performed a visual working memory task with uni- and bilateral visual stimuli. The bilateral field advantage was associated with early suppression of low-alpha (6 to 10 Hz) and alpha-beta (10 to 17 Hz) band amplitudes, and a subsequent alpha-beta amplitude increase, which, along with a concurrent load-dependent interareal synchronization in the high-alpha band (10 to 15 Hz), correlated with hit rates and reaction times and thus predicted higher maximum capacities in bilateral than unilateral visual working memory. These results demonstrate that the electrophysiological basis of the bilateral field advantage in visual working memory is both in the changes in attentional deployment and enhanced interareal integration.
Collapse
Affiliation(s)
- Judith Sattelberger
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Hamed Haque
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Joonas J Juvonen
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Felix Siebenhühner
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
| | - Jaakko Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Department of Neuroscience and Bioengineering (NBE), Aalto University, P.O. Box 11000 (Otakaari 1B), FI-00076 Espoo, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, P.O. Box 3 (Fabianinkatu 33), FI-00014 Helsinki, Finland
- Centre for Cognitive Neuroimaging (CCNi), School of Psychology and Neuroscience, University of Glasgow, G12 8QB Glasgow, United Kingdom
| |
Collapse
|
6
|
Bonnefond M, Jensen O, Clausner T. Visual Processing by Hierarchical and Dynamic Multiplexing. eNeuro 2024; 11:ENEURO.0282-24.2024. [PMID: 39537353 PMCID: PMC11574700 DOI: 10.1523/eneuro.0282-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of natural environments requires highly flexible mechanisms for adaptive processing of single and multiple stimuli. Neuronal oscillations could be an ideal candidate for implementing such flexibility in neural systems. Here, we present a framework for structuring attention-guided processing of complex visual scenes in humans, based on multiplexing and phase coding schemes. Importantly, we suggest that the dynamic fluctuations of excitability vary rapidly in terms of magnitude, frequency and wave-form over time, i.e., they are not necessarily sinusoidal or sustained oscillations. Different elements of single objects would be processed within a single cycle (burst) of alpha activity (7-14 Hz), allowing for the formation of coherent object representations while separating multiple objects across multiple cycles. Each element of an object would be processed separately in time-expressed as different gamma band bursts (>30 Hz)-along the alpha phase. Since the processing capacity per alpha cycle is limited, an inverse relationship between object resolution and size of attentional spotlight ensures independence of the proposed mechanism from absolute object complexity. Frequency and wave-shape of those fluctuations would depend on the nature of the object that is processed and on cognitive demands. Multiple objects would further be organized along the phase of slower fluctuations (e.g., theta), potentially driven by saccades. Complex scene processing, involving covert attention and eye movements, would therefore be associated with multiple frequency changes in the alpha and lower frequency range. This framework embraces the idea of a hierarchical organization of visual processing, independent of environmental temporal dynamics.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tommy Clausner
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Al Qasem W, Abubaker M, Pilátová K, Ježdík P, Kvašňák E. Improving working memory by electrical stimulation and cross-frequency coupling. Mol Brain 2024; 17:72. [PMID: 39354549 PMCID: PMC11446076 DOI: 10.1186/s13041-024-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia.
| | - Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Kateřina Pilátová
- Department of Information and Communication Technology in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Petr Ježdík
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
8
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Kim K, Nokia MS, Palva S. Distinct Hippocampal Oscillation Dynamics in Trace Eyeblink Conditioning Task for Retrieval and Consolidation of Associations. eNeuro 2024; 11:ENEURO.0030-23.2024. [PMID: 38627063 PMCID: PMC11046259 DOI: 10.1523/eneuro.0030-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Trace eyeblink conditioning (TEBC) has been widely used to study associative learning in both animals and humans. In this paradigm, conditioned responses (CRs) to conditioned stimuli (CS) serve as a measure for retrieving learned associations between the CS and the unconditioned stimuli (US) within a trial. Memory consolidation, that is, learning over time, can be quantified as an increase in the proportion of CRs across training sessions. However, how hippocampal oscillations differentiate between successful memory retrieval within a session and consolidation across TEBC training sessions remains unknown. To address this question, we recorded local field potentials (LFPs) from the rat dorsal hippocampus during TEBC and investigated hippocampal oscillation dynamics associated with these two functions. We show that transient broadband responses to the CS were correlated with memory consolidation, as indexed by an increase in CRs across TEBC sessions. In contrast, induced alpha (8-10 Hz) and beta (16-20 Hz) band responses were correlated with the successful retrieval of the CS-US association within a session, as indexed by the difference in trials with and without CR.
Collapse
Affiliation(s)
- Kayeon Kim
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki FI-00014, Finland
- Centre for Cognitive Neuroscience, School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, Scotland
- Division of psychology, VISE, Faculty of Education and Psychology, University of Oulu, Oulu, Ostrobothnia FI-90014, Finland
| |
Collapse
|
10
|
Deng X, Chen X, Li Y, Zhang B, Xu W, Wang J, Zang Y, Dong Q, Chen C, Li J. Online and offline effects of parietal 10 Hz repetitive transcranial magnetic stimulation on working memory in healthy controls. Hum Brain Mapp 2024; 45:e26636. [PMID: 38488458 PMCID: PMC10941606 DOI: 10.1002/hbm.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental HealthCapital Medical UniversityBeijingChina
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Bofan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Wending Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Center for Cognition and Brain DisordersHangzhou Normal University Affiliated HospitalHangzhouChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| |
Collapse
|
11
|
Borderie A, Caclin A, Lachaux JP, Perrone-Bertollotti M, Hoyer RS, Kahane P, Catenoix H, Tillmann B, Albouy P. Cross-frequency coupling in cortico-hippocampal networks supports the maintenance of sequential auditory information in short-term memory. PLoS Biol 2024; 22:e3002512. [PMID: 38442128 PMCID: PMC10914261 DOI: 10.1371/journal.pbio.3002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.
