1
|
Sakalauskaite G, Weingartner M, Ebert S, Boot G, Bock T, Birk J, Tsachaki M, Gallon JW, Piscuoglio S, Odermatt A. A BioID-based approach uncovers the interactome of hexose-6-phosphate dehydrogenase in breast cancer cells and identifies anterior gradient protein 2 as an interacting partner. Cell Biosci 2025; 15:54. [PMID: 40281598 PMCID: PMC12032772 DOI: 10.1186/s13578-025-01388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Hexose-6-phosphate dehydrogenase (H6PD) catalyzes the first two steps of the pentose-phosphate-pathway (PPP) within the endoplasmic reticulum, generating NADPH. H6PD modulates essential physiological processes, including energy and redox metabolism. Its sole reported interacting partner is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), utilizing NADPH to reactivate glucocorticoids, linking energy status with hormonal response. Previous studies showed that loss of H6PD affects breast cancer cell properties, independent of 11β-HSD1. It remains unknown whether this is due to impaired concentrations of NADPH or PPP products downstream of H6PD. To gain insight into novel roles and pathways influenced by this enzyme, we aimed to assess the H6PD interactome. RESULTS We adapted the proximity-dependent Biotin Identification (BioID) method to identify novel H6PD interacting partners. First, we validated the method and confirmed the known interaction between H6PD and 11β-HSD1. Next, we constructed a triple-negative breast cancer MDA-MB-231 cell clone stably expressing a H6PD-biotin ligase fusion protein. Enriched biotinylated proteins were analyzed by mass-spectrometry and potential candidates assessed further by co-immunoprecipitation and functional assays. The resulting interactome revealed proteins of the calreticulin/calnexin cycle, unfolded-protein response (UPR) and chaperone activation pathways. Due to its known association with breast cancer, we examined the PDI Anterior gradient protein 2 (AGR2) as H6PD interacting partner. Gene set enrichment analysis revealed multiple overlapping pathways enriched in breast cancer tissues with relatively high H6PD and AGR2 expression. These included glycolysis, fatty acid metabolism, hypoxia, angiogenesis and epithelial to mesenchymal transition. Co-immunoprecipitation (Co-IP) from MCF7 cells confirmed a physical interaction between H6PD and AGR2. ARG2 knockdown in these cells increased H6PD protein levels but decreased activity. Coexpression with AGR2 in HEK-293 cells did not affect expression but enhanced H6PD activity. CONCLUSION BioID was successfully applied in the endoplasmic reticulum to identify AGR2 as H6PD interactor. This was confirmed using Co-IP from MCF7 cells endogenously expressing both proteins. The results indicate that AGR2 controls H6PD protein expression and enhances its activity. Whether higher H6PD activity due to increased AGR2 expression promotes a more aggressive cancer cell phenotype, for example by altering energy metabolism, Ca2+-related processes or UPR and chaperone activation pathways, warrants further investigations.
Collapse
Affiliation(s)
- Gabriele Sakalauskaite
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Sophie Ebert
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Gina Boot
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Maria Tsachaki
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - John W Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system in the Plasmodium falciparum apicoplast. EMBO Rep 2025:10.1038/s44319-025-00420-w. [PMID: 40113990 DOI: 10.1038/s44319-025-00420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
For decades, researchers have sought to define minimal translation systems to uncover fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites contains 25 tRNA isotypes in its organellar genome-the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications. One such modification, lysidine at the wobble position (C34) of tRNACAU, distinguishes between methionine (AUG) and isoleucine (AUA) codons. tRNA isoleucine lysidine synthetase (TilS) produces lysidine, which is nearly ubiquitous in bacteria and essential for cellular viability. Here, we report a TilS ortholog (PfTilS) targeted to the apicoplast of Plasmodium falciparum. We demonstrate that PfTilS activity is essential for parasite survival and apicoplast function, likely due to its role in protein translation. This study is the first to characterize TilS in an endosymbiotic organelle, contributing to research on eukaryotic organelles and minimal translational systems. Moreover, the absence of lysidine in humans highlights a potential target for antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| |
Collapse
|
3
|
Chen M, Koszti SG, Bonavoglia A, Maco B, von Rohr O, Peng HJ, Soldati-Favre D, Kloehn J. Dissecting apicoplast functions through continuous cultivation of Toxoplasma gondii devoid of the organelle. Nat Commun 2025; 16:2095. [PMID: 40025025 PMCID: PMC11873192 DOI: 10.1038/s41467-025-57302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
The apicoplast, a relic plastid organelle derived from secondary endosymbiosis, is crucial for many medically relevant Apicomplexa. While it no longer performs photosynthesis, the organelle retains several essential metabolic pathways. In this study, we examine the four primary metabolic pathways in the Toxoplasma gondii apicoplast, along with an accessory pathway, and identify conditions that can bypass these. Contrary to the prevailing view that the apicoplast is indispensable for T. gondii, we demonstrate that bypassing all pathways renders the apicoplast non-essential. We further show that T. gondii lacking an apicoplast (T. gondii-Apico) can be maintained indefinitely in culture, establishing a unique model to study the functions of this organelle. Through comprehensive metabolomic, transcriptomic, and proteomic analyses of T. gondii-Apico we uncover significant adaptation mechanisms following loss of the organelle and identify numerous putative apicoplast proteins revealed by their decreased abundance in T. gondii-Apico. Moreover, T. gondii-Apico parasites exhibit reduced sensitivity to apicoplast targeting compounds, providing a valuable tool for discovering new drugs acting on the organelle. The capability to culture T. gondii without its plastid offers new avenues for exploring apicoplast biology and developing novel therapeutic strategies against apicomplexan parasites.
Collapse
Affiliation(s)
- Min Chen
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Szilamér Gyula Koszti
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Alessandro Bonavoglia
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Olivier von Rohr
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health; Key Laboratory of Infectious Diseases Research in South China (Ministry of Education), Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Geneva, Switzerland.
| |
Collapse
|
4
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Manuel Martinez Caaveiro J, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. eLife 2024; 13:RP100256. [PMID: 39660822 PMCID: PMC11634067 DOI: 10.7554/elife.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
- Amanda Mixon Blackwell
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | - Armiyaw S Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of TokyoTokyoJapan
- Department of Bioengineering, University of TokyoTokyoJapan
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
| | | | - Daniel E Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
- Departments of Medicine and Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
6
|
Chen X, Suo X, Zhu G, Shen B. The apicoplast biogenesis and metabolism: current progress and questions. Trends Parasitol 2024; 40:1144-1158. [PMID: 39567343 DOI: 10.1016/j.pt.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Many apicomplexan parasites have a chloroplast-derived apicoplast containing several metabolic pathways. Recent studies have greatly expanded our understanding of apicoplast biogenesis and metabolism while also raising new questions. Here, we review recent progress on the biological roles of individual metabolic pathways, focusing on two medically important parasites, Plasmodium spp. and Toxoplasma gondii. We highlight the similarities and differences in how similar apicoplast metabolic pathways are utilized to adapt to different parasitic lifestyles. The execution of apicoplast metabolic functions requires extensive interactions with other subcellular compartments, but the underlying mechanisms remain largely unknown. Apicoplast metabolic functions have historically been considered attractive drug targets, and a comprehensive understanding of their metabolic capacities and interactions with other organelles is essential to fully realize their potential.
Collapse
Affiliation(s)
- Xiaowei Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guan Zhu
- State Key Laboratory for the Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | - Bang Shen
- Key Laboratory Preventive Veterinary of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
Kehrer J, Pietsch E, Ricken D, Strauss L, Heinze JM, Gilberger T, Frischknecht F. APEX-based proximity labeling in Plasmodium identifies a membrane protein with dual functions during mosquito infection. PLoS Pathog 2024; 20:e1012788. [PMID: 39693377 DOI: 10.1371/journal.ppat.1012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/02/2025] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
Transmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we aimed to define the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.
