1
|
Day KP, Tan MH, He Q, Ruybal-Pesántez S, Zhan Q, Tiedje KE, Pascual M. Var genes, strain hyperdiversity, and malaria transmission dynamics. Trends Parasitol 2025:S1471-4922(25)00104-7. [PMID: 40393890 DOI: 10.1016/j.pt.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
The microbiological paradigm for surveillance of diverse pathogens requires knowledge of the variation of the major surface antigen under the most intense immune selection as immune responses to these antigens drive transmission dynamics. This creates a pathway for population genetics/genomics to be combined with mathematical modelling to describe transmission dynamics to inform public health policy. Here we consider how we can bring population genetics and population dynamics together for a highly recombining pathogen like Plasmodium falciparum. We do this through the lens of what has been recently learnt about the population genetics of the var multigene family encoding the major surface antigen of the blood stages of Plasmodium falciparum, known as PfEMP1.
Collapse
Affiliation(s)
- Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia.
| | - Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Mercedes Pascual
- Department of Biology and Department of Environmental Studies, New York University, New York, NY, USA
| |
Collapse
|
2
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, Jensen ATR, Rambhatla JS, Opi DH, Duffy MF, Takashima E, Harawa V, Tsuboi T, Simpson JA, Mandala W, Taylor TE, Seydel KB, Chung AW, Rogerson SJ. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. BMC Med 2024; 22:388. [PMID: 39267089 PMCID: PMC11396342 DOI: 10.1186/s12916-024-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins are expressed on the surface of infected erythrocytes, mediating parasite sequestration in the vasculature. PfEMP1 is a major target of protective antibodies, but the features of the antibody response are poorly defined. METHODS In Malawian children with cerebral or uncomplicated malaria, we characterized the antibody response to 39 recombinant PfEMP1 Duffy binding like (DBL) domains or cysteine-rich interdomain regions (CIDRs) in detail, including measures of antibody classes, subclasses, and engagement with Fcγ receptors and complement. Using elastic net regularized logistic regression, we identified a combination of seven antibody targets and Fc features that best distinguished between children with cerebral and uncomplicated malaria. To confirm the role of the selected targets and Fc features, we measured antibody-dependent neutrophil and THP-1 cell phagocytosis of intercellular adhesion molecule-1 (ICAM-1) and endothelial protein C (EPCR) co-binding infected erythrocytes. RESULTS The selected features distinguished between children with cerebral and uncomplicated malaria with 87% accuracy (median, 80-96% interquartile range) and included antibody to well-characterized DBLβ3 domains and a less well-characterized CIDRγ12 domain. The abilities of antibodies to engage C1q and FcγRIIIb, rather than levels of IgG, correlated with protection. In line with a role of FcγRIIIb binding antibodies to DBLβ3 domains, antibody-dependent neutrophil phagocytosis of ICAM-1 and EPCR co-binding IE was higher in uncomplicated malaria (15% median, 8-38% interquartile range) compared to cerebral malaria (7%, 30-15%, p < 0.001). CONCLUSIONS Antibodies associated with protection from cerebral malaria target a subset of PfEMP1 domains. The Fc features of protective antibody response include engagement of FcγRIIIb and C1q, and ability to induce antibody-dependent neutrophil phagocytosis of infected erythrocytes. Identifying the targets and Fc features of protective immunity could facilitate the development of PfEMP1-based therapeutics for cerebral malaria.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Agersew Alemu
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janavi S Rambhatla
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - D Herbert Opi
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Visopo Harawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wilson Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Terrie E Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
6
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
7
|
Tebben K, Yirampo S, Coulibaly D, Koné AK, Laurens MB, Stucke EM, Dembélé A, Tolo Y, Traoré K, Niangaly A, Berry AA, Kouriba B, Plowe CV, Doumbo OK, Lyke KE, Takala-Harrison S, Thera MA, Travassos MA, Serre D. Gene expression analyses reveal differences in children's response to malaria according to their age. Nat Commun 2024; 15:2021. [PMID: 38448421 PMCID: PMC10918175 DOI: 10.1038/s41467-024-46416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.
Collapse
Affiliation(s)
- Kieran Tebben
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Salif Yirampo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Drissa Coulibaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Abdoulaye K Koné
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Matthew B Laurens
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emily M Stucke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ahmadou Dembélé
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Youssouf Tolo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Karim Traoré
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Amadou Niangaly
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Andrea A Berry
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bourema Kouriba
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Christopher V Plowe
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ogobara K Doumbo
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Kirsten E Lyke
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahamadou A Thera
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies, Bamako, Mali
| | - Mark A Travassos
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Amwoma JG, Kituyi S, Wakoli DM, Ochora DO, Chemwor G, Maisiba R, Okore W, Opot B, Juma D, Muok EM, Garges EC, Egbo TE, Nyabuga FN, Andagalu B, Akala HM. Comparative analysis of peripheral whole blood transcriptome from asymptomatic carriers reveals upregulation of subsets of surface proteins implicated in Plasmodium falciparum phenotypic plasticity. Biochem Biophys Rep 2024; 37:101596. [PMID: 38146350 PMCID: PMC10749222 DOI: 10.1016/j.bbrep.2023.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
The molecular mechanism underlying Plasmodium falciparum's persistence in the asymptomatic phase of infection remains largely unknown. However, large-scale shifts in the parasites' gene expression during asymptomatic infections may enhance phenotypic plasticity, maximizing their fitness and leading to the persistence of the asymptomatic infections. To uncover these mechanisms, we aimed to identify parasite genetic factors implicated in asymptomatic infections through whole transcriptome analysis. We analyzed publicly available transcriptome datasets containing asymptomatic malaria (ASM), uncomplicated malaria (SM), and malaria-naïve (NSM) samples from 35 subjects for differentially expressed genes (DEGs) and long noncoding RNAs. Our analysis identified 755 and 1773 DEGs in ASM vs SM and NSM, respectively. These DEGs revealed sets of genes coding for proteins of unknown functions (PUFs) upregulated in ASM vs SM and ASM, suggesting their role in underlying fundamental molecular mechanisms during asymptomatic infections. Upregulated genes in ASM vs SM revealed a subset of 24 clonal variant genes (CVGs) involved in host-parasite and symbiotic interactions and modulation of the symbiont of host erythrocyte aggregation pathways. Moreover, we identified 237 differentially expressed noncoding RNAs in ASM vs SM, of which 11 were found to interact with CVGs, suggesting their possible role in regulating the expression of CVGs. Our results suggest that P. falciparum utilizes phenotypic plasticity as an adaptive mechanism during asymptomatic infections by upregulating clonal variant genes, with long noncoding RNAs possibly playing a crucial role in their regulation. Thus, our study provides insights into the parasites' genetic factors that confer a fitness advantage during asymptomatic infections.
