1
|
Li J, Smith CA, Chen J, Bates KA, King KC. Warming During Different Life Stages has Distinct Impacts on Host Resistance Ecology and Evolution. Ecol Lett 2025; 28:e70087. [PMID: 39981937 PMCID: PMC11843851 DOI: 10.1111/ele.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 02/22/2025]
Abstract
Climate change is increasing extreme heating events and the potential for disease outbreaks. Whether hosts can adapt to infection with rising temperatures is important for forecasting species persistence. We tested whether warming-at different host life stages-affects the ecological and evolutionary dynamics of resistance in Caenorhabditis elegans infected by a wild bacterial pathogen. We competed resistant and susceptible genotypes across 10 passages and tracked the spread of resistance in the population. Infection and prolonged warming strongly selected for the resistant genotype. Warming during host development induced plastic defences against infection, reducing the selective pressure for costly genetic-based resistance. Resistance was lost under ambient temperatures and periodic warming. Selection for resistance was likely weakened at ambient temperatures by the dilution effect, whereby the resistant genotype reduced pathogen transmission. Evolutionary dynamics of resistance depend on the balance among pathogen virulence, costs of genetic-based resistance, the dilution effect and plastic defences induced by temperature stress.
Collapse
Affiliation(s)
- Jingdi Li
- Department of BiologyUniversity of OxfordOxfordUK
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
| | | | - Jinlin Chen
- Department of BiologyUniversity of OxfordOxfordUK
| | - Kieran A. Bates
- Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Kayla C. King
- Department of BiologyUniversity of OxfordOxfordUK
- Department of ZoologyUniversity of British ColumbiaVancouverCanada
- Department of Microbiology & ImmunologyUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
2
|
Rabiey M, Grace ER, Pawlos P, Bihi M, Ahmed H, Hampson GE, Al Riyami A, Alharbi L, Sanchez‐Lucas R, Korotania N, Ciusa ML, Mosley O, Hulin MT, Baxter L, Dhaouadi S, Vinchira‐Villarraga D, Jackson RW. Coevolutionary analysis of Pseudomonas syringae-phage interactions to help with rational design of phage treatments. Microb Biotechnol 2024; 17:e14489. [PMID: 38864499 PMCID: PMC11167607 DOI: 10.1111/1751-7915.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Emily R. Grace
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paulina Pawlos
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Muscab Bihi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Haleem Ahmed
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Georgina E. Hampson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Amna Al Riyami
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Leena Alharbi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Rosa Sanchez‐Lucas
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Maria Laura Ciusa
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Olivia Mosley
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Laura Baxter
- Bioinformatics Research Technology PlatformUniversity of WarwickCoventryUK
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Diana Vinchira‐Villarraga
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Pagenkopp Lohan KM, Gignoux-Wolfsohn SA, Ruiz GM. Biodiversity differentially impacts disease dynamics across marine and terrestrial habitats. Trends Parasitol 2024; 40:106-117. [PMID: 38212198 DOI: 10.1016/j.pt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
The relationship between biodiversity and infectious disease, where increased biodiversity leads to decreased disease risk, originated from research in terrestrial disease systems and remains relatively underexplored in marine systems. Understanding the impacts of biodiversity on disease in marine versus terrestrial systems is key to continued marine ecosystem functioning, sustainable aquaculture, and restoration projects. We compare the biodiversity-disease relationship across terrestrial and marine systems, considering biodiversity at six levels: intraspecific host diversity, host microbiomes, interspecific host diversity, biotic vectors and reservoirs, parasite consumers, and parasites. We highlight gaps in knowledge regarding how these six levels of biodiversity impact diseases in marine systems and propose two model systems, the Perkinsus-oyster and Labyrinthula-seagrass systems, to address these gaps.
