1
|
Thorhölludottir DAV, Hsu SK, Barghi N, Mallard F, Nolte V, Schlötterer C. Reduced Parallel Gene Expression Evolution With Increasing Genetic Divergence-A Hallmark of Polygenic Adaptation. Mol Ecol 2025:e17803. [PMID: 40377062 DOI: 10.1111/mec.17803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/13/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Parallel evolution, the repeated evolution of similar traits in independent lineages, is a topic of considerable interest in evolutionary biology. Although previous studies have focused on the parallelism of phenotypic traits and their underlying genetic basis, the extent of parallelism at the level of gene expression across different levels of genetic divergence is not yet fully understood. This study investigates the evolution of gene expression in replicate Drosophila populations exposed to the same novel environment at three divergence levels: within a population, between populations and between species. We show that adaptive gene expression changes are more heterogeneous with increasing genetic divergence between the compared groups. This finding suggests that the adaptive architecture-comprising factors such as allele frequencies and the effect size of contributing loci-becomes more distinct with increasing divergence. As a result, this leads to a reduction in parallel gene expression evolution. This result implies that redundancy is a crucial factor in both genetic selection responses and gene expression evolution. Hence, our findings are consistent with the omnigenic model, which posits that selection acts on higher-order phenotypes. This work contributes to our understanding of phenotypic evolution and the complex interplay between genomic and molecular responses.
Collapse
Affiliation(s)
- Dangy A V Thorhölludottir
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Rêgo A, Baur J, Girard-Tercieux C, de la Paz Celorio-Mancera M, Stelkens R, Berger D. Repeatability of evolution and genomic predictions of temperature adaptation in seed beetles. Nat Ecol Evol 2025:10.1038/s41559-025-02716-5. [PMID: 40379980 DOI: 10.1038/s41559-025-02716-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Climate warming is threatening biodiversity by increasing temperatures beyond the optima of many ectotherms. Owing to the inherent non-linear relationship between temperature and the rate of cellular processes, such shifts towards hot temperature are predicted to impose stronger selection compared with corresponding shifts towards cold temperature. This suggests that when adaptation to warming occurs, it should be relatively rapid and predictable. Here we tested this hypothesis from the level of single-nucleotide polymorphisms to life-history traits in the beetle Callosobruchus maculatus. We conducted an evolve-and-resequence experiment on three genetic backgrounds of the beetle reared at hot or cold temperature. Indeed, we find that phenotypic evolution was faster and more repeatable at hot temperature. However, at the genomic level, adaptation to heat was less repeatable when compared across genetic backgrounds. As a result, genomic predictions of phenotypic adaptation in populations exposed to hot temperature were accurate within, but not between, backgrounds. These results seem best explained by genetic redundancy and an increased importance of epistasis during adaptation to heat, and imply that the same mechanisms that exert strong selection and increase repeatability of phenotypic evolution at hot temperature reduce repeatability at the genomic level. Thus, predictions of adaptation in key phenotypes from genomic data may become increasingly difficult as climates warm.
Collapse
Affiliation(s)
- Alexandre Rêgo
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Julian Baur
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- AgroParisTech, INRAE, UMR Silva, Université de Lorraine, Nancy, France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - David Berger
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Hubert DL, Arnold KR, Greenspan ZS, Pupo A, Robinson RD, Chavarin VV, Barter TT, Djukovic D, Raftery D, Vue Z, Hinton A, McReynolds MR, Harrison BR, Phillips MA. Selection for Early Reproduction Leads to Accelerated Aging and Extensive Metabolic Remodeling in Drosophila melanogaster. Genome Biol Evol 2025; 17:evaf082. [PMID: 40326415 DOI: 10.1093/gbe/evaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/10/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Experimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster. Specifically, we characterized metabolomic change over adult lifespan in populations of D. melanogaster where selection for early reproduction has led to an accelerated aging phenotype relative to their controls. Using these data, we (i) evaluated evolutionary repeatability across the metabolome; (ii) assessed the value of the metabolome as a predictor of "biological age" in this system; and (iii) identified specific metabolites associated with accelerated aging. Generally, our findings suggest that selection for early reproduction resulted in highly repeatable alterations to the metabolome and the metabolome itself is a reliable predictor of "biological age". Specifically, we find clusters of metabolites that are associated with the different rates of senescence observed between our accelerated aging population and their controls, adding new insights into the metabolites that may be driving the accelerated aging phenotype.