Collapse
Affiliation(s)
- Jessica Kehrer
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| | - Emma Pietsch
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Dominik Ricken
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Léanne Strauss
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Julia M Heinze
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
| | - Tim Gilberger
- CSSB Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Friedrich Frischknecht
- Center for Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF, partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Wunderlich J, Kotov V, Votborg-Novél L, Ntalla C, Geffken M, Peine S, Portugal S, Strauss J. Iron transport pathways in the human malaria parasite Plasmodium falciparum revealed by RNA-sequencing. Front Cell Infect Microbiol 2024; 14:1480076. [PMID: 39575308 PMCID: PMC11578967 DOI: 10.3389/fcimb.2024.1480076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Host iron deficiency is protective against severe malaria as the human malaria parasite Plasmodium falciparum depends on bioavailable iron from its host to proliferate. The essential pathways of iron acquisition, storage, export, and detoxification in the parasite differ from those in humans, as orthologs of the mammalian transferrin receptor, ferritin, or ferroportin, and a functional heme oxygenase are absent in P. falciparum. Thus, the proteins involved in these processes may be excellent targets for therapeutic development, yet remain largely unknown. Here, we show that parasites cultured in erythrocytes from an iron-deficient donor displayed significantly reduced growth rates compared to those grown in red blood cells from healthy controls. Sequencing of parasite RNA revealed diminished expression of genes involved in overall metabolism, hemoglobin digestion, and metabolite transport under low-iron versus control conditions. Supplementation with hepcidin, a specific ferroportin inhibitor, resulted in increased labile iron levels in erythrocytes, enhanced parasite replication, and transcriptional upregulation of genes responsible for merozoite motility and host cell invasion. Through endogenous GFP tagging of differentially expressed putative transporter genes followed by confocal live-cell imaging, proliferation assays with knockout and knockdown lines, and protein structure predictions, we identified six proteins that are likely required for ferrous iron transport in P. falciparum. Of these, we localized PfVIT and PfZIPCO to cytoplasmic vesicles, PfMRS3 to the mitochondrion, and the novel putative iron transporter PfE140 to the plasma membrane for the first time in P. falciparum. PfNRAMP/PfDMT1 and PfCRT were previously reported to efflux Fe2+ from the digestive vacuole. Our data support a new model for parasite iron homeostasis, in which PfE140 is involved in iron uptake across the plasma membrane, PfMRS3 ensures non-redundant Fe2+ supply to the mitochondrion as the main site of iron utilization, PfVIT transports excess iron into cytoplasmic vesicles, and PfZIPCO exports Fe2+ from these organelles in case of iron scarcity. These results provide new insights into the parasite's response to differential iron availability in its environment and into the mechanisms of iron transport in P. falciparum as promising candidate targets for future antimalarial drugs.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Vadim Kotov
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Lasse Votborg-Novél
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Christina Ntalla
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Maria Geffken
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Silvia Portugal
- Malaria Parasite Biology Group, Max Planck Institute for Infection Biology (MPIIB), Berlin, Germany
| | - Jan Strauss
- Membrane Protein Structural Biology Group, Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
9
|
Tiwari A, Verma N, Shukla H, Mishra S, Kennedy K, Chatterjee T, Kuldeep J, Parwez S, Siddiqi MI, Ralph SA, Mishra S, Habib S. DNA N-glycosylases Ogg1 and EndoIII as components of base excision repair in Plasmodium falciparum organelles. Int J Parasitol 2024; 54:675-689. [PMID: 38964640 DOI: 10.1016/j.ijpara.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The integrity of genomes of the two crucial organelles of the malaria parasite - an apicoplast and mitochondrion in each cell - must be maintained by DNA repair mediated by proteins targeted to these compartments. We explored the localisation and function of Plasmodium falciparum base excision repair (BER) DNA N-glycosylase homologs PfEndoIII and PfOgg1. These N-glycosylases would putatively recognise DNA lesions prior to the action of apurinic/apyrimidinic (AP)-endonucleases. Both Ape1 and Apn1 endonucleases have earlier been shown to function solely in the parasite mitochondrion. Immunofluorescence localisation showed that PfEndoIII was exclusively mitochondrial. PfOgg1 was not seen clearly in mitochondria when expressed as a PfOgg1leader-GFP fusion, although chromatin immunoprecipitation assays showed that it could interact with both mitochondrial and apicoplast DNA. Recombinant PfEndoIII functioned as a DNA N-glycosylase as well as an AP-lyase on thymine glycol (Tg) lesions. We further studied the importance of Ogg1 in the malaria life cycle using reverse genetic approaches in Plasmodium berghei. Targeted disruption of PbOgg1 resulted in loss of 8-oxo-G specific DNA glycosylase/lyase activity. PbOgg1 knockout did not affect blood, mosquito or liver stage development but caused reduced blood stage infection after inoculation of sporozoites in mice. A significant reduction in erythrocyte infectivity by PbOgg1 knockout hepatic merozoites was also observed, thus showing that PbOgg1 ensures smooth transition from liver to blood stage infection. Our results strengthen the view that the Plasmodium mitochondrial genome is an important site for DNA repair by the BER pathway.
Collapse
Affiliation(s)
- Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Neetu Verma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Mishra
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shahid Parwez
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - M I Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Blackwell AM, Jami-Alahmadi Y, Nasamu AS, Kudo S, Senoo A, Slam C, Tsumoto K, Wohlschlegel JA, Caaveiro JMM, Goldberg DE, Sigala PA. Malaria parasites require a divergent heme oxygenase for apicoplast gene expression and biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596652. [PMID: 38853871 PMCID: PMC11160694 DOI: 10.1101/2024.05.30.596652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
Collapse
Affiliation(s)
| | | | - Armiyaw S. Nasamu
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Shota Kudo
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Akinobu Senoo
- Department of Protein Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Celine Slam
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Kouhei Tsumoto
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, University of Tokyo, Tokyo, Japan
| | | | - Jose M. M. Caaveiro
- Department of Chemistry & Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Paul A. Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
11
|
Elahi R, Prigge ST. tRNA lysidinylation is essential for the minimal translation system found in the apicoplast of Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612944. [PMID: 39314434 PMCID: PMC11419160 DOI: 10.1101/2024.09.13.612944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
For decades, researchers have sought to define minimal genomes to elucidate the fundamental principles of life and advance biotechnology. tRNAs, essential components of this machinery, decode mRNA codons into amino acids. The apicoplast of malaria parasites encodes 25 tRNA isotypes in its organellar genome - the lowest number found in known translation systems. Efficient translation in such minimal systems depends heavily on post-transcriptional tRNA modifications, especially at the wobble anticodon position. Lysidine modification at the wobble position (C34) of tRNACAU distinguishes between methionine (AUG) and isoleucine (AUA) codons, altering the amino acid delivered by this tRNA and ensuring accurate protein synthesis. Lysidine is formed by the enzyme tRNA isoleucine lysidine synthetase (TilS) and is nearly ubiquitous in bacteria and essential for cellular viability. We identified a TilS ortholog (PfTilS) located in the apicoplast of Plasmodium falciparum parasites. By complementing PfTilS with a bacterial ortholog, we demonstrated that the lysidinylation activity of PfTilS is critical for parasite survival and apicoplast maintenance, likely due to its impact on apicoplast protein translation. Our findings represent the first characterization of TilS in an endosymbiotic organelle, advancing eukaryotic organelle research and our understanding of minimal translational machinery. Due to the absence of lysidine modifications in humans, this research also exposes a potential vulnerability in malaria parasites that could be targeted by antimalarial strategies.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Khan T, Khan A, Khan A, Badshah F, Ibáñez-Arancibia E, De los Ríos-Escalante PR, Maryam B, Noor N, Maria, Abdel-Maksoud MA, El-Tayeb MA, Hussain A. Assessment of hematological parameters in malarial suspected patients: Cross sectional study. Parasite Epidemiol Control 2024; 26:e00367. [PMID: 39220188 PMCID: PMC11364049 DOI: 10.1016/j.parepi.2024.e00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
Background Malaria is a Zoonotic disease, worldwide in distribution and caused by different species of plasmodium. It is a major cause of sickness and mortality in developing countries including Pakistan. This study was carried with the aim to find out the prevalence of malaria and to aware the people about this disease. Methods The study was carried out in district charsadda. 120 blood samples were collected from suspects both male and female, during the period of March 2022 to September 2022 and were analyzed for CBC and for Microscopic examination. Results Out of these 120 samples 12(10%) were found positive and 108(90%) were negative. The prevalence of malaria was more in the month of June and July. The infection was high in male (13.3%) as compared to female (6.6%). The prevalence was more in rural areas 8(13.3%) than in urban areas 4(6.6%). Conclusion The Hemoglobin, Hematocrit, Platelets and Red Blood Cells were found more affected in positive samples as compared to other parameters. The present study will help the malarial control programs to focus on rural areas. The Plasmodium vivax is more common in the study area.