Collapse
Affiliation(s)
- Arthur Borderie
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
| | - Anne Caclin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | - Jean-Philippe Lachaux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| | | | - Roxane S. Hoyer
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Hélène Catenoix
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Department of Functional Neurology and Epileptology, Lyon Civil Hospices, member of the ERN EpiCARE, and Lyon 1 University, Lyon, France
| | - Barbara Tillmann
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
- Laboratory for Research on Learning and Development, LEAD–CNRS UMR5022, Université de Bourgogne, Dijon, France
| | - Philippe Albouy
- CERVO Brain Research Center, School of Psychology, Laval University, Québec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), CRBLM, Montreal, Canada
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron, France
| |
Collapse
|
12
|
Köster M. The theta-gamma code in predictive processing and mnemonic updating. Neurosci Biobehav Rev 2024; 158:105529. [PMID: 38176633 DOI: 10.1016/j.neubiorev.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Predictive processing has become a leading theory about how the brain works. Yet, it remains an open question how predictive processes are realized in the brain. Here I discuss theta-gamma coupling as one potential neural mechanism for prediction and model updating. Building on Lisman and colleagues SOCRATIC model, theta-gamma coupling has been associated with phase precession and learning phenomena in medio-temporal lobe of rodents, where it completes and retains a sequence of places or items (i.e., predictive models). These sequences may be updated upon prediction errors (i.e., model updating), signaled by dopaminergic inputs from prefrontal networks. This framework, spanning the molecular to the network level, matches excitingly well with recent findings on predictive processing, mnemonic updating, and perceptual foraging for the theta-gamma code in human cognition. In sum, I use the case of theta-gamma coupling to link the predictive processing account, a very general concept of how the brain works, to specific neural processes which may implement predictive processing and model updating at the cognitive, network, cellular and molecular level.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| |
Collapse
|
13
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
14
|
Barnett AJ, Nguyen M, Spargo J, Yadav R, Cohn-Sheehy BI, Ranganath C. Hippocampal-cortical interactions during event boundaries support retention of complex narrative events. Neuron 2024; 112:319-330.e7. [PMID: 37944517 DOI: 10.1016/j.neuron.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
According to most memory theories, encoding involves continuous communication between the hippocampus and neocortex, but recent work has shown that key moments at the end of an event, called event boundaries, may be especially critical for memory formation. We sought to determine how communication between the hippocampus and neocortical regions during the encoding of naturalistic events related to subsequent retrieval of those events and whether this was particularly important at event boundaries. Participants encoded and recalled two cartoon movies during fMRI scanning. Higher functional connectivity between the hippocampus and the posterior medial network (PMN) at an event's offset is related to the subsequent successful recall of that event. Furthermore, hippocampal-PMN offset connectivity also predicted the amount of detail retrieved after a 2-day delay. These data demonstrate that the relationship between memory encoding and hippocampal-neocortical interaction is dynamic and biased toward boundaries.
Collapse
Affiliation(s)
| | - Mitchell Nguyen
- University of California, Davis, Center for Neuroscience, Davis, CA, USA
| | - James Spargo
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | - Reesha Yadav
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | | | - Charan Ranganath
- University of California, Davis, Center for Neuroscience, Davis, CA, USA; University of California, Davis, Department of Psychology, Davis, CA, USA
| |
Collapse
|
15
|
Ideriha T, Ushiyama J. Behavioral fluctuation reflecting theta-rhythmic activation of sequential working memory. Sci Rep 2024; 14:550. [PMID: 38177622 PMCID: PMC10767028 DOI: 10.1038/s41598-023-51128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024] Open
Abstract
Sequential working memory, the ability to actively maintain sequential information, is essential for human cognition. The neural representation of each item in sequential working memory is thought to be activated rhythmically within the theta (3-7 Hz) range of human electrophysiology. In the current study, we predicted that if neural representations of sequential working memory items were truly activated rhythmically, periodic fluctuations in behavior would be evident. That is, the ease and speed of recalling each memory item would oscillate depending on the interval between memory encoding and recall, affected by the rhythmic neural representation. We conducted detailed analyses of reaction times for retrieving sequential and non-sequential information in eight experiments (total n = 125). The results revealed that reaction times for recalling sequential information showed fluctuation in the theta range as a function of the interval between memory encoding and recall, which was significantly stronger than that observed when the task did not require participants to remember the sequential order. Taken together, the current findings revealed that participants' behavior exhibited theta-rhythmic fluctuation when recalling sequential information in a relatively large sample, supporting theta phase-dependent coding of sequential working memory.
Collapse
Affiliation(s)
- Takuya Ideriha
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan.
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Huang Q, Luo M, Mi Y, Luo H. "Leader-Follower" Dynamic Perturbation Manipulates Multi-Item Working Memory in Humans. eNeuro 2023; 10:ENEURO.0472-22.2023. [PMID: 37914409 PMCID: PMC10668215 DOI: 10.1523/eneuro.0472-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
Manipulating working memory (WM) is a central yet challenging notion. Previous studies suggest that WM items with varied memory strengths reactivate at different latencies, supporting a time-based mechanism. Motivated by this view, here we developed a purely bottom-up "Leader-Follower" behavioral approach to manipulate WM in humans. Specifically, task-irrelevant flickering color disks that are bound to each of the memorized items are presented during the delay period, and the ongoing luminance sequences of the color disks follow a Leader-Follower relationship, that is, a hundreds of milliseconds temporal lag. We show that this dynamic behavioral approach leads to better memory performance for the item associated with the temporally advanced luminance sequence (Leader) than the item with the temporally lagged luminance sequence (Follower), yet with limited effectiveness. Together, our findings constitute evidence for the essential role of temporal dynamics in WM operation and offer a promising, noninvasive WM manipulation approach.