Collapse
Affiliation(s)
- Joseph G. Amwoma
- Department of Biological Sciences, University of Embu, Kenya
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Sarah Kituyi
- Department of Biological Sciences, University of Embu, Kenya
- Forgarty International Center of the National Institutes of Health, Bethesda, MD, USA
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | - Douglas O. Ochora
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, Kenya
- DSI/NWU, Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Gladys Chemwor
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Risper Maisiba
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Winnie Okore
- Department of Biomedical Sciences and Technology, Maseno University, Kenya
| | - Benjamin Opot
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Dennis Juma
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Eric M.O. Muok
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eric C. Garges
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | - Timothy E. Egbo
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya
| | | | - Ben Andagalu
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Hoseah M. Akala
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| |
Collapse
|
9
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of antimalarial drug resistance. eLife 2024; 12:RP90888. [PMID: 38363295 PMCID: PMC10942604 DOI: 10.7554/elife.90888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - John K Chaillet
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| |
Collapse
|
10
|
Fraering J, Salnot V, Gautier EF, Ezinmegnon S, Argy N, Peoc'h K, Manceau H, Alao J, Guillonneau F, Migot-Nabias F, Bertin GI, Kamaliddin C. Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria. EMBO Mol Med 2024; 16:319-333. [PMID: 38297098 PMCID: PMC10897182 DOI: 10.1038/s44321-023-00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
Cerebral malaria (CM), the most lethal complication of Plasmodium falciparum severe malaria (SM), remains fatal for 15-25% of affected children despite the availability of treatment. P. falciparum infects and multiplies in erythrocytes, contributing to anemia, parasite sequestration, and inflammation. An unbiased proteomic assessment of infected erythrocytes and plasma samples from 24 Beninese children was performed to study the complex mechanisms underlying CM. A significant down-regulation of proteins from the ubiquitin-proteasome pathway and an up-regulation of the erythroid precursor marker transferrin receptor protein 1 (TFRC) were associated with infected erythrocytes from CM patients. At the plasma level, the samples clustered according to clinical presentation. Significantly, increased levels of the 20S proteasome components were associated with SM. Targeted quantification assays confirmed these findings on a larger cohort (n = 340). These findings suggest that parasites causing CM preferentially infect reticulocytes or erythroblasts and alter their maturation. Importantly, the host plasma proteome serves as a specific signature of SM and presents a remarkable opportunity for developing innovative diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Jeremy Fraering
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Virginie Salnot
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
| | - Emilie-Fleur Gautier
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Institut Imagine-INSERM U1163, Hôpital Necker, Université Paris Cité, F-75015, Paris, France
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Sem Ezinmegnon
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | - Nicolas Argy
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France
- Laboratoire de parasitologie, Hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Katell Peoc'h
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Centre de Recherche sur l'Inflammation, UFR de Médecine Xavier Bichat, Université Paris Cité, INSERM UMR1149, Paris, France
| | - Hana Manceau
- Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
- Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, APHP, Paris, France
- Département de Biochimie, Hôpital Universitaire Beaujon, APHP, Clichy, France
| | - Jules Alao
- Service de Pédiatrie, Centre Hospitalier Universitaire de la Mère et de l'Enfant-Lagune de Cotonou, Cotonou, Benin
| | - François Guillonneau
- Plateforme Proteom'IC, Institut Cochin, Université Paris Cité, INSERM U-1016, CNRS UMR8104, Paris, France
- Unité OncoProtéomique, Institut de Cancérologie de l'Ouest, F-49055, Angers, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | | | - Gwladys I Bertin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
| | - Claire Kamaliddin
- UMR261 MERIT, Université Paris Cité, IRD, F-75006, Paris, France.
- Cumming School of Medicine, The University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Kimenyi KM, Akinyi MY, Mwikali K, Gilmore T, Mwangi S, Omer E, Gichuki B, Wambua J, Njunge J, Obiero G, Bejon P, Langhorne J, Abdi A, Ochola-Oyier LI. Distinct transcriptomic signatures define febrile malaria depending on initial infective states, asymptomatic or uninfected. BMC Infect Dis 2024; 24:140. [PMID: 38287287 PMCID: PMC10823747 DOI: 10.1186/s12879-024-08973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cumulative malaria parasite exposure in endemic regions often results in the acquisition of partial immunity and asymptomatic infections. There is limited information on how host-parasite interactions mediate the maintenance of chronic symptomless infections that sustain malaria transmission. METHODS Here, we determined the gene expression profiles of the parasite population and the corresponding host peripheral blood mononuclear cells (PBMCs) from 21 children (< 15 years). We compared children who were defined as uninfected, asymptomatic and those with febrile malaria. RESULTS Children with asymptomatic infections had a parasite transcriptional profile characterized by a bias toward trophozoite stage (~ 12 h-post invasion) parasites and low parasite levels, while early ring stage parasites were characteristic of febrile malaria. The host response of asymptomatic children was characterized by downregulated transcription of genes associated with inflammatory responses, compared with children with febrile malaria,. Interestingly, the host responses during febrile infections that followed an asymptomatic infection featured stronger inflammatory responses, whereas the febrile host responses from previously uninfected children featured increased humoral immune responses. CONCLUSIONS The priming effect of prior asymptomatic infection may explain the blunted acquisition of antibody responses seen to malaria antigens following natural exposure or vaccination in malaria endemic areas.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | - Kioko Mwikali
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Shaban Mwangi
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - Elisha Omer
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - James Njunge
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
| | - George Obiero
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Philip Bejon
- KEMRI‑Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
12
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
13
|
Azizan S, Selvarajah SA, Tang J, Jeninga MD, Schulz D, Pareek K, Herr T, Day KP, De Koning-Ward TF, Petter M, Duffy MF. The P. falciparum alternative histones Pf H2A.Z and Pf H2B.Z are dynamically acetylated and antagonized by PfSir2 histone deacetylases at heterochromatin boundaries. mBio 2023; 14:e0201423. [PMID: 37882786 PMCID: PMC10746207 DOI: 10.1128/mbio.02014-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The malaria parasite Plasmodium falciparum relies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulating P. falciparum variant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation in P. falciparum may aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.