Collapse
Affiliation(s)
- Tanveer Khan
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Abuzar Khan
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Anis Khan
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Zoology, Abdul wali Khan University Mardan, Pakistan
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry – LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Bibi Maryam
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Nimra Noor
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | - Maria
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| | | | - Mohamed A. El-Tayeb
- Botany and Microbiology department, College of Science, King Saud University, Saudi Arabia
| | - Arab Hussain
- Department of Zoology, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
13
|
Chatterjee T, Tiwari A, Gupta R, Shukla H, Varshney A, Mishra S, Habib S. A Plasmodium apicoplast-targeted unique exonuclease/FEN exhibits interspecies functional differences attributable to an insertion that alters DNA-binding. Nucleic Acids Res 2024; 52:7843-7862. [PMID: 38888125 PMCID: PMC11260460 DOI: 10.1093/nar/gkae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.
Collapse
Affiliation(s)
- Tribeni Chatterjee
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anupama Tiwari
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ritika Gupta
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himadri Shukla
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Aastha Varshney
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
14
|
Charneau S, de Oliveira LS, Zenonos Z, Hopp CS, Bastos IMD, Loew D, Lombard B, Pandolfo Silveira A, de Carvalho Nardeli Basílio Lobo G, Bao SN, Grellier P, Rayner JC. APEX2-based proximity proteomic analysis identifies candidate interactors for Plasmodium falciparum knob-associated histidine-rich protein in infected erythrocytes. Sci Rep 2024; 14:11242. [PMID: 38755230 PMCID: PMC11099048 DOI: 10.1038/s41598-024-61295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Collapse
Affiliation(s)
- Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil.
| | - Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Biologics Engineering, Oncology R&D, AstraZenecaGranta Park, Cambridge, UK
| | - Christine S Hopp
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Izabela M D Bastos
- Laboratory of Host Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, 70910-900, Brazil
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Bérangère Lombard
- Institut Curie, Centre de Recherche, PSL Research University, CurieCoreTech Mass Spectrometry Proteomics, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Ariane Pandolfo Silveira
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | | | - Sônia Nair Bao
- Laboratory of Microscopy and Microanalysis, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Philippe Grellier
- UMR 7245 MCAM Molecules of Communication and Adaptation of Microorganisms, Muséum National d'Histoire Naturelle, CNRS, 75231, Paris Cedex 05, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
15
|
Mamudu CO, Tebamifor ME, Sule MO, Dokunmu TM, Ogunlana OO, Iheagwam FN. Apicoplast-Resident Processes: Exploiting the Chink in the Armour of Plasmodium falciparum Parasites. Adv Pharmacol Pharm Sci 2024; 2024:9940468. [PMID: 38765186 PMCID: PMC11101256 DOI: 10.1155/2024/9940468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
The discovery of a relict plastid, also known as an apicoplast (apicomplexan plastid), that houses housekeeping processes and metabolic pathways critical to Plasmodium parasites' survival has prompted increased research on identifying potent inhibitors that can impinge on apicoplast-localised processes. The apicoplast is absent in humans, yet it is proposed to originate from the eukaryote's secondary endosymbiosis of a primary symbiont. This symbiotic relationship provides a favourable microenvironment for metabolic processes such as haem biosynthesis, Fe-S cluster synthesis, isoprenoid biosynthesis, fatty acid synthesis, and housekeeping processes such as DNA replication, transcription, and translation, distinct from analogous mammalian processes. Recent advancements in comprehending the biology of the apicoplast reveal it as a vulnerable organelle for malaria parasites, offering numerous potential targets for effective antimalarial therapies. We provide an overview of the metabolic processes occurring in the apicoplast and discuss the organelle as a viable antimalarial target in light of current advances in drug discovery. We further highlighted the relevance of these metabolic processes to Plasmodium falciparum during the different stages of the lifecycle.
Collapse
Affiliation(s)
- Collins Ojonugwa Mamudu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mercy Eyitomi Tebamifor
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Mary Ohunene Sule
- Confluence University of Science and Technology, Osara, Kogi, Nigeria
| | - Titilope Modupe Dokunmu
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| | - Franklyn Nonso Iheagwam
- Department of Biochemistry, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster, Covenant University, Ota, Nigeria
| |
Collapse
|
16
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
17
|
Kalamuddin M, Shakri AR, Wang C, Min H, Li X, Cui L, Miao J. MYST regulates DNA repair and forms a NuA4-like complex in the malaria parasite Plasmodium falciparum. mSphere 2024; 9:e0014024. [PMID: 38564734 PMCID: PMC11036802 DOI: 10.1128/msphere.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.
Collapse
Affiliation(s)
- Mohammad Kalamuddin
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Dong H, Yang J, He K, Zheng WB, Lai DH, Liu J, Ding HY, Wu RB, Brown KM, Hide G, Lun ZR, Zhu XQ, Long S. The Toxoplasma monocarboxylate transporters are involved in the metabolism within the apicoplast and are linked to parasite survival. eLife 2024; 12:RP88866. [PMID: 38502570 PMCID: PMC10950331 DOI: 10.7554/elife.88866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
The apicoplast is a four-membrane plastid found in the apicomplexans, which harbors biosynthesis and organelle housekeeping activities in the matrix. However, the mechanism driving the flux of metabolites, in and out, remains unknown. Here, we used TurboID and genome engineering to identify apicoplast transporters in Toxoplasma gondii. Among the many novel transporters, we show that one pair of apicomplexan monocarboxylate transporters (AMTs) appears to have evolved from a putative host cell that engulfed a red alga. Protein depletion showed that AMT1 and AMT2 are critical for parasite growth. Metabolite analyses supported the notion that AMT1 and AMT2 are associated with biosynthesis of isoprenoids and fatty acids. However, stronger phenotypic defects were observed for AMT2, including in the inability to establish T. gondii parasite virulence in mice. This study clarifies, significantly, the mystery of apicoplast transporter composition and reveals the importance of the pair of AMTs in maintaining the apicoplast activity in apicomplexans.
Collapse
Affiliation(s)
- Hui Dong
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Jiong Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Kai He
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural UniversityTaiguChina
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Jing Liu
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Hui-Yong Ding
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Rui-Bin Wu
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| | - Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Geoff Hide
- Biomedical Research and Innovation Centre and Environmental Research and Innovation Centre, School of Science, Engineering and Environment, University of SalfordSalfordUnited Kingdom
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen UniversityGuangzhouChina
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural UniversityTaiguChina
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Safety, and College of Veterinary Medicine, China Agricultural UniversityBeijingChina
- National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural UniversityBeijingChina
| |
Collapse
|
19
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CK, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase PhoD as a determinant of antiparasitic resistance. Proc Natl Acad Sci U S A 2024; 121:e2312987121. [PMID: 38377214 PMCID: PMC10907312 DOI: 10.1073/pnas.2312987121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024] Open
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.