Collapse
Affiliation(s)
- Qiaoli Huang
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Minghao Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Yuanyuan Mi
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Onishi H, Yokosawa K. Differential working memory function between phonological and visuospatial strategies: a magnetoencephalography study using a same visual task. Front Hum Neurosci 2023; 17:1218437. [PMID: 37680265 PMCID: PMC10480614 DOI: 10.3389/fnhum.2023.1218437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Previous studies have reported that, in working memory, the processing of visuospatial information and phonological information have different neural bases. However, in these studies, memory items were presented via different modalities. Therefore, the modality in which the memory items were presented and the strategy for memorizing them were not rigorously distinguished. In the present study, we explored the neural basis of two working memory strategies. Nineteen right-handed young adults memorized seven sequential directions presented visually in a task in which the memory strategy was either visuospatial or phonological (visuospatial/phonological condition). Source amplitudes of theta-band (5-7 Hz) rhythm were estimated from magnetoencephalography during the maintenance period and further analyzed using cluster-based permutation tests. Behavioral results revealed that the accuracy rates showed no significant differences between conditions, while the reaction time in the phonological condition was significantly longer than that in the visuospatial condition. Theta activity in the phonological condition was significantly greater than that in the visuospatial condition, and the cluster in spatio-temporal matrix with p < 5% difference extended to right prefrontal regions in the early maintenance period and right occipito-parietal regions in the late maintenance period. The theta activity results did not indicate strategy-specific neural bases but did reveal the dynamics of executive function required for phonological processing. The functions seemed to move from attention control and inhibition control in the prefrontal region to inhibition of irrelevant information in the occipito-parietal region.
Collapse
Affiliation(s)
- Hayate Onishi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Hunt T, Jones M. Fields or firings? Comparing the spike code and the electromagnetic field hypothesis. Front Psychol 2023; 14:1029715. [PMID: 37546464 PMCID: PMC10400444 DOI: 10.3389/fpsyg.2023.1029715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/09/2023] [Indexed: 08/08/2023] Open
Abstract
Where is consciousness? Neurobiological theories of consciousness look primarily to synaptic firing and "spike codes" as the physical substrate of consciousness, although the specific mechanisms of consciousness remain unknown. Synaptic firing results from electrochemical processes in neuron axons and dendrites. All neurons also produce electromagnetic (EM) fields due to various mechanisms, including the electric potential created by transmembrane ion flows, known as "local field potentials," but there are also more meso-scale and macro-scale EM fields present in the brain. The functional role of these EM fields has long been a source of debate. We suggest that these fields, in both their local and global forms, may be the primary seat of consciousness, working as a gestalt with synaptic firing and other aspects of neuroanatomy to produce the marvelous complexity of minds. We call this assertion the "electromagnetic field hypothesis." The neuroanatomy of the brain produces the local and global EM fields but these fields are not identical with the anatomy of the brain. These fields are produced by, but not identical with, the brain, in the same manner that twigs and leaves are produced by a tree's branches and trunk but are not the same as the branches and trunk. As such, the EM fields represent the more granular, both spatially and temporally, aspects of the brain's structure and functioning than the neuroanatomy of the brain. The brain's various EM fields seem to be more sensitive to small changes than the neuroanatomy of the brain. We discuss issues with the spike code approach as well as the various lines of evidence supporting our argument that the brain's EM fields may be the primary seat of consciousness. This evidence (which occupies most of the paper) suggests that oscillating neural EM fields may make firing in neural circuits oscillate, and these oscillating circuits may help unify and guide conscious cognition.
Collapse
Affiliation(s)
- Tam Hunt
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, United States
| | - Mostyn Jones
- Formerly of Washington and Jefferson College, Washington, PA, United States
| |
Collapse
|
20
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
21
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
22
|
Abstract
Sensory processing, short-term memory, and decision-making often deal with multiple items, or options, simultaneously. I review evidence suggesting that the brain handles such multiple items by "rhythmic attentional scanning (RAS)": each item is processed in a separate cycle of the theta rhythm, involving several gamma cycles, to reach an internally consistent representation in the form of a gamma-synchronized neuronal group. Within each theta cycle, items that are extended in representational space are scanned by traveling waves. Such scanning might go across small numbers of simple items linked into a chunk.
Collapse
Affiliation(s)
- Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Nobre AC, van Ede F. Attention in flux. Neuron 2023; 111:971-986. [PMID: 37023719 DOI: 10.1016/j.neuron.2023.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 04/08/2023]
Abstract
Selective attention comprises essential infrastructural functions supporting cognition-anticipating, prioritizing, selecting, routing, integrating, and preparing signals to guide adaptive behavior. Most studies have examined its consequences, systems, and mechanisms in a static way, but attention is at the confluence of multiple sources of flux. The world advances, we operate within it, our minds change, and all resulting signals progress through multiple pathways within the dynamic networks of our brains. Our aim in this review is to raise awareness of and interest in three important facets of how timing impacts our understanding of attention. These include the challenges posed to attention by the timing of neural processing and psychological functions, the opportunities conferred to attention by various temporal structures in the environment, and how tracking the time courses of neural and behavioral modulations with continuous measures yields surprising insights into the workings and principles of attention.
Collapse
Affiliation(s)
- Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081BT, the Netherlands.
| |
Collapse
|
24
|
Murphy E. ROSE: A Neurocomputational Architecture for Syntax. ARXIV 2023:arXiv:2303.08877v1. [PMID: 36994166 PMCID: PMC10055479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A comprehensive model of natural language processing in the brain must accommodate four components: representations, operations, structures and encoding. It further requires a principled account of how these different components mechanistically, and causally, relate to each another. While previous models have isolated regions of interest for structure-building and lexical access, and have utilized specific neural recording measures to expose possible signatures of syntax, many gaps remain with respect to bridging distinct scales of analysis that map onto these four components. By expanding existing accounts of how neural oscillations can index various linguistic processes, this article proposes a neurocomputational architecture for syntax, termed the ROSE model (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Elementary computations (O) that transform these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive categorial inferences (S). Distinct forms of low frequency coupling and phase-amplitude coupling (δ-θ coupling via pSTS-IFG; θ-γ coupling via IFG to conceptual hubs in lateral and ventral temporal cortex) then encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E is a system of frontotemporal traveling oscillations; connecting E back to lower levels is low-frequency phase resetting of spike-LFP coupling. This compositional neural code has important implications for algorithmic accounts, since it makes concrete predictions for the appropriate level of study for psycholinguistic parsing models. ROSE is reliant on neurophysiologically plausible mechanisms, is supported at all four levels by a range of recent empirical research, and provides an anatomically precise and falsifiable grounding for the basic property of natural language syntax: hierarchical, recursive structure-building.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UTHealth, Houston, TX, USA
| |
Collapse
|
25
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
26
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
27
|
Eckert D, Reichert C, Bien CG, Heinze HJ, Knight RT, Deouell LY, Dürschmid S. Distinct interacting cortical networks for stimulus-response and repetition-suppression. Commun Biol 2022; 5:909. [PMID: 36064744 PMCID: PMC9445181 DOI: 10.1038/s42003-022-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Non-invasive studies consider the initial neural stimulus response (SR) and repetition suppression (RS) - the decreased response to repeated sensory stimuli - as engaging the same neurons. That is, RS is a suppression of the SR. We challenge this conjecture using electrocorticographic (ECoG) recordings with high spatial resolution in ten patients listening to task-irrelevant trains of auditory stimuli. SR and RS were indexed by high-frequency activity (HFA) across temporal, parietal, and frontal cortices. HFASR and HFARS were temporally and spatially distinct, with HFARS emerging later than HFASR and showing only a limited spatial intersection with HFASR: most HFASR sites did not demonstrate HFARS, and HFARS was found where no HFASR could be recorded. β activity was enhanced in HFARS compared to HFASR cortical sites. θ activity was enhanced in HFASR compared to HFARS sites. Furthermore, HFASR sites propagated information to HFARS sites via transient θ:β phase-phase coupling. In contrast to predictive coding (PC) accounts our results indicate that HFASR and HFARS are functionally linked but have minimal spatial overlap. HFASR might enable stable and rapid perception of environmental stimuli across extended temporal intervals. In contrast HFARS might support efficient generation of an internal model based on stimulus history.