Collapse
Affiliation(s)
- David L Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Kenneth R Arnold
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Zachary S Greenspan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Anastasia Pupo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Ryan D Robinson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Valeria V Chavarin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | | | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin R Harrison
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Lai WY, Hsu SK, Futschik A, Schlötterer C. Pleiotropy increases parallel selection signatures during adaptation from standing genetic variation. eLife 2025; 13:RP102321. [PMID: 40227842 PMCID: PMC11996171 DOI: 10.7554/elife.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
The phenomenon of parallel evolution, whereby similar genomic and phenotypic changes occur across replicated pairs of populations or species, is widely studied. Nevertheless, the determining factors of parallel evolution remain poorly understood. Theoretical studies have proposed that pleiotropy, the influence of a single gene on multiple traits, is an important factor. In order to gain a deeper insight into the role of pleiotropy for parallel evolution from standing genetic variation, we characterized the interplay between parallelism, polymorphism, and pleiotropy. The present study examined the parallel gene expression evolution in 10 replicated populations of Drosophila simulans, which were adapted from standing variation to the same new temperature regime. The data demonstrate that the parallel evolution of gene expression from standing genetic variation is positively correlated with the strength of pleiotropic effects. The ancestral variation in gene expression is, however, negatively correlated with parallelism. Given that pleiotropy is also negatively correlated with gene expression variation, we conducted a causal analysis to distinguish cause and correlation and evaluate the role of pleiotropy. The causal analysis indicated that both direct (causative) and indirect (correlational) effects of pleiotropy contribute to parallel evolution. The indirect effect is mediated by historic selective constraint in response to pleiotropy. This results in parallel selection responses due to the reduced standing variation of pleiotropic genes. The direct effect of pleiotropy is likely to reflect a genetic correlation among adaptive traits, which in turn gives rise to synergistic effects and higher parallelism.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Andreas Futschik
- Department of Applied Statistics, Johannes Kepler University LinzLinzAustria
| | | |
Collapse
|
5
|
Tost M, Westhues C, Morrison G, Kaufmann D, Beissinger T. Experimental evolution in maize with replicated divergent selection identifies two plant-height-associated regions. Genetics 2025; 229:iyaf012. [PMID: 39950502 DOI: 10.1093/genetics/iyaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/24/2024] [Indexed: 03/19/2025] Open
Abstract
Experimental evolution studies are common in agricultural research, where they are often deemed "long-term selection." These are often used to perform selection mapping, which involves identifying markers that were putatively under selection based on finding signals of selection left in the genome. A challenge of previous selection mapping studies, especially in agricultural research, has been the specification of robust significance thresholds. This is in large part because long-term selection studies in crops have rarely included replication. Usually, significance thresholds in long-term selection experiments are based on outliers from an empirical distribution. This approach is prone to missing true positives or including false positives. Under laboratory conditions with model species, replicated selection has been shown to be a powerful tool, especially for the specification of significance thresholds. Another challenge is that commonly used single-marker-based statistics may identify neutral linked loci which have hitchhiked along with regions that are actually under selection. In this study, we conducted divergent, replicated selection for short and tall plant height in a random-mating maize population under real field conditions. Selection of the 5% tallest and shortest plants was conducted for 3 generations. Significance thresholds were specified using the false discovery rate for selection (FDRfS) based on a window-based statistic applied to a statistic leveraging replicated selection (FSTSum). Overall, we found 2 significant regions putatively under selection. One region was located on chromosome 3 close to the plant-height genes Dwarf1 and iAA8. We applied a haplotype block analysis to further dissect the pattern of selection in significant regions of the genome. We observed patterns of strong selection in the subpopulations selected for short plant height on chromosome 3.
Collapse
Affiliation(s)
- Mila Tost
- Department of Crop Science, Division of Plant Breeding Methodology, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
- Center for Integrated Breeding Research, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
| | - Cathy Westhues
- Department of Crop Science, Division of Plant Breeding Methodology, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
- Center for Integrated Breeding Research, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
| | - Ginnie Morrison
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Dietrich Kaufmann
- Department of Crop Science, Division of Plant Breeding Methodology, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
| | - Timothy Beissinger
- Department of Crop Science, Division of Plant Breeding Methodology, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
- Center for Integrated Breeding Research, University of Goettingen, Carl-Sprengel-Weg 1, Goettingen 37075, Germany
- Heritable Agriculture Inc., Mountain View, CA 94040, USA
| |
Collapse
|
6
|
Hubert DL, Arnold KR, Greenspan ZS, Pupo A, Robinson RD, Chavarin VV, Barter TB, Djukovic D, Raftery D, Vue Z, Hinton A, McReynolds MR, Harrison BR, Phillips MA. Selection for early reproduction leads to accelerated aging and extensive metabolic remodeling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.28.601037. [PMID: 39005259 PMCID: PMC11244849 DOI: 10.1101/2024.06.28.601037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster. Specifically, we characterized metabolomic change over adult lifespan in populations of D. melanogaster where selection for early reproduction has led to an accelerated aging phenotype relative to their controls. Using these data we: i) evaluated evolutionary repeatability across the metabolome; ii) assessed the value of the metabolome as a predictor of "biological age" in this system; and iii) identified specific metabolites associated with accelerated aging. Generally, our findings suggest that selection for early reproduction resulted in highly repeatable alterations to the metabolome and the metabolome itself is a reliable predictor of "biological age". Specifically, we find clusters of metabolites that are associated with the different rates of senescence observed between our accelerated aging population and their controls, adding new insights into the metabolites that may be driving the accelerated aging phenotype.