Collapse
Affiliation(s)
- Caroline D. Keroack
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Jacob A. Tennessen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Aditya S. Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Renee Hua
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Luz Ramirez-Ramirez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Sida Ye
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Cristina K. Moreira
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| | - Marvin J. Meyers
- Department of Chemistry, Saint Louis University, St. Louis, MO63103
| | - Kourosh Zarringhalam
- Department of Mathematics, University of Massachusetts, Boston, MA02125
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA02125
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
20
|
Crispim M, Verdaguer IB, Hernández A, Kronenberger T, Fenollar À, Yamaguchi LF, Alberione MP, Ramirez M, de Oliveira SS, Katzin AM, Izquierdo L. Beyond the MEP Pathway: A novel kinase required for prenol utilization by malaria parasites. PLoS Pathog 2024; 20:e1011557. [PMID: 38277417 PMCID: PMC10849223 DOI: 10.1371/journal.ppat.1011557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
A proposed treatment for malaria is a combination of fosmidomycin and clindamycin. Both compounds inhibit the methylerythritol 4-phosphate (MEP) pathway, the parasitic source of farnesyl and geranylgeranyl pyrophosphate (FPP and GGPP, respectively). Both FPP and GGPP are crucial for the biosynthesis of several essential metabolites such as ubiquinone and dolichol, as well as for protein prenylation. Dietary prenols, such as farnesol (FOH) and geranylgeraniol (GGOH), can rescue parasites from MEP inhibitors, suggesting the existence of a missing pathway for prenol salvage via phosphorylation. In this study, we identified a gene in the genome of P. falciparum, encoding a transmembrane prenol kinase (PolK) involved in the salvage of FOH and GGOH. The enzyme was expressed in Saccharomyces cerevisiae, and its FOH/GGOH kinase activities were experimentally validated. Furthermore, conditional knockout parasites (Δ-PolK) were created to investigate the biological importance of the FOH/GGOH salvage pathway. Δ-PolK parasites were viable but displayed increased susceptibility to fosmidomycin. Their sensitivity to MEP inhibitors could not be rescued by adding prenols. Additionally, Δ-PolK parasites lost their capability to utilize prenols for protein prenylation. Experiments using culture medium supplemented with whole/delipidated human plasma in transgenic parasites revealed that human plasma has components that can diminish the effectiveness of fosmidomycin. Mass spectrometry tests indicated that both bovine supplements used in culture and human plasma contain GGOH. These findings suggest that the FOH/GGOH salvage pathway might offer an alternate source of isoprenoids for malaria parasites when de novo biosynthesis is inhibited. This study also identifies a novel kind of enzyme related to isoprenoid metabolism.
Collapse
Affiliation(s)
- Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Center for Biological and Health Sciences, Integrated Unit for Research in Biodiversity (BIOTROP-CCBS), Federal University of São Carlos, São Carlos, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Àngel Fenollar
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - María Pía Alberione
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Miriam Ramirez
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Luis Izquierdo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
21
|
Pietsch E, Ramaprasad A, Bielfeld S, Wohlfarter Y, Maco B, Niedermüller K, Wilcke L, Kloehn J, Keller MA, Soldati-Favre D, Blackman MJ, Gilberger TW, Burda PC. A patatin-like phospholipase is important for mitochondrial function in malaria parasites. mBio 2023; 14:e0171823. [PMID: 37882543 PMCID: PMC10746288 DOI: 10.1128/mbio.01718-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Schmidt S, Wichers-Misterek JS, Behrens HM, Birnbaum J, Henshall IG, Dröge J, Jonscher E, Flemming S, Castro-Peña C, Mesén-Ramírez P, Spielmann T. The Kelch13 compartment contains highly divergent vesicle trafficking proteins in malaria parasites. PLoS Pathog 2023; 19:e1011814. [PMID: 38039338 PMCID: PMC10718435 DOI: 10.1371/journal.ppat.1011814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/13/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.
Collapse
Affiliation(s)
- Sabine Schmidt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Jakob Birnbaum
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Jana Dröge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ernst Jonscher
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sven Flemming
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
23
|
Siau A, Ang JW, Sheriff O, Hoo R, Loh HP, Tay D, Huang X, Yam XY, Lai SK, Meng W, Julca I, Kwan SS, Mutwil M, Preiser PR. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep 2023; 42:113419. [PMID: 37952150 DOI: 10.1016/j.celrep.2023.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Plasmodium parasites contribute to one of the highest global infectious disease burdens. To achieve this success, the parasite has evolved a range of specialized subcellular compartments to extensively remodel the host cell for its survival. The information to fully understand these compartments is likely hidden in the so far poorly characterized Plasmodium species spatial proteome. To address this question, we determined the steady-state subcellular location of more than 12,000 parasite proteins across five different species by extensive subcellular fractionation of erythrocytes infected by Plasmodium falciparum, Plasmodium knowlesi, Plasmodium yoelii, Plasmodium berghei, and Plasmodium chabaudi. This comparison of the pan-species spatial proteomes and their expression patterns indicates increasing species-specific proteins associated with the more external compartments, supporting host adaptations and post-transcriptional regulation. The spatial proteome offers comprehensive insight into the different human, simian, and rodent Plasmodium species, establishing a powerful resource for understanding species-specific host adaptation processes in the parasite.
Collapse
Affiliation(s)
- Anthony Siau
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Jing Wen Ang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Omar Sheriff
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Regina Hoo
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Han Ping Loh
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Donald Tay
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Ximei Huang
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Xue Yan Yam
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Soak Kuan Lai
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Wei Meng
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Irene Julca
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Sze Siu Kwan
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore
| | - Peter R Preiser
- Nanyang Technological University, School of Biological Sciences, Singapore 637551, Singapore.
| |
Collapse
|
24
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. Antimicrob Agents Chemother 2023; 67:e0057723. [PMID: 37702516 PMCID: PMC10583690 DOI: 10.1128/aac.00577-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum. The protein level of PfGCN5 was substantially induced under three stress conditions [heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)]. With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ~50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ~1,000 up- and down-regulated genes in the wild-type (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin. Based on the expression pattern between WT and KD parasites under three stress conditions, ~300-400 genes were identified to be involved in PfGCN5-dependent, general, and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay, we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mohammad Kalamuddin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anongruk Chim-Ong
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
25
|
Devi SB, Kumar S. Designing a multi-epitope chimeric protein from different potential targets: A potential vaccine candidate against Plasmodium. Mol Biochem Parasitol 2023; 255:111560. [PMID: 37084957 DOI: 10.1016/j.molbiopara.2023.111560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Malaria is an infectious disease that has been a continuous threat to mankind since the time immemorial. Owing to the complex multi-staged life cycle of the plasmodium parasite, an effective malaria vaccine which is fully protective against the parasite infection is urgently needed to deal with the challenges. In the present study, essential parasite proteins were identified and a chimeric protein with multivalent epitopes was generated. The designed chimeric protein consists of best potential B and T cell epitopes from five different essential parasite proteins. Physiochemical studies of the chimeric protein showed that the modeled vaccine construct was thermo-stable, hydrophilic and antigenic in nature. And the binding of the vaccine construct with Toll-like receptor-4 (TLR-4) as revealed by the molecular docking suggests the possible interaction and role of the vaccine construct in activating the innate immune response. The constructed vaccine being a chimeric protein containing epitopes from different potential candidates could target different stages or pathways of the parasite. Moreover, the approach used in this study is time and cost effective, and can be applied in the discoveries of new potential vaccine targets for other pathogens.
