1
|
Olivieri B, Günaydın FE, Corren J, Senna G, Durham SR. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann Allergy Asthma Immunol 2025; 134:385-395. [PMID: 38897405 DOI: 10.1016/j.anai.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
The development of monoclonal antibodies that selectively target IgE and type 2 immunity has opened new possibilities in the treatment of allergies. Although they have been used mainly as single therapies found to have efficacy in the management of asthma and other T2-mediated diseases, there is a growing interest in using these monoclonal antibodies in combination with allergen immunotherapy (AIT). AIT has transformed the treatment of allergic diseases by aiming to modify the underlying immune response to allergens rather than just providing temporary symptom relief. Despite the proven efficacy and safety of AIT, unmet needs call for further research and innovation. Combination strategies involving biologics and AIT exhibit potential in improving short-term efficacy, reducing adverse events, and increasing immunologic tolerance. Anti-IgE emerges as the most promising therapeutic strategy, not only enhancing AIT's safety and tolerability but also providing additional evidence of efficacy compared with AIT alone. Anti-interleukin-4 receptor offers a reduction in adverse effects and an improved immunologic profile when combined with AIT; however, its impact on short-term efficacy seems limited. The combination of cat dander subcutaneous immunotherapy with anti-thymic stromal lymphopoietin was synergistic with enhanced efficacy and altered immune responses that persisted for 1 year after discontinuation compared with AIT alone. Long-term studies are needed to evaluate the sustained benefits and safety profiles of combination strategies.
Collapse
Affiliation(s)
- Bianca Olivieri
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy
| | - Fatma Esra Günaydın
- Department of Immunology and Allergy Diseases, Ordu University Education and Training Hospital, Ordu, Turkey
| | - Jonathan Corren
- Division of Allergy and Clinical Immunology, Department of Medicine and Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Gianenrico Senna
- Asthma, Allergy and Clinical Immunology Section, University Hospital of Verona, Verona, Italy; Department of Medicine, University of Verona, Verona, Italy
| | - Stephen R Durham
- Allergy and Clinical Immunology, Section Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
2
|
Berkiks I, Abdel Aziz N, Moses B, Brombacher T, Brombacher F. Moderate regular physical exercise can help in alleviating the systemic impact of schistosomiasis infection on brain cognitive function. Front Immunol 2025; 15:1453742. [PMID: 39959586 PMCID: PMC11825816 DOI: 10.3389/fimmu.2024.1453742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/02/2024] [Indexed: 02/18/2025] Open
Abstract
One of the major consequences of schistosomiasis is its impact on brain function, and despite its severity, the underlying mechanism(s) remain inadequately understood, highlighting a knowledge gap in the disease. The symptoms can vary from headaches to profound cognitive impairment. Besides, the potential influence of physical exercise in mitigating cognitive deficits has received little attention. In our study, we utilized a murine model of Schistosoma mansoni infection to investigate the cognitive impact of schistosomiasis. Our aims were multifaceted: to pinpoint the specific cognitive domains affected during the infection in adult mice, to unravel the complex interplay between glial and immune cells within the central nervous system (CNS), and crucially, to explore the potential therapeutic role of regular physical exercise in counteracting the deleterious effects of schistosomiasis on the CNS. Our findings unveiled that while acute infection did not disrupt simple and complex learning or spatial reference memory, it did induce significant deficits in recall memory-a critical aspect of cognitive function. Furthermore, our investigation unearthed profound alterations in the immune and glial cell populations within the CNS. Notably, we observed marked changes in CD4+ T cells and eosinophils in the meninges, as well as alterations in glial cell dynamics within the hippocampus and other brain regions. These alterations were characterized by heightened microglial activation, diminished astrocyte reactivity and a shift towards a proinflammatory milieu within the CNS. We also provided insights into the transformative potential of regular moderate physical exercise in partially alleviating cognitive and neuroinflammatory consequences of schistosomiasis. Remarkably, exercise decreased glial cell production of TNFα, suggesting a shift towards a less pro-inflammatory environment. Collectively, our study provided compelling evidence of the intricate interplay between schistosomiasis infection and cognitive function, underscoring the critical need for further exploration in this area. Furthermore, our findings demonstrated the positive effects of physical activities on mitigating the cognitive burden of schistosomiasis, offering new hope for patients afflicted by this debilitating disease.
Collapse
Affiliation(s)
- Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Blessing Moses
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tiroyaone Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Chia JE, Rousseau RP, Ozturk M, Poswayo SKL, Lucas R, Brombacher F, Parihar SP. The divergent outcome of IL-4Rα signalling on Foxp3 T regulatory cells in listeriosis and tuberculosis. Front Immunol 2024; 15:1427055. [PMID: 39483462 PMCID: PMC11524857 DOI: 10.3389/fimmu.2024.1427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Forkhead box P3 (Foxp3) T regulatory cells are critical for maintaining self-tolerance, immune homeostasis, and regulating the immune system. Methods We investigated interleukin-4 receptor alpha (IL-4Rα) signalling on T regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes) infection using a mouse model on a BALB/c background, specifically with IL-4Rα knockdown in Tregs (Foxp3creIL-4Rα-/lox). Results We showed an impairment of Treg responses, along with a decreased bacterial burden and diminished tissue pathology in the liver and spleen, which translated into better survival. Mechanistically, we observed an enhancement of the Th1 signature, characterised by increased expression of the T-bet transcription factor and a greater number of effector T cells producing IFN-γ, IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in Foxp3creIL-4Rα-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Rα-/lox mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis (activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Rα-/lox mice displayed similar bacterial burdens, lung pathology and survival during Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell numbers and IFN-γ, TNF and IL-17 production. Conclusion Our results demonstrated that the diminished IL-4Rα signalling on Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to survival benefits in listeriosis but not in tuberculosis.