Collapse
Affiliation(s)
| | - Kenneth R. Arnold
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Zachary S. Greenspan
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Anastasia Pupo
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Ryan D. Robinson
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Valeria V. Chavarin
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA 16802
| | - Benjamin R. Harrison
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | | |
Collapse
|
7
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Danzmann RG, Ferguson MM. Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Evol Dev 2025; 27:e70000. [PMID: 39723482 DOI: 10.1111/ede.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, Ontario, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
deMayo JA, Ragland GJ. (Limited) Predictability of thermal adaptation in invertebrates. J Exp Biol 2025; 228:JEB249450. [PMID: 40052398 DOI: 10.1242/jeb.249450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Evolutionary genomic approaches provide powerful tools to understand variation in and evolution of physiological processes. Untargeted genomic or transcriptomic screens can identify functionally annotated candidate genes linked to specific physiological processes, in turn suggesting evolutionary roles for these processes. Such studies often aim to inform modeling of the potential of natural populations to adapt to climate change, but these models are most accurate when evolutionary responses are repeatable, and thus predictable. Here, we synthesize the evolutionary genetic and comparative transcriptomic literature on terrestrial and marine invertebrates to assess whether evolutionary responses to temperature are repeatable within populations, across populations and across species. There is compelling evidence for repeatability, sometimes even across species. However, responses to laboratory selection and geographic variation across thermal gradients appear to be highly idiosyncratic. We also survey whether genetic/transcriptomic studies repeatedly identify candidate genes in three functional groups previously associated with the response to thermal stress: heat shock protein (Hsp) genes, proteolysis genes and immunity genes. Multiple studies across terrestrial and marine species identify candidates included in these gene sets. Yet, each of the gene sets are identified in only a minority of studies. Together, these patterns suggest that there is limited predictability of evolutionary responses to natural selection, including across studies within species. We discuss specific patterns for the candidate gene sets, implications for predictive modeling, and other potential applications of evolutionary genetics in elucidating physiology and gene function. Finally, we discuss limitations of inferences from available evolutionary genetic studies and directions for future research.
Collapse
Affiliation(s)
- James A deMayo
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
9
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025. [PMID: 39956989 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre, 1055 Rue du Peps, Québec City, Quebec, G1V 4C7, Canada
- Department of Biology, Laval University, 1045 Avenue de la Médecine, Québec City, Quebec, G1V 0A6, Canada
- Institute of Integrative Biology and Systems, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
| | - Ilga Porth
- Institute of Integrative Biology and Systems, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
- Department of Wood and Forest Sciences, Laval University, 1030 Avenue de La Médecine, Québec City, Quebec, G1V 0A6, Canada
- Centre for Forest Research, Laval University, 2405 Rue de La Terrasse, Québec City, Quebec, G1V 0A6, Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 71E Wojska Polskiego Street, Poznań, PL 60-625, Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, MSD2080, Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, MSD2080, Malta
| | - Agnieszka Kloch
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| |
Collapse
|
10
|
Du Z, Wang X, Duan Y, Liu S, Tian L, Song F, Cai W, Li H. Global Invasion History and Genomic Signatures of Adaptation of the Highly Invasive Sycamore Lace Bug. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae074. [PMID: 39400548 PMCID: PMC11993305 DOI: 10.1093/gpbjnl/qzae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Invasive species cause massive economic and ecological damages. Climate change has resulted in an unprecedented increase in the number and impact of invasive species; however, the mechanisms underlying these invasions are unclear. The sycamore lace bug, Corythucha ciliata, is a highly invasive species originating from North America and has expanded across the Northern Hemisphere since the 1960s. In this study, we assembled the C. ciliata genome using high-coverage Pacific Biosciences (PacBio), Illumina, and high-throughput chromosome conformation capture (Hi-C) sequencing. A total of 15,278 protein-coding genes were identified, and expansions of gene families with oxidoreductase and metabolic activities were observed. In-depth resequencing of 402 samples from native and nine invaded countries across three continents revealed 2.74 million single nucleotide polymorphisms. Two major invasion routes of C. ciliata were identified from North America to Europe and Japan, with a contact zone forming in East Asia. Genomic signatures of selection associated with invasion and long-term balancing selection in native ranges were identified. These genomic signatures overlapped with each other as well as with expanded genes, suggesting improvements in the oxidative stress and thermal tolerance of C. ciliata. These findings offer valuable insights into the genomic architecture and adaptive evolution underlying the invasive capabilities of species during rapid environmental changes.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Anderson NW, Kirk L, Schraiber JG, Ragsdale AP. A path integral approach for allele frequency dynamics under polygenic selection. Genetics 2025; 229:1-63. [PMID: 39531638 DOI: 10.1093/genetics/iyae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence (E&R) experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a role in a given allele frequency change (AFC). Predicting AFCs under drift and selection, even for alleles contributing to simple, monogenic traits, has remained a challenging problem. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here, we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. We derive analytic expressions for the transition probability (i.e. the probability that an allele will change in frequency from x to y in time t) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of AFC to test for selection, as well as explore optimal design choices for E&R experiments to uncover the genetic architecture of polygenic traits under selection.