Collapse
Affiliation(s)
- Suffian Azizan
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Shamista A. Selvarajah
- School of BioSciences, The University of Melbourne, Melbourne, Australia
- Bio21 Institute, Parkville, Victoria, Australia
| | - Jingyi Tang
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Myriam D. Jeninga
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | - Kapil Pareek
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Herr
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Karen P. Day
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Tania F. De Koning-Ward
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Australia
| | - Michaela Petter
- Universitätsklinikum Erlangen, Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael F. Duffy
- Bio21 Institute, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531320. [PMID: 37987011 PMCID: PMC10659383 DOI: 10.1101/2023.03.06.531320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The establishment and spread of anti-malarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in Sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John K. Chaillet
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
16
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
17
|
Barua P, Duffy MF, Manning L, Laman M, Davis TME, Mueller I, Haghiri A, Simpson JA, Beeson JG, Rogerson SJ. Antibody to Plasmodium falciparum Variant Surface Antigens, var Gene Transcription, and ABO Blood Group in Children With Severe or Uncomplicated Malaria. J Infect Dis 2023; 228:1099-1107. [PMID: 37341543 PMCID: PMC10582907 DOI: 10.1093/infdis/jiad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Antibodies to variant surface antigens (VSAs) such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) may vary with malaria severity. The influence of ABO blood group on antibody development is not understood. METHODS Immunoglobulin G antibodies to VSAs in Papua New Guinean children with severe (n = 41) or uncomplicated (n = 30) malaria were measured by flow cytometry using homologous P falciparum isolates. Isolates were incubated with ABO-matched homologous and heterologous acute and convalescent plasma. RNA was used to assess var gene transcription. RESULTS Antibodies to homologous, but not heterologous, isolates were boosted in convalescence. The relationship between antibody and severity varied by blood group. Antibodies to VSAs were similar in severe and uncomplicated malaria at presentation, higher in severe than uncomplicated malaria in convalescence, and higher in children with blood group O than other children. Six var gene transcripts best distinguished severe from uncomplicated malaria, including UpsA and 2 CIDRα1 domains. CONCLUSIONS ABO blood group may influence antibody acquisition to VSAs and susceptibility to severe malaria. Children in Papua New Guinea showed little evidence of acquisition of cross-reactive antibodies following malaria. Var gene transcripts in Papua New Guinean children with severe malaria were similar to those reported from Africa.
Collapse
Affiliation(s)
- Priyanka Barua
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
| | - Michael F Duffy
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Bio21 Institute, University of Melbourne, Parkville, Victoria
| | | | - Moses Laman
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang
| | | | - Ivo Mueller
- Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Parasites and Insect Vector, Institut Pasteur, Paris, France
| | - Ali Haghiri
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - James G Beeson
- Malaria Immunity and Vaccines Laboratory, Burnet Institute, Melbourne
- Central Clinical School and Department of Microbiology, Monash University, Clayton
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Thompson TA, Chahine Z, Le Roch KG. The role of long noncoding RNAs in malaria parasites. Trends Parasitol 2023; 39:517-531. [PMID: 37121862 PMCID: PMC11695068 DOI: 10.1016/j.pt.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/02/2023]
Abstract
The human malaria parasites, including Plasmodium falciparum, persist as a major cause of global morbidity and mortality. The recent stalling of progress toward malaria elimination substantiates a need for novel interventions. Controlled gene expression is central to the parasite's numerous life cycle transformations and adaptation. With few specific transcription factors (TFs) identified, crucial roles for chromatin states and epigenetics in parasite transcription have become evident. Although many chromatin-modifying enzymes are known, less is known about which factors mediate their impacts on transcriptional variation. Like those of higher eukaryotes, long noncoding RNAs (lncRNAs) have recently been shown to have integral roles in parasite gene regulation. This review aims to summarize recent developments and key findings on the role of lncRNAs in P. falciparum.
Collapse
Affiliation(s)
- Trevor A Thompson
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA.
| |
Collapse
|
19
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
20
|
Tan MH, Shim H, Chan YB, Day KP. Unravelling var complexity: Relationship between DBLα types and var genes in Plasmodium falciparum. FRONTIERS IN PARASITOLOGY 2023; 1:1006341. [PMID: 36998722 PMCID: PMC10060044 DOI: 10.3389/fpara.2022.1006341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023]
Abstract
The enormous diversity and complexity of var genes that diversify rapidly by recombination has led to the exclusion of assembly of these genes from major genome initiatives (e.g., Pf6). A scalable solution in epidemiological surveillance of var genes is to use a small 'tag' region encoding the immunogenic DBLα domain as a marker to estimate var diversity. As var genes diversify by recombination, it is not clear the extent to which the same tag can appear in multiple var genes. This relationship between marker and gene has not been investigated in natural populations. Analyses of in vitro recombination within and between var genes have suggested that this relationship would not be exclusive. Using a dataset of publicly-available assembled var sequences, we test this hypothesis by studying DBLα-var relationships for four study sites in four countries: Pursat (Cambodia) and Mae Sot (Thailand), representing low malaria transmission, and Navrongo (Ghana) and Chikwawa (Malawi), representing high malaria transmission. In all study sites, DBLα-var relationships were shown to be predominantly 1-to-1, followed by a second largest proportion of 1-to-2 DBLα-var relationships. This finding indicates that DBLα tags can be used to estimate not just DBLα diversity but var gene diversity when applied in a local endemic area. Epidemiological applications of this result are discussed.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| | - Heejung Shim
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Ruybal-Pesántez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, Amenga-Etego L, Oduro AR, Koram KA, Pascual M, Day KP. Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol 2022; 52:721-731. [PMID: 35093396 PMCID: PMC9339046 DOI: 10.1016/j.ijpara.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
Collapse
Affiliation(s)
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia
| | - Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, USA,Department of Life Sciences, Ben-Gurion University, Be’er-Sheva, Israel
| | - Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Bioinformatics Division, Walter and Eliza Hall Institute of Medial Research, Australia
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, USA
| | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology and Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Ghana,Navrongo Health Research Centre, Ghana Health Service, Ghana
| | | | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia,Corresponding author. (K.P. Day)
| |
Collapse
|
22
|
Thomson-Luque R, Votborg-Novél L, Osório NS, Portugal S. Reply to: Relationship of circulating Plasmodium falciparum lifecycle stage to circulating parasitemia and total parasite biomass. Nat Commun 2022; 13:5558. [PMID: 36151088 PMCID: PMC9508074 DOI: 10.1038/s41467-022-32998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/26/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Richard Thomson-Luque
- Centre of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lasse Votborg-Novél
- Centre of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Silvia Portugal
- Centre of Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
23
|
Duffy MF, Tonkin-Hill GQ, Trianty L, Noviyanti R, Nguyen HHT, Rambhatla JS, McConville MJ, Rogerson SJ, Brown GV, Price RN, Anstey NM, Day KP, Papenfuss AT. Relationship of circulating Plasmodium falciparum lifecycle stage to circulating parasitemia and total parasite biomass. Nat Commun 2022; 13:5557. [PMID: 36151085 PMCID: PMC9508081 DOI: 10.1038/s41467-022-32996-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 08/26/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Michael F Duffy
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Melbourne, VIC, Australia.