Collapse
Affiliation(s)
- Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert P. Rousseau
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Lucas
- Research Animal Facility (RAF), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Rogers M, Kamath S, McManus D, Jones M, Gordon C, Navarro S. Schistosoma excretory/secretory products: an untapped library of tolerogenic immunotherapeutics against food allergy. Clin Transl Immunology 2024; 13:e70001. [PMID: 39221178 PMCID: PMC11359118 DOI: 10.1002/cti2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Food allergy (FA) is considered the 'second wave' of the allergy epidemic in developed countries after asthma and allergic rhinitis with a steadily growing burden of 40%. The absence of early childhood pathogen stimulation embodied by the hygiene hypothesis is one explanation, and in particular, the eradication of parasitic helminths could be at play. Infections with parasites Schistosoma spp. have been found to have a negative correlation with allergic diseases. Schistosomes induce regulatory responses to evade immune detection and ensure their long-term survival. This is achieved via excretory/secretory (E/S) products, consisting of proteins, lipids, metabolites, nucleic acids and extracellular vesicles, representing an untapped therapeutic avenue for the treatment of FA without the unpleasant side-effects and risks associated with live infection. Schistosome-derived immunotherapeutic development is in its infancy and novel discoveries are heavily technology dependent; thus, it is essential to better understand how newly identified molecules interact with host immune systems to ensure safety and successful translation. This review will outline the identified Schistosoma-derived E/S products at all life cycle stages and discuss known mechanisms of action and their ability to suppress FA.
Collapse
Affiliation(s)
- Madeleine Rogers
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Sandip Kamath
- Institute of Pathophysiology and Allergy ResearchMedical University of ViennaViennaAustria
- Australian Institute of Tropical Health and MedicineJames Cook UniversityTownsvilleQLDAustralia
| | - Donald McManus
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Malcolm Jones
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Faculty of Science, School of Veterinary ScienceUniversity of QueenslandGattonQLDAustralia
| | - Catherine Gordon
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Severine Navarro
- Faculty of MedicineUniversity of QueenslandBrisbaneQLDAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
- Centre for Childhood Nutrition Research, Faculty of HealthQueensland University of TechnologyBrisbaneQLDAustralia
| |
Collapse
|
5
|
Contreras-Castillo E, García-Rasilla VY, García-Patiño MG, Licona-Limón P. Stability and plasticity of regulatory T cells in health and disease. J Leukoc Biol 2024; 116:33-53. [PMID: 38428948 DOI: 10.1093/jleuko/qiae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
The mechanisms that negatively regulate inflammation upon a pathogenic stimulus are crucial for the maintenance of tissue integrity and organ function. T regulatory cells are one of the main drivers in controlling inflammation. The ability of T regulatory cells to adapt to different inflammatory cues and suppress inflammation is one of the relevant features of T regulatory cells. During this process, T regulatory cells express different transcription factors associated with their counterparts, Th helper cells, including Tbx21, GATA-3, Bcl6, and Rorc. The acquisition of this transcription factor helps the T regulatory cells to suppress and migrate to the different inflamed tissues. Additionally, the T regulatory cells have different mechanisms that preserve stability while acquiring a particular T regulatory cell subtype. This review focuses on describing T regulatory cell subtypes and the mechanisms that maintain their identity in health and diseases.
Collapse
Affiliation(s)
- Eugenio Contreras-Castillo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Verónica Yutsil García-Rasilla
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, CU Coyoacán, México City 04510, Mexico
| |
Collapse
|
6
|
Mosala P, Mpotje T, Abdel Aziz N, Ndlovu H, Musaigwa F, Nono JK, Brombacher F. Cysteinyl leukotriene receptor-1 as a potential target for host-directed therapy during chronic schistosomiasis in murine model. Front Immunol 2024; 15:1279043. [PMID: 38840916 PMCID: PMC11150569 DOI: 10.3389/fimmu.2024.1279043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis remains the most devastating neglected tropical disease, affecting over 240 million people world-wide. The disease is caused by the eggs laid by mature female worms that are trapped in host's tissues, resulting in chronic Th2 driven fibrogranulmatous pathology. Although the disease can be treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections remain a major problem in endemic areas. There is a need for new therapeutic drugs and alternative drug treatments for schistosomiasis. The current study hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid mediators that are known to be key players in inflammatory diseases, such as asthma and allergic rhinitis. The present study aimed to investigate the role of cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/- mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune responses during chronic Schistosoma mansoni infection. Mice deficient of cysLTR1 and littermate control mice were infected with either high or low dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis, respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4 production in the liver was significantly reduced in mice lacking cysLTR1 during chronic schistosomiasis, while reduced liver pathology was observed during acute schistosomiasis. Pharmacological blockade of cysLTR1 using montelukast in combination with PZQ reduced hepatic inflammation and parasite egg burden in chronically infected mice. Combination therapy led to the expansion of Tregs in chronically infected mice. We show that the disruption of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an important role cysLTR1 may play during early immunity against schistosomiasis. Our findings revealed that the combination of montelukast and PZQ could be a potential prophylactic treatment for chronic schistosomiasis by reducing fibrogranulomatous pathology in mice. In conclusion, the present study demonstrated that cysLTR1 is a potential target for host-directed therapy to ameliorate fibrogranulomatous pathology in the liver during chronic and acute schistosomiasis in mice.
Collapse
Affiliation(s)
- Paballo Mosala
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Thabo Mpotje
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Nada Abdel Aziz
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Immuno-Biotechnology Lab, Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hlumani Ndlovu
- Division of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fungai Musaigwa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Justin Komguep Nono
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
8
|
Alvarez F, Istomine R, Da Silva Lira Filho A, Al-Aubodah TA, Huang D, Okde R, Olivier M, Fritz JH, Piccirillo CA. IL-18 is required for the T H1-adaptation of T REG cells and the selective suppression of T H17 responses in acute and chronic infections. Mucosal Immunol 2023; 16:462-475. [PMID: 37182738 DOI: 10.1016/j.mucimm.2023.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Interleukin (IL)-18, a member of the IL-1 family of alarmins, is abundantly released in the lungs following influenza A (IAV) infections yet its role in orchestrating the local adaptive immune response remains ill defined. Through genetic disruption of the IL-18 receptor, we demonstrate that IL-18 not only promotes pulmonary TH1 responses but also influences regulatory T cells (TREG) function in the infected lungs. As the response unfolds, TREG cells accumulating in the lungs express Helios, T-bet, CXCR3, and IL-18R1 and produce interferon γ in the presence of IL-12. During IAV, IL-18R1 is required for TREG cells to control TH17, but not TH1, responses and promote a return to lung homeostasis, revealing a novel mechanism of selective suppression. Moreover, this observation was not limited to the lungs, as skin-localized TREG cells require an IL-18 signal to specifically suppress IL-17A production by TH17 and γδ T cells in a model of chronic cutaneous Leishmania major infection. Overall, these results uncover how IL-18 orchestrates the tissue adaptation of TREG cells to selectively favor TH1 over TH17 responses during TH1-driven immune responses and provide a novel perspective into how IL-18 dictates the immune response during viral and parasitic infections.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | | | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Daniel Huang
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Rakan Okde
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada; McGill University Research Centre on Complex Traits (MRCCT), Montréal, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Canada; Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Canada; Centre of Excellence in Translational Immunology (CETI), Montréal, Canada; McGill University Research Centre on Complex Traits (MRCCT), Montréal, Canada.
