1
|
Ning L, Li X, Xu Y, Si Y, Zhao H, Ren Q. Multi-Omics Analysis Revealed That TAOK1 Can Be Used as a Prognostic Marker and Target in a Variety of Tumors, Especially in Cervical Cancer. Onco Targets Ther 2025; 18:335-353. [PMID: 40109409 PMCID: PMC11920640 DOI: 10.2147/ott.s506582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Background Thousand and One Kinase 1 (TAOK1), a member of the MAPK kinase family, plays a crucial role in processes like microtubule dynamics, DNA damage response, and neurodevelopment. While TAOK1 is linked to tumorigenesis, its oncogenic role across cancers remains unclear. This study aims to explore the relationship between TAOK1 expression, prognosis, and immune function in various cancers. Methods We analyzed TAOK1 expression in multiple cancers using TCGA, GEO, CCLE, and other bioinformatics databases. The correlation between TAOK1 expression and immune cell infiltration was assessed with the ESTIMATE algorithm. We also examined associations with tumor stemness, DNA methylation, gene copy number alterations, and drug sensitivity. The oncogenic role of TAOK1 was further evaluated in vitro with SiHa and A2780 cells and in vivo with TAOK1 overexpression in SiHa cells. Results TAOK1 is a key prognostic biomarker in various cancers and its high expression is associated with poor prognosis. It showed a significant negative correlation with immune cell infiltration and immune checkpoints. GSEA identified its involvement in key tumour pathways, highlighting the therapeutic potential of inhibiting the TAOK1 gene. The high expression of TAOK1 is associated with DNA methylation and gene copy number variation, and in addition its upstream regulator, EP300, is closely associated with TAOK1 expression. In vitro cellular experiments demonstrated that inhibition of TAOK1 reduced the proliferation of SiHa and A2780 cells, whereas overexpression of TAOK1 in SiHa cells promoted growth. These findings were further validated in vivo by nude mouse tumourigenicity assay and human tissue immunohistochemistry. Conclusion TAOK1 serves as a promising prognostic biomarker and potential therapeutic target, especially for cervical cancer. These results support its clinical potential in cancer prognosis and treatment strategies.
Collapse
Affiliation(s)
- Li Ning
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Xiu Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Yating Xu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Yu Si
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Hongting Zhao
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Qingling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
- The Chinese Clinical Medicine Innovation Center of Obstetrics, Gynecology, and Reproduction in Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Elkhateeb N, Crookes R, Spiller M, Pavinato L, Palermo F, Brusco A, Parker M, Park SM, Mendes AC, Saraiva JM, Hammer TB, Nazaryan-Petersen L, Barakat TS, Wilke M, Bhoj E, Ahrens-Nicklas RC, Li D, Nomakuchi T, Brilstra EH, Hunt D, Johnson D, Mansour S, Oprych K, Mehta SG, Platzer K, Schnabel F, Kiep H, Faust H, Prinzing G, Wiltrout K, Radley JA, Serrano Russi AH, Atallah I, Campos-Xavier B, Amor DJ, Morgan AT, Fagerberg C, Andersen UA, Andersen CB, Bijlsma EK, Bird LM, Mullegama SV, Green A, Isidor B, Cogné B, Kenny J, Lynch SA, Quin S, Low K, Herget T, Kortüm F, Levy RJ, Morrison JL, Wheeler PG, Narumanch T, Peron K, Matthews N, Uhlman J, Bell L, Pang L, Scurr I, Belles RS, Salbert BA, Schaefer GB, Green S, Ros A, Rodríguez-Palmero A, Višnjar T, Writzl K, Vasudevan PC, Balasubramanian M. Expanding the phenotype and genotype spectrum of TAOK1 neurodevelopmental disorder and delineating TAOK2 neurodevelopmental disorder. Genet Med 2025; 27:101348. [PMID: 39737487 DOI: 10.1016/j.gim.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
PURPOSE The thousand and one kinase (TAOK) proteins are a group of serine/threonine-protein kinases involved in signaling pathways, cytoskeleton regulation, and neuronal development. TAOK1 variants are associated with a neurodevelopmental disorder (NDD) characterized by distinctive facial features, hypotonia, and feeding difficulties. TAOK2 variants have been reported to be associated with autism and early-onset obesity. However, a distinct TAOK2-NDD has not yet been delineated. METHODS We retrospectively studied the clinical and genetic data of individuals recruited from several centers with TAOK1 and TAOK2 variants that were detected through exome and genome sequencing. RESULTS We report 50 individuals with TAOK1 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (83%), and hypotonia (58%). We report male genital anomalies and hypoglycemia as novel phenotypes. Thirty-seven unique TAOK1 variants were identified. Most of the missense variants clustered in the protein kinase domain at residues that are intolerant to missense variation. We report 10 individuals with TAOK2 variants with associated phenotypes, including neurodevelopmental abnormalities (100%), macrocephaly (75%), autism (75%), and obesity (70%). CONCLUSION We describe the largest cohort of TAOK1-NDD to date, to our knowledge, expanding its phenotype and genotype spectrum with 30 novel variants. We delineated the phenotype of a novel TAOK2-NDD associated with neurodevelopmental abnormalities, autism, macrocephaly, and obesity.