Collapse
Affiliation(s)
- David Eckert
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
| | - Christian G Bien
- Department. of Epileptology, Krankenhaus Mara, Bielefeld University, Maraweg 21, 33617, Bielefeld, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
- Forschungscampus STIMULATE, Otto-von-Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- CBBS - center of behavioral brain sciences, Otto-von-Guericke University of Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Robert T Knight
- Department of Psychology, University of California Berkeley, 130 Barker Hall, Berkeley, 94720, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, 94720, CA, USA
| | - Leon Y Deouell
- Department of Psychology and Edmond and Lily Safra Center for brain sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stefan Dürschmid
- Department of Neurology, Otto-von-Guericke University of Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.
| |
Collapse
|
28
|
Is Cortical Theta-Gamma Phase-Amplitude Coupling Memory-Specific? Brain Sci 2022; 12:brainsci12091131. [PMID: 36138867 PMCID: PMC9496728 DOI: 10.3390/brainsci12091131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
One of the proposed neural mechanisms involved in working memory is coupling between the theta phase and gamma amplitude. For example, evidence from intracranial recordings shows that coupling between hippocampal theta and cortical gamma oscillations increases selectively during working memory tasks. Theta-gamma phase-amplitude coupling can also be measured non-invasively through scalp EEG; however, EEG can only assess coupling within cortical areas, and it is not yet clear if this cortical-only coupling is truly memory-specific, or a more general phenomenon. We tested this directly by measuring cortical coupling during three different conditions: a working memory task, an attention task, and a passive perception condition. We find similar levels of theta-gamma coupling in all three conditions, suggesting that cortical theta-gamma phase-amplitude coupling is not a memory-specific signal, but instead reflects some other attentional or perceptual processes. Implications for understanding the brain dynamics of visual working memory are discussed.
Collapse
|
29
|
Chuderski A. Fluid Intelligence Emerges from Representing Relations. J Intell 2022; 10:51. [PMID: 35997406 PMCID: PMC9396997 DOI: 10.3390/jintelligence10030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Based on recent findings in cognitive neuroscience and psychology as well as computational models of working memory and reasoning, I argue that fluid intelligence (fluid reasoning) can amount to representing in the mind the key relation(s) for the task at hand. Effective representation of relations allows for enormous flexibility of thinking but depends on the validity and robustness of the dynamic patterns of argument-object (role-filler) bindings, which encode relations in the brain. Such a reconceptualization of the fluid intelligence construct allows for the simplification and purification of its models, tests, and potential brain mechanisms.
Collapse
Affiliation(s)
- Adam Chuderski
- Cognitive Science Department, Institute of Philosophy, Jagiellonian Univeristy in Krakow, PL-31007 Kraków, Poland
| |
Collapse
|
30
|
Ursino M, Cesaretti N, Pirazzini G. A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 2022; 17:489-521. [PMID: 37007198 PMCID: PMC10050512 DOI: 10.1007/s11571-022-09836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractRecent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscillations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in different conditions. We show that this model, with different synapse values, can be used to address different problems, such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters, mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits. Finally, the network, isolated from the external environment (“imagination phase”) and stimulated with high uniform noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among items.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Nicole Cesaretti
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Gabriele Pirazzini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| |
Collapse
|
31
|
Riddle J, Alexander ML, Schiller CE, Rubinow DR, Frohlich F. Reward-Based Decision-Making Engages Distinct Modes of Cross-Frequency Coupling. Cereb Cortex 2022; 32:2079-2094. [PMID: 34622271 PMCID: PMC9113280 DOI: 10.1093/cercor/bhab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/13/2022] Open
Abstract
Prefrontal cortex exerts control over sensory and motor systems via cross-frequency coupling. However, it is unknown whether these signals play a role in reward-based decision-making and whether such dynamic network configuration is altered in a major depressive episode. We recruited men and women with and without depression to perform a streamlined version of the Expenditure of Effort for Reward Task during recording of electroencephalography. Goal-directed behavior was quantified as willingness to exert physical effort to obtain reward, and reward-evaluation was the degree to which the decision to exert effort was modulated by incentive level. We found that the amplitude of frontal-midline theta oscillations was greatest in participants with the greatest reward-evaluation. Furthermore, coupling between frontal theta phase and parieto-occipital gamma amplitude was positively correlated with reward-evaluation. In addition, goal-directed behavior was positively correlated with coupling between frontal delta phase to motor beta amplitude. Finally, we performed a factor analysis to derive 2 symptom dimensions and found that mood symptoms positively tracked with reward-evaluation and motivation symptoms negatively tracked with goal-directed behavior. Altogether, these results provide evidence that 2 aspects of reward-based decision-making are instantiated by different modes of prefrontal top-down control and are modulated in different symptom dimensions of depression.