| |
Collapse
|
9
|
Wang Y, Guo A, Zou Y, Mu W, Zhang S, Shi Z, Liu Z, Cai X, Zhu XQ, Wang S. Interaction between tissue-dwelling helminth and the gut microbiota drives mucosal immunoregulation. NPJ Biofilms Microbiomes 2023; 9:43. [PMID: 37355675 DOI: 10.1038/s41522-023-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
Tissue-dwelling helminths affect billions of people around the world. They are potent manipulators of the host immune system, prominently by promoting regulatory T cells (Tregs) and are generally associated with a modified host gut microbiome. However, the role of the gut microbiota in the immunomodulatory processes for these non-intestinal parasites is still unclear. In the present study, we used an extra-intestinal cestode helminth model-larval Echinococcus multilocularis to explore the tripartite partnership (host-helminth-bacteria) in the context of regulating colonic Tregs in Balb/c mice. We showed that larval E. multilocularis infection in the peritoneal cavity attenuated colitis in Balb/c mice and induced a significant expansion of colonic Foxp3+ Treg populations. Fecal microbiota depletion and transplantation experiments showed that the gut microbiota contributed to increasing Tregs after the helminth infection. Shotgun metagenomic and metabolic analyses revealed that the gut microbiome structure after infection was significantly shifted with a remarkable increase of Lactobacillus reuteri and that the microbial metabolic capability was reprogrammed to produce more Treg cell regulator-short-chain fatty acids in feces. Furthermore, we also prove that the L. reuteri strain elevated in infected mice was sufficient to promote the colonic Treg frequency and its growth was potentially associated with T cell-dependent immunity in larval E. multilocularis infection. Collectively, these findings indicate that the extraintestinal helminth drives expansions of host colonic Tregs through the gut microbes. This study suggests that the gut microbiome serves as a critical component of anti-inflammation effects even for a therapy based on an extraintestinal helminth.
Collapse
Affiliation(s)
- Yugui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, China
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu, 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Wenjie Mu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Shengying Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Zhongli Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Xuepeng Cai
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, China.
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China.
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu, 730046, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
10
|
Abdel Aziz N, Berkiks I, Mosala P, Brombacher TM, Brombacher F. Environmental and microbial factors influence affective and cognitive behavior in C57BL/6 sub-strains. Front Immunol 2023; 14:1139913. [PMID: 37180163 PMCID: PMC10166845 DOI: 10.3389/fimmu.2023.1139913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/24/2023] [Indexed: 05/15/2023] Open
Abstract
C57BL/6 mice are one of the most widely used inbred strains in biomedical research. Early separation of the breeding colony has led to the development of several sub-strains. Colony separation led to genetic variation development driving numerous phenotypic discrepancies. The reported phenotypic behavior differences between the sub-strains were, however; not consistent in the literature, suggesting the involvement of factors other than host genes. Here, we characterized the cognitive and affective behavior of C57BL/6J and C57BL/6N mice in correlation with the immune cell profile in the brain. Furthermore, faecal microbiota transfer and mice co-housing techniques were used to dissect microbial and environmental factors' contribution, respectively, to cognitive and affective behavior patterns. We first noted a unique profile of locomotor activity, immobility pattern, and spatial and non-spatial learning and memory abilities between the two sub-strains. The phenotypic behavior profile was associated with a distinct difference in the dynamics of type 2 cytokines in the meninges and brain parenchyma. Analysing the contribution of microbiome and environmental factors to the noted behavioral profile, our data indicated that while immobility pattern was genetically driven, locomotor activity and cognitive abilities were highly sensitive to alterations in the gut microbiome and environmental factors. Changes in the phenotypic behavior in response to these factors were associated with changes in immune cell profile. While microglia were highly sensitive to alteration in gut microbiome, immune cells in meninges were more resilient. Collectively, our findings demonstrated a direct impact of environmental conditions on gut microbiota which subsequently impacts the brain immune cell profile that could modulate cognitive and affective behavior. Our data further highlight the importance of characterizing the laboratory available strain/sub-strain to select the most appropriate one that fits best the study purpose.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokine and Disease Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Immuno-Biotechnology Group, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Inssaf Berkiks
- Cytokine and Disease Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paballo Mosala
- Cytokine and Disease Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tiroyaone M. Brombacher
- Cytokine and Disease Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Cytokine and Disease Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Layritz A, Galicia‐Carreón J, Benfadal S, Novak N. Differences in allergen-specific basophil activation and T cell proliferation in atopic dermatitis patients with comorbid allergic rhinoconjunctivitis treated with a monoclonal anti-IL-4Rα antibody or allergen-specific immunotherapy. Immun Inflamm Dis 2023; 11:e808. [PMID: 37102639 PMCID: PMC10091378 DOI: 10.1002/iid3.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD), a chronic inflammatory disorder, is often accompanied by allergic rhinoconjunctivitis (ARC) as a co-morbidity. The use of a monoclonal anti-IL-4Rα antibody has been effective in controlling moderate to severe AD symptoms. Allergen-specific immunotherapy (AIT) is widely used for the treatment of ARC and asthma. The effects of AIT on basophil reactivity/effector functions have already been examined and used as indicators of the treatment efficacy. However, it is unclear, how an anti-IL-4Rα antibody can influence allergen-specific immune responses of basophils and T cells of AD patients with comorbid ARC. OBJECTIVE To investigate the effect of a monoclonal anti-IL-4Rα antibody on the in vitro allergic responses of basophils and T cells deriving from AD patients with comorbid ARC. METHODS Blood samples of 32 AD patients were obtained before, after 4 and 16 weeks of an anti-IL-4Rα antibody therapy (300 mg subcutaneously/2 weeks; n = 21) or AIT (daily sublingual application; n = 11). Patients treated with an anti-IL-4Rα antibody were grouped according to their serum specific immunoglobulin E levels and ARC symptoms, while patients receiving an AIT were additionally grouped according to the allergen specificity of their AIT. Basophil activation test and T cell proliferation assays were undertaken after an in vitro allergen stimulation. RESULTS A significant reduction of the immunoglobulin E levels and the allergen-specific T cell proliferation was observed in AD patients treated with an anti-IL-4Rα -antibody, while the allergen-specific basophil activation/sensitivity were found to be significantly increased. In patients receiving an AIT, the in vitro allergen-specific basophil activation and the T cell proliferation were found to be significantly decreased in response to seasonal allergens. CONCLUSIONS An IL-4Rα blockade induced by a monoclonal anti-IL-4Rα antibody leads to an increased activity/sensitivity of early effector cells (such as basophils), in contrast to a decreasing reactivity observed under an AIT. The late-phase T cell reaction to allergens did not differ between the herein assessed treatments.