Collapse
Affiliation(s)
- Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| | - Renarta Crookes
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Michael Spiller
- Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, United Kingdom
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy; Institute of Oncology Research (IOR), Bellinzona Institutes of Science (BIOS(+)), Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Flavia Palermo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ariana Costa Mendes
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Jorge M Saraiva
- Medical Genetics Department, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, Portugal; Clinical Academic Center of Coimbra, Hospital Pediátrico de Coimbra, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Department of Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Lusine Nazaryan-Petersen
- Department of Genetics, Rigshospitalet, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands; ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Dong Li
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tomoki Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eva H Brilstra
- Department of Genetics and Brain Center, University Medical Center Utrecht, The Netherlands
| | - David Hunt
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom
| | - Sahar Mansour
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom; School of Biological and Molecular Sciences, St George's University of London, London, United Kingdom
| | - Kathryn Oprych
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Henriette Kiep
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | - Helene Faust
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Division of Neuropaediatrics, Hospital for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Jessica A Radley
- North West Thames Regional Genomics Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, United Kingdom
| | - Alvaro H Serrano Russi
- Division of Genetics, Department of Pediatrics, East Tennessee State University (ETSU), Quillen College of Medicine, TN
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Belinda Campos-Xavier
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - David J Amor
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Genetics, Lillebaelt Hospital, location Vejle Hospital, Vejle, Denmark
| | - Ulla A Andersen
- Department of Mental Health, Odense University Hospital, Odense, Denmark
| | | | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lynne M Bird
- Division of Genetics and Dysmorphology, Department of Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA
| | | | - Andrew Green
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland; University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Bertrand Isidor
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France; CHU Nantes, Service de Génétique Médicale, Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Benjamin Cogné
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Janna Kenny
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sally A Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shauna Quin
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Karen Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom; Bristol Medical School, University of Bristol, United Kingdom
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rebecca J Levy
- Neurology and Neurological Sciences, Division of Child Neurology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, CA
| | | | | | - TaraChandra Narumanch
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Kristina Peron
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | - Nicole Matthews
- Division of Genetics, Department of Pediatrics, West Virginia University, Morgantown, WV
| | | | - Lauren Bell
- University of Illinois College of Medicine, Peoria, IL
| | - Lewis Pang
- Exeter Genomics Laboratory, RILD Building, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Ingrid Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| | | | | | | | - Sarah Green
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Andrea Ros
- Department of Genetics, Hospital Universitari Germans Trias i Pujol, Catalonia, Spain
| | - Agustí Rodríguez-Palmero
- Pediatric Neurology Unit, Department of Pediatrics, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Catalonia, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Tanja Višnjar
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Pradeep C Vasudevan
- Department of Clinical Genetics, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, United Kingdom; Division of Clinical Medicine, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
3
|
Latchford LP, Perez LS, Conage-Pough JE, Turk R, Cusimano MA, Vargas VI, Arora S, Shienvold SR, Kulp RR, Belverio HM, White FM, Thévenin AF. Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward connexin 43. J Biol Chem 2025; 301:108178. [PMID: 39798878 PMCID: PMC11870265 DOI: 10.1016/j.jbc.2025.108178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, first by using purified proteins, and then in two cell lines (MDCK - non-cancerous, epithelial cells and porcine PAECs-pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255, S262, and S279, while p38 readily phosphorylates S262, S279, and S282. While we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we also identified T290 as a novel ERK phosphorylation site. In addition, we assessed Cx43 GJ function upon activation or inhibition of each MAPK in PAECs. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling on Cx43 and GJ function.
Collapse
Affiliation(s)
- Lauren P Latchford
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Liz S Perez
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Jason E Conage-Pough
- Koch Institute for Integrative Cancer Research and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Reem Turk
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Marissa A Cusimano
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Victoria I Vargas
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Sonal Arora
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Sophia R Shienvold
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Ryan R Kulp
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Hailey M Belverio
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Anastasia F Thévenin
- Department of Biological Sciences, Moravian University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
4
|
Latchford LP, Perez LS, Conage-Pough JE, Turk R, Cusimano MA, Vargas VI, Arora S, Shienvold SR, Kulp RR, Belverio HM, White FM, Thévenin AF. Differential substrate specificity of ERK, JNK, and p38 MAP kinases toward Connexin 43. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573692. [PMID: 38234737 PMCID: PMC10793482 DOI: 10.1101/2023.12.30.573692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ~140 amino acid-long C terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators. Phosphorylation of these sites by JNK and p38, on the other hand, is not well-established. Indeed, ERK is a kinase activated by growth factors and is upregulated in diseases, such as cancer. JNK and p38, however, have a largely tumor-suppressive function due to their stress-activated and apoptotic role. We investigated substrate specificity of all three MAPKs toward Cx43CT, first by using purified proteins, and then in two cell lines (MDCK: non-cancerous, epithelial cells and porcine PAECs: pulmonary artery endothelial cells). Cx43 phosphorylation was monitored through gel-shift assays on an SDS-PAGE, immunodetection with phospho-Cx43 antibodies, and LC-MS/MS phosphoproteomic analyses. Our results demonstrate that p38 and JNK specificity differ from each other and from ERK. JNK has a strong preference for S255, S262, and S279, while p38 readily phosphorylates S262, S279, and S282. While we confirmed that ERK can phosphorylate all four serines (255, 262, 279, and 282), we also identified T290 as a novel ERK phosphorylation site. In addition, we assessed Cx43 GJ function upon activation or inhibition of each MAPK in PAECs. This work underscores the importance of delineating the effects of ERK, JNK, and p38 signaling on Cx43 and GJ function.
Collapse
|
5
|
Sobierajski T, Małolepsza J, Pichlak M, Gendaszewska-Darmach E, Błażewska KM. The impact of E3 ligase choice on PROTAC effectiveness in protein kinase degradation. Drug Discov Today 2024; 29:104032. [PMID: 38789027 DOI: 10.1016/j.drudis.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Proteolysis targeting chimera (PROTACs) provide a novel therapeutic approach that is revolutionizing drug discovery. The success of PROTACs largely depends on the combination of their three fragments: E3 ligase ligand, linker and protein of interest (POI)-targeting ligand. We summarize the pivotal significance of the precise combination of the E3 ligase ligand with the POI-recruiting warhead, which is crucial for the successful execution of cellular processes and achieving the desired outcomes. Therefore, the key to our selection was the use of at least two ligands recruiting two different ligases. This approach enables a direct comparison of the impacts of the specific ligases on target degradation.