Collapse
Affiliation(s)
- Sanasam Bijara Devi
- Department of Life science & Bioinformatics, Assam University, Silchar 788011 India.
| | - Sanjeev Kumar
- Department of Life science & Bioinformatics, Assam University, Silchar 788011 India
| |
Collapse
|
26
|
Machado M, Klaus S, Klaschka D, Guizetti J, Ganter M. Plasmodium falciparum CRK4 links early mitotic events to the onset of S-phase during schizogony. mBio 2023; 14:e0077923. [PMID: 37345936 PMCID: PMC10470535 DOI: 10.1128/mbio.00779-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
Plasmodium falciparum proliferates through schizogony in the clinically relevant blood stage of infection. During schizogony, consecutive rounds of DNA replication and nuclear division give rise to multinucleated stages before cellularization occurs. Although these nuclei reside in a shared cytoplasm, DNA replication and nuclear division occur asynchronously. Here, by mapping the proteomic context of the S-phase-promoting kinase PfCRK4, we show that it has a dual role for nuclear-cycle progression: PfCRK4 orchestrates not only DNA replication, but in parallel also the rearrangement of intranuclear microtubules from hemispindles into early mitotic spindles. Live-cell imaging of a reporter parasite showed that these microtubule rearrangements coincide with the onset of DNA replication. Together, our data render PfCRK4 a key factor for nuclear-cycle progression, linking entry into S-phase with the initiation of mitotic events. In part, such links may compensate for the absence of canonical cell cycle checkpoints in P. falciparum. IMPORTANCE The human malaria parasite Plasmodium falciparum proliferates in erythrocytes through schizogony, forming multinucleated stages before cellularization occurs. In marked contrast to the pattern of proliferation seen in most model organisms, P. falciparum nuclei multiply asynchronously despite residing in a shared cytoplasm. This divergent mode of replication is, thus, a good target for therapeutic interventions. To exploit this potential, we investigated a key regulator of the parasite's unusual cell cycle, the kinase PfCRK4 and found that this kinase regulated not only DNA replication but also in parallel the rearrangement of nuclear microtubules into early mitotic spindles. Since canonical cell cycle checkpoints have not been described in P. falciparum parasites, linking entry into S-phase and the initiation of mitotic events via a kinase, may be an alternative means to exert control, which is typically achieved by checkpoints.
Collapse
Affiliation(s)
- Marta Machado
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Severina Klaus
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Darius Klaschka
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Julien Guizetti
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
27
|
Fierro MA, Hussain T, Campin LJ, Beck JR. Knock-sideways by inducible ER retrieval enables a unique approach for studying Plasmodium-secreted proteins. Proc Natl Acad Sci U S A 2023; 120:e2308676120. [PMID: 37552754 PMCID: PMC10433460 DOI: 10.1073/pnas.2308676120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Malaria parasites uniquely depend on protein secretion for their obligate intracellular lifestyle but approaches for dissecting Plasmodium-secreted protein functions are limited. We report knockER, a unique DiCre-mediated knock-sideways approach to sequester secreted proteins in the ER by inducible fusion with a KDEL ER-retrieval sequence. We show conditional ER sequestration of diverse proteins is not generally toxic, enabling loss-of-function studies. We employed knockER in multiple Plasmodium species to interrogate the trafficking, topology, and function of an assortment of proteins that traverse the secretory pathway to diverse compartments including the apicoplast (ClpB1), rhoptries (RON6), dense granules, and parasitophorous vacuole (EXP2, PTEX150, HSP101). Taking advantage of the unique ability to redistribute secreted proteins from their terminal destination to the ER, we reveal that vacuolar levels of the PTEX translocon component HSP101 but not PTEX150 are maintained in excess of what is required to sustain effector protein export into the erythrocyte. Intriguingly, vacuole depletion of HSP101 hypersensitized parasites to a destabilization tag that inhibits HSP101-PTEX complex formation but not to translational knockdown of the entire HSP101 pool, illustrating how redistribution of a target protein by knockER can be used to query function in a compartment-specific manner. Collectively, our results establish knockER as a unique tool for dissecting secreted protein function with subcompartmental resolution that should be widely amenable to genetically tractable eukaryotes.
Collapse
Affiliation(s)
- Manuel A. Fierro
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Tahir Hussain
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
| | - Liam J. Campin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | - Josh R. Beck
- Department of Biomedical Sciences, Iowa State University, Ames, IA50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| |
Collapse
|
28
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CM, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase phoD as a novel determinant of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544849. [PMID: 37398106 PMCID: PMC10312741 DOI: 10.1101/2023.06.13.544849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .
Collapse
|
29
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523703. [PMID: 36711954 PMCID: PMC9882135 DOI: 10.1101/2023.01.11.523703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum . The protein level of PfGCN5 was substantially induced under three stress conditions (heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)). With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ∼50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ∼1,000 up-and down-regulated genes in the wildtype (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin . Based on the expression pattern between WT and KD parasites under three stress conditions, ∼300-400 genes were identified to be involved in PfGCN5-dependent, general and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay (RSA), we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention. IMPORTANCE Malaria leads to about half a million deaths annually and these casualties were majorly caused by the infection of Plasmodium falciparum . This parasite strives to survive by defending against a variety of stress conditions, such as malaria cyclical fever (heat shock), starvation due to low blood sugar (glucose) levels (hypoglycemia), and drug treatment. Previous studies have revealed that P. falciparum has developed unique stress responses to different stresses including ART treatment, and ART-resistant parasites harbor elevated stress responses. In this study, we provide critical evidence on the role of PfGCN5, a histone modifier, and a chromatin coactivator, in regulating general and stress-specific responses in malaria parasites, indicating that PfGCN5 can be used as a potential target for anti-malaria intervention.
Collapse
|
30
|
Christian R, Labbancz J, Usadel B, Dhingra A. Understanding protein import in diverse non-green plastids. Front Genet 2023; 14:969931. [PMID: 37007964 PMCID: PMC10063809 DOI: 10.3389/fgene.2023.969931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
The spectacular diversity of plastids in non-green organs such as flowers, fruits, roots, tubers, and senescing leaves represents a Universe of metabolic processes in higher plants that remain to be completely characterized. The endosymbiosis of the plastid and the subsequent export of the ancestral cyanobacterial genome to the nuclear genome, and adaptation of the plants to all types of environments has resulted in the emergence of diverse and a highly orchestrated metabolism across the plant kingdom that is entirely reliant on a complex protein import and translocation system. The TOC and TIC translocons, critical for importing nuclear-encoded proteins into the plastid stroma, remain poorly resolved, especially in the case of TIC. From the stroma, three core pathways (cpTat, cpSec, and cpSRP) may localize imported proteins to the thylakoid. Non-canonical routes only utilizing TOC also exist for the insertion of many inner and outer membrane proteins, or in the case of some modified proteins, a vesicular import route. Understanding this complex protein import system is further compounded by the highly heterogeneous nature of transit peptides, and the varying transit peptide specificity of plastids depending on species and the developmental and trophic stage of the plant organs. Computational tools provide an increasingly sophisticated means of predicting protein import into highly diverse non-green plastids across higher plants, which need to be validated using proteomics and metabolic approaches. The myriad plastid functions enable higher plants to interact and respond to all kinds of environments. Unraveling the diversity of non-green plastid functions across the higher plants has the potential to provide knowledge that will help in developing climate resilient crops.
Collapse
Affiliation(s)
- Ryan Christian
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - June Labbancz
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Amit Dhingra,
| |
Collapse
|
31
|
Mathur V, Salomaki ED, Wakeman KC, Na I, Kwong WK, Kolisko M, Keeling PJ. Reconstruction of Plastid Proteomes of Apicomplexans and Close Relatives Reveals the Major Evolutionary Outcomes of Cryptic Plastids. Mol Biol Evol 2023; 40:6969433. [PMID: 36610734 PMCID: PMC9847631 DOI: 10.1093/molbev/msad002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/18/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Apicomplexans and related lineages comprise many obligate symbionts of animals; some of which cause notorious diseases such as malaria. They evolved from photosynthetic ancestors and transitioned into a symbiotic lifestyle several times, giving rise to species with diverse non-photosynthetic plastids. Here, we sought to reconstruct the evolution of the cryptic plastids in the apicomplexans, chrompodellids, and squirmids (ACS clade) by generating five new single-cell transcriptomes from understudied gregarine lineages, constructing a robust phylogenomic tree incorporating all ACS clade sequencing datasets available, and using these to examine in detail, the evolutionary distribution of all 162 proteins recently shown to be in the apicoplast by spatial proteomics in Toxoplasma. This expanded homology-based reconstruction of plastid proteins found in the ACS clade confirms earlier work showing convergence in the overall metabolic pathways retained once photosynthesis is lost, but also reveals differences in the degrees of plastid reduction in specific lineages. We show that the loss of the plastid genome is common and unexpectedly find many lineage- and species-specific plastid proteins, suggesting the presence of evolutionary innovations and neofunctionalizations that may confer new functional and metabolic capabilities that are yet to be discovered in these enigmatic organelles.