Collapse
Affiliation(s)
- Nathan W Anderson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lloyd Kirk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua G Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Parée T, Noble L, Roze D, Teotónio H. Selection Can Favor a Recombination Landscape That Limits Polygenic Adaptation. Mol Biol Evol 2025; 42:msae273. [PMID: 39776196 PMCID: PMC11739800 DOI: 10.1093/molbev/msae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Modifiers of recombination rates have been described but the selective pressures acting on them and their effect on adaptation to novel environments remain unclear. We performed experimental evolution in the nematode Caenorhabditis elegans using alternative rec-1 alleles modifying the position of meiotic crossovers along chromosomes without detectable direct fitness effects. We show that adaptation to a novel environment is impaired by the allele that decreases recombination rates in the genomic regions containing fitness variation. However, the allele that impairs adaptation is indirectly favored by selection, because it increases recombination rates and reduces the associations among beneficial and deleterious variation located in its chromosomal vicinity. These results validate theoretical expectations about the evolution of recombination but suggest that genome-wide polygenic adaptation is of little consequence to indirect selection on recombination rate modifiers.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- Department of Biology, New York University, New York, NY 10003, USA
| | - Luke Noble
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
- EnviroDNA, 95 Albert St Brunswick, Melbourne, Victoria 3065, Australia
| | - Denis Roze
- Adaptation et Diversité en Milieu Marin CNRS UMR 7144, Station Biologique de Roscoff, Sorbonne University, Roscoff 29688, France
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, Paris 75005, France
| |
Collapse
|
13
|
Fine AG, Steinrücken M. A novel expectation-maximization approach to infer general diploid selection from time-series genetic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593575. [PMID: 38798346 PMCID: PMC11118272 DOI: 10.1101/2024.05.10.593575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Detecting and quantifying the strength of selection is a main objective in population genetics. Since selection acts over multiple generations, many approaches have been developed to detect and quantify selection using genetic data sampled at multiple points in time. Such time series genetic data is commonly analyzed using Hidden Markov Models, but in most cases, under the assumption of additive selection. However, many examples of genetic variation exhibiting non-additive mechanisms exist, making it critical to develop methods that can characterize selection in more general scenarios. Thus, we extend a previously introduced expectation-maximization algorithm for the inference of additive selection coefficients to the case of general diploid selection, in which the heterozygote and homozygote fitness are parameterized independently. We furthermore introduce a framework to identify bespoke modes of diploid selection from given data, as well as a procedure for aggregating data across linked loci to increase power and robustness. Using extensive simulation studies, we find that our method accurately and efficiently estimates selection coefficients for different modes of diploid selection across a wide range of scenarios; however, power to classify the mode of selection is low unless selection is very strong. We apply our method to ancient DNA samples from Great Britain in the last 4,450 years, and detect evidence for selection in six genomic regions, including the well-characterized LCT locus. Our work is the first genome-wide scan characterizing signals of general diploid selection.
Collapse
Affiliation(s)
- Adam G Fine
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Sadler DE, Sävilammi T, van Dijk SN, Watts PC, Uusi‐Heikkilä S. Size-selective harvesting drives genomic shifts in a harvested population. JOURNAL OF FISH BIOLOGY 2024; 105:1562-1571. [PMID: 39115138 PMCID: PMC11650958 DOI: 10.1111/jfb.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 12/18/2024]
Abstract
Overfishing not only drastically reduces the number of fish in an exploited population but is also often selective for body size by removing the largest individuals from a population. Here, we study experimentally the evolutionary effects of size-selective harvesting using whole-genome sequencing on a model organism, the zebrafish (Danio rerio). We demonstrate genomic shifts in the populations exposed to size-selective harvesting for five generations and show reduced genetic diversity in all harvested lines, including the control line (non-size-selected). We also determine differences in groups of genes related to certain gene ontology annotations between size-selectively harvested lines, with enrichment in nervous system related genes in the large-selected lines. Our results illuminate the biological processes underlying fisheries-induced genetic changes and hence contribute toward the understanding of the changes potentially associated with the vulnerability of an exploited population to future stressors.