Collapse
Affiliation(s)
- Tomasz Sobierajski
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Lodz University of Technology, Łódź, Poland
| | - Marta Pichlak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, Poland
| | | | | |
Collapse
|
6
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
7
|
Alasiri G, Alrfaei B, Alaseem AM, AlKhamees OA, Aldali JA, Aljehani AM, Alfahed A, Aziz MA, Almuhaini G, Alshehri MM. The role of TAOK3 in cancer progression and development as a prognostic marker: A pan-cancer analysis study. Saudi Pharm J 2024; 32:101942. [PMID: 38318319 PMCID: PMC10840358 DOI: 10.1016/j.jsps.2023.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The protein kinase TAOK3, belongs to the MAP kinase family, is one of three closely related members, namely TAOK1, TAOK2, and TAOK3. We performed a pan-cancer investigation of TAOK3 across different cancer types, including uterine carcinosarcoma, adenocarcinoma of the stomach and pancreas, and endometrial carcinoma of the uterus, to better understand TAOK3's role in cancer. In at least 16 types of cancer, our findings indicate that TAOK3 expression levels differ considerably between normal and tumor tissues. In addition, our study is the first to identify the oncogenic role of TAOK3 locus S331 and S471 in renal clear cell carcinoma, Glioblastoma Multiforme, hepatocellular carcinoma, Lung adenocarcinoma, and Pancreatic adenocarcinoma, indicating their involvement in cancer progression. In addition, our data analysis indicates that copy number variation is the most prevalent form of mutation in the TAOK3 gene, and that there is a negative correlation between TAOK3 mRNA and DNA promoter methylation. Moreover, our analysis suggests that TAOK3 may serve as a prognostic marker for several kinds of cancer, including Colon adenocarcinoma, renal clear cell carcinoma, Lower Grade Glioma, Lung adenocarcinoma, Mesothelioma, and hepatocellular carcinoma. In addition, our research on signature cancer genes has uncovered a positive association between TAOK3 and SMAD2, SMAD4, and RNF168 in most of the malignancies we have examined. TAOK3 is also correlated with the frequency of mutations and microsatellite instability in four types of cancer. Numerous immune-related genes are closely associated with TAOK3 levels in numerous malignancies. TAOK3 expression is positively correlated with immune infiltrates, which include activated CD4 T cells, CD8 T cells, and type 2T helper cells. Our pan-cancer analysis of TAOK3 provides vital insight into its potential role across a variety of cancer types.
Collapse
Affiliation(s)
- Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Bahauddeen Alrfaei
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard - Health Affairs (MNGHA), Saudi Arabia
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
| | - Ali M. Alaseem
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Osama A. AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Jehad A. Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Ala M. Aljehani
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 5701, Saudi Arabia
| | - Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Azhar Aziz
- Interdisciplinary Nanotechnology Center, Aligarh Muslim University, Aligarh 202002, India
| | - Ghadir Almuhaini
- King Saud bin Abdulaziz University for Health Sciences, Saudi Arabia
| | - Mana M. Alshehri
- King Abullah International Medical Research Center, MNGHA, Saudi Arabia
- Connell and O'Reilly Families-Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Poirier A, Ormonde JVS, Aubry I, Abidin BM, Feng CH, Martinez-Cordova Z, Hincapie AM, Wu C, Pérez-Quintero LA, Wang CL, Gingras AC, Madrenas J, Tremblay ML. The induction of SHP-1 degradation by TAOK3 ensures the responsiveness of T cells to TCR stimulation. Sci Signal 2024; 17:eadg4422. [PMID: 38166031 DOI: 10.1126/scisignal.adg4422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.
Collapse
Affiliation(s)
- Alexandre Poirier
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - João Vitor Silva Ormonde
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials (LNBio - CNPEM), Campinas, São Paulo, Brazil
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
| | - Chu-Han Feng
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | - Chia-Lin Wang
- NYU Langone Medical Center, 660 1st Ave, Fl 5, New York City, NY 10016, USA
| | - Anne Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Joaquín Madrenas
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 40095, USA
| | - Michel L Tremblay
- Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Lin TY, Ramsamooj S, Perrier T, Liberatore K, Lantier L, Vasan N, Karukurichi K, Hwang SK, Kesicki EA, Kastenhuber ER, Wiederhold T, Yaron TM, Huntsman EM, Zhu M, Ma Y, Paddock MN, Zhang G, Hopkins BD, McGuinness O, Schwartz RE, Ersoy BA, Cantley LC, Johnson JL, Goncalves MD. Epinephrine inhibits PI3Kα via the Hippo kinases. Cell Rep 2023; 42:113535. [PMID: 38060450 PMCID: PMC10809223 DOI: 10.1016/j.celrep.2023.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | - Shakti Ramsamooj
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tiffany Perrier
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Louise Lantier
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Neil Vasan
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Seo-Kyoung Hwang
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA
| | | | | | | | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mengmeng Zhu
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marcia N Paddock
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Owen McGuinness
- Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert E Schwartz
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Baran A Ersoy
- Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Division of Endocrinology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
11
|
Poirier A, Wu C, Hincapie AM, Martinez-Cordova Z, Abidin BM, Tremblay ML. TAOK3 limits age-associated inflammation by negatively modulating macrophage differentiation and their production of TNFα. Immun Ageing 2023; 20:31. [PMID: 37400834 DOI: 10.1186/s12979-023-00350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.
Collapse
Affiliation(s)
- Alexandre Poirier
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Chenyue Wu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Ana Maria Hincapie
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Zuzet Martinez-Cordova
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Belma Melda Abidin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Michel L Tremblay
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine and Health Sciences, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry, McGill University, Montréal, Québec, Canada.
- Faculty of Medicine, McGill University, Montréal, Québec, Canada.