Collapse
Affiliation(s)
- Katrina M Pagenkopp Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA.
| | - Sarah A Gignoux-Wolfsohn
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA; Current address: Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Gregory M Ruiz
- Marine Invasions Research Laboratory, Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
4
|
Hanley TC, Grabowski JH, Schneider EG, Barrett PD, Puishys LM, Spadafore R, McManus G, Helt WSK, Kinney H, Conor McManus M, Randall Hughes A. Host genetic identity determines parasite community structure across time and space in oyster restoration. Proc Biol Sci 2023; 290:20222560. [PMID: 36987644 PMCID: PMC10050946 DOI: 10.1098/rspb.2022.2560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Intraspecific variation in host susceptibility to individual parasite species is common, yet how these effects scale to mediate the structure of diverse parasite communities in nature is less well understood. To address this knowledge gap, we tested how host genetic identity affects parasite communities on restored reefs seeded with juvenile oysters from different sources-a regional commercial hatchery or one of two wild progenitor lines. We assessed prevalence and intensity of three micro- and two macroparasite species for 4 years following restoration. Despite the spatial proximity of restored reefs, oyster source identity strongly predicted parasite community prevalence across all years, with sources varying in their relative susceptibility to different parasites. Oyster seed source also predicted reef-level parasite intensities across space and through time. Our results highlight that host intraspecific variation can shape parasite community structure in natural systems, and reinforce the importance of considering source identity and diversity in restoration design.
Collapse
Affiliation(s)
- Torrance C. Hanley
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
- Massachusetts Bays National Estuary Partnership, Boston, MA 02114, USA
| | | | - Eric G. Schneider
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - Patrick D. Barrett
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - Lauren M. Puishys
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Rachele Spadafore
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gwendolyn McManus
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | | | - Heather Kinney
- The Nature Conservancy, Rhode Island Chapter, Providence, RI 02906, USA
| | - M. Conor McManus
- Rhode Island Department of Environmental Management, Division of Marine Fisheries, Jamestown, RI 02835, USA
| | - A. Randall Hughes
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|
5
|
Guichard M, Dainat B, Dietemann V. Prospects, challenges and perspectives in harnessing natural selection to solve the ‘varroa problem’ of honey bees. Evol Appl 2023; 16:593-608. [PMID: 36969141 PMCID: PMC10035043 DOI: 10.1111/eva.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
Honey bees, Apis mellifera, of European origin are major pollinators of crops and wild flora. Their endemic and exported populations are threatened by a variety of abiotic and biotic factors. Among the latter, the ectoparasitic mite Varroa destructor is the most important single cause behind colony mortality. The selection of mite resistance in honey bee populations has been deemed a more sustainable solution to its control than varroacidal treatments. Because natural selection has led to the survival of some European and African honey bee populations to V. destructor infestations, harnessing its principles has recently been highlighted as a more efficient way to provide honey bee lineages that survive infestations when compared with conventional selection on resistance traits against the parasite. However, the challenges and drawbacks of harnessing natural selection to solve the varroa problem have only been minimally addressed. We argue that failing to consider these issues could lead to counterproductive results, such as increased mite virulence, loss of genetic diversity reducing host resilience, population collapses or poor acceptance by beekeepers. Therefore, it appears timely to evaluate the prospects for the success of such programmes and the qualities of the populations obtained. After reviewing the approaches proposed in the literature and their outcomes, we consider their advantages and drawbacks and propose perspectives to overcome their limitations. In these considerations, we not only reflect on the theoretical aspects of host-parasite relationships but also on the currently largely neglected practical constraints, that is, the requirements for productive beekeeping, conservation or rewilding objectives. To optimize natural selection-based programmes towards these objectives, we suggest designs based on a combination of nature-driven phenotypic differentiation and human-directed selection of traits. Such a dual strategy aims at allowing field-realistic evolutionary approaches towards the survival of V. destructor infestations and the improvement of honey bee health.