Collapse
Affiliation(s)
- Daniel E. Sadler
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| | - Tiina Sävilammi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Stephan N. van Dijk
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
15
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Griffiths JS, Sasaki M, Neylan IP, Kelly MW. The Potential for Experimental Evolution to Uncover Trade-Offs Associated With Anthropogenic and Climate Change Adaptation. GLOBAL CHANGE BIOLOGY 2024; 30:e17584. [PMID: 39582252 DOI: 10.1111/gcb.17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Evolutionary responses to climate change may incur trade-offs due to energetic constraints and mechanistic limitations, which are both influenced by environmental context. Adaptation to one stressor may result in life history trade-offs, canalization of phenotypic plasticity, and the inability to tolerate other stressors, among other potential costs. While trade-offs incurred during adaptation are difficult to detect in natural populations, experimental evolution can provide important insights by measuring correlated responses to selection as populations adapt to changing environments. However, studies testing for trade-offs have generally lagged behind the growth in the use of experimental evolution in climate change studies. We argue that the important insights generated by the few studies that have tested for trade-offs make a strong case for including these types of measurements in future studies of climate adaptation. For example, there is emerging consensus from experimental evolution studies that tolerance and tolerance plasticity trade-offs are an often-observed outcome of adaptation to anthropogenic change. In recent years, these types of studies have been strengthened by the use of sequencing of experimental populations, which provides promising new avenues for understanding the molecular mechanisms underlying observed phenotypic trade-offs.
Collapse
Affiliation(s)
- Joanna S Griffiths
- Department of Environmental Toxicology, University of California Davis, Davis, California, USA
| | - Matthew Sasaki
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Isabelle P Neylan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
17
|
Stansfield C, Parsons KJ. Developmental bias as a cause and consequence of adaptive radiation and divergence. Front Cell Dev Biol 2024; 12:1453566. [PMID: 39479512 PMCID: PMC11521891 DOI: 10.3389/fcell.2024.1453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Efforts to reconcile development and evolution have demonstrated that development is biased, with phenotypic variation being more readily produced in certain directions. However, how this "developmental bias" can influence micro- and macroevolution is poorly understood. In this review, we demonstrate that defining features of adaptive radiations suggest a role for developmental bias in driving adaptive divergence. These features are i) common ancestry of developmental systems; ii) rapid evolution along evolutionary "lines of least resistance;" iii) the subsequent repeated and parallel evolution of ecotypes; and iv) evolutionary change "led" by biased phenotypic plasticity upon exposure to novel environments. Drawing on empirical and theoretical data, we highlight the reciprocal relationship between development and selection as a key driver of evolutionary change, with development biasing what variation is exposed to selection, and selection acting to mold these biases to align with the adaptive landscape. Our central thesis is that developmental biases are both the causes and consequences of adaptive radiation and divergence. We argue throughout that incorporating development and developmental bias into our thinking can help to explain the exaggerated rate and scale of evolutionary processes that characterize adaptive radiations, and that this can be best achieved by using an eco-evo-devo framework incorporating evolutionary biology, development, and ecology. Such a research program would demonstrate that development is not merely a force that imposes constraints on evolution, but rather directs and is directed by evolutionary forces. We round out this review by highlighting key gaps in our understanding and suggest further research programs that can help to resolve these issues.