- McGill University, Rosalind and Morris Goodman Cancer Institute, 1160 Pine Avenue West, Montréal, Québec, H3A 1A3, Canada.
| |
Collapse
|
12
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Beeman N, Sapre T, Ong SE, Yadav S. Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Sci Signal 2023; 16:eadd3269. [PMID: 36595571 PMCID: PMC9970049 DOI: 10.1126/scisignal.add3269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mutations in TAOK1, which encodes a serine-threonine kinase, are associated with both autism spectrum disorder (ASD) and neurodevelopmental delay (NDD). Here, we investigated the molecular function of this evolutionarily conserved kinase and the mechanisms through which TAOK1 mutations may lead to neuropathology. We found that TAOK1 was abundant in neurons in the mammalian brain and remodeled the neuronal plasma membrane through direct association with phosphoinositides. Our characterization of four NDD-associated TAOK1 mutations revealed that these mutants were catalytically inactive and were aberrantly trapped in a membrane-bound state, which induced abnormal membrane protrusions. Expression of these TAOK1 mutants in cultured mouse hippocampal neurons led to abnormal growth of the dendritic arbor. The coiled-coil region carboxyl-terminal to the kinase domain was predicted to fold into a triple helix, and this region directly bound phospholipids and was required for both membrane association and induction of aberrant protrusions. Autophosphorylation of threonine-440 and threonine-443 in the triple-helical region by the kinase domain blocked the plasma membrane association of TAOK1. These findings define TAOK1 as a plasma membrane remodeling kinase and reveal the underlying mechanisms through which TAOK1 dysfunction may lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Neal Beeman
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle WA 98195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle WA 98195,Corresponding author:
| |
Collapse
|
14
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, Terasaka N, Goto Y, Ogata K, Sengoku T, Onaka H, Suga H. De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors. J Am Chem Soc 2022; 144:20332-20341. [DOI: 10.1021/jacs.2c07937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alexander A. Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Jun Shi Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hirotaka Nishimura
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|
17
|
Cui Y, Benamar M, Schmitz-Abe K, Poondi-Krishnan V, Chen Q, Jugder BE, Fatou B, Fong J, Zhong Y, Mehta S, Buyanbat A, Eklioglu BS, Karabiber E, Baris S, Kiykim A, Keles S, Stephen-Victor E, Angelini C, Charbonnier LM, Chatila TA. A Stk4-Foxp3-NF-κB p65 transcriptional complex promotes T reg cell activation and homeostasis. Sci Immunol 2022; 7:eabl8357. [PMID: 36149942 DOI: 10.1126/sciimmunol.abl8357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The molecular programs involved in regulatory T (Treg) cell activation and homeostasis remain incompletely understood. Here, we show that T cell receptor (TCR) signaling in Treg cells induces the nuclear translocation of serine/threonine kinase 4 (Stk4), leading to the formation of an Stk4-NF-κB p65-Foxp3 complex that regulates Foxp3- and p65-dependent transcriptional programs. This complex was stabilized by Stk4-dependent phosphorylation of Foxp3 on serine-418. Stk4 deficiency in Treg cells, either alone or in combination with its homolog Stk3, precipitated a fatal autoimmune lymphoproliferative disease in mice characterized by decreased Treg cell p65 expression and nuclear translocation, impaired NF-κB p65-Foxp3 complex formation, and defective Treg cell activation. In an adoptive immunotherapy model, overexpression of p65 or the phosphomimetic Foxp3S418E in Stk3/4-deficient Treg cells ameliorated their immune regulatory defects. Our studies identify Stk4 as an essential TCR-responsive regulator of p65-Foxp3-dependent transcription that promotes Treg cell-mediated immune tolerance.
Collapse
Affiliation(s)
- Ye Cui
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Varsha Poondi-Krishnan
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Bat-Erdene Jugder
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children's Hospital-Harvard Medical School, Boston, MA, USA
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yuelin Zhong
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stuti Mehta
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Beray Selver Eklioglu
- Department of Pediatrics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Esra Karabiber
- Marmara University, Pendik Training And Research Hospital, Department of Chest Disease, Division of Adult Immunology and Allergy, Istanbul, Turkey
| | - Safa Baris
- Marmara University, Faculty of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey.,Marmara University, the Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sevgi Keles
- Department of Pediatrics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Yu L, Yang C, Shang N, Ding H, Zhu J, Zhu Y, Tan H, Zhang Y. Paternal De Novo Variant of TAOK1 in a Fetus With Structural Brain Abnormalities. Front Genet 2022; 13:836853. [PMID: 35928450 PMCID: PMC9343781 DOI: 10.3389/fgene.2022.836853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio whole-exome sequencing was performed to detect causative variants. A de novo variant of TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction was used to exclude the parental mosaicism and to verify the phasing of the de novo variant. Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the de novo variant was paternally derived. Here, we describe a fetus with a de novo likely pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We propose a method for solving genetic disorders in which the responsible genes have not yet gone through ClinGen curation, particularly for prenatal cases.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuanyuan Zhu
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Haowen Tan
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
19
|
Tang Q, Fang J, Lai W, Hu Y, Liu C, Hu X, Song C, Cheng T, Liu R, Huang X. Hippo pathway monomerizes STAT3 to regulate prostate cancer growth. Cancer Sci 2022; 113:2753-2762. [PMID: 35722967 PMCID: PMC9357639 DOI: 10.1111/cas.15463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer ranks among the most commonly diagnosed malignancies for men, and has become a non-negligible threat for public health. Interplay between inflammatory factors and cancer cells renders inflammatory tissue environment as a predisposing condition for cancer development. The Hippo pathway is a conserved signaling pathway across multiple species during evolution that regulates tissue homeostasis and organ development. Nevertheless, whether Hippo pathway regulates cancer-related inflammatory factors remain elusive. Here we show that high cell density-mediated activation of Hippo pathway blunts STAT3 activity in prostate cancer cells. Hippo pathway component MST2 kinase phosphorylates STAT3 at T622, which is located in the SH2 domain of STAT3. This phosphorylation blocks SH2 domain in one STAT3 molecule to bind with the phosphorylated Y705 site in another STAT3 molecule, which further counteracts IL6-induced STAT3 dimerization and activation. Expression of a non-phosphoryable STAT3 T622A mutant enhances STAT3 activity and IL6 expression at high cell density, and promotes tumor growth in mice xenograft model. Our findings demonstrate that STAT3 is a novel phosphorylation substrate for MST2, and thereby highlight a regulatory cascade underlying the crosstalk between inflammation and Hippo pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Qingfeng Tang
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Jing Fang
- Department of Nephrology, The sixth people's hospital of Chengdu, Chengdu, 610051, China
| | - Weiqi Lai
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Yu Hu
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Chengwan Liu
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Xiaobo Hu
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Caiyong Song
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Tianmu Cheng
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaoke Huang
- Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, 610500, China
| |
Collapse
|
20
|
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nat Commun 2022; 13:749. [PMID: 35136069 PMCID: PMC8826447 DOI: 10.1038/s41467-022-28427-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate. Tousled-like kinase 2 (TLK2) phosphorylates ASF1 histone chaperones to promote nucleosome assembly in S phase. Here, the authors show that TLK2 targets ASF1 by simulating its client protein histone H3, exploiting a primordial protein interaction surface for regulatory control.