Collapse
Affiliation(s)
| | | | - Vincent Dietemann
- Swiss Bee Research Centre Agroscope Bern Switzerland
- Department of Ecology and Evolution, Biophore, UNIL‐Sorge University of Lausanne Lausanne Switzerland
| |
Collapse
|
6
|
Ameline C, Voegtli F, Andras J, Dexter E, Engelstädter J, Ebert D. Genetic slippage after sex maintains diversity for parasite resistance in a natural host population. SCIENCE ADVANCES 2022; 8:eabn0051. [PMID: 36399570 PMCID: PMC9674289 DOI: 10.1126/sciadv.abn0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although parasite-mediated selection is a major driver of host evolution, its influence on genetic variation for parasite resistance is not yet well understood. We monitored resistance in a large population of the planktonic crustacean Daphnia magna over 8 years, as it underwent yearly epidemics of the bacterial pathogen Pasteuria ramosa. We observed cyclic dynamics of resistance: Resistance increased throughout the epidemics, but susceptibility was restored each spring when hosts hatched from sexual resting stages. Host resting stages collected across the year showed that largely resistant host populations can produce susceptible sexual offspring. A genetic model of resistance developed for this host-parasite system, based on multiple loci and strong epistasis, is in partial agreement with our findings. Our results reveal that, despite strong selection for resistance in a natural host population, genetic slippage after sexual reproduction can be a strong factor for the maintenance of genetic diversity of host resistance.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Felix Voegtli
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051 Basel, Switzerland
| |
Collapse
|
7
|
Hulst AD, Bijma P, De Jong MCM. Can breeders prevent pathogen adaptation when selecting for increased resistance to infectious diseases? GENETICS SELECTION EVOLUTION 2022; 54:73. [DOI: 10.1186/s12711-022-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Recent research shows that genetic selection has high potential to reduce the prevalence of infectious diseases in livestock. However, like all interventions that target infectious diseases, genetic selection of livestock can exert selection pressure on pathogen populations. Such selection on the pathogen may lead to escape strategies and reduce the effect of selection of livestock for disease resistance. Thus, to successfully breed livestock for lower disease prevalence, it is essential to develop strategies that prevent the invasion of pathogen mutants that escape host resistance. Here we investigate the conditions under which such “escape mutants” can replace wild-type pathogens in a closed livestock population using a mathematical model of disease transmission.
Results
Assuming a single gene that confers sufficient resistance, results show that genetic selection for resistance in livestock typically leads to an “invasion window” within which an escape mutant of the pathogen can invade. The bounds of the invasion window are determined by the frequency of resistant hosts in the population. The lower bound occurs when the escape mutant has an advantage over the wild-type pathogen in the population. The upper bound occurs when local eradication of the pathogen is expected. The invasion window is smallest when host resistance is strong and when infection with the wild-type pathogen provides cross immunity to infection with the escape mutant.
Conclusions
To minimise opportunities for pathogens to adapt, under the assumptions of our model, the aim of disease control through genetic selection should be to achieve herd-level eradication of the infection faster than the rate of emergence of escape mutants of the pathogen. Especially for microparasitic infections, this could be achieved by placing animals into herds according to their genetic resistance, such that these herds stay completely out of the invasion window. In contrast to classical breeding theory, our model suggests that multi-trait selection with gradual improvement of each trait of the breeding goal might not be the best strategy when resistance to infectious disease is part of the breeding goal. Temporally, combining genetic selection with other interventions helps to make the invasion window smaller, and thereby reduces the risk of invasion of escape mutants.
Collapse
|
8
|
Debray R, De Luna N, Koskella B. Historical contingency drives compensatory evolution and rare reversal of phage resistance. Mol Biol Evol 2022; 39:6673247. [PMID: 35994371 PMCID: PMC9447851 DOI: 10.1093/molbev/msac182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria and lytic viruses (phages) engage in highly dynamic coevolutionary interactions over time, yet we have little idea of how transient selection by phages might shape the future evolutionary trajectories of their host populations. To explore this question, we generated genetically diverse phage-resistant mutants of the bacterium Pseudomonas syringae. We subjected the panel of mutants to prolonged experimental evolution in the absence of phages. Some populations re-evolved phage sensitivity, whereas others acquired compensatory mutations that reduced the costs of resistance without altering resistance levels. To ask whether these outcomes were driven by the initial genetic mechanisms of resistance, we next evolved independent replicates of each individual mutant in the absence of phages. We found a strong signature of historical contingency: some mutations were highly reversible across replicate populations, whereas others were highly entrenched. Through whole-genome sequencing of bacteria over time, we also found that populations with the same resistance gene acquired more parallel sets of mutations than populations with different resistance genes, suggesting that compensatory adaptation is also contingent on how resistance initially evolved. Our study identifies an evolutionary ratchet in bacteria–phage coevolution and may explain previous observations that resistance persists over time in some bacterial populations but is lost in others. We add to a growing body of work describing the key role of phages in the ecological and evolutionary dynamics of their host communities. Beyond this specific trait, our study provides a new insight into the genetic architecture of historical contingency, a crucial component of interpreting and predicting evolution.