Collapse
Affiliation(s)
| | | | - Said Benfadal
- Department of Dermatology and AllergyUniversity Hospital BonnBonnGermany
| | - Natalija Novak
- Department of Dermatology and AllergyUniversity Hospital BonnBonnGermany
| |
Collapse
|
12
|
Scibiorek M, Mthembu N, Mangali S, Ngomti A, Ikwegbue P, Brombacher F, Hadebe S. IL-4Rα signalling in B cells and T cells play differential roles in acute and chronic atopic dermatitis. Sci Rep 2023; 13:144. [PMID: 36599893 PMCID: PMC9812985 DOI: 10.1038/s41598-022-26637-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Atopic dermatitis (AD) is a common pruritic inflammatory skin disease with complex environmental and genetic predisposing factors. Primary skin barrier dysfunction and aberrant T helper 2 (TH2) responses to common allergens, together with increased serum IgE antibodies, characterise the disease. B and T cells are essential in the disease manifestation, however, the exact mechanism of how these cells is involved is unclear. Targeting interleukin 4 receptor alpha (IL-4Rα), an IL-4/IL-13 signalling axis, with dupilumab shows efficacy in AD. We investigated the importance of IL-4Rα signalling specifically on B and T cells during acute and chronic models of AD. We used House dust mite (HDM) and Ovalbumin (OVA) in chronic models and a low-calcemic analog of vitamin D (MC903) for acute models of AD. We used mb1creIL-4Rα-/lox, iLCKcreIL-4Rα-/lox, LCKcreIL-4Rα-/lox, CD4creIL-4Rα-/lox, Foxp3creIL-4Rα-/lox and IL-4Rα-/lox littermate controls. IL-4Rα-responsive B cells were essential in serum IgE levels, but not in epidermal thickening in both chronic and acute models. IL-4Rα-responsive T cells were essential in epidermal thickening in the pan-T cell, but not CD4 or CD8 T cells suggesting the importance of γδT cells during acute AD. Our results suggest that IL-4Rα responsiveness on innate T cells regulates acute atopic dermatitis, while on B cells it regulates IgE.
Collapse
Affiliation(s)
- Martyna Scibiorek
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Institute of Infectious Diseases and Molecular Medicine (IDM), Health Science Faculty, University of Cape Town, Cape Town, South Africa.
| | - Nontobeko Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Sandisiwe Mangali
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Institute of Infectious Diseases and Molecular Medicine (IDM), Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul Ikwegbue
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Institute of Infectious Diseases and Molecular Medicine (IDM), Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Sabelo Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
13
|
Shan Y, Zhang B, Chen L, Zhang H, Jiang C, You Q, Li Y, Han H, Zhu J. Herpesvirus entry mediator regulates the transduction of Tregs via STAT5/Foxp3 signaling pathway in ovarian cancer cells. Anticancer Drugs 2023; 34:73-80. [PMID: 35946515 DOI: 10.1097/cad.0000000000001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ratio of regulatory T cells (Treg) in peripheral blood of cancer patients has a closely correlation to the occurrence and development of ovarian cancer. In this study, our aim to explore the expression of herpesvirus entry mediator (HVEM) in ovarian cancer and its correlation with Tregs. The expression of HVEM in peripheral blood of ovarian cancer patients was detected by ELISA, and the ratio of CD4+ CD25 + Foxp3 positive Tregs cells was detected by flow cytometry. Ovarian cancer cell lines with high- and low-HVEM expression were constructed. CD4+ cells were co-cultured with ovarian cancer (OC) cells, and the expressions of IL-2 and TGF-β1 in the supernatant of cells were detected by ELISA, and western blot was used to detect the expressions of STAT5, p-STAT5, and Foxp3. The results indicated that the number of Treg cells in the peripheral blood of OC patients increased, and the expression of HVEM increased, the two have a certain correlation. At the same time, the overexpression of HVEM promoted the expression of cytokines IL-2 and TGF- β1, promoted the activation of STAT5 and the expression of Foxp3, leading to an increase in the positive rate of Treg, while the HVEM gene silence group was just the opposite. Our results showed that the expression of HVEM in OC cells has a positive regulation effect on Tregs through the STAT5/Foxp3 signaling pathway. To provide experimental basis and related mechanism for the clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ying Shan
- Department of Obstetrics and Gynecology
| | | | - Li Chen
- Department of Obstetrics and Gynecology
| | - Hu Zhang
- Department of Obstetrics and Gynecology
| | - Cui Jiang
- Department of Obstetrics and Gynecology
| | - Qinghua You
- Department of Pathology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yanyi Li
- Department of Obstetrics and Gynecology
- Department of Health Science, Graduate School of Medical, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
14
|
ALLERGY IS AN IMMUNE DISORDER RELATED TO A LACK OF REGULATION: THE GLUING ROLE OF IL-2. Immunol Lett 2022; 251-252:103-106. [DOI: 10.1016/j.imlet.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
|
15
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
16
|