| | | | - Leily Trianty
- The Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Hanh H T Nguyen
- Department of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Janavi S Rambhatla
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Medicine and Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Graham V Brown
- The Nossal Institute for Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Karen P Day
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Melbourne, VIC, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Takashima E, Kanoi BN, Nagaoka H, Morita M, Hassan I, Palacpac NMQ, Egwang TG, Horii T, Gitaka J, Tsuboi T. Meta-Analysis of Human Antibodies Against Plasmodium falciparum Variable Surface and Merozoite Stage Antigens. Front Immunol 2022; 13:887219. [PMID: 35757771 PMCID: PMC9218060 DOI: 10.3389/fimmu.2022.887219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Concerted efforts to fight malaria have caused significant reductions in global malaria cases and mortality. Sustaining this will be critical to avoid rebound and outbreaks of seasonal malaria. Identifying predictive attributes that define clinical malaria will be key to guide development of second-generation tools to fight malaria. Broadly reactive antibodies against variable surface antigens that are expressed on the surface of infected erythrocytes and merozoites stage antigens are targets of naturally acquired immunity and prime candidates for anti-malaria therapeutics and vaccines. However, predicting the relationship between the antigen-specific antibodies and protection from clinical malaria remains unresolved. Here, we used new datasets and multiple approaches combined with re-analysis of our previous data to assess the multi-dimensional and complex relationship between antibody responses and clinical malaria outcomes. We observed 22 antigens (17 PfEMP1 domains, 3 RIFIN family members, merozoite surface protein 3 (PF3D7_1035400), and merozoites-associated armadillo repeats protein (PF3D7_1035900) that were selected across three different clinical malaria definitions (1,000/2,500/5,000 parasites/µl plus fever). In addition, Principal Components Analysis (PCA) indicated that the first three components (Dim1, Dim2 and Dim3 with eigenvalues of 306, 48, and 29, respectively) accounted for 66.1% of the total variations seen. Specifically, the Dim1, Dim2 and Dim3 explained 52.8%, 8.2% and 5% of variability, respectively. We further observed a significant relationship between the first component scores and age with antibodies to PfEMP1 domains being the key contributing variables. This is consistent with a recent proposal suggesting that there is an ordered acquisition of antibodies targeting PfEMP1 proteins. Thus, although limited, and further work on the significance of the selected antigens will be required, these approaches may provide insights for identification of drivers of naturally acquired protective immunity as well as guide development of additional tools for malaria elimination and eradication.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| |
Collapse
|
25
|
Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1. Infect Immun 2022; 90:e0043521. [PMID: 34871039 PMCID: PMC8853675 DOI: 10.1128/iai.00435-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
Collapse
|
26
|
Nguyen HHT, Azizan S, Yeoh LM, Tang J, Duffy MF. RNAseq of Infected Erythrocyte Surface Antigen-Encoding Genes. Methods Mol Biol 2022; 2470:185-209. [PMID: 35881347 DOI: 10.1007/978-1-0716-2189-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Massive parallel sequencing technology has greatly increased the breadth and depth of transcriptomic data that can be captured from P. falciparum samples. This has revolutionized in vitro studies but uptake has been slower in the analysis of clinical samples. The principal barriers are the removal of contaminating white blood cells in a malaria endemic setting and preservation of the RNA. We provide here detailed methods for the collection of purified infected erythrocytes and the preservation and extraction of RNA. We also provide methods for assessing and addressing contaminating RNA from erythroid cells, and a protocol for RNAseq library preparation optimized to maximize yield from low amounts of parasite mRNA. Finally, we provide some examples of RNAseq library characteristics that may fail quality control for other species but are in fact satisfactory for P. falciparum RNAseq.
Collapse
Affiliation(s)
- Hanh Hong Thi Nguyen
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Peter Doherty Institute, Melbourne, VIC, Australia
- Bio21 Institute, Parkville, VIC, Australia
| | - Suffian Azizan
- Bio21 Institute, Parkville, VIC, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Lee Ming Yeoh
- Peter Doherty Institute, Melbourne, VIC, Australia
- Bio21 Institute, Parkville, VIC, Australia
- Department of Microbiology and Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jingyi Tang
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Michael F Duffy
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
- Peter Doherty Institute, Melbourne, VIC, Australia.
- Bio21 Institute, Parkville, VIC, Australia.
- Department of Microbiology and Immunology, School of Biomedical Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
27
|
Guillochon E, Fraering J, Joste V, Kamaliddin C, Vianou B, Houzé L, Baudrin LG, Faucher JF, Aubouy A, Houzé S, Cot M, Argy N, Taboureau O, Bertin GI. OUP accepted manuscript. J Infect Dis 2022; 225:2187-2196. [PMID: 35255125 PMCID: PMC9200161 DOI: 10.1093/infdis/jiac086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cerebral malaria (CM) is the severest form of Plasmodium falciparum infection. Children under 5 years old are those most vulnerable to CM, and they consequently have the highest risk of malaria-related death. Parasite-associated factors leading to CM are not yet fully elucidated. We therefore sought to characterize the gene expression profile associated with CM, using RNA sequencing data from 15 CM and 15 uncomplicated malaria isolates from Benin. Cerebral malaria parasites displayed reduced circulation times, possibly related to higher cytoadherence capacity. Consistent with the latter, we detected increased var genes abundance in CM isolates. Differential expression analyses showed that distinct transcriptome profiles are signatures of malaria severity. Genes involved in adhesion, excluding variant surface antigens, were dysregulated, supporting the idea of increased cytoadhesion capacity of CM parasites. Finally, we found dysregulated expression of genes in the entry into host pathway that may reflect greater erythrocyte invasion capacity of CM parasites.