Collapse
Affiliation(s)
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Ina Na
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| | - Waldan K Kwong
- Present address: Instituto Gulbenkian de Ciência (IGC) Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Martin Kolisko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver V6T 1Z4, BC, Canada
| |
Collapse
|
32
|
Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum. Pharmaceutics 2022; 14:pharmaceutics14112515. [PMID: 36432706 PMCID: PMC9695703 DOI: 10.3390/pharmaceutics14112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The methyl erythritol phosphate (MEP) pathway of isoprenoid biosynthesis is essential for malaria parasites and also for several human pathogenic bacteria, thus representing an interesting target for future antimalarials and antibiotics and for diagnostic strategies. We have developed a DNA aptamer (D10) against Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), the second enzyme of this metabolic route. D10 binds in vitro to recombinant DXR from P. falciparum and Escherichia coli, showing at 10 µM a ca. 50% inhibition of the bacterial enzyme. In silico docking analysis indicates that D10 associates with DXR in solvent-exposed regions outside the active center pocket. According to fluorescence confocal microscopy data, this aptamer specifically targets in P. falciparum in vitro cultures the apicoplast organelle where the MEP pathway is localized and is, therefore, a highly specific marker of red blood cells parasitized by Plasmodium vs. naïve erythrocytes. D10 is also selective for the detection of MEP+ bacteria (e.g., E. coli and Pseudomonas aeruginosa) vs. those lacking DXR (e.g., Enterococcus faecalis). Based on these results, we discuss the potential of DNA aptamers in the development of ligands that can outcompete the performance of the well-established antibody technology for future therapeutic and diagnostic approaches.
Collapse
|
33
|
Nieto NS, Parrott EE, Nelson SW. Ribonucleotide Misincorporation and Reverse Transcriptase Activities of Plasmodium falciparum Apicoplast DNA Polymerase. Biochemistry 2022; 61:2742-2750. [DOI: 10.1021/acs.biochem.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas S. Nieto
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Eric E. Parrott
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Scott W. Nelson
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| |
Collapse
|
34
|
TurboID Identification of Evolutionarily Divergent Components of the Nuclear Pore Complex in the Malaria Model Plasmodium berghei. mBio 2022; 13:e0181522. [PMID: 36040030 PMCID: PMC9601220 DOI: 10.1128/mbio.01815-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twenty years since the publication of the Plasmodium falciparum and P. berghei genomes one-third of their protein-coding genes still lack functional annotation. In the absence of sequence and structural homology, protein-protein interactions can facilitate functional prediction of such orphan genes by mapping protein complexes in their natural cellular environment. The Plasmodium nuclear pore complex (NPC) is a case in point: it remains poorly defined; its constituents lack conservation with the 30+ proteins described in the NPC of many opisthokonts, a clade of eukaryotes that includes fungi and animals, but not Plasmodium. Here, we developed a labeling methodology based on TurboID fusion proteins, which allows visualization of the P. berghei NPC and facilitates the identification of its components. Following affinity purification and mass spectrometry, we identified 4 known nucleoporins (Nups) (138, 205, 221, and the bait 313), and verify interaction with the putative phenylalanine-glycine (FG) Nup637; we assigned 5 proteins lacking annotation (and therefore meaningful homology with proteins outside the genus) to the NPC, which is confirmed by green fluorescent protein (GFP) tagging. Based on gene deletion attempts, all new Nups — Nup176, 269, 335, 390, and 434 — are essential to parasite survival. They lack primary sequence homology with proteins outside the Plasmodium genus; albeit 2 incorporate short domains with structural homology to human Nup155 and yeast Nup157, and the condensin SMC (Structural Maintenance Of Chromosomes 4). The protocols developed here showcase the power of proximity labeling for elucidating protein complex composition and annotation of taxonomically restricted genes in Plasmodium. It opens the door to exploring the function of the Plasmodium NPC and understanding its evolutionary position.
Collapse
|
35
|
Na Z, Dai X, Zheng SJ, Bryant CJ, Loh KH, Su H, Luo Y, Buhagiar AF, Cao X, Baserga SJ, Chen S, Slavoff SA. Mapping subcellular localizations of unannotated microproteins and alternative proteins with MicroID. Mol Cell 2022; 82:2900-2911.e7. [PMID: 35905735 PMCID: PMC9662605 DOI: 10.1016/j.molcel.2022.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
Abstract
Proteogenomic identification of translated small open reading frames has revealed thousands of previously unannotated, largely uncharacterized microproteins, or polypeptides of less than 100 amino acids, and alternative proteins (alt-proteins) that are co-encoded with canonical proteins and are often larger. The subcellular localizations of microproteins and alt-proteins are generally unknown but can have significant implications for their functions. Proximity biotinylation is an attractive approach to define the protein composition of subcellular compartments in cells and in animals. Here, we developed a high-throughput technology to map unannotated microproteins and alt-proteins to subcellular localizations by proximity biotinylation with TurboID (MicroID). More than 150 microproteins and alt-proteins are associated with subnuclear organelles. One alt-protein, alt-LAMA3, localizes to the nucleolus and functions in pre-rRNA transcription. We applied MicroID in a mouse model, validating expression of a conserved nuclear microprotein, and establishing MicroID for discovery of microproteins and alt-proteins in vivo.
Collapse
Affiliation(s)
- Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Shu-Jian Zheng
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Carson J Bryant
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Ken H Loh
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Haomiao Su
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Yang Luo
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Amber F Buhagiar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA
| | - Xiongwen Cao
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Sarah A Slavoff
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06529, USA.
| |
Collapse
|
36
|
Qian P, Wang X, Zhong CQ, Wang J, Cai M, Nguitragool W, Li J, Cui H, Yuan J. Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite. eLife 2022; 11:77447. [PMID: 35775739 PMCID: PMC9293000 DOI: 10.7554/elife.77447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The inner membrane complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, the complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labeling to compile the proteome of the schizont IMC of the rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing the IMC localization of proteins during the schizont development.
Collapse
Affiliation(s)
- Pengge Qian
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xu Wang
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chuan-Qi Zhong
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaxu Wang
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Mengya Cai
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
| | - Jian Li
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Huiting Cui
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jing Yuan
- Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
37
|
Wunderlich J. Updated List of Transport Proteins in Plasmodium falciparum. Front Cell Infect Microbiol 2022; 12:926541. [PMID: 35811673 PMCID: PMC9263188 DOI: 10.3389/fcimb.2022.926541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria remains a leading cause of death and disease in many tropical and subtropical regions of the world. Due to the alarming spread of resistance to almost all available antimalarial drugs, novel therapeutic strategies are urgently needed. As the intracellular human malaria parasite Plasmodium falciparum depends entirely on the host to meet its nutrient requirements and the majority of its transmembrane transporters are essential and lack human orthologs, these have often been suggested as potential targets of novel antimalarial drugs. However, membrane proteins are less amenable to proteomic tools compared to soluble parasite proteins, and have thus not been characterised as well. While it had been proposed that P. falciparum had a lower number of transporters (2.5% of its predicted proteome) in comparison to most reference genomes, manual curation of information from various sources led to the identification of 197 known and putative transporter genes, representing almost 4% of all parasite genes, a proportion that is comparable to well-studied metazoan species. This transporter list presented here was compiled by collating data from several databases along with extensive literature searches, and includes parasite-encoded membrane-resident/associated channels, carriers, and pumps that are located within the parasite or exported to the host cell. It provides updated information on the substrates, subcellular localisation, class, predicted essentiality, and the presence or absence of human orthologs of P. falciparum transporters to quickly identify essential proteins without human orthologs for further functional characterisation and potential exploitation as novel drug targets.