Chen W, Cao Y, Zhong Y, Sun J, Dong J. The Mechanisms of Effector Th Cell Responses Contribute to Treg Cell Function: New Insights into Pathogenesis and Therapy of Asthma. Front Immunol 2022; 13:862866. [PMID: 35898499 PMCID: PMC9309477 DOI: 10.3389/fimmu.2022.862866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
CD4 + helper T (Th) cell subsets are critically involved in the pathogenesis of asthma. Naive Th cells differentiate into different subsets under the stimulation of different sets of cytokines, and the differentiation process is dominantly driven by lineage specific transcription factors, such as T-bet (Th1), GATA3 (Th2), RORγt (Th17) and Foxp3 (Treg). The differentiation mechanisms driven by these transcription factors are mutually exclusive, resulting in functional inhibition of these Th subsets to each other, particularly prominent between effector Th cells and Treg cells, such as Th2 versus Treg cells and Th17 versus Treg cells. Being of significance in maintaining immune homeostasis, the balance between effector Th cell response and Treg cell immunosuppression provides an immunological theoretical basis for us to understand the immunopathological mechanism and develop the therapy strategies of asthma. However, recent studies have found that certain factors involved in effector Th cells response, such as cytokines and master transcription factors (IL-12 and T-bet of Th1, IL-4 and GATA3 of Th2, IL-6 and RORγt of Th17), not only contribute to immune response of effector Th cells, but also promote the development and function of Treg cells, therefore bridging the interplay between effector Th cell immune responses and Treg cell immunosuppression. Although we have an abundant knowledge concerning the role of these cytokines and transcription factors in effector Th cell responses, our understanding on their role in Treg cell development and function is scattered thus need to be summarized. This review summarized the role of these cytokines and transcription factors involved in effector Th cell responses in the development and function of Treg cells, in the hope of providing new insights of understanding the immunopathological mechanism and seeking potential therapy strategies of asthma.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxue Cao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Jing Sun, ; Jingcheng Dong,
| |
Collapse
|
17
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
18
|
Musaigwa F, Kamdem SD, Mpotje T, Mosala P, Abdel Aziz N, Herbert DR, Brombacher F, Nono JK. Schistosoma mansoni infection induces plasmablast and plasma cell death in the bone marrow and accelerates the decline of host vaccine responses. PLoS Pathog 2022; 18:e1010327. [PMID: 35157732 PMCID: PMC8893680 DOI: 10.1371/journal.ppat.1010327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/03/2022] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Schistosomiasis is a potentially lethal parasitic disease that profoundly impacts systemic immune function in chronically infected hosts through mechanisms that remain unknown. Given the immunoregulatory dysregulation experienced in infected individuals, this study examined the impact of chronic schistosomiasis on the sustainability of vaccine-induced immunity in both children living in endemic areas and experimental infections in mice. Data show that chronic Schistosoma mansoni infection impaired the persistence of vaccine specific antibody responses in poliovirus-vaccinated humans and mice. Mechanistically, schistosomiasis primarily fostered plasmablast and plasma cell death in the bone marrow and removal of parasites following praziquantel treatment reversed the observed cell death and partially restored vaccine-induced memory responses associated with increased serum anti-polio antibody responses. Our findings strongly suggest a previously unrecognized mechanism to explain how chronic schistosomiasis interferes with an otherwise effective vaccine regimen and further advocates for therapeutic intervention strategies that reduce schistosomiasis burden in endemic areas prior to vaccination. Schistosoma mansoni (S. mansoni), a schistosomiasis disease-causing parasite species, is most common in sub-Saharan Africa. Schistosoma mansoni can influence immune responses and trigger physiological imbalances in their human and animal hosts, which improve their survival and multiplication in the host. These influences can disrupt the host’s ability to maintain long term protective immunity mounted by vaccines for infectious diseases. Here, we investigated the impact of S. mansoni infection on poliovirus vaccine immunity in school-aged children and mice. We found that the parasite reduced its host’s ability to maintain protective blood antibodies produced by immune responses to poliovirus vaccines. We also found that S. mansoni infection reduces the maintenance of antibody-producing plasma cells in the bone marrow of vaccinated mice. Our data showed that treating S. mansoni infected children and mice with praziquantel mitigated the parasite’s negative influences on vaccine immunity. These findings suggest that in regions where schistosomiasis is endemic, the Schistosoma spp. parasites may be notable causes of suboptimal viral vaccine immunity maintenance by children, leaving them vulnerable to vaccine-preventable diseases.