Collapse
Affiliation(s)
- E Guillochon
- Université Paris Cité, MERIT, IRD, Paris, France
- Université Paris Cité, INSERM U1133, CNRS UMR 8251, Paris, France
| | - J Fraering
- Université Paris Cité, MERIT, IRD, Paris, France
| | - V Joste
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - C Kamaliddin
- Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | - B Vianou
- Université Paris Cité, MERIT, IRD, Paris, France
- Institut de Recherche Clinique du Bénin, Cotonou, Bénin
| | - L Houzé
- Université Paris Cité, MERIT, IRD, Paris, France
| | - L G Baudrin
- Institut Curie Genomics of Excellence Platform, PSL Research University, Research Center, Institut Curie, Paris, France
| | - J F Faucher
- INSERM, Univ. Limoges, CHU Limoges, IRD, U1094 Tropical Neuroepidemiology, Institute of Epidemiology and Tropical Neurology, GEIST, Limoges, France
| | - A Aubouy
- Université de Toulouse, PHARMADEV, IRD, UPS, Toulouse, France
| | - S Houzé
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - M Cot
- Université Paris Cité, MERIT, IRD, Paris, France
| | - N Argy
- Université Paris Cité, MERIT, IRD, Paris, France
- Parasitology Laboratory, Hôpital Bichat - Claude-Bernard, APHP, Paris, France
- French Malaria Reference Center, Hôpital Bichat, APHP, Paris, France
| | - O Taboureau
- Université Paris Cité, INSERM U1133, CNRS UMR 8251, Paris, France
| | - G I Bertin
- Correspondence: Gwladys I. Bertin, PhD, Université Paris Cité, MERIT, IRD, 4 avenue de l’Observatoire, 75006 Paris, France ()
| | | |
Collapse
|
28
|
Successful Profiling of Plasmodium falciparum var Gene Expression in Clinical Samples via a Custom Capture Array. mSystems 2021; 6:e0022621. [PMID: 34846163 PMCID: PMC8631312 DOI: 10.1128/msystems.00226-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
var genes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of var expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved var segments. Our goal was to enrich for parasite RNA, allowing de novo assembly of var genes and detection of expressed novel variants. We used two overall approaches: (i) enriching for total mRNA in the sequencing library preparations and (ii) enriching for parasite RNA with a custom capture array based on Roche’s SeqCap EZ enrichment system. The capture array was designed with probes based on the whole 3D7 reference genome and an additional >4,000 full-length var gene sequences from other P. falciparum strains. We tested each method on RNA samples from Malian children with severe or uncomplicated malaria infections. All reads mapping to the human genome were removed, the remaining reads were assembled de novo into transcripts, and from these, var-like transcripts were identified and annotated. The capture array produced the longest maximum length and largest numbers of var gene transcripts in each sample, particularly in samples with low parasitemia. Identifying the most-expressed var gene sequences in whole-blood clinical samples without the need for extensive processing or generating sample-specific reference genome data is critical for understanding the role of PfEMP1s in malaria pathogenesis. IMPORTANCE Malaria parasites display antigens on the surface of infected red blood cells in the human host that facilitate attachment to blood vessels, contributing to the severity of infection. These antigens are highly variable, allowing the parasite to evade the immune system. Identifying these expressed antigens is critical to understanding the development of severe malarial disease. However, clinical samples contain limited amounts of parasite genetic material, a challenge for sequencing efforts further compounded by the extreme diversity of the parasite surface antigens. We present a method that enriches for these antigen sequences in clinical samples using a custom capture array, requiring minimal processing in the field. While our results are focused on the malaria parasite Plasmodium falciparum, this approach has broad applicability to other highly diverse antigens from other parasites and pathogens such as those that cause giardiasis and leishmaniasis.
Collapse
|
29
|
Webster R, Sekuloski S, Odedra A, Woolley S, Jennings H, Amante F, Trenholme KR, Healer J, Cowman AF, Eriksson EM, Sathe P, Penington J, Blanch AJ, Dixon MWA, Tilley L, Duffy MF, Craig A, Storm J, Chan JA, Evans K, Papenfuss AT, Schofield L, Griffin P, Barber BE, Andrew D, Boyle MJ, de Labastida Rivera F, Engwerda C, McCarthy JS. Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Med 2021; 19:293. [PMID: 34802442 PMCID: PMC8606250 DOI: 10.1186/s12916-021-02150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).