Collapse
Affiliation(s)
- Juliane Wunderlich
- Max Planck Institute for Infection Biology, Berlin, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- *Correspondence: Juliane Wunderlich,
| |
Collapse
|
38
|
Kobakhidze G, Sethi A, Valimehr S, Ralph SA, Rouiller I. The AAA+ ATPase p97 as a novel parasite and tuberculosis drug target. Trends Parasitol 2022; 38:572-590. [DOI: 10.1016/j.pt.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
39
|
Okada M, Rajaram K, Swift RP, Mixon A, Maschek JA, Prigge ST, Sigala PA. Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. eLife 2022; 11:73208. [PMID: 35257658 PMCID: PMC8959605 DOI: 10.7554/elife.73208] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Isopentenyl pyrophosphate (IPP) is an essential metabolic output of the apicoplast organelle in Plasmodium falciparum malaria parasites and is required for prenylation-dependent vesicular trafficking and other cellular processes. We have elucidated a critical and previously uncharacterized role for IPP in apicoplast biogenesis. Inhibiting IPP synthesis blocks apicoplast elongation and inheritance by daughter merozoites, and apicoplast biogenesis is rescued by exogenous IPP and polyprenols. Knockout of the only known isoprenoid-dependent apicoplast pathway, tRNA prenylation by MiaA, has no effect on blood-stage parasites and thus cannot explain apicoplast reliance on IPP. However, we have localized an annotated polyprenyl synthase (PPS) to the apicoplast. PPS knockdown is lethal to parasites, rescued by IPP and long- (C50) but not short-chain (≤C20) prenyl alcohols, and blocks apicoplast biogenesis, thus explaining apicoplast dependence on isoprenoid synthesis. We hypothesize that PPS synthesizes long-chain polyprenols critical for apicoplast membrane fluidity and biogenesis. This work critically expands the paradigm for isoprenoid utilization in malaria parasites and identifies a novel essential branch of apicoplast metabolism suitable for therapeutic targeting.
Collapse
Affiliation(s)
- Megan Okada
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Amanda Mixon
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - John Alan Maschek
- Metabolomics Core, University of Utah, Salt Lake City, United States
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Paul A Sigala
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
40
|
Cárdenas P, Esherick LY, Chambonnier G, Dey S, Turlo CV, Nasamu AS, Niles JC. GeneTargeter: Automated In Silico Design for Genome Editing in the Malaria Parasite, Plasmodium falciparum. CRISPR J 2022; 5:155-164. [PMID: 35191751 PMCID: PMC8892962 DOI: 10.1089/crispr.2021.0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Functional characterization of the multitude of poorly described proteins in the human malarial pathogen, Plasmodium falciparum, requires tools to enable genome-scale perturbation studies. Here, we present GeneTargeter (genetargeter.mit.edu), a software tool for automating the design of homology-directed repair donor vectors to achieve gene knockouts, conditional knockdowns, and epitope tagging of P. falciparum genes. We demonstrate GeneTargeter-facilitated genome-scale design of six different types of knockout and conditional knockdown constructs for the P. falciparum genome and validate the computational design process experimentally with successful donor vector assembly and transfection. The software's modular nature accommodates arbitrary destination vectors and allows customizable designs that extend the genome manipulation outcomes attainable in Plasmodium and other organisms.
Collapse
Affiliation(s)
- Pablo Cárdenas
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lisl Y. Esherick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaël Chambonnier
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher V. Turlo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Armiyaw Sebastian Nasamu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Address correspondence to: Jacquin C. Niles, MD, PhD, Department of Biological Engineering, Massachusetts Institute of Technology, Room 56-341, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA,
| |
Collapse
|
41
|
van Esveld SL, Meerstein‐Kessel L, Boshoven C, Baaij JF, Barylyuk K, Coolen JPM, van Strien J, Duim RAJ, Dutilh BE, Garza DR, Letterie M, Proellochs NI, de Ridder MN, Venkatasubramanian PB, de Vries LE, Waller RF, Kooij TWA, Huynen MA. A Prioritized and Validated Resource of Mitochondrial Proteins in Plasmodium Identifies Unique Biology. mSphere 2021; 6:e0061421. [PMID: 34494883 PMCID: PMC8550323 DOI: 10.1128/msphere.00614-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmodium species have a single mitochondrion that is essential for their survival and has been successfully targeted by antimalarial drugs. Most mitochondrial proteins are imported into this organelle, and our picture of the Plasmodium mitochondrial proteome remains incomplete. Many data sources contain information about mitochondrial localization, including proteome and gene expression profiles, orthology to mitochondrial proteins from other species, coevolutionary relationships, and amino acid sequences, each with different coverage and reliability. To obtain a comprehensive, prioritized list of Plasmodium falciparum mitochondrial proteins, we rigorously analyzed and integrated eight data sets using Bayesian statistics into a predictive score per protein for mitochondrial localization. At a corrected false discovery rate of 25%, we identified 445 proteins with a sensitivity of 87% and a specificity of 97%. They include proteins that have not been identified as mitochondrial in other eukaryotes but have characterized homologs in bacteria that are involved in metabolism or translation. Mitochondrial localization of seven Plasmodium berghei orthologs was confirmed by epitope labeling and colocalization with a mitochondrial marker protein. One of these belongs to a newly identified apicomplexan mitochondrial protein family that in P. falciparum has four members. With the experimentally validated mitochondrial proteins and the complete ranked P. falciparum proteome, which we have named PlasmoMitoCarta, we present a resource to study unique proteins of Plasmodium mitochondria. IMPORTANCE The unique biology and medical relevance of the mitochondrion of the malaria parasite Plasmodium falciparum have made it the subject of many studies. However, we actually do not have a comprehensive assessment of which proteins reside in this organelle. Many omics data are available that are predictive of mitochondrial localization, such as proteomics data and expression data. Individual data sets are, however, rarely complete and can provide conflicting evidence. We integrated a wide variety of available omics data in a manner that exploits the relative strengths of the data sets. Our analysis gave a predictive score for the mitochondrial localization to each nuclear encoded P. falciparum protein and identified 445 likely mitochondrial proteins. We experimentally validated the mitochondrial localization of seven of the new mitochondrial proteins, confirming the quality of the complete list. These include proteins that have not been observed mitochondria before, adding unique mitochondrial functions to P. falciparum.
Collapse
Affiliation(s)
- Selma L. van Esveld
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| | - Lisette Meerstein‐Kessel
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Cas Boshoven
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Jochem F. Baaij
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Konstantin Barylyuk
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Joeri van Strien
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ronald A. J. Duim
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Bas E. Dutilh
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Daniel R. Garza
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marijn Letterie
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Nicholas I. Proellochs
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Michelle N. de Ridder
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | | | - Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Ross F. Waller
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Martijn A. Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
- Radboud Center for Mitochondrial Medicine, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
42
|
Kimmel J, Kehrer J, Frischknecht F, Spielmann T. Proximity-dependent biotinylation approaches to study apicomplexan biology. Mol Microbiol 2021; 117:553-568. [PMID: 34587292 DOI: 10.1111/mmi.14815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
In the last 10 years, proximity-dependent biotinylation (PDB) techniques greatly expanded the ability to study protein environments in the living cell that range from specific protein complexes to entire compartments. This is achieved by using enzymes such as BirA* and APEX that are fused to proteins of interest and biotinylate proteins in their proximity. PDB techniques are now also increasingly used in apicomplexan parasites. In this review, we first give an overview of the main PDB approaches and how they compare with other techniques that address similar questions. PDB is particularly valuable to detect weak or transient protein associations under physiological conditions and to study cellular structures that are difficult to purify or have a poorly understood protein composition. We also highlight new developments such as novel smaller or faster-acting enzyme variants and conditional PDB approaches, providing improvements in both temporal and spatial resolution which may offer broader application possibilities useful in apicomplexan research. In the second part, we review work using PDB techniques in apicomplexan parasites and how this expanded our knowledge about these medically important parasites.