Collapse
Affiliation(s)
- Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Crystal Edler Schiller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Ratcliffe O, Shapiro K, Staresina BP. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr Biol 2022; 32:2121-2129.e3. [PMID: 35385693 PMCID: PMC9616802 DOI: 10.1016/j.cub.2022.03.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
Abstract
How does the human brain manage multiple bits of information to guide goal-directed behavior? Successful working memory (WM) functioning has consistently been linked to oscillatory power in the theta frequency band (4–8 Hz) over fronto-medial cortex (fronto-medial theta [FMT]). Specifically, FMT is thought to reflect the mechanism of an executive sub-system that coordinates maintenance of memory contents in posterior regions. However, direct evidence for the role of FMT in controlling specific WM content is lacking. Here, we collected high-density electroencephalography (EEG) data while participants engaged in WM-dependent tasks and then used multivariate decoding methods to examine WM content during the maintenance period. Engagement of WM was accompanied by a focal increase in FMT. Importantly, decoding of WM content was driven by posterior sites, which, in turn, showed increased functional theta coupling with fronto-medial channels. Finally, we observed a significant slowing of FMT frequency with increasing WM load, consistent with the hypothesized broadening of a theta “duty cycle” to accommodate additional WM items. Together, these findings demonstrate that frontal theta orchestrates posterior maintenance of WM content. Moreover, the observed frequency slowing elucidates the function of FMT oscillations by specifically supporting phase-coding accounts of WM. FMT power supports WM functions During WM performance, posterior/parietal regions are coupled with FMT Multivariate decoding of WM content is mediated by these same posterior channels Frontal theta frequency slows with WM load supporting phase-coding models
Collapse
Affiliation(s)
- Oliver Ratcliffe
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kimron Shapiro
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
34
|
Ter Wal M, Linde-Domingo J, Lifanov J, Roux F, Kolibius LD, Gollwitzer S, Lang J, Hamer H, Rollings D, Sawlani V, Chelvarajah R, Staresina B, Hanslmayr S, Wimber M. Theta rhythmicity governs human behavior and hippocampal signals during memory-dependent tasks. Nat Commun 2021; 12:7048. [PMID: 34857748 PMCID: PMC8639755 DOI: 10.1038/s41467-021-27323-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Memory formation and reinstatement are thought to lock to the hippocampal theta rhythm, predicting that encoding and retrieval processes appear rhythmic themselves. Here, we show that rhythmicity can be observed in behavioral responses from memory tasks, where participants indicate, using button presses, the timing of encoding and recall of cue-object associative memories. We find no evidence for rhythmicity in button presses for visual tasks using the same stimuli, or for questions about already retrieved objects. The oscillations for correctly remembered trials center in the slow theta frequency range (1-5 Hz). Using intracranial EEG recordings, we show that the memory task induces temporally extended phase consistency in hippocampal local field potentials at slow theta frequencies, but significantly more for remembered than forgotten trials, providing a potential mechanistic underpinning for the theta oscillations found in behavioral responses.
Collapse
Affiliation(s)
- Marije Ter Wal
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
| | - Juan Linde-Domingo
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Max Planck Institute for Human Development, 14195, Berlin, Germany
| | - Julia Lifanov
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Frédéric Roux
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Luca D Kolibius
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | | | - Johannes Lang
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Hajo Hamer
- Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - David Rollings
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Vijay Sawlani
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Ramesh Chelvarajah
- Complex Epilepsy and Surgery Service, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2GW, Birmingham, UK
| | - Bernhard Staresina
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Department of Experimental Psychology, University of Oxford, OX2 6GG, Oxford, UK
| | - Simon Hanslmayr
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK
| | - Maria Wimber
- School of Psychology & Centre for Human Brain Health, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, G12 8QB, Glasgow, UK.
| |
Collapse
|
35
|
Jensen O, Pan Y, Frisson S, Wang L. An oscillatory pipelining mechanism supporting previewing during visual exploration and reading. Trends Cogn Sci 2021; 25:1033-1044. [PMID: 34544653 PMCID: PMC7615059 DOI: 10.1016/j.tics.2021.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/15/2022]
Abstract
Humans have a remarkable ability to efficiently explore visual scenes and text using eye movements. Humans typically make eye movements (saccades) every ~250 ms. Since saccade initiation and execution take 100 ms, this leaves only ~150 ms to recognize the fixated object (or word) while simultaneously previewing candidates for the next saccade goal. We propose a pipelining mechanism where serial processing occurs within a specific brain region, whereas parallel processing occurs across different brain regions. The mechanism is timed by alpha oscillations that coordinate the saccades, visual recognition, and previewing in the cortical hierarchy. Consequently, the neuronal mechanism supporting natural vision and saccades must be studied in unison to uncover the brain mechanisms supporting visual exploration and reading.
Collapse
Affiliation(s)
- Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Yali Pan
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Steven Frisson
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
| | - Lin Wang
- Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Psychology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
36
|
Griffiths BJ, Martín-Buro MC, Staresina BP, Hanslmayr S. Disentangling neocortical alpha/beta and hippocampal theta/gamma oscillations in human episodic memory formation. Neuroimage 2021; 242:118454. [PMID: 34358658 PMCID: PMC8463840 DOI: 10.1016/j.neuroimage.2021.118454] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
To form an episodic memory, we must first process a vast amount of sensory information about the to-be-encoded event and then bind these sensory representations together to form a coherent memory trace. While these two cognitive capabilities are thought to have two distinct neural origins, with neocortical alpha/beta oscillations supporting information representation and hippocampal theta-gamma phase-amplitude coupling supporting mnemonic binding, evidence for a dissociation between these two neural markers is conspicuously absent. To address this, seventeen human participants completed an associative memory task that first involved processing information about three sequentially-presented stimuli, and then binding these stimuli together into a coherent memory trace, all the while undergoing MEG recordings. We found that decreases in neocortical alpha/beta power during sequence perception, but not mnemonic binding, correlated with enhanced memory performance. Hippocampal theta/gamma phase-amplitude coupling, however, showed the opposite pattern; increases during mnemonic binding (but not sequence perception) correlated with enhanced memory performance. These results demonstrate that memory-related decreases in neocortical alpha/beta power and memory-related increases in hippocampal theta/gamma phase-amplitude coupling arise at distinct stages of the memory formation process. We speculate that this temporal dissociation reflects a functional dissociation in which neocortical alpha/beta oscillations could support the processing of incoming information relevant to the memory, while hippocampal theta-gamma phase-amplitude coupling could support the binding of this information into a coherent memory trace.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany; School of Psychology, University of Birmingham, UK; Centre for Human Brain Health, University of Birmingham, UK.