Collapse
Affiliation(s)
- Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Silvana Sekuloski
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Current address: PharmOut, 111 Eagle Street, Brisbane, Queensland, 4000, Australia
| | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK
| | - Stephen Woolley
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, UK.,Centre of Defence Pathology, Royal Centre for Defence Medicine, Joint Hospital Group, Birmingham, UK
| | - Helen Jennings
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katharine R Trenholme
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Emily M Eriksson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priyanka Sathe
- Current address: Medicines Development for Global Health Limited, 18 Kavanagh Street, Southbank, Victoria, 3006, Australia
| | - Jocelyn Penington
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Adam J Blanch
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Matthew W A Dixon
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Leann Tilley
- Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Storm
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Krystal Evans
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Current address: GSK, 436 Johnston Street, Abbotsford, Victoria, 3067, Australia
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia.,Department of Medicine and Infectious Diseases, Mater Hospital and Mater Research, Brisbane, Australia
| | | | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
30
|
Impact of Sickle Cell Trait Hemoglobin on the Intraerythrocytic Transcriptional Program of Plasmodium falciparum. mSphere 2021; 6:e0075521. [PMID: 34668757 PMCID: PMC8527989 DOI: 10.1128/msphere.00755-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sickle-trait hemoglobin (HbAS) confers nearly complete protection from severe, life-threatening falciparum malaria in African children. Despite this clear protection, the molecular mechanisms by which HbAS confers these protective phenotypes remain incompletely understood. As a forward genetic screen for aberrant parasite transcriptional responses associated with parasite neutralization in HbAS red blood cells (RBCs), we performed comparative transcriptomic analyses of Plasmodium falciparum in normal (HbAA) and HbAS erythrocytes during both in vitro cultivation of reference parasite strains and naturally occurring P. falciparum infections in Malian children with HbAA or HbAS. During in vitro cultivation, parasites matured normally in HbAS RBCs, and the temporal expression was largely unperturbed of the highly ordered transcriptional program that underlies the parasite’s maturation throughout the intraerythrocytic development cycle (IDC). However, differential expression analysis identified hundreds of transcripts aberrantly expressed in HbAS, largely occurring late in the IDC. Surprisingly, transcripts encoding members of the Maurer’s clefts were overexpressed in HbAS despite impaired parasite protein export in these RBCs, while parasites in HbAS RBCs underexpressed transcripts associated with the endoplasmic reticulum and those encoding serine repeat antigen proteases that promote parasite egress. Analyses of P. falciparum transcriptomes from 32 children with uncomplicated malaria identified stage-specific differential expression: among infections composed of ring-stage parasites, only cyclophilin 19B was underexpressed in children with HbAS, while trophozoite-stage infections identified a range of differentially expressed transcripts, including downregulation in HbAS of several transcripts associated with severe malaria in collateral studies. Collectively, our comparative transcriptomic screen in vitro and in vivo indicates that P. falciparum adapts to HbAS by altering its protein chaperone and folding machinery, oxidative stress response, and protein export machinery. Because HbAS consistently protects from severe P. falciparum, modulation of these responses may offer avenues by which to neutralize P. falciparum parasites. IMPORTANCE Sickle-trait hemoglobin (HbAS) confers nearly complete protection from severe, life-threatening malaria, yet the molecular mechanisms that underlie HbAS protection from severe malaria remain incompletely understood. Here, we used transcriptome sequencing (RNA-seq) to measure the impact of HbAS on the blood-stage transcriptome of Plasmodium falciparum in in vitro time series experiments and in vivo samples from natural infections. Our in vitro time series data reveal that, during its blood stage, P. falciparum’s gene expression in HbAS is impacted primarily through alterations in the abundance of gene products as opposed to variations in the timing of gene expression. Collectively, our in vitro and in vivo data indicate that P. falciparum adapts to HbAS by altering its protein chaperone and folding machinery, oxidative stress response, and protein export machinery. Due to the persistent association of HbAS and protection from severe disease, these processes that are modified in HbAS may offer strategies to neutralize P. falciparum.
Collapse
|
31
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
32
|
Expression Patterns of Plasmodium falciparum Clonally Variant Genes at the Onset of a Blood Infection in Malaria-Naive Humans. mBio 2021; 12:e0163621. [PMID: 34340541 PMCID: PMC8406225 DOI: 10.1128/mbio.01636-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages.
Collapse
|
33
|
Plasmodium falciparum transcription in different clinical presentations of malaria associates with circulation time of infected erythrocytes. Nat Commun 2021; 12:4711. [PMID: 34330920 PMCID: PMC8324851 DOI: 10.1038/s41467-021-25062-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Following Plasmodium falciparum infection, individuals can remain asymptomatic, present with mild fever in uncomplicated malaria cases, or show one or more severe malaria symptoms. Several studies have investigated associations between parasite transcription and clinical severity, but no broad conclusions have yet been drawn. Here, we apply a series of bioinformatic approaches based on P. falciparum's tightly regulated transcriptional pattern during its ~48-hour intraerythrocytic developmental cycle (IDC) to publicly available transcriptomes of parasites obtained from malaria cases of differing clinical severity across multiple studies. Our analysis shows that within each IDC, the circulation time of infected erythrocytes without sequestering to endothelial cells decreases with increasing parasitaemia or disease severity. Accordingly, we find that the size of circulating infected erythrocytes is inversely related to parasite density and disease severity. We propose that enhanced adhesiveness of infected erythrocytes leads to a rapid increase in parasite burden, promoting higher parasitaemia and increased disease severity.
Collapse
|
34
|
Petersen JEV, Saelens JW, Freedman E, Turner L, Lavstsen T, Fairhurst RM, Diakité M, Taylor SM. Sickle-trait hemoglobin reduces adhesion to both CD36 and EPCR by Plasmodium falciparum-infected erythrocytes. PLoS Pathog 2021; 17:e1009659. [PMID: 34115805 PMCID: PMC8221791 DOI: 10.1371/journal.ppat.1009659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/23/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Sickle-trait hemoglobin protects against severe Plasmodium falciparum malaria. Severe malaria is governed in part by the expression of the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) that are encoded by var genes, specifically those variants that bind Endothelial Protein C Receptor (EPCR). In this study, we investigate the effect of sickle-trait on parasite var gene expression and function in vitro and in field-collected parasites. We mapped var gene reads generated from RNA sequencing in parasite cultures in normal and sickle-cell trait blood throughout the asexual lifecycle. We investigated sickle-trait effect on PfEMP1 interactions with host receptors CD36 and EPCR using static adhesion assays and flow cytometry. Var expression in vivo was compared by assembling var domains sequenced from total RNA in parasites infecting Malian children with HbAA and HbAS. Sickle-trait did not alter the abundance or type of var gene transcripts in vitro, nor the abundance of overall transcripts or of var functional domains in vivo. In adhesion assays using recombinant host receptors, sickle-trait reduced adhesion by 73-86% to CD36 and 83% to EPCR. Similarly, sickle-trait reduced the surface expression of EPCR-binding PfEMP1. In conclusion, Sickle-cell trait does not directly affect var gene transcription but does reduce the surface expression and function of PfEMP1. This provides a direct mechanism for protection against severe malaria conferred by sickle-trait hemoglobin. Trial Registration: ClinicalTrials.gov Identifier: NCT02645604.
Collapse
Affiliation(s)
- Jens E. V. Petersen
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| | - Joseph W. Saelens
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Elizabeth Freedman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahamadou Diakité
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Steve M. Taylor
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JAM, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schöllhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 2021; 10:e69040. [PMID: 33908865 PMCID: PMC8102065 DOI: 10.7554/elife.69040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.