Collapse
Affiliation(s)
- Fungai Musaigwa
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Severin Donald Kamdem
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thabo Mpotje
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Paballo Mosala
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
| | - Nada Abdel Aziz
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - De’Broski R. Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frank Brombacher
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Cape Town Component, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Justin Komguep Nono
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
- Immunology of Infectious Diseases Unit, South African Medical Research Centre, Cape Town, South Africa
- Laboratory of ImmunoBiology and Helminth Infections, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
- * E-mail:
| |
Collapse
|
19
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hao C, Wang W, Zhan B, Wang Z, Huang J, Sun X, Zhu X. Trichinella spiralis Paramyosin Induces Colonic Regulatory T Cells to Mitigate Inflammatory Bowel Disease. Front Cell Dev Biol 2021; 9:695015. [PMID: 34336843 PMCID: PMC8320175 DOI: 10.3389/fcell.2021.695015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Helminth infection modulates host regulatory immune responses to maintain immune homeostasis. Our previous study identified Trichinella spiralis paramyosin (TsPmy) as a major immunomodulatory protein with the ability to induce regulatory T cells (Tregs). However, whether TsPmy regulates gut Tregs and contributes to intestinal immune homeostasis remains unclear. Here we investigated the therapeutic effect of recombinant TsPmy protein (rTsPmy) on experimental colitis in mice, and elucidated the roles and mechanisms of colonic Tregs induced by rTsPmy in ameliorating colitis. Acute colitis was induced by dextran sodium sulfate (DSS) in C57BL/6J mice, and chronic colitis was induced by naïve T cells in Rag1 KO mice. Mice with colitis were pre-treated with rTsPmy intraperitoneally, and clinical manifestations and colonic inflammation were evaluated. Colonic lamina propria (cLP) Tregs phenotypes and functions in DSS-induced colitis were analyzed by flow cytometry. Adoptive transfer of cLP Tregs treated by rTsPmy into Rag1 KO chronic colitis was utilized to verify Tregs suppressive function. rTsPmy ameliorated the disease progress of DSS-induced colitis, reduced pro-inflammatory responses but enhanced regulatory cytokines production in DSS-induced colitis. Moreover, rTsPmy specifically stimulated the expansion of thymic-derived Tregs (tTregs) rather than the peripherally derived Tregs (pTregs) in the inflamed colon, enhanced the differentiation of effector Tregs (eTregs) with higher suppressive function and stability in colitis. This study describes the mechanisms of colonic Tregs induced by the Trichinella-derived protein rTsPmy in maintaining gut immune homeostasis during inflammation. These findings provide further insight into the immunological mechanisms involved in the therapeutic effect of helminth-derived proteins in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Douglas B, Wei Y, Li X, Ferguson A, Hung LY, Pastore C, Kurtz JR, McLachlan JB, Nolan TJ, Lok J, Herbert DR. Transgenic expression of a T cell epitope in Strongyloides ratti reveals that helminth-specific CD4+ T cells constitute both Th2 and Treg populations. PLoS Pathog 2021; 17:e1009709. [PMID: 34237106 PMCID: PMC8291758 DOI: 10.1371/journal.ppat.1009709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/20/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Helminths are distinct from microbial pathogens in both size and complexity, and are the likely evolutionary driving force for type 2 immunity. CD4+ helper T cells can both coordinate worm clearance and prevent immunopathology, but issues of T cell antigen specificity in the context of helminth-induced Th2 and T regulatory cell (Treg) responses have not been addressed. Herein, we generated a novel transgenic line of the gastrointestinal nematode Strongyloides ratti expressing the immunodominant CD4+ T cell epitope 2W1S as a fusion protein with green fluorescent protein (GFP) and FLAG peptide in order to track and study helminth-specific CD4+ T cells. C57BL/6 mice infected with this stable transgenic line (termed Hulk) underwent a dose-dependent expansion of activated CD44hiCD11ahi 2W1S-specific CD4+ T cells, preferentially in the lung parenchyma. Transcriptional profiling of 2W1S-specific CD4+ T cells isolated from mice infected with either Hulk or the enteric bacterial pathogen Salmonella expressing 2W1S revealed that pathogen context exerted a dominant influence over CD4+ T cell phenotype. Interestingly, Hulk-elicited 2W1S-specific CD4+ T cells exhibited both Th2 and Treg phenotypes and expressed high levels of the EGFR ligand amphiregulin, which differed greatly from the phenotype of 2W1S-specific CD4+ T cells elicited by 2W1S-expressing Salmonella. While immunization with 2W1S peptide did not enhance clearance of Hulk infection, immunization did increase total amphiregulin production as well as the number of amphiregulin-expressing CD3+ cells in the lung following Hulk infection. Altogether, this new model system elucidates effector as well as immunosuppressive and wound reparative roles of helminth-specific CD4+ T cells. This report establishes a new resource for studying the nature and function of helminth-specific T cells.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yun Wei
- Department of Oncology and Inflammation, Amgen Research, South San Francisco, California, United States of America
| | - Xinshe Li
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Annabel Ferguson
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Li-Yin Hung
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Pastore
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jonathan R Kurtz
- Flagship Labs 72, Inc., Cambridge, Massachusetts, United States of America
| | - James B. McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - James Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - De’Broski R. Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
22
|
Schistosoma japonicum Infection in Treg-Specific USP21 Knockout Mice. J Immunol Res 2021; 2021:6613162. [PMID: 33628844 PMCID: PMC7886505 DOI: 10.1155/2021/6613162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The E3 deubiquitinating enzyme ubiquitin-specific proteolytic enzyme 21 (USP21) plays vital roles in physiological activities and is required for Treg-cell-mediated immune tolerance. Using a murine model infected with Schistosoma japonicum, we observed that there were more cercariae developed into adults and more eggs deposited in the livers of the USP21fl/flFOXP3Cre (KO) mice. However, immunohistochemistry showed that the degree of egg granuloma formation and liver fibrosis was reduced. In USP21fl/flFOXP3Cre mice, levels of IFN-gamma, IL-4, anti-soluble egg antigen (SEA) IgG and anti-soluble worm antigen preparation (SWAP) IgG increased in blood, as determined using ELISAs and multiplex fluorescent microsphere immunoassays, while the levels of IL-10, lL-17A, IL-23, IL-9, and anti-SEA IgM decreased. In addition, the levels of the USP21 protein and mRNA in the liver and spleen of KO mice decreased. We further observed increased Th1 responses amplified by Tregs (regulatory T cells) and compromised Th17 responses, which alleviated the liver immunopathology. We speculated that these changes were related to polarization of Th1-like Tregs. Our results revealed the roles of USP21 in Treg-cell-mediated regulation of immune interactions between Schistosoma and its host. USP21 may have potential for regulating hepatic fibrosis in patients with schistosomiasis.