Collapse
Affiliation(s)
- Corin Stansfield
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
18
|
Sakamoto T, Whiting JR, Yeaman S. Mutation potentiates migration swamping in polygenic local adaptation. Genetics 2024; 228:iyae165. [PMID: 39395190 PMCID: PMC11631501 DOI: 10.1093/genetics/iyae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Locally adapted traits can exhibit a wide range of genetic architectures, from pronounced divergence at a few loci to small frequency divergence at many loci. The type of architecture that evolves depends strongly on the migration rate, as weakly selected loci experience swamping and do not make lasting contributions to divergence. Simulations from previous studies showed that even when mutations are strongly selected and should resist migration swamping, the architecture of adaptation can collapse and become transient at high mutation rates. Here, we use an analytical two-population model to study how this transition in genetic architecture depends upon population size, strength of selection, and parameters describing the mutation process. To do this, we develop a mathematical theory based on the diffusion approximation to predict the threshold mutation rate above which the transition occurs. We find that this performs well across a wide range of parameter space, based on comparisons with individual-based simulations. The threshold mutation rate depends most strongly on the average effect size of mutations, weakly on the strength of selection, and marginally on the population size. Across a wide range of the parameter space, we observe that the transition to a transient architecture occurs when the trait-wide mutation rate is 10-3-10-2, suggesting that this phenomenon is potentially relevant to complex traits with a large mutational target. On the other hand, based on the apparent stability of genetic architecture in many classic examples of local adaptation, our theory suggests that per-trait mutation rates are often relatively low.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
- National Institute of Genetics 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - James R Whiting
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
19
|
Shih MFM, Zhang J, Brown EB, Dubnau J, Keene AC. Targeted single cell expression profiling identifies integrators of sleep and metabolic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614841. [PMID: 39386468 PMCID: PMC11463630 DOI: 10.1101/2024.09.25.614841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Animals modulate sleep in accordance with their internal and external environments. Metabolic cues are particularly potent regulators of sleep, allowing animals to alter their sleep timing and amount depending on food availability and foraging duration. The fruit fly, Drosophila melanogaster, suppresses sleep in response to acute food deprivation, presumably to forage for food. This process is dependent on a single pair of Lateral Horn Leucokinin (LHLK) neurons, that secrete the neuropeptide Leucokinin. These neurons signal to insulin producing cells and suppress sleep under periods of starvation. The identification of individual neurons that modulate sleep-metabolism interactions provides the opportunity to examine the cellular changes associated with sleep modulation. Here, we use single-cell sequencing of LHLK neurons to examine the transcriptional responses to starvation. We validate that a Patch-seq approach selectively isolates RNA from individual LHLK neurons. Single-cell CEL-Seq comparisons of LHLK neurons between fed and 24-hr starved flies identified 24 genes that are differentially expressed in accordance with starvation state. In total, 12 upregulated genes and 12 downregulated genes were identified. Gene-ontology analysis showed an enrichment for Attacins, a family of anti-microbial peptides, along with several transcripts with diverse roles in regulating cellular function. Targeted knockdown of differentially expressed genes identified multiple genes that function within LHLK neurons to regulate sleep-metabolism interactions. Functionally validated genes include an essential role for the E3 ubiquitin Ligase insomniac, the sorbitol dehydrogenase Sodh1, as well as AttacinC and AttacinB in starvation-induced sleep suppression. Taken together, these findings provide a pipeline for identifying novel regulators of sleep-metabolism interactions within individual neurons.
Collapse
Affiliation(s)
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, TX 77840
| | | | - Joshua Dubnau
- Dept of Anesthesiology, Stony Brook School of Medicine, Stony Brook NY, 11794
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, 11794
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, TX 77840
| |
Collapse
|
20
|
Chen H, Brannath W, Futschik A. Adaptive Multiple Comparisons With the Best. Biom J 2024; 66:e202300242. [PMID: 39126674 DOI: 10.1002/bimj.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 08/12/2024]
Abstract
Subset selection methods aim to choose a nonempty subset of populations including a best population with some prespecified probability. An example application involves location parameters that quantify yields in agriculture to select the best wheat variety. This is quite different from variable selection problems, for instance, in regression. Unfortunately, subset selection methods can become very conservative when the parameter configuration is not least favorable. This will lead to a selection of many non-best populations, making the set of selected populations less informative. To solve this issue, we propose less conservative adaptive approaches based on estimating the number of best populations. We also discuss variants of our adaptive approaches that are applicable when the sample sizes and/or variances differ between populations. Using simulations, we show that our methods yield a desirable performance. As an illustration of potential gains, we apply them to two real datasets, one on the yield of wheat varieties and the other obtained via genome sequencing of repeated samples.