Collapse
Affiliation(s)
- Reena Debray
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nina De Luna
- Department of Immunology, Pennsylvania State University, State College, PA, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA.,Chan Zuckerberg BioHub, San Francisco, CA, USA
| |
Collapse
|
9
|
Staes I, Bäcker LE, Simoens K, De Winter K, Marolt G, Cenens W, Wolput S, Vazquez AR, Goos P, Lavigne R, Bernaerts K, Aertsen A. Superinfection exclusion factors drive a history-dependent switch from vertical to horizontal phage transmission. Cell Rep 2022; 39:110804. [PMID: 35545039 DOI: 10.1016/j.celrep.2022.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022] Open
Abstract
Temperate bacterial viruses are commonly thought to favor vertical (lysogenic) transmission over horizontal (lytic) transmission when the virion-to-host-cell ratio is high and available host cells become scarce. In P22-infected Salmonella Typhimurium populations, however, we find that host subpopulations become lytically consumed despite high phage-to-host ratios that would normally favor lysogeny. These subpopulations originate from the proliferation of P22-free siblings that spawn off from P22-carrier cells from which they cytoplasmically inherit P22-borne superinfection exclusion factors (SEFs). In fact, we demonstrate that the gradual dilution of these SEFs in the growing subpopulation of P22-free siblings restricts the number of incoming phages, thereby imposing the perception of a low phage-to-host ratio that favors lytic development. Although their role has so far been neglected, our data indicate that phage-borne SEFs can spur complex infection dynamics and a history-dependent switch from vertical to horizontal transmission in the face of host-cell scarcity.
Collapse
Affiliation(s)
- Ines Staes
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Kenneth Simoens
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Kjerstin De Winter
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Gasper Marolt
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium; Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - William Cenens
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Sanne Wolput
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium
| | - Alan R Vazquez
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Peter Goos
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium; Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Rob Lavigne
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Department of Chemical Engineering- (Bio)chemical Reactor Engineering and Safety, Faculty of Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 23 - bus 2457, 3001 Leuven, Belgium.
| |
Collapse
|
10
|
Lewis JA, Penley MJ, Sylla H, Ahumada SD, Morran LT. Antagonistic Coevolution Limits the Range of Host Defense in C. elegans Populations. Front Cell Infect Microbiol 2022. [DOI: 10.3389/fcimb.2022.758745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites.
Collapse
|
11
|
Rovenolt FH, Tate AT. The Impact of Coinfection Dynamics on Host Competition and Coexistence. Am Nat 2022; 199:91-107. [DOI: 10.1086/717180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
The Innate Immune Response to Infection by Polyascus gregaria in the Male Chinese Mitten Crab (Eriocheir sinensis), Revealed by Proteomic Analysis. FISHES 2021. [DOI: 10.3390/fishes6040057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a representative catadromous invertebrate of the Yangtze River and a commercial species widely cultivated in China. Both cultivated and wild crabs suffer from a variety of parasites and pathogens, which can result in catastrophic economic losses in aquaculture revenue. Polyascus gregaria, a parasitic barnacle with a highly derived morphology, is specialized in invading these crabs. This study examines the immunological mechanism in E. sinensis infected with P. gregaria. Tandem mass tags (TMT), a specialized method of mass-spectrometry, was used to analyze the infection by P. gregaria resistance at the protein level. In the hepatopancreas of infected crabs, 598 proteins differentially expressed relating to physiological change, of which, 352 were upregulated and 246 were downregulated. Based on this differential protein expression, 104 GO terms and 13 KEGG pathways were significantly enriched. Differentially expressed proteins, such as ATG, cathepsin, serpin, iron-related protein, Rab family, integrin, and lectin, are associated with the lysosome GO term and the autophagy-animal KEGG pathways, both of which likely relate to the immune response to the parasitic P. gregaria infection. These results show the benefit of taking a detailed, protein-level approach to understanding the innate immune response of aquatic invertebrates to macroparasite infection.