Collapse
Affiliation(s)
- Bertrand Simon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Chao MW, Lin TE, HuangFu WC, Chang CD, Tu HJ, Chen LC, Yen SC, Sung TY, Huang WJ, Yang CR, Pan SL, Hsu KC. Identification of a dual TAOK1 and MAP4K5 inhibitor using a structure-based virtual screening approach. J Enzyme Inhib Med Chem 2021; 36:98-108. [PMID: 33167727 PMCID: PMC7655034 DOI: 10.1080/14756366.2020.1843452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The STE20 kinase family is a complex signalling cascade that regulates cytoskeletal organisation and modulates the stress response. This signalling cascade includes various kinase mediators, such as TAOK1 and MAP4K5. The dysregulation of the STE20 kinase pathway is linked with cancer malignancy. A small-molecule inhibitor targeting the STE20 kinase pathway has therapeutic potential. In this study, a structure-based virtual screening (SBVS) approach was used to identify potential dual TAOK1 and MAP4K5 inhibitors. Enzymatic assays confirmed three potential dual inhibitors (>50% inhibition) from our virtual screening, and analysis of the TAOK1 and MAP4K5 binding sites indicated common interactions for dual inhibition. Compound 1 revealed potent inhibition of colorectal and lung cancer cell lines. Furthermore, compound 1 arrested cancer cells in the G0/G1 phase, which suggests the induction of apoptosis. Altogether, we show that the STE20 signalling mediators TAOK1 and MAP4K5 are promising targets for drug research.
Collapse
Affiliation(s)
- Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Di Chang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, P. R. China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Baskaran Y, Tay FPL, Ng EYW, Swa CLF, Wee S, Gunaratne J, Manser E. Proximity proteomics identifies PAK4 as a component of Afadin-Nectin junctions. Nat Commun 2021; 12:5315. [PMID: 34493720 PMCID: PMC8423818 DOI: 10.1038/s41467-021-25011-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human PAK4 is an ubiquitously expressed p21-activated kinase which acts downstream of Cdc42. Since PAK4 is enriched in cell-cell junctions, we probed the local protein environment around the kinase with a view to understanding its location and substrates. We report that U2OS cells expressing PAK4-BirA-GFP identify a subset of 27 PAK4-proximal proteins that are primarily cell-cell junction components. Afadin/AF6 showed the highest relative biotin labelling and links to the nectin family of homophilic junctional proteins. Reciprocally >50% of the PAK4-proximal proteins were identified by Afadin BioID. Co-precipitation experiments failed to identify junctional proteins, emphasizing the advantage of the BioID method. Mechanistically PAK4 depended on Afadin for its junctional localization, which is similar to the situation in Drosophila. A highly ranked PAK4-proximal protein LZTS2 was immuno-localized with Afadin at cell-cell junctions. Though PAK4 and Cdc42 are junctional, BioID analysis did not yield conventional cadherins, indicating their spatial segregation. To identify cellular PAK4 substrates we then assessed rapid changes (12') in phospho-proteome after treatment with two PAK inhibitors. Among the PAK4-proximal junctional proteins seventeen PAK4 sites were identified. We anticipate mammalian group II PAKs are selective for the Afadin/nectin sub-compartment, with a demonstrably distinct localization from tight and cadherin junctions.
Collapse
Affiliation(s)
- Yohendran Baskaran
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Felicia Pei-Ling Tay
- FB Laboratory, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Elsa Yuen Wai Ng
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore
| | - Claire Lee Foon Swa
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Sheena Wee
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular & Cell Biology, Singapore, Singapore
| | - Edward Manser
- sGSK Group, Institute of Molecular & Cell Biology, A*STAR, Singapore, Singapore.
- Department of Pharmacology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
24
|
Cho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Rep 2021; 34:108928. [PMID: 33789117 PMCID: PMC8068315 DOI: 10.1016/j.celrep.2021.108928] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/26/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Flux through the RAF-MEK-ERK protein kinase cascade is shaped by phosphatases acting on the core components of the pathway. Despite being an established drug target and a hub for crosstalk regulation, little is known about dephosphorylation of MEK, the central kinase within the cascade. Here, we identify PPP6C, a phosphatase frequently mutated or downregulated in melanoma, as a major MEK phosphatase in cells exhibiting oncogenic ERK pathway activation. Recruitment of MEK to PPP6C occurs through an interaction with its associated regulatory subunits. Loss of PPP6C causes hyperphosphorylation of MEK at activating and crosstalk phosphorylation sites, promoting signaling through the ERK pathway and decreasing sensitivity to MEK inhibitors. Recurrent melanoma-associated PPP6C mutations cause MEK hyperphosphorylation, suggesting that they promote disease at least in part by activating the core oncogenic pathway driving melanoma. Collectively, our studies identify a key negative regulator of ERK signaling that may influence susceptibility to targeted cancer therapies. Through an shRNA screen, Cho et al. identify PPP6C as a phosphatase that inactivates the kinase MEK, sensitizing tumor cells to clinical MEK inhibitors. This study suggests that cancer-associated loss-of-function PPP6C mutations prevalent in melanoma serve to activate the core oncogenic RAF-MEK-ERK pathway that drives the disease.