Collapse
Affiliation(s)
- Haoyu Chen
- Vetmeduni Vienna, Wien, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
- Johannes Kepler University Linz, Linz, Austria
| | - Werner Brannath
- Kompetenzzentrum fur Klinische Studien, Universität Bremen, Bremen, Germany
| | | |
Collapse
|
21
|
Götsch H, Bürger R. Polygenic dynamics underlying the response of quantitative traits to directional selection. Theor Popul Biol 2024; 158:21-59. [PMID: 38677378 DOI: 10.1016/j.tpb.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
We study the response of a quantitative trait to exponential directional selection in a finite haploid population, both at the genetic and the phenotypic level. We assume an infinite sites model, in which the number of new mutations per generation in the population follows a Poisson distribution (with mean Θ) and each mutation occurs at a new, previously monomorphic site. Mutation effects are beneficial and drawn from a distribution. Sites are unlinked and contribute additively to the trait. Assuming that selection is stronger than random genetic drift, we model the initial phase of the dynamics by a supercritical Galton-Watson process. This enables us to obtain time-dependent results. We show that the copy-number distribution of the mutant in generation n, conditioned on non-extinction until n, is described accurately by the deterministic increase from an initial distribution with mean 1. This distribution is related to the absolutely continuous part W+ of the random variable, typically denoted W, that characterizes the stochasticity accumulating during the mutant's sweep. A suitable transformation yields the approximate dynamics of the mutant frequency distribution in a Wright-Fisher population of size N. Our expression provides a very accurate approximation except when mutant frequencies are close to 1. On this basis, we derive explicitly the (approximate) time dependence of the expected mean and variance of the trait and of the expected number of segregating sites. Unexpectedly, we obtain highly accurate approximations for all times, even for the quasi-stationary phase when the expected per-generation response and the trait variance have equilibrated. The latter refine classical results. In addition, we find that Θ is the main determinant of the pattern of adaptation at the genetic level, i.e., whether the initial allele-frequency dynamics are best described by sweep-like patterns at few loci or small allele-frequency shifts at many. The number of segregating sites is an appropriate indicator for these patterns. The selection strength determines primarily the rate of adaptation. The accuracy of our results is tested by comprehensive simulations in a Wright-Fisher framework. We argue that our results apply to more complex forms of directional selection.
Collapse
Affiliation(s)
- Hannah Götsch
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria; Vienna Graduate School of Population Genetics, Austria.
| | - Reinhard Bürger
- Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
22
|
Wang Y, Dutta R, Futschik A. Estimating Haplotype Structure and Frequencies: A Bayesian Approach to Unknown Design in Pooled Genomic Data. J Comput Biol 2024; 31:708-726. [PMID: 38957993 DOI: 10.1089/cmb.2023.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The estimation of haplotype structure and frequencies provides crucial information about the composition of genomes. Techniques, such as single-individual haplotyping, aim to reconstruct individual haplotypes from diploid genome sequencing data. However, our focus is distinct. We address the challenge of reconstructing haplotype structure and frequencies from pooled sequencing samples where multiple individuals are sequenced simultaneously. A frequentist method to address this issue has recently been proposed. In contrast to this and other methods that compute point estimates, our proposed Bayesian hierarchical model delivers a posterior that permits us to also quantify uncertainty. Since matching permutations in both haplotype structure and corresponding frequency matrix lead to the same reconstruction of their product, we introduce an order-preserving shrinkage prior that ensures identifiability with respect to permutations. For inference, we introduce a blocked Gibbs sampler that enforces the required constraints. In a simulation study, we assessed the performance of our method. Furthermore, by using our approach on two distinct sets of real data, we demonstrate that our Bayesian approach can reconstruct the dominant haplotypes in a challenging, high-dimensional set-up.
Collapse
Affiliation(s)
- Yuexuan Wang
- Department of Applied Statistics, Johannes Kepler University, Linz, Austria
| | - Ritabrata Dutta
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Andreas Futschik
- Department of Applied Statistics, Johannes Kepler University, Linz, Austria
| |
Collapse
|
23
|
Lei G, Huang J, Zhou H, Chen Y, Song J, Xie X, Vasseur L, You M, You S. Polygenic adaptation of a cosmopolitan pest to a novel thermal environment. INSECT MOLECULAR BIOLOGY 2024; 33:387-404. [PMID: 38488345 DOI: 10.1111/imb.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/01/2024] [Indexed: 07/10/2024]
Abstract
The fluctuation in temperature poses a significant challenge for poikilothermic organisms, notably insects, particularly in the context of changing climatic conditions. In insects, temperature adaptation has been driven by polygenes. In addition to genes that directly affect traits (core genes), other genes (peripheral genes) may also play a role in insect temperature adaptation. This study focuses on two peripheral genes, the GRIP and coiled-coil domain containing 2 (GCC2) and karyopherin subunit beta 1 (KPNB1). These genes are differentially expressed at different temperatures in the cosmopolitan pest, Plutella xylostella. GCC2 and KPNB1 in P. xylostella were cloned, and their relative expression patterns were identified. Reduced capacity for thermal adaptation (development, reproduction and response to temperature extremes) in the GCC2-deficient and KPNB1-deficient P. xylostella strains, which were constructed by CRISPR/Cas9 technique. Deletion of the PxGCC2 or PxKPNB1 genes in P. xylostella also had a differential effect on gene expression for many traits including stress resistance, resistance to pesticides, involved in immunity, trehalose metabolism, fatty acid metabolism and so forth. The ability of the moth to adapt to temperature via different pathways is likely to be key to its ability to remain an important pest species under predicted climate change conditions.