Collapse
Affiliation(s)
- J Stephan Wichers
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | | | - Thorsten Thye
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Ralf Krumkamp
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Benno Kreuels
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, GermanyHamburgGermany
- Department of Medicine, College of MedicineBlantyreMalawi
- Department of Medicine, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Strauss
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | | | | | | | | | - Anna Schöllhorn
- Institute of Tropical Medicine, University of TübingenTübingenGermany
| | - Iris Bruchhaus
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Egbert Tannich
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- German Center for Infection Research (DZIF), Partner Site TübingenTübingenGermany
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
| | | | - Tim W Gilberger
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| |
Collapse
|
36
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
37
|
Tonkin-Hill G, Ruybal-Pesántez S, Tiedje KE, Rougeron V, Duffy MF, Zakeri S, Pumpaibool T, Harnyuttanakorn P, Branch OH, Ruiz-Mesía L, Rask TS, Prugnolle F, Papenfuss AT, Chan YB, Day KP. Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents. PLoS Genet 2021; 17:e1009269. [PMID: 33630855 PMCID: PMC7906310 DOI: 10.1371/journal.pgen.1009269] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Shazia Ruybal-Pesántez
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Virginie Rougeron
- Laboratoire MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Tepanata Pumpaibool
- Biomedical Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
| | - Pongchai Harnyuttanakorn
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - OraLee H. Branch
- Concordia University, Portland, Oregon, United States of America
- Universidad Nacional de la Amazonía Peruana, Iquitos, Perú
| | | | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Franck Prugnolle
- Laboratoire MIVEGEC, Université de Montpellier-CNRS-IRD, Montpellier, France
| | - Anthony T. Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
38
|
Structural-functional diversity of malaria parasite's PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem J 2021; 477:3625-3643. [PMID: 32893851 DOI: 10.1042/bcj20200434] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Plasmodium falciparum, the human malaria parasite harbors a metastable proteome which is vulnerable to proteotoxic stress conditions encountered during its lifecycle. How parasite's chaperone machinery is able to maintain its aggregation-prone proteome in functional state, is poorly understood. As HSP70-40 system forms the central hub in cellular proteostasis, we investigated the protein folding capacity of PfHSP70-1 and PfHSP40 chaperone pair and compared it with human orthologs (HSPA1A and DNAJA1). Despite the structural similarity, we observed that parasite chaperones and their human orthologs exhibit striking differences in conformational dynamics. Comprehensive biochemical investigations revealed that PfHSP70-1 and PfHSP40 chaperone pair has better protein folding, aggregation inhibition, oligomer remodeling and disaggregase activities than their human orthologs. Chaperone-swapping experiments suggest that PfHSP40 can also efficiently cooperate with human HSP70 to facilitate the folding of client-substrate. SPR-derived kinetic parameters reveal that PfHSP40 has higher binding affinity towards unfolded substrate than DNAJA1. Interestingly, the observed slow dissociation rate of PfHSP40-substrate interaction allows PfHSP40 to maintain the substrate in folding-competent state to minimize its misfolding. Structural investigation through small angle x-ray scattering gave insights into the conformational architecture of PfHSP70-1 (monomer), PfHSP40 (dimer) and their complex. Overall, our data suggest that the parasite has evolved functionally diverged and efficient chaperone machinery which allows the human malaria parasite to survive in hostile conditions. The distinct allosteric landscapes and interaction kinetics of plasmodial chaperones open avenues for the exploration of small-molecule based antimalarial interventions.
Collapse
|
39
|
Hollin T, Le Roch KG. From Genes to Transcripts, a Tightly Regulated Journey in Plasmodium. Front Cell Infect Microbiol 2020; 10:618454. [PMID: 33425787 PMCID: PMC7793691 DOI: 10.3389/fcimb.2020.618454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, we have witnessed significant progresses in understanding gene regulation in Apicomplexa including the human malaria parasite, Plasmodium falciparum. This parasite possesses the ability to convert in multiple stages in various hosts, cell types, and environments. Recent findings indicate that P. falciparum is talented at using efficient and complementary molecular mechanisms to ensure a tight control of gene expression at each stage of its life cycle. Here, we review the current understanding on the contribution of the epigenome, atypical transcription factors, and chromatin organization to regulate stage conversion in P. falciparum. The adjustment of these regulatory mechanisms occurring during the progression of the life cycle will be extensively discussed.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, United States
| |
Collapse
|
40
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
41
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
43
|
Andrade CM, Fleckenstein H, Thomson-Luque R, Doumbo S, Lima NF, Anderson C, Hibbert J, Hopp CS, Tran TM, Li S, Niangaly M, Cisse H, Doumtabe D, Skinner J, Sturdevant D, Ricklefs S, Virtaneva K, Asghar M, Homann MV, Turner L, Martins J, Allman EL, N'Dri ME, Winkler V, Llinás M, Lavazec C, Martens C, Färnert A, Kayentao K, Ongoiba A, Lavstsen T, Osório NS, Otto TD, Recker M, Traore B, Crompton PD, Portugal S. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26:1929-1940. [PMID: 33106664 DOI: 10.1038/s41591-020-1084-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Abstract
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannah Fleckenstein
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nathalia F Lima
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carrie Anderson
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Hopp
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dan Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacy Ricklefs
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Muhammad Asghar
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA
| | | | - Volker Winkler
- Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA.,Department of Chemistry, The Pennsylvania State University, State College, PA, USA
| | | | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Anna Färnert
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Heidelberg, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
44
|
Chappell L, Ross P, Orchard L, Russell TJ, Otto TD, Berriman M, Rayner JC, Llinás M. Refining the transcriptome of the human malaria parasite Plasmodium falciparum using amplification-free RNA-seq. BMC Genomics 2020; 21:395. [PMID: 32513207 PMCID: PMC7278070 DOI: 10.1186/s12864-020-06787-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Background Plasmodium parasites undergo several major developmental transitions during their complex lifecycle, which are enabled by precisely ordered gene expression programs. Transcriptomes from the 48-h blood stages of the major human malaria parasite Plasmodium falciparum have been described using cDNA microarrays and RNA-seq, but these assays have not always performed well within non-coding regions, where the AT-content is often 90–95%. Results We developed a directional, amplification-free RNA-seq protocol (DAFT-seq) to reduce bias against AT-rich cDNA, which we have applied to three strains of P. falciparum (3D7, HB3 and IT). While strain-specific differences were detected, overall there is strong conservation between the transcriptional profiles. For the 3D7 reference strain, transcription was detected from 89% of the genome, with over 78% of the genome transcribed into mRNAs. We also find that transcription from bidirectional promoters frequently results in non-coding, antisense transcripts. These datasets allowed us to refine the 5′ and 3′ untranslated regions (UTRs), which can be variable, long (> 1000 nt), and often overlap those of adjacent transcripts. Conclusions The approaches applied in this study allow a refined description of the transcriptional landscape of P. falciparum and demonstrate that very little of the densely packed P. falciparum genome is inactive or redundant. By capturing the 5′ and 3′ ends of mRNAs, we reveal both constant and dynamic use of transcriptional start sites across the intraerythrocytic developmental cycle that will be useful in guiding the definition of regulatory regions for use in future experimental gene expression studies.