Collapse
|
13
|
Ameline C, Bourgeois Y, Vögtli F, Savola E, Andras J, Engelstädter J, Ebert D. A Two-Locus System with Strong Epistasis Underlies Rapid Parasite-Mediated Evolution of Host Resistance. Mol Biol Evol 2021; 38:1512-1528. [PMID: 33258959 PMCID: PMC8042741 DOI: 10.1093/molbev/msaa311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Parasites are a major evolutionary force, driving adaptive responses in host populations. Although the link between phenotypic response to parasite-mediated natural selection and the underlying genetic architecture often remains obscure, this link is crucial for understanding the evolution of resistance and predicting associated allele frequency changes in the population. To close this gap, we monitored the response to selection during epidemics of a virulent bacterial pathogen, Pasteuria ramosa, in a natural host population of Daphnia magna. Across two epidemics, we observed a strong increase in the proportion of resistant phenotypes as the epidemics progressed. Field and laboratory experiments confirmed that this increase in resistance was caused by selection from the local parasite. Using a genome-wide association study, we built a genetic model in which two genomic regions with dominance and epistasis control resistance polymorphism in the host. We verified this model by selfing host genotypes with different resistance phenotypes and scoring their F1 for segregation of resistance and associated genetic markers. Such epistatic effects with strong fitness consequences in host–parasite coevolution are believed to be crucial in the Red Queen model for the evolution of genetic recombination.
Collapse
Affiliation(s)
- Camille Ameline
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Yann Bourgeois
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Felix Vögtli
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Eevi Savola
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Institute of Evolutionary Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason Andras
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Clapp Laboratory, Mount Holyoke College, South Hadley, MA, USA
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Horn CJ, Luong LT. Trade-offs between reproduction and behavioural resistance against ectoparasite infection. Physiol Behav 2021; 239:113524. [PMID: 34229032 DOI: 10.1016/j.physbeh.2021.113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Reproduction is a key determinant of organismal fitness, but organisms almost always face the threat of parasite infection. Thus, potential trade-offs between mating and parasite resistance may have substantial impacts on the ecology and evolution of host species. Although trade-offs between microbial resistance and mating in arthropods are well-documented, there is a paucity of evidence that mating compromises host resistance to the ubiquitous threat posed by ectoparasites. Despite the centrality of reproduction to host fitness and the widespread risk of parasites, there is a dearth of experiments showing a trade-off between mating/reproduction and anti-parasite behaviours. In this study, we test if mating increases the susceptibility of female flies to mite infection. We also investigated a potential underlying mechanism for the trade-off: that mating reduces overall endurance and hence anti-parasitic defenses among female flies. We experimentally mated female Drosophila nigrospiracula, with or without a chance to recover from male harassment, and challenged them with a natural ectoparasite, the mite Macrocheles subbadius. Mated females, regardless of time for recovery from male harassment, acquired more infections than unmated females. Furthermore, mated females had lower endurance in negative geotaxis assays, suggesting the increased susceptibility is due to reduced endurance. Our research shows a trade-off between reproduction and parasite resistance in a host-macroparasite system and suggests that trade-off theory is a fruitful direction for understanding these associations.
Collapse
Affiliation(s)
- Collin J Horn
- University of Alberta, Department of Biological Sciences., CW405 Biological Sciences Bldg. Edmonton, AB T6G 2E9 Canada.