Collapse
Affiliation(s)
- Eunice Cho
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
25
|
Benedetti F, Curreli S, Gallo RC, Zella D. Exogenous bacterial DnaK increases protein kinases activity in human cancer cell lines. J Transl Med 2021; 19:60. [PMID: 33563293 PMCID: PMC7871384 DOI: 10.1186/s12967-021-02734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Studies of molecular mechanisms underlying tumor cell signaling highlighted a critical role for kinases in carcinogenesis and cancer progression. To this regard, protein kinases regulates a number of critical cellular pathways by adding phosphate groups to specific substrates. For this reason, their involvement in the complex interactions between the human microbiota and cancer cells to determine therapy and tumor progression outcome is becoming increasingly relevant. Mycoplasmas are components of the normal human microbiota, and several species have also been associated to human diseases, including certain cancers. It is also important to note that Mycoplasmas and their proteins are a component of the common tumor microenvironment. In addition, several epidemiological, in vivo and in vitro studies indicate a close involvement of Mycoplasmas in cellular transformation and cancer progression. METHODS In this study, we investigate the effect of exogenous Mycoplasma DnaK on kinases activity by treating in vitro four different eukaryotic cancer cell lines, namely lung and prostate cancer, colon adenocarcinoma, and neuroblastoma. Phosphorylation of kinases and specific substrates was measured at 20 and 60 min. RESULTS Kinome analysis of our data indicates that Mycoplasma DnaK promotes the dysregulation of the activity of specific kinases and their substrates, with a known involvement in carcinogenesis and cancer progression. CONCLUSIONS Given the similarity in structure and amino acid composition of this protein with other bacterial DnaKs we provide a novel mechanism whereby components of the human microbiota and present in the tumor microenvironment are able to deregulate phosphorylation events occurring during carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Francesca Benedetti
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Sabrina Curreli
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert C Gallo
- Institute of Human Virology and Global Virus Network Center, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology and Global Virus Network Center, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Torres-Ayuso P, An E, Nyswaner KM, Bensen RC, Ritt DA, Specht SI, Das S, Andresson T, Cachau RE, Liang RJ, Ries AL, Robinson CM, Difilippantonio S, Gouker B, Bassel L, Karim BO, Miller CJ, Turk BE, Morrison DK, Brognard J. TNIK Is a Therapeutic Target in Lung Squamous Cell Carcinoma and Regulates FAK Activation through Merlin. Cancer Discov 2021; 11:1411-1423. [PMID: 33495197 DOI: 10.1158/2159-8290.cd-20-0797] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/21/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Lung squamous cell carcinoma (LSCC) is the second most prevalent type of lung cancer. Despite extensive genomic characterization, no targeted therapies are approved for the treatment of LSCC. Distal amplification of the 3q chromosome is the most frequent genomic alteration in LSCC, and there is an urgent need to identify efficacious druggable targets within this amplicon. We identify the protein kinase TNIK as a therapeutic target in LSCC. TNIK is amplified in approximately 50% of LSCC cases. TNIK genetic depletion or pharmacologic inhibition reduces the growth of LSCC cells in vitro and in vivo. In addition, TNIK inhibition showed antitumor activity and increased apoptosis in established LSCC patient-derived xenografts. Mechanistically, we identified the tumor suppressor Merlin/NF2 as a novel TNIK substrate and showed that TNIK and Merlin are required for the activation of focal adhesion kinase. In conclusion, our data identify targeting TNIK as a potential therapeutic strategy in LSCC. SIGNIFICANCE: Targeted therapies have not yet been approved for the treatment of LSCC, due to lack of identification of actionable cancer drivers. We define TNIK catalytic activity as essential for maintaining LSCC viability and validate the antitumor efficacy of TNIK inhibition in preclinical models of LSCC.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Pedro Torres-Ayuso
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland.
| | - Elvira An
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Katherine M Nyswaner
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Ryan C Bensen
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Suzanne I Specht
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Sudipto Das
- Protein Characterization Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thorkell Andresson
- Protein Characterization Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Raul E Cachau
- Advanced Biomedical Computational Science, Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Roger J Liang
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - Amy L Ries
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina M Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Brad Gouker
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Laura Bassel
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Baktiar O Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Chad J Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland
| | - John Brognard
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, Frederick, Maryland.
| |
Collapse
|
27
|
Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Cell Rep 2021; 34:108602. [PMID: 33440154 PMCID: PMC7809594 DOI: 10.1016/j.celrep.2020.108602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.
Collapse
Affiliation(s)
- David Bradley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Cristina Viéitez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Vinothini Rajeeve
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Pedro R Cutillas
- Integrative Cell Signalling & Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK.