| | | | - Bernhard P Staresina
- School of Psychology, University of Birmingham, UK; Centre for Human Brain Health, University of Birmingham, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, UK; Centre for Human Brain Health, University of Birmingham, UK; Institute for Neuroscience and Psychology, University of Glasgow, UK.
| |
Collapse
|
37
|
Abubaker M, Al Qasem W, Kvašňák E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front Psychol 2021; 12:756661. [PMID: 34744934 PMCID: PMC8566716 DOI: 10.3389/fpsyg.2021.756661] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
38
|
Yang AI, Dikecligil GN, Jiang H, Das SR, Stein JM, Schuele SU, Rosenow JM, Davis KA, Lucas TH, Gottfried JA. The what and when of olfactory working memory in humans. Curr Biol 2021; 31:4499-4511.e8. [PMID: 34450088 DOI: 10.1016/j.cub.2021.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
Encoding and retaining novel sequences of sensory stimuli in working memory is crucial for adaptive behavior. A fundamental challenge for the central nervous system is to maintain each sequence item in an active and discriminable state, while also preserving their temporal context. Nested neural oscillations have been postulated to disambiguate the "what" and "when" of sequences, but the mechanisms by which these multiple streams of information are coordinated in the human brain remain unclear. Drawing from foundational animal studies, we recorded local field potentials from the human piriform cortex and hippocampus during a working memory task in which subjects experienced sequences of three distinct odors. Our data revealed a unique organization of odor memories across multiple timescales of the theta rhythm. During encoding, odors elicited greater gamma at distinct theta phases in both regions, time stamping their positions in the sequence, whereby the robustness of this effect was predictive of temporal order memory. During maintenance, stimulus-driven patterns of theta-coupled gamma were spontaneously reinstated in piriform cortex, recapitulating the order of the initial sequence. Replay events were time compressed across contiguous theta cycles, coinciding with periods of enhanced piriform-hippocampal theta-phase synchrony, and their prevalence forecasted subsequent recall accuracy on a trial-by-trial basis. Our data provide a novel link between endogenous replay orchestrated by the theta rhythm and short-term retention of sequential memories in the human brain.
Collapse
Affiliation(s)
- Andrew I Yang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gulce N Dikecligil
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heidi Jiang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sandhitsu R Das
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan U Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua M Rosenow
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Abstract
While behavioral evidence shows that volitionally controlled learning benefits human memory, little is known about the neural mechanisms underlying this effect. Insights from spatial navigation research in rodents point to the relevance of hippocampal theta oscillations. However, the mechanisms through which theta might support the beneficial effects of active learning in humans are currently unknown. Here, we demonstrate hippocampal theta oscillations increase during volitional learning, promoting a segregation of task-relevant representational signals according to their semantic content. Our results constitute a direct link to the animal literature on hippocampal theta oscillations and its relation to volition and memory processes. Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4–12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3–8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions. Active learning increased memory performance and hippocampal theta oscillations and promoted a more accurate reactivation of stimulus-specific information during memory retrieval. Representational signals were clustered to opposite phases of the theta cycle during encoding and retrieval. Critically, during active but not passive learning, the temporal structure of intracycle reactivations in theta reflected the semantic similarity of stimuli, segregating conceptually similar items into more distant theta phases. Taken together, these results demonstrate a multilayered mechanism by which active learning improves memory via a phylogenetically old phase coding scheme.
Collapse
|
40
|
Reddy L, Self MW, Zoefel B, Poncet M, Possel JK, Peters JC, Baayen JC, Idema S, VanRullen R, Roelfsema PR. Theta-phase dependent neuronal coding during sequence learning in human single neurons. Nat Commun 2021; 12:4839. [PMID: 34376673 PMCID: PMC8355141 DOI: 10.1038/s41467-021-25150-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
The ability to maintain a sequence of items in memory is a fundamental cognitive function. In the rodent hippocampus, the representation of sequentially organized spatial locations is reflected by the phase of action potentials relative to the theta oscillation (phase precession). We investigated whether the timing of neuronal activity relative to the theta brain oscillation also reflects sequence order in the medial temporal lobe of humans. We used a task in which human participants learned a fixed sequence of pictures and recorded single neuron and local field potential activity with implanted electrodes. We report that spikes for three consecutive items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately preceding and following it) were phase-locked at distinct phases of the theta oscillation. Consistent with phase precession, spikes were fired at progressively earlier phases as the sequence advanced. These findings generalize previous findings in the rodent hippocampus to the human temporal lobe and suggest that encoding stimulus information at distinct oscillatory phases may play a role in maintaining sequential order in memory.
Collapse
Affiliation(s)
- Leila Reddy
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France.
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France.
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France.
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
| | - Benedikt Zoefel
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
| | - Marlène Poncet
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
| | - Jessy K Possel
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
| | - Judith C Peters
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes C Baayen
- Amsterdam University Medical Centers, location VUmc, Departments of Neurophysiology and Neurosurgery, Amsterdam, The Netherlands
| | - Sander Idema
- Amsterdam University Medical Centers, location VUmc, Departments of Neurophysiology and Neurosurgery, Amsterdam, The Netherlands
| | - Rufin VanRullen
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
- Psychiatry Department, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Ten Oever S, Martin AE. An oscillating computational model can track pseudo-rhythmic speech by using linguistic predictions. eLife 2021; 10:68066. [PMID: 34338196 PMCID: PMC8328513 DOI: 10.7554/elife.68066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Neuronal oscillations putatively track speech in order to optimize sensory processing. However, it is unclear how isochronous brain oscillations can track pseudo-rhythmic speech input. Here we propose that oscillations can track pseudo-rhythmic speech when considering that speech time is dependent on content-based predictions flowing from internal language models. We show that temporal dynamics of speech are dependent on the predictability of words in a sentence. A computational model including oscillations, feedback, and inhibition is able to track pseudo-rhythmic speech input. As the model processes, it generates temporal phase codes, which are a candidate mechanism for carrying information forward in time. The model is optimally sensitive to the natural temporal speech dynamics and can explain empirical data on temporal speech illusions. Our results suggest that speech tracking does not have to rely only on the acoustics but could also exploit ongoing interactions between oscillations and constraints flowing from internal language models.