| | - Lien T Luong
- University of Alberta, Department of Biological Sciences., CW405 Biological Sciences Bldg. Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
15
|
Kahlon PS, Seta SM, Zander G, Scheikl D, Hückelhoven R, Joosten MHAJ, Stam R. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc Biol Sci 2020; 287:20202723. [PMID: 33352079 DOI: 10.1098/rspb.2020.2723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Shallet Mindih Seta
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Gesche Zander
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Str. 2, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| |
Collapse
|
16
|
Hays M, Young JM, Levan PF, Malik HS. A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. eLife 2020; 9:62337. [PMID: 33063663 PMCID: PMC7652418 DOI: 10.7554/elife.62337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Antagonistic coevolution with selfish genetic elements (SGEs) can drive evolution of host resistance. Here, we investigated host suppression of 2-micron (2μ) plasmids, multicopy nuclear parasites that have co-evolved with budding yeasts. We developed SCAMPR (Single-Cell Assay for Measuring Plasmid Retention) to measure copy number heterogeneity and 2μ plasmid loss in live cells. We identified three S. cerevisiae strains that lack endogenous 2μ plasmids and reproducibly inhibit mitotic plasmid stability. Focusing on the Y9 ragi strain, we determined that plasmid restriction is heritable and dominant. Using bulk segregant analysis, we identified a high-confidence Quantitative Trait Locus (QTL) with a single variant of MMS21 associated with increased 2μ instability. MMS21 encodes a SUMO E3 ligase and an essential component of the Smc5/6 complex, involved in sister chromatid cohesion, chromosome segregation, and DNA repair. Our analyses leverage natural variation to uncover a novel means by which budding yeasts can overcome highly successful genetic parasites.
Collapse
Affiliation(s)
- Michelle Hays
- Molecular and Cellular Biology program, University of Washington, Seattle, United States.,Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Janet M Young
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Paula F Levan
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences & Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
17
|
Bartlett LJ, Visher E, Haro Y, Roberts KE, Boots M. The target of selection matters: An established resistance-development-time negative genetic trade-off is not found when selecting on development time. J Evol Biol 2020; 33:1109-1119. [PMID: 32390292 DOI: 10.1111/jeb.13639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022]
Abstract
Trade-offs are fundamental to evolutionary outcomes and play a central role in eco-evolutionary theory. They are often examined by experimentally selecting on one life-history trait and looking for negative correlations in other traits. For example, populations of the moth Plodia interpunctella selected to resist viral infection show a life-history cost with longer development times. However, we rarely examine whether the detection of such negative genetic correlations depends on the trait on which we select. Here, we examine a well-characterized negative genotypic trade-off between development time and resistance to viral infection in the moth Plodia interpunctella and test whether selection on a phenotype known to be a cost of resistance (longer development time) leads to the predicted correlated increase in resistance. If there is tight pleiotropic relationship between genes that determine development time and resistance underpinning this trade-off, we might expect increased resistance when we select on longer development time. However, we show that selecting for longer development time in this system selects for reduced resistance when compared to selection for shorter development time. This shows how phenotypes typically characterized by a trade-off can deviate from that trade-off relationship, and suggests little genetic linkage between the genes governing viral resistance and those that determine response to selection on the key life-history trait. Our results are important for both selection strategies in applied biological systems and for evolutionary modelling of host-parasite interactions.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Katherine E Roberts
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Mike Boots
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
18
|
Johnson PTJ, Calhoun DM, Riepe T, McDevitt-Galles T, Koprivnikar J. Community disassembly and disease: realistic-but not randomized-biodiversity losses enhance parasite transmission. Proc Biol Sci 2020; 286:20190260. [PMID: 31039724 DOI: 10.1098/rspb.2019.0260] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Debates over the relationship between biodiversity and disease dynamics underscore the need for a more mechanistic understanding of how changes in host community composition influence parasite transmission. Focusing on interactions between larval amphibians and trematode parasites, we experimentally contrasted the effects of host richness and species composition to identify the individual and joint contributions of both parameters on the infection levels of three trematode species. By combining experimental approaches with field surveys from 147 ponds, we further evaluated how richness effects differed between randomized and realistic patterns of species loss (i.e. community disassembly). Our results indicated that community-level changes in infection levels were owing to host species composition, rather than richness. However, when composition patterns mirrored empirical observations along a natural assembly gradient, each added host species reduced infection success by 12-55%. No such effects occurred when assemblages were randomized. Mechanistically, these patterns were due to non-random host species assembly/disassembly: while highly competent species predominated in low diversity systems, less susceptible hosts became progressively more common as richness increased. These findings highlight the potential for combining information on host traits and assembly patterns to forecast diversity-mediated changes in multi-host disease systems.