| |
Collapse
|
28
|
Zhou X, Zhong Y, Molinar-Inglis O, Kunkel MT, Chen M, Sun T, Zhang J, Shyy JYJ, Trejo J, Newton AC, Zhang J. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat Commun 2020; 11:6088. [PMID: 33257668 PMCID: PMC7705703 DOI: 10.1038/s41467-020-19937-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) integrates growth, nutrient and energy status cues to control cell growth and metabolism. While mTORC1 activation at the lysosome is well characterized, it is not clear how this complex is regulated at other subcellular locations. Here, we combine location-selective kinase inhibition, live-cell imaging and biochemical assays to probe the regulation of growth factor-induced mTORC1 activity in the nucleus. Using a nuclear targeted Akt Substrate-based Tandem Occupancy Peptide Sponge (Akt-STOPS) that we developed for specific inhibition of Akt, a critical upstream kinase, we show that growth factor-stimulated nuclear mTORC1 activity requires nuclear Akt activity. Further mechanistic dissection suggests that nuclear Akt activity mediates growth factor-induced nuclear translocation of Raptor, a regulatory scaffolding component in mTORC1, and localization of Raptor to the nucleus results in nuclear mTORC1 activity in the absence of growth factor stimulation. Taken together, these results reveal a mode of regulation of mTORC1 that is distinct from its lysosomal activation, which controls mTORC1 activity in the nuclear compartment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Yanghao Zhong
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mingyuan Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Tengqian Sun
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jiao Zhang
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Chetty AK, Sexton JA, Ha BH, Turk BE, Boggon TJ. Recognition of physiological phosphorylation sites by p21-activated kinase 4. J Struct Biol 2020; 211:107553. [PMID: 32585314 PMCID: PMC7395882 DOI: 10.1016/j.jsb.2020.107553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Many serine/threonine protein kinases discriminate between serine and threonine substrates as a filter to control signaling output. Among these, the p21-activated kinase (PAK) group strongly favors phosphorylation of Ser over Thr residues. PAK4, a group II PAK, almost exclusively phosphorylates its substrates on serine residues. The only well documented exception is LIM domain kinase 1 (LIMK1), which is phosphorylated on an activation loop threonine (Thr508) to promote its catalytic activity. To understand the molecular and kinetic basis for PAK4 substrate selectivity we compared its mode of recognition of LIMK1 (Thr508) with that of a known serine substrate, β-catenin (Ser675). We determined X-ray crystal structures of PAK4 in complex with synthetic peptides corresponding to its phosphorylation sites in LIMK1 and β-catenin to 1.9 Å and 2.2 Å resolution, respectively. We found that the PAK4 DFG + 1 residue, a key determinant of phosphoacceptor preference, adopts a sub-optimal orientation when bound to LIMK1 compared to β-catenin. In peptide kinase activity assays, we find that phosphoacceptor identity impacts catalytic efficiency but does not affect the Km value for both phosphorylation sites. Although catalytic efficiency of wild-type LIMK1 and β-catenin are equivalent, T508S mutation of LIMK1 creates a highly efficient substrate. These results suggest suboptimal phosphorylation of LIMK1 as a mechanism for controlling the dynamics of substrate phosphorylation by PAK4.
Collapse
Affiliation(s)
- Ashwin K. Chetty
- Yale College, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Joel A. Sexton
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,To whom correspondence should be addressed
| |
Collapse
|
30
|
Pan L, De Smet I. Expanding the Mitogen-Activated Protein Kinase (MAPK) Universe: An Update on MAP4Ks. FRONTIERS IN PLANT SCIENCE 2020; 11:1220. [PMID: 32849755 PMCID: PMC7427426 DOI: 10.3389/fpls.2020.01220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 05/23/2023]
Abstract
Phosphorylation-mediated signaling cascades control plant growth and development or the response to stress conditions. One of the best studied signaling cascades is the one regulated by MITOGEN-ACTIVATED PROTEIN KINASEs (MAPKs). However, MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) are hardly explored. Here, we will give a comprehensive overview of what is known about plant MAP4Ks and highlight some outstanding questions associated with this largely uncharacterized class of kinases in plants.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
31
|
Seo G, Han H, Vargas RE, Yang B, Li X, Wang W. MAP4K Interactome Reveals STRN4 as a Key STRIPAK Complex Component in Hippo Pathway Regulation. Cell Rep 2020; 32:107860. [PMID: 32640226 PMCID: PMC7382313 DOI: 10.1016/j.celrep.2020.107860] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/29/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) constitute a mammalian STE20-like serine/threonine kinase subfamily. Recent studies provide substantial evidence for MAP4K family kinases in the Hippo pathway regulation, suggesting a broad role of MAP4Ks in human physiology and diseases. However, a comprehensive analysis of the regulators and effectors for this key kinase family has not been fully achieved. Using a proteomic approach, we define the protein-protein interaction network for human MAP4K family kinases and reveal diverse cellular signaling events involving this important kinase family. Through it, we identify a STRIPAK complex component, STRN4, as a generic binding partner for MAP4Ks and a key regulator of the Hippo pathway in endometrial cancer development. Taken together, the results of our study not only generate a rich resource for further characterizing human MAP4K family kinases in numerous biological processes but also dissect the STRIPAK-mediated regulation of MAP4Ks in the Hippo pathway.
Collapse
Affiliation(s)
- Gayoung Seo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rebecca Elizabeth Vargas
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Yang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Xu Li
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province 310024, China.
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med 2020; 217:e20191817. [PMID: 32271880 PMCID: PMC7971137 DOI: 10.1084/jem.20191817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chun Hou
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| |
Collapse
|
33
|
Terekhov SS, Mokrushina YA, Nazarov AS, Zlobin A, Zalevsky A, Bourenkov G, Golovin A, Belogurov A, Osterman IA, Kulikova AA, Mitkevich VA, Lou HJ, Turk BE, Wilmanns M, Smirnov IV, Altman S, Gabibov AG. A kinase bioscavenger provides antibiotic resistance by extremely tight substrate binding. SCIENCE ADVANCES 2020; 6:eaaz9861. [PMID: 32637600 PMCID: PMC7314540 DOI: 10.1126/sciadv.aaz9861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities are self-controlled by repertoires of lethal agents, the antibiotics. In their turn, these antibiotics are regulated by bioscavengers that are selected in the course of evolution. Kinase-mediated phosphorylation represents one of the general strategies for the emergence of antibiotic resistance. A new subfamily of AmiN-like kinases, isolated from the Siberian bear microbiome, inactivates antibiotic amicoumacin by phosphorylation. The nanomolar substrate affinity defines AmiN as a phosphotransferase with a unique catalytic efficiency proximal to the diffusion limit. Crystallographic analysis and multiscale simulations revealed a catalytically perfect mechanism providing phosphorylation exclusively in the case of a closed active site that counteracts substrate promiscuity. AmiN kinase is a member of the previously unknown subfamily representing the first evidence of a specialized phosphotransferase bioscavenger.