Collapse
|
23
|
Khumalo J, Kirstein F, Hadebe S, Brombacher F. IL-4Rα signaling in CD4+CD25+FoxP3+ T regulatory cells restrains airway inflammation via limiting local tissue IL-33. JCI Insight 2020; 5:136206. [PMID: 32931477 PMCID: PMC7605533 DOI: 10.1172/jci.insight.136206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/09/2020] [Indexed: 01/05/2023] Open
Abstract
Impaired tolerance to innocuous particles during allergic asthma has been linked to increased plasticity of FoxP3+ regulatory T cells (Tregs) reprogramming into pathogenic effector cells, thus exacerbating airway disease. However, failure of tolerance mechanisms is driven by Th2 inflammatory signals. Therefore, the in vivo role of canonical IL-4 receptor α (IL-4Rα) signaling, an essential driver of Th2-type airway responses to allergens, on the regulatory function of FoxP3+ Tregs in allergic asthma was explored. Here, we used transgenic Foxp3cre IL-4Rα-/lox and littermate control mice to investigate the role of IL-4 and IL-13 signaling via Tregs in house dust mite-induced (HDM-induced) allergic airway disease. We sensitized mice intratracheally on day 0, challenged them on days 6-10, and analyzed airway hyperresponsiveness (AHR), airway inflammation, mucus production, and cellular profile on day 14. In the absence of IL-4Rα responsiveness on FoxP3+ Tregs, exacerbated AHR and airway inflammation were shown in HDM-sensitized mice. Interestingly, reduced induction of FoxP3+ Tregs accompanied increased IL-33 alarmin production and type 2 innate lymphoid cell activation in the lung, exacerbating airway hyperreactivity and lung eosinophilia. Taken together, our findings indicate that IL-4Rα-unresponsive FoxP3+ Tregs result in exaggerated innate Th2-type, IL-33-dependent airway inflammation and a break in tolerance during allergic asthma.
Collapse
Affiliation(s)
- Jermaine Khumalo
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology.,International Centre for Genetic Engineering and Biotechnology (ICGEB), and
| | - Frank Kirstein
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology
| | - Sabelo Hadebe
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology
| | - Frank Brombacher
- Division of Immunology, and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology.,International Centre for Genetic Engineering and Biotechnology (ICGEB), and.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Nono JK, Fu K, Mpotje T, Varrone G, Aziz NA, Mosala P, Hlaka L, Kamdem SD, Xu D, Spangenberg T, Brombacher F. Investigating the antifibrotic effect of the antiparasitic drug Praziquantel in in vitro and in vivo preclinical models. Sci Rep 2020; 10:10638. [PMID: 32606340 PMCID: PMC7327036 DOI: 10.1038/s41598-020-67514-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Tissue fibrosis underlies the majority of human mortality to date with close to half of all reported deaths having a fibrotic etiology. The progression of fibrosis is very complex and reputed irreversible once established. Although some preventive options are being reported, therapeutic options are still scarce and in very high demand, given the rise of diseases linked to fibroproliferative disorders. Our work explored four platforms, complementarily, in order to screen preventive and therapeutic potentials of the antiparasitic drug Praziquantel as a possible antifibrotic. We applied the mouse CCl4-driven liver fibrosis model, the mouse chronic schistosomiasis liver fibrosis model, as well as novel 2D and 3D human cell-based co-culture of human hepatocytes, KCs (Kupffer cells), LECs (Liver Endothelial Cells), HSCs (Hepatic Stellate Cells) and/or myofibroblasts to mimic in vivo fibrotic responses and dynamics. Praziquantel showed some effect on fibrosis marker when preventively administered before severe establishment of fibrosis. However, it failed to potently reverse already established fibrosis. Together, we provided a novel sophisticated multi-assay screening platform to test preventive and therapeutic antifibrotic candidates. We further demonstrated a direct preventive potential of Praziquantel against the onset of fibrosis and the confirmation of its lack of therapeutic potential in reversing already established fibrosis.
Collapse
Affiliation(s)
- Justin Komguep Nono
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.,The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Kai Fu
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Thabo Mpotje
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Georgianna Varrone
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Nada Abdel Aziz
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.,Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Paballo Mosala
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Lerato Hlaka
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Severin Donald Kamdem
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa
| | - Daigen Xu
- Translational Innovation Platform Immunology, EMD Serono Research and Development Institute, Inc., 45A Middlesex Turnpike, Billerica, MA, 01821, USA.,The Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A. a subsidiary of Merck KGaA Darmstadt Germany, Eysins, Switzerland.
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa. .,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, 7925, South Africa.
| |
Collapse
|
25
|
Pionnier N, Sjoberg H, Furlong-Silva J, Marriott A, Halliday A, Archer J, Steven A, Taylor MJ, Turner JD. Eosinophil-Mediated Immune Control of Adult Filarial Nematode Infection Can Proceed in the Absence of IL-4 Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:731-740. [PMID: 32571840 PMCID: PMC7372315 DOI: 10.4049/jimmunol.1901244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Immunity to chronic filarial worm infection is apparent in IL-4Rα–deficient mice. Delayed immunity in IL-4Rα−/− mice is due to suboptimal tissue eosinophilia. Eosinophil recruitment in the absence of IL-4R signaling requires CCR3 and IL-5.
Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R–dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Rα–deficient (IL-4Rα−/−) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Rα−/− mice. By treating IL-4Rα−/− mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Rα−/− mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13–dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Rα signaling and defined that IL-4Rα−/−/IL-5−/− double-knockout mice displayed significant eosinophil deficiency compared with IL-4Rα−/− mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R–dependent or IL-4R–independent/CCR3/IL-5–dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R–independent/IL-5– and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Amy Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alice Halliday
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
26
|
Ryan SM, Eichenberger RM, Ruscher R, Giacomin PR, Loukas A. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog 2020; 16:e1008508. [PMID: 32407385 PMCID: PMC7224462 DOI: 10.1371/journal.ppat.1008508] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parasitic helminths have coevolved with humans over millennia, intricately refining and developing an array of mechanisms to suppress or skew the host’s immune system, thereby promoting their long-term survival. Some helminths, such as hookworms, cause little to no overt pathology when present in modest numbers and may even confer benefits to their human host. To exploit this evolutionary phenomenon, clinical trials of human helminth infection have been established and assessed for safety and efficacy for a range of immune dysfunction diseases and have yielded mixed outcomes. Studies of live helminth therapy in mice and larger animals have convincingly shown that helminths and their excretory/secretory products possess anti-inflammatory drug-like properties and represent an untapped pharmacopeia. These anti-inflammatory moieties include extracellular vesicles, proteins, glycans, post-translational modifications, and various metabolites. Although the concept of helminth-inspired therapies holds promise, it also presents a challenge to the drug development community, which is generally unfamiliar with foreign biologics that do not behave like antibodies. Identification and characterization of helminth molecules and vesicles and the molecular pathways they target in the host present a unique opportunity to develop tailored drugs inspired by nature that are efficacious, safe, and have minimal immunogenicity. Even so, much work remains to mine and assess this out-of-the-box therapeutic modality. Industry-based organizations need to consider long-haul investments aimed at unraveling and exploiting unique and differentiated mechanisms of action as opposed to toe-dipping entries with an eye on rapid and profitable turnarounds.