Collapse
Affiliation(s)
- Pieter T J Johnson
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Dana M Calhoun
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | - Tawni Riepe
- 1 Ecology and Evolutionary Biology, University of Colorado , Boulder, CO , USA
| | | | - Janet Koprivnikar
- 2 Department of Chemistry and Biology, Ryerson University , Toronto, Ontario , Canada
| |
Collapse
|
19
|
Hernandez CA, Koskella B. Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system. Evolution 2019; 73:2461-2475. [PMID: 31433508 DOI: 10.1111/evo.13833] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The evolution of resistance to parasites is fundamentally important to disease ecology, yet we remain unable to predict when and how resistance will evolve. This is largely due to the context-dependent nature of host-parasite interactions, as the benefit of resistance will depend on the abiotic and biotic environment. Through experimental evolution of the plant pathogenic bacterium Pseudomonas syringae and two lytic bacteriophages across two different environments (high-nutrient media and the tomato leaf apoplast), we demonstrate that de novo evolution of resistance is negligible in planta despite high levels of resistance evolution in vitro. We find no evidence supporting the evolution of phage-selected resistance in planta despite multiple passaging experiments, multiple assays for resistance, and high multiplicities of infection. Additionally, we find that phage-resistant mutants (evolved in vitro) did not realize a fitness benefit over phage-sensitive cells when grown in planta in the presence of phage, despite reduced growth of sensitive cells, evidence of phage replication in planta, and a large fitness benefit in the presence of phage observed in vitro. Thus, this context-dependent benefit of phage resistance led to different evolutionary outcomes across environments. These results underscore the importance of studying the evolution of parasite resistance in ecologically relevant environments.
Collapse
Affiliation(s)
- Catherine A Hernandez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
20
|
Ecology of fear: environment-dependent parasite avoidance among ovipositing Drosophila. Parasitology 2019; 146:1564-1570. [DOI: 10.1017/s0031182019000854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractHabitat avoidance is an anti-parasite behaviour exhibited by at-risk hosts that can minimize exposure to parasites. Because environments are often heterogeneous, host decision-making with regards to habitat use may be affected by the presence of parasites and habitat quality simultaneously. In this study we examine how the ovipositing behaviour of a cactiphilic fruit fly, Drosophila nigrospiracula, is affected by the presence of an ectoparasitic mite, Macrocheles subbadius, in conjunction with other environmental factors – specifically the presence or absence of conspecific eggs and host plant tissue. We hypothesized that the trade-off between site quality and parasite avoidance should favour ovipositing at mite-free sites even if it is of inferior quality. We found that although flies avoided mites in homogeneous environments (86% of eggs at mite-free sites), site quality overwhelmed mite avoidance. Both conspecific eggs (65% of eggs at infested sites with other Drosophila eggs) and host plant tissue (78% of eggs at infested sites with cactus) overpowered mite avoidance. Our results elucidate the context-dependent decision-making of hosts in response to the presence of parasites in variable environments, and suggest how the ecology of fear and associated trade-offs may influence the relative investment in anti-parasite behaviour in susceptible hosts.
Collapse
|
21
|
Duxbury EML, Day JP, Maria Vespasiani D, Thüringer Y, Tolosana I, Smith SCL, Tagliaferri L, Kamacioglu A, Lindsley I, Love L, Unckless RL, Jiggins FM, Longdon B. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 2019; 8:e46440. [PMID: 31038124 PMCID: PMC6491035 DOI: 10.7554/elife.46440] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
It is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-pathogen interactions. We conclude that selection by pathogens has increased genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.
Collapse
Affiliation(s)
- Elizabeth ML Duxbury
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- School of Biological SciencesUniversity of East AngliaNorwichUnited Kingdom
| | - Jonathan P Day
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Yannik Thüringer
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ignacio Tolosana
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Sophia CL Smith
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Lucia Tagliaferri
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Altug Kamacioglu
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Imogen Lindsley
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Luca Love
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Robert L Unckless
- Department of Molecular BiosciencesUniversity of KansasLawrenceUnited States
| | - Francis M Jiggins
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Ben Longdon
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
- Centre for Ecology and Conservation, BiosciencesUniversity of Exeter (Penryn Campus)CornwallUnited Kingdom
| |
Collapse
|