Collapse
Affiliation(s)
- Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yuliana A. Mokrushina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Anton S. Nazarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander Zlobin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Arthur Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | | | - Andrey Golovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Alexandra A. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Arizona State University, Tempe, AZ, USA
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
| |
Collapse
|
34
|
Sugiyama N. Mass Spectrometry-Based Discovery of in vitro Kinome Substrates. ACTA ACUST UNITED AC 2020; 9:A0082. [PMID: 32547896 PMCID: PMC7242781 DOI: 10.5702/massspectrometry.a0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Protein phosphorylation mediated by protein kinases is one of the most significant posttranslational modifications in many biological events. The function and physiological substrates of specific protein kinases, which are highly associated with known signal transduction elements or therapeutic targets, have been extensively studied using various approaches; however, most protein kinases have not yet been characterized. In recent decades, many techniques have been developed for the identification of in vitro and physiological substrates of protein kinases. In this review, I summarize recent studies profiling the characteristics of kinases using mass spectrometry-based proteomics, focusing on the large-scale identification of in vitro substrates of the human kinome using a quantitative phosphoproteomics approach.
Collapse
Affiliation(s)
- Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
35
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 DOI: 10.3389/fcell.2020.00161/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 05/26/2023] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
36
|
Duhart JC, Raftery LA. Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Front Cell Dev Biol 2020; 8:161. [PMID: 32266255 PMCID: PMC7096357 DOI: 10.3389/fcell.2020.00161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in yeast first delineated the function of Mob proteins in kinase pathways that regulate cell division and shape; in multicellular eukaryotes Mobs regulate tissue growth and morphogenesis. In animals, Mobs are adaptors in Hippo signaling, an intracellular signal-transduction pathway that restricts growth, impacting the development and homeostasis of animal organs. Central to Hippo signaling are the Nuclear Dbf2-Related (NDR) kinases, Warts and LATS1 and LATS2, in flies and mammals, respectively. A second Hippo-like signaling pathway has been uncovered in animals, which regulates cell and tissue morphogenesis. Central to this emergent pathway are the NDR kinases, Tricornered, STK38, and STK38L. In Hippo signaling, NDR kinase activation is controlled by three activating interactions with a conserved set of proteins. This review focuses on one co-activator family, the highly conserved, non-catalytic Mps1-binder-related (Mob) proteins. In this context, Mobs are allosteric activators of NDR kinases and adaptors that contribute to assembly of multiprotein NDR kinase activation complexes. In multicellular eukaryotes, the Mob family has expanded relative to model unicellular yeasts; accumulating evidence points to Mob functional diversification. A striking example comes from the most sequence-divergent class of Mobs, which are components of the highly conserved Striatin Interacting Phosphatase and Kinase (STRIPAK) complex, that antagonizes Hippo signaling. Mobs stand out for their potential to modulate the output from Hippo and Hippo-like kinases, through their roles both in activating NDR kinases and in antagonizing upstream Hippo or Hippo-like kinase activity. These opposing Mob functions suggest that they coordinate the relative activities of the Tricornered/STK38/STK38L and Warts/LATS kinases, and thus have potential to assemble nodes for pathway signaling output. We survey the different facets of Mob-dependent regulation of Hippo and Hippo-like signaling and highlight open questions that hinge on unresolved aspects of Mob functions.
Collapse
Affiliation(s)
| | - Laurel A. Raftery
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
37
|
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. J Biol Chem 2020; 295:3269-3284. [PMID: 32005669 DOI: 10.1074/jbc.ra119.009794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear accumulation of the small phosphoprotein integrin cytoplasmic domain-associated protein-1 (ICAP1) results in recruitment of its binding partner, Krev/Rap1 interaction trapped-1 (KRIT1), to the nucleus. KRIT1 loss is the most common cause of cerebral cavernous malformation, a neurovascular dysplasia resulting in dilated, thin-walled vessels that tend to rupture, increasing the risk for hemorrhagic stroke. KRIT1's nuclear roles are unknown, but it is known to function as a scaffolding or adaptor protein at cell-cell junctions and in the cytosol, supporting normal blood vessel integrity and development. As ICAP1 controls KRIT1 subcellular localization, presumably influencing KRIT1 function, in this work, we investigated the signals that regulate ICAP1 and, hence, KRIT1 nuclear localization. ICAP1 contains a nuclear localization signal within an unstructured, N-terminal region that is rich in serine and threonine residues, several of which are reportedly phosphorylated. Using quantitative microscopy, we revealed that phosphorylation-mimicking substitutions at Ser-10, or to a lesser extent at Ser-25, within this N-terminal region inhibit ICAP1 nuclear accumulation. Conversely, phosphorylation-blocking substitutions at these sites enhanced ICAP1 nuclear accumulation. We further demonstrate that p21-activated kinase 4 (PAK4) can phosphorylate ICAP1 at Ser-10 both in vitro and in cultured cells and that active PAK4 inhibits ICAP1 nuclear accumulation in a Ser-10-dependent manner. Finally, we show that ICAP1 phosphorylation controls nuclear localization of the ICAP1-KRIT1 complex. We conclude that serine phosphorylation within the ICAP1 N-terminal region can prevent nuclear ICAP1 accumulation, providing a mechanism that regulates KRIT1 localization and signaling, potentially influencing vascular development.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
38
|
McCormick JW, Pincus D, Resnekov O, Reynolds KA. Strategies for Engineering and Rewiring Kinase Regulation. Trends Biochem Sci 2019; 45:259-271. [PMID: 31866305 DOI: 10.1016/j.tibs.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
Collapse
Affiliation(s)
- James W McCormick
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | | | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|