Collapse
Affiliation(s)
- Sanne Ten Oever
- Language and Computation in Neural Systems group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Andrea E Martin
- Language and Computation in Neural Systems group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.,Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
42
|
Huang Q, Zhang H, Luo H. Sequence structure organizes items in varied latent states of working memory neural network. eLife 2021; 10:67589. [PMID: 34308840 PMCID: PMC8328517 DOI: 10.7554/elife.67589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/25/2021] [Indexed: 01/23/2023] Open
Abstract
In memory experiences, events do not exist independently but are linked with each other via structure-based organization. Structure context largely influences memory behavior, but how it is implemented in the brain remains unknown. Here, we combined magnetoencephalogram (MEG) recordings, computational modeling, and impulse-response approaches to probe the latent states when subjects held a list of items in working memory (WM). We demonstrate that sequence context reorganizes WM items into distinct latent states, that is, being reactivated at different latencies during WM retention, and the reactivation profiles further correlate with recency behavior. In contrast, memorizing the same list of items without sequence task requirements weakens the recency effect and elicits comparable neural reactivations. Computational modeling further reveals a dominant function of sequence context, instead of passive memory decaying, in characterizing recency effect. Taken together, sequence structure context shapes the way WM items are stored in the human brain and essentially influences memory behavior.
Collapse
Affiliation(s)
- Qiaoli Huang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Huihui Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
43
|
Is short-term memory capacity (7±2) really predicted by theta to gamma cycle length ratio? Behav Brain Res 2021; 414:113465. [PMID: 34265319 DOI: 10.1016/j.bbr.2021.113465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022]
Abstract
Several studies suggest that EEG parameters, reflecting top-down processes in the brain, may predict cognitive performance, e.g. short-term memory (STM) capacity. According to Lisman and Idiart's model, STM capacity is predicted by theta and gamma EEG waves and their ratio. This model suggests that the more periods of gamma band waves fit into one period of theta band waves, the more information can be stored. We replicated the study by Kaminski et al. (2011), which recorded spontaneous EEG activity and measured verbal STM capacity with a modified digit span task from the Wechsler battery. Our study included more subjects and two EEG recording sessions. We discuss the possible limits of EEG correlates of STM capacity as EEG parameters were not stable across the two measurements and no correlation was found between the theta/gamma ratio and performance in the digit span task.
Collapse
|
44
|
Protachevicz PR, Hansen M, Iarosz KC, Caldas IL, Batista AM, Kurths J. Emergence of Neuronal Synchronisation in Coupled Areas. Front Comput Neurosci 2021; 15:663408. [PMID: 33967729 PMCID: PMC8100315 DOI: 10.3389/fncom.2021.663408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
One of the most fundamental questions in the field of neuroscience is the emergence of synchronous behaviour in the brain, such as phase, anti-phase, and shift-phase synchronisation. In this work, we investigate how the connectivity between brain areas can influence the phase angle and the neuronal synchronisation. To do this, we consider brain areas connected by means of excitatory and inhibitory synapses, in which the neuron dynamics is given by the adaptive exponential integrate-and-fire model. Our simulations suggest that excitatory and inhibitory connections from one area to another play a crucial role in the emergence of these types of synchronisation. Thus, in the case of unidirectional interaction, we observe that the phase angles of the neurons in the receiver area depend on the excitatory and inhibitory synapses which arrive from the sender area. Moreover, when the neurons in the sender area are synchronised, the phase angle variability of the receiver area can be reduced for some conductance values between the areas. For bidirectional interactions, we find that phase and anti-phase synchronisation can emerge due to excitatory and inhibitory connections. We also verify, for a strong inhibitory-to-excitatory interaction, the existence of silent neuronal activities, namely a large number of excitatory neurons that remain in silence for a long time.
Collapse
Affiliation(s)
- Paulo R Protachevicz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Matheus Hansen
- Computer Science Department, Institute of Science and Technology, Federal University of São Paulo - UNIFESP, São José dos Campos, Brazil
| | - Kelly C Iarosz
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Faculdade de Telêmaco Borba, Telêmaco Borba, Brazil.,Graduate Program in Chemical Engineering, Federal University of Technology Paraná, Ponta Grossa, Brazil
| | - Iberê L Caldas
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Antonio M Batista
- Applied Physics Department, Institute of Physics, University of São Paulo, São Paulo, Brazil.,Department of Mathematics and Statistics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jürgen Kurths
- Department Complexity Science, Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University, Berlin, Germany.,Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
45
|
Li J, Huang Q, Han Q, Mi Y, Luo H. Temporally coherent perturbation of neural dynamics during retention alters human multi-item working memory. Prog Neurobiol 2021; 201:102023. [PMID: 33617918 DOI: 10.1016/j.pneurobio.2021.102023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/01/2021] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
Temporarily storing a list of items in working memory (WM), a fundamental ability in cognition, has been posited to rely on the temporal dynamics of multi-item neural representations during retention. However, the causal evidence, particularly in human subjects, is still lacking, let alone WM manipulation. Here, we develop a novel "dynamic perturbation" approach to manipulate the relative memory strength of WM items held in human brain, by presenting temporally correlated luminance sequences during retention to interfere with the multi-item neural dynamics. Six experiments on more than 150 subjects confirm the effectiveness of this WM manipulation approach. A computational model combining continuous attractor neural network (CANN) and short-term synaptic plasticity (STP) principles further reproduces all the empirical findings. The model reveals that the "dynamic perturbation" modifies the synaptic efficacies of WM items through STP principles, eventually leading to changes in their relative memory strengths. Our results support the causal role of temporal dynamics of neural network in mediating multi-item WM, and offer a promising, purely bottom-up approach to manipulate WM.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Qiaoli Huang
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China
| | - Qiming Han
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanyuan Mi
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; AI Research Center, Peng Cheng Laboratory, Shenzhen 518005, China.