Collapse
Affiliation(s)
- Lia Chappell
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Philipp Ross
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Present Address: Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Timothy J Russell
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Thomas D Otto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Present Address: Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, Glasgow, G12 8TA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Julian C Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK.,Present Address: Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA. .,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
45
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
46
|
Otto TD, Assefa SA, Böhme U, Sanders MJ, Kwiatkowski D, Berriman M, Newbold C. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res 2019; 4:193. [PMID: 32055709 PMCID: PMC7001760 DOI: 10.12688/wellcomeopenres.15590.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The var gene family of the human malaria parasite Plasmodium falciparum encode proteins that are crucial determinants of both pathogenesis and immune evasion and are highly polymorphic. Here we have assembled nearly complete var gene repertoires from 2398 field isolates and analysed a normalised set of 714 from across 12 countries. This therefore represents the first large scale attempt to catalogue the worldwide distribution of var gene sequences We confirm the extreme polymorphism of this gene family but also demonstrate an unexpected level of sequence sharing both within and between continents. We show that this is likely due to both the remnants of selective sweeps as well as a worrying degree of recent gene flow across continents with implications for the spread of drug resistance. We also address the evolution of the var repertoire with respect to the ancestral genes within the Laverania and show that diversity generated by recombination is concentrated in a number of hotspots. An analysis of the subdomain structure indicates that some existing definitions may need to be revised From the analysis of this data, we can now understand the way in which the family has evolved and how the diversity is continuously being generated. Finally, we demonstrate that because the genes are distributed across the genome, sequence sharing between genotypes acts as a useful population genetic marker.
Collapse
Affiliation(s)
- Thomas D. Otto
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Sammy A. Assefa
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ulrike Böhme
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Dominic Kwiatkowski
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pf3k consortium
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matt Berriman
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Chris Newbold
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
47
|
Rambhatla JS, Turner L, Manning L, Laman M, Davis TME, Beeson JG, Mueller I, Warrel J, Theander TG, Lavstsen T, Rogerson SJ. Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria. J Infect Dis 2019; 219:808-818. [PMID: 30365003 DOI: 10.1093/infdis/jiy564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
Collapse
Affiliation(s)
- Janavi S Rambhatla
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Parkville.,Walter and Eliza Hall Institute of Medical Research, Parkville.,Parasite and Insect Vectors Department, Institut Pasteur, Paris, France
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Stephen J Rogerson
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| |
Collapse
|
48
|
Thiam A, Sanka M, Ndiaye Diallo R, Torres M, Mbengue B, Nunez NF, Thiam F, Diop G, Victorero G, Nguyen C, Dieye A, Rihet P. Gene expression profiling in blood from cerebral malaria patients and mild malaria patients living in Senegal. BMC Med Genomics 2019; 12:148. [PMID: 31666081 PMCID: PMC6821028 DOI: 10.1186/s12920-019-0599-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/09/2019] [Indexed: 01/06/2023] Open
Abstract
Background Plasmodium falciparum malaria remains a major health problem in Africa. The mechanisms of pathogenesis are not fully understood. Transcriptomic studies may provide new insights into molecular pathways involved in the severe form of the disease. Methods Blood transcriptional levels were assessed in patients with cerebral malaria, non-cerebral malaria, or mild malaria by using microarray technology to look for gene expression profiles associated with clinical status. Multi-way ANOVA was used to extract differentially expressed genes. Network and pathways analyses were used to detect enrichment for biological pathways. Results We identified a set of 443 genes that were differentially expressed in the three patient groups after applying a false discovery rate of 10%. Since the cerebral patients displayed a particular transcriptional pattern, we focused our analysis on the differences between cerebral malaria patients and mild malaria patients. We further found 842 differentially expressed genes after applying a false discovery rate of 10%. Unsupervised hierarchical clustering of cerebral malaria-informative genes led to clustering of the cerebral malaria patients. The support vector machine method allowed us to correctly classify five out of six cerebral malaria patients and six of six mild malaria patients. Furthermore, the products of the differentially expressed genes were mapped onto a human protein-protein network. This led to the identification of the proteins with the highest number of interactions, including GSK3B, RELA, and APP. The enrichment analysis of the gene functional annotation indicates that genes involved in immune signalling pathways play a role in the occurrence of cerebral malaria. These include BCR-, TCR-, TLR-, cytokine-, FcεRI-, and FCGR- signalling pathways and natural killer cell cytotoxicity pathways, which are involved in the activation of immune cells. In addition, our results revealed an enrichment of genes involved in Alzheimer’s disease. Conclusions In the present study, we examine a set of genes whose expression differed in cerebral malaria patients and mild malaria patients. Moreover, our results provide new insights into the potential effect of the dysregulation of gene expression in immune pathways. Host genetic variation may partly explain such alteration of gene expression. Further studies are required to investigate this in African populations.
Collapse
Affiliation(s)
- Alassane Thiam
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Michel Sanka
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France
| | - Rokhaya Ndiaye Diallo
- Service de Génétique Humaine, Faculté de Médecine, de Pharmacie et d'Odontostomatologie, UCAD, Dakar, Sénégal
| | - Magali Torres
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France
| | - Babacar Mbengue
- Service Immunologie, Faculte de Medecine, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Nicolas Fernandez Nunez
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France
| | - Fatou Thiam
- Département de Génie chimique et biologie, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Gora Diop
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal.,Département de Biologie animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Geneviève Victorero
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France
| | - Catherine Nguyen
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France
| | - Alioune Dieye
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal.,Service Immunologie, Faculte de Medecine, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Pascal Rihet
- Aix Marseille Univ, INSERM, TAGC UMR U1090, 163 Av de Luminy, 13288, Marseille, cedex 9, France.
| |
Collapse
|
49
|
Interplay between Attenuation- and Virulence-Factors of Babesia bovis and Their Contribution to the Establishment of Persistent Infections in Cattle. Pathogens 2019; 8:pathogens8030097. [PMID: 31277392 PMCID: PMC6789890 DOI: 10.3390/pathogens8030097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.
Collapse
|
50
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|