Collapse
Affiliation(s)
- Gaoke Lei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jieling Huang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiling Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanting Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Plant Protection Fujian Academy of Agricultural Sciences, Fuzhou, China
| | | | | | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- BGI Research, Sanya, China
| |
Collapse
|
24
|
Lynch M, Wei W, Ye Z, Pfrender M. The genome-wide signature of short-term temporal selection. Proc Natl Acad Sci U S A 2024; 121:e2307107121. [PMID: 38959040 PMCID: PMC11252749 DOI: 10.1073/pnas.2307107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85287
| | - Wen Wei
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ85287
| | - Zhiqiang Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Michael Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN46556
| |
Collapse
|
25
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
26
|
Sinclair-Waters M, Zamorano LS, Gompert Z, Parchman T, Tyukmaeva V, Hopkins DP, Nosil P. Genetic variation within a stick-insect species associated with community-level traits. J Evol Biol 2024; 37:642-652. [PMID: 38513126 DOI: 10.1093/jeb/voae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/23/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024]
Abstract
Phenotypic variation within species can affect the ecological dynamics of populations and communities. Characterizing the genetic variation underlying such effects can help parse the roles of genetic evolution and plasticity in "eco-evolutionary dynamics" and inform how genetic variation may shape patterns of evolution. Here, we employ genome-wide association (GWA) methods in Timema cristinae stick insects and their co-occurring arthropod communities to identify genetic variation associated with community-level traits. Previous studies have shown that maladaptation (i.e., imperfect crypsis) of T. cristinae can reduce the abundance and species richness of other arthropods due to an increase in bird predation. Whether genetic variation that is independent of crypsis has similar effects is unknown and was tested here using genome-wide genotyping-by-sequencing data of stick insects, arthropod community information, and GWA mapping with Bayesian sparse linear mixed models. We find associations between genetic variation in stick insects and arthropod community traits. However, these associations disappear when host-plant traits are accounted for. We thus use path analysis to disentangle interrelationships among stick-insect genetic variation, host-plant traits, and community traits. This revealed that host-plant size has large effects on arthropod communities, while genetic variation in stick insects has a smaller, but still significant effect. Our findings demonstrate that (1) genetic variation in a species can be associated with community-level traits but that (2) interrelationships among multiple factors may need to be analyzed to disentangle whether such associations represent causal relationships. This work helps to build a framework for genomic studies of eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Marion Sinclair-Waters
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Laura S Zamorano
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
- Station d'Écologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, United States
| | - Tom Parchman
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Venera Tyukmaeva
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - David P Hopkins
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
| | - Patrik Nosil
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, Montpellier, France
- Station d'Écologie Théorique et Expérimentale, CNRS, Moulis, France
| |
Collapse
|
27
|
Anderson NW, Kirk L, Schraiber JG, Ragsdale AP. A Path Integral Approach for Allele Frequency Dynamics Under Polygenic Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599114. [PMID: 38915613 PMCID: PMC11195211 DOI: 10.1101/2024.06.14.599114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Many phenotypic traits have a polygenic genetic basis, making it challenging to learn their genetic architectures and predict individual phenotypes. One promising avenue to resolve the genetic basis of complex traits is through evolve-and-resequence experiments, in which laboratory populations are exposed to some selective pressure and trait-contributing loci are identified by extreme frequency changes over the course of the experiment. However, small laboratory populations will experience substantial random genetic drift, and it is difficult to determine whether selection played a roll in a given allele frequency change. Predicting how much allele frequencies change under drift and selection had remained an open problem well into the 21st century, even those contributing to simple, monogenic traits. Recently, there have been efforts to apply the path integral, a method borrowed from physics, to solve this problem. So far, this approach has been limited to genic selection, and is therefore inadequate to capture the complexity of quantitative, highly polygenic traits that are commonly studied. Here we extend one of these path integral methods, the perturbation approximation, to selection scenarios that are of interest to quantitative genetics. In particular, we derive analytic expressions for the transition probability (i.e., the probability that an allele will change in frequency from x , to y in time t ) of an allele contributing to a trait subject to stabilizing selection, as well as that of an allele contributing to a trait rapidly adapting to a new phenotypic optimum. We use these expressions to characterize the use of allele frequency change to test for selection, as well as explore optimal design choices for evolve-and-resequence experiments to uncover the genetic architecture of polygenic traits under selection.
Collapse
Affiliation(s)
- Nathan W. Anderson
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd Kirk
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua G. Schraiber
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aaron P. Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
28
|
Root-Bernstein RS, Bernstein MI. 'Evolutionary poker': an agent-based model of interactome emergence and epistasis tested against Lenski's long-term E. coli experiments. J Physiol 2024; 602:2511-2535. [PMID: 37707489 DOI: 10.1113/jp284421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
A simple agent-based model is presented that produces results matching the experimental data found by Lenski's group for ≤50,000 generations of Escherichia coli bacteria under continuous selective pressure