Collapse
Affiliation(s)
- Stephanie M. Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ramon M. Eichenberger
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul R. Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail:
| |
Collapse
|
27
|
Mbanefo EC, Fu CL, Ho CP, Le L, Ishida K, Hammam O, Hsieh MH. Interleukin-4 Signaling Plays a Major Role in Urogenital Schistosomiasis-Associated Bladder Pathogenesis. Infect Immun 2020; 88:e00669-19. [PMID: 31843965 PMCID: PMC7035943 DOI: 10.1128/iai.00669-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/26/2019] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 (IL-4) is crucial in many helminth infections, but its role in urogenital schistosomiasis, infection with Schistosoma haematobium worms, remains poorly understood due to a historical lack of animal models. The bladder pathology of urogenital schistosomiasis is caused by immune responses to eggs deposited in the bladder wall. A range of pathology occurs, including urothelial hyperplasia and cancer, but associated mechanisms and links to IL-4 are largely unknown. We modeled urogenital schistosomiasis by injecting the bladder walls of IL-4 receptor-alpha knockout (Il4ra-/- ) and wild-type mice with S. haematobium eggs. Readouts included bladder histology and ex vivo assessments of urothelial proliferation, cell cycle, and ploidy status. We also quantified the effects of exogenous IL-4 on urothelial cell proliferation in vitro, including cell cycle status and phosphorylation patterns of major downstream regulators in the IL-4 signaling pathway. There was a significant decrease in the intensity of granulomatous responses to bladder-wall-injected S. haematobium eggs in Il4ra-/- versus wild-type mice. S. haematobium egg injection triggered significant urothelial proliferation, including evidence of urothelial hyper-diploidy and cell cycle skewing in wild-type but not Il4ra-/- mice. Urothelial exposure to IL-4 in vitro led to cell cycle polarization and increased phosphorylation of AKT. Our results show that IL-4 signaling is required for key pathogenic features of urogenital schistosomiasis and that particular aspects of this signaling pathway may exert these effects directly on the urothelium. These findings point to potential mechanisms by which urogenital schistosomiasis promotes bladder carcinogenesis.
Collapse
Affiliation(s)
- Evaristus C Mbanefo
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | - Chi-Ling Fu
- Stanford University School of Medicine, Stanford, California, USA
| | - Christina P Ho
- Division of Urology, Children's National Medical Center, Washington, DC, USA
| | - Loc Le
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kenji Ishida
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
| | | | - Michael H Hsieh
- Division of Urology, Children's National Medical Center, Washington, DC, USA
- Bladder Immunology Group, Biomedical Research Institute, Rockville, Maryland, USA
- Department of Urology, The George Washington University, Washington, DC, USA
| |
Collapse
|
28
|
Tang CL, Xie YP, Yu WH, Jin L, Xie ZL, Li XR. Effects of regulatory T cells on glyceraldehyde-3-phosphate dehydrogenase vaccine efficacy against Schistosoma japonicum. Acta Trop 2020; 202:105239. [PMID: 31669534 DOI: 10.1016/j.actatropica.2019.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a candidate subunit vaccine that induces protective immunity and elicits partial resistance to Schistosoma japonicum upon mouse and livestock vaccination. This study aimed to evaluate the effect of regulatory T cells (Tregs), which were defined as CD4+CD25+Foxp3+ cells, on the efficacy of a GAPDH vaccine against S. japonicum. BALB/c female mice were randomly divided into five groups as follows: normal, infected control, anti-CD25 monoclonal antibody (anti-CD25 mAb), GAPDH group, and co-treated with anti-CD25 mAb and GAPDH group. The worm reduction and liver egg reduction rates in the GAPDH group were 32.46% and 35.43%, respectively, which increased to 60.09% and 58.78%, respectively, after anti-CD25 mAb administration. Compared with those in the infected control group, the percentage of Tregs in the spleen decreased significantly when GAPDH and anti-CD25 mAb were used either alone or in combination. Furthermore, secretions associated with the Th1 response increased in splenocytes of the anti-CD25 mAb group, whereas the Th1 and Th2 responses increased in splenocytes of the GAPDH and co-treated groups. Compared to that in the infected control group, granuloma diameter in the GAPDH and co-treated groups increased slightly, but there were no significant differences among the groups. Our results indicate that the protective effect of the GAPDH vaccines can be improved by decreasing Tregs and enhancing the Th1- and Th2-type immune responses. Therefore, anti-CD25 mAb and GAPDH might exert synergistic effects to clear parasites by decreasing the frequency of Tregs and increasing the Th1- and Th2-type immune responses.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ya-Ping Xie
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Wen-Hui Yu
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Lei Jin
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhao-Lan Xie
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| | - Xiu-Rong Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
29
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
30
|
Harb H, Chatila TA. Mechanisms of Dupilumab. Clin Exp Allergy 2020; 50:5-14. [PMID: 31505066 PMCID: PMC6930967 DOI: 10.1111/cea.13491] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
The Th2 cytokines interleukin 4 (IL-4) and IL-13 and the heterodimeric IL-4 receptor (IL-4R) complexes that they interact with play a key role in the pathogenesis of allergic disorders. Dupilumab is a humanized IgG4 monoclonal antibody that targets the IL-4 receptor alpha chain (IL-4Rα), common to both IL-4R complexes: type 1 (IL-4Rα/γc; IL-4 specific) and type 2 (IL-4Rα/IL-13Rα1; IL-4 and IL-13 specific). In this review, we detail the current state of knowledge of the different signalling pathways coupled to the IL-4R complexes and examine the possible mechanisms of Dupilumab action and survey its clinical efficacy in different allergic disorders. The development of Dupilumab and the widening spectrum of its clinical applications is relevant to the current emphasis on precision medicine approaches to the blockade of pathways involved in allergic diseases.
Collapse
Affiliation(s)
- Hani Harb
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|