Collapse
Affiliation(s)
- Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany.,German Center for Infectious Disease Research, DZIF, Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
43
|
Kloehn J, Lacour CE, Soldati-Favre D. The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 2021; 63:250-258. [PMID: 34455306 DOI: 10.1016/j.mib.2021.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/26/2022]
Abstract
The apicoplast is the relict of a plastid organelle found in several disease-causing apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii. In these organisms, the organelle has lost its photosynthetic capability but harbours several fitness-conferring or essential metabolic pathways. Although maintaining the apicoplast and fuelling the metabolic pathways within requires the challenging constant import and export of numerous metabolites across its four membranes, only few apicoplast transporters have been identified to date, most of which are orphan transporters. Here we review the roles of metabolic pathways within the apicoplast and what is currently known about the few identified apicoplast metabolite transporters. We discuss what metabolites must get in and out of the apicoplast, the many transporters that are yet to be discovered, and what role these might play in parasite metabolism and as putative drug targets.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| | - Clément Em Lacour
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
| |
Collapse
|
44
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
45
|
Sakamoto H, Kita K, Matsuzaki M. A Novel 2A-peptide-containing Plasmid to Generate Stable Perkinsus marinus Cells Expressing Organelle-targeted Genes. J Eukaryot Microbiol 2021; 68:e12861. [PMID: 34051022 DOI: 10.1111/jeu.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetic manipulation techniques for marine protists are not well-established, despite immense efforts. However, Perkinsus marinus is an exception and can be developed as a genetically tractable model organism for related protists. Here, we designed a new plasmid for P. marinus that allows two proteins from a single mRNA to be differently localized using a self-cleaving 2A peptide. This enabled us to establish a stable transfectant expressing a mitochondrially targeted fluorescent protein. The system can be applied to any protein in theory and would make a powerful tool for investigating unique organelles in P. marinus and related dinoflagellates.
Collapse
Affiliation(s)
- Hirokazu Sakamoto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| |
Collapse
|
46
|
Wichers JS, Wunderlich J, Heincke D, Pazicky S, Strauss J, Schmitt M, Kimmel J, Wilcke L, Scharf S, von Thien H, Burda PC, Spielmann T, Löw C, Filarsky M, Bachmann A, Gilberger TW. Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum. Cell Microbiol 2021; 23:e13341. [PMID: 33830607 DOI: 10.1111/cmi.13341] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
The inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single-celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of 12 known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represents structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Juliane Wunderlich
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dorothee Heincke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Samuel Pazicky
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Marius Schmitt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Kimmel
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Sarah Scharf
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Michael Filarsky
- Centre for Structural Systems Biology, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany.,German Centre for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Braunschweig, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,University of Hamburg, Hamburg, Germany
| |
Collapse
|
47
|
YbeY, éminence grise of ribosome biogenesis. Biochem Soc Trans 2021; 49:727-745. [PMID: 33929506 DOI: 10.1042/bst20200669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022]
Abstract
YbeY is an ultraconserved small protein belonging to the unique heritage shared by most existing bacteria and eukaryotic organelles of bacterial origin, mitochondria and chloroplasts. Studied in more than a dozen of evolutionarily distant species, YbeY is invariably critical for cellular physiology. However, the exact mechanisms by which it exerts such penetrating influence are not completely understood. In this review, we attempt a transversal analysis of the current knowledge about YbeY, based on genetic, structural, and biochemical data from a wide variety of models. We propose that YbeY, in association with the ribosomal protein uS11 and the assembly GTPase Era, plays a critical role in the biogenesis of the small ribosomal subunit, and more specifically its platform region, in diverse genetic systems of bacterial type.
Collapse
|
48
|
Abstract
Malaria, caused by infection with Plasmodium parasites, remains a significant global health concern. For decades, genetic intractability and limited tools hindered our ability to study essential proteins and pathways in Plasmodium falciparum, the parasite associated with the most severe malaria cases. However, recent years have seen major leaps forward in the ability to genetically manipulate P. falciparum parasites and conditionally control protein expression/function. The conditional knockdown systems used in P. falciparum target all 3 components of the central dogma, allowing researchers to conditionally control gene expression, translation, and protein function. Here, we review some of the common knockdown systems that have been adapted or developed for use in P. falciparum. Much of the work done using conditional knockdown approaches has been performed in asexual, blood-stage parasites, but we also highlight their uses in other parts of the life cycle and discuss new ways of applying these systems outside of the intraerythrocytic stages. With the use of these tools, the field’s understanding of parasite biology is ever increasing, and promising new pathways for antimalarial drug development are being discovered.
Collapse
|
49
|
Van Vlierberghe M, Philippe H, Baurain D. Broadly sampled orthologous groups of eukaryotic proteins for the phylogenetic study of plastid-bearing lineages. BMC Res Notes 2021; 14:143. [PMID: 33865444 PMCID: PMC8052839 DOI: 10.1186/s13104-021-05553-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Identifying orthology relationships among sequences is essential to understand evolution, diversity of life and ancestry among organisms. To build alignments of orthologous sequences, phylogenomic pipelines often start with all-vs-all similarity searches, followed by a clustering step. For the protein clusters (orthogroups) to be as accurate as possible, proteomes of good quality are needed. Here, our objective is to assemble a data set especially suited for the phylogenomic study of algae and formerly photosynthetic eukaryotes, which implies the proper integration of organellar data, to enable distinguishing between several copies of one gene (paralogs), taking into account their cellular compartment, if necessary. DATA DESCRIPTION We submitted 73 top-quality and taxonomically diverse proteomes to OrthoFinder. We obtained 47,266 orthogroups and identified 11,775 orthogroups with at least two algae. Whenever possible, sequences were functionally annotated with eggNOG and tagged after their genomic and target compartment(s). Then we aligned and computed phylogenetic trees for the orthogroups with IQ-TREE. Finally, these trees were further processed by identifying and pruning the subtrees exclusively composed of plastid-bearing organisms to yield a set of 31,784 clans suitable for studying photosynthetic organism genome evolution.
Collapse
Affiliation(s)
- Mick Van Vlierberghe
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Hervé Philippe
- Station D'Ecologie Théorique Et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| | - Denis Baurain
- InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| |
Collapse
|
50
|
Zapatero-Belinchón FJ, Carriquí-Madroñal B, Gerold G. Proximity labeling approaches to study protein complexes during virus infection. Adv Virus Res 2021; 109:63-104. [PMID: 33934830 DOI: 10.1016/bs.aivir.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular compartmentalization of proteins and protein complex formation allow cells to tightly control biological processes. Therefore, understanding the subcellular localization and interactions of a specific protein is crucial to uncover its biological function. The advent of proximity labeling (PL) has reshaped cellular proteomics in infection biology. PL utilizes a genetically modified enzyme that generates a "labeling cloud" by covalently labeling proteins in close proximity to the enzyme. Fusion of a PL enzyme to a specific antibody or a "bait" protein of interest in combination with affinity enrichment mass spectrometry (AE-MS) enables the isolation and identification of the cellular proximity proteome, or proxisome. This powerful methodology has been paramount for the mapping of membrane or membraneless organelles as well as for the understanding of hard-to-purify protein complexes, such as those of transmembrane proteins. Unsurprisingly, more and more infection biology research groups have recognized the potential of PL for the identification of host-pathogen interactions. In this chapter, we introduce the enzymes commonly used for PL labeling as well as recent promising advancements and summarize the major achievements in organelle mapping and nucleic acid PL. Moreover, we comprehensively describe the research on host-pathogen interactions using PL, giving special attention to studies in the field of virology.
Collapse
Affiliation(s)
- Francisco José Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| | - Belén Carriquí-Madroñal
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden.
| |
Collapse
|