| | - Huan Luo
- School of Psychological and Cognitive Sciences, Peking University, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, China.
| |
Collapse
|
46
|
Stable maintenance of multiple representational formats in human visual short-term memory. Proc Natl Acad Sci U S A 2020; 117:32329-32339. [PMID: 33288707 DOI: 10.1073/pnas.2006752117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Visual short-term memory (VSTM) enables humans to form a stable and coherent representation of the external world. However, the nature and temporal dynamics of the neural representations in VSTM that support this stability are barely understood. Here we combined human intracranial electroencephalography (iEEG) recordings with analyses using deep neural networks and semantic models to probe the representational format and temporal dynamics of information in VSTM. We found clear evidence that VSTM maintenance occurred in two distinct representational formats which originated from different encoding periods. The first format derived from an early encoding period (250 to 770 ms) corresponded to higher-order visual representations. The second format originated from a late encoding period (1,000 to 1,980 ms) and contained abstract semantic representations. These representational formats were overall stable during maintenance, with no consistent transformation across time. Nevertheless, maintenance of both representational formats showed substantial arrhythmic fluctuations, i.e., waxing and waning in irregular intervals. The increases of the maintained representational formats were specific to the phases of hippocampal low-frequency activity. Our results demonstrate that human VSTM simultaneously maintains representations at different levels of processing, from higher-order visual information to abstract semantic representations, which are stably maintained via coupling to hippocampal low-frequency activity.
Collapse
|
47
|
Pavlov YG, Kotchoubey B. Oscillatory brain activity and maintenance of verbal and visual working memory: A systematic review. Psychophysiology 2020; 59:e13735. [PMID: 33278030 DOI: 10.1111/psyp.13735] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Brain oscillations likely play a significant role in the storage of information in working memory (WM). Despite the wide popularity of the topic, current attempts to summarize the research in the field are narrative reviews. We address this gap by providing a descriptive systematic review, in which we investigated oscillatory correlates of maintenance of verbal and visual information in WM. The systematic approach enabled us to challenge some common views popularized by previous research. The identified literature (100 EEG/MEG studies) highlighted the importance of theta oscillations in verbal WM: frontal midline theta enhanced with load in most verbal studies, while more equivocal results have been obtained in visual studies. Increasing WM load affected alpha activity in most studies, but the direction of the effect was inconsistent: the ratio of studies that found alpha increase versus decrease with increasing load was 80/20% in the verbal WM domain and close to 60/40% in the visual domain. Alpha asymmetry (left < right) was a common finding in both verbal and visual WM studies. Beta and gamma activity studies yielded the least convincing data: a diversity in the spatial and frequency distribution of beta activity prevented us from making a coherent conclusion; gamma rhythm was virtually neglected in verbal WM studies with no systematic support for sustained gamma changes during the delay in EEG studies in general.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.,Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Abstract
The organization of temporal information is critical for the encoding and retrieval of episodic memories. In the rodent hippocampus and entorhinal cortex, evidence accumulated over the last decade suggests that populations of "time cells" in the hippocampus encode temporal information. We identify time cells in humans using intracranial microelectrode recordings obtained from 27 human epilepsy patients who performed an episodic memory task. We show that time cell activity predicts the temporal organization of retrieved memory items. We also uncover evidence of ramping cell activity in humans, which represents a complementary type of temporal information. These findings establish a cellular mechanism for the representation of temporal information in the human brain needed to form episodic memories.
Collapse
|
49
|
Stokes MG, Muhle-Karbe PS, Myers NE. Theoretical distinction between functional states in working memory and their corresponding neural states. VISUAL COGNITION 2020; 28:420-432. [PMID: 33223922 PMCID: PMC7655036 DOI: 10.1080/13506285.2020.1825141] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
Working memory (WM) is important for guiding behaviour, but not always for the next possible action. Here we define a WM item that is currently relevant for guiding behaviour as the functionally "active" item; whereas items maintained in WM, but not immediately relevant to behaviour, are defined as functionally "latent". Traditional neurophysiological theories of WM proposed that content is maintained via persistent neural activity (e.g., stable attractors); however, more recent theories have highlighted the potential role for "activity-silent" mechanisms (e.g., short-term synaptic plasticity). Given these somewhat parallel dichotomies, functionally active and latent cognitive states of WM have been associated with storage based on persistent-activity and activity-silent neural mechanisms, respectively. However, in this article we caution against a one-to-one correspondence between functional and activity states. We argue that the principal theoretical requirement for active and latent WM is that the corresponding neural states play qualitatively different functional roles. We consider a number of candidate solutions, and conclude that the neurophysiological mechanisms for functionally active and latent WM items are theoretically independent of the distinction between persistent activity-based and activity-silent forms of WM storage.
Collapse
Affiliation(s)
- Mark G. Stokes
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Paul S. Muhle-Karbe
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nicholas E. Myers
- Wellcome Centre for Integrative Neuroimaging and Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Lu J, Luo L, Wang Q, Fang F, Chen N. Cue-triggered activity replay in human early visual cortex. SCIENCE CHINA-LIFE SCIENCES 2020; 64:144-151. [PMID: 32557289 DOI: 10.1007/s11427-020-1726-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
Abstract
The recall of learned temporal sequences by a visual cue is an important form of experience-based neural plasticity. Here we observed such reactivation in awake human visual cortex using intracranial recording. After repeated exposure to a moving dot, a flash of the dot was able to trigger neural reactivation in the downstream receptive field along the motion path. This effect was observed only when the cue appeared near the receptive field. The estimated traveling speed was faster compared to the activation induced by the real motion. We suggest a range-limited, time-compressed reactivation as a result of repeated visual exposure in awake human visual cortex.
Collapse
Affiliation(s)
- Junshi Lu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Lu Luo
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Qian Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China.,Department of Clinical Neuropsychology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, 100871, China. .,IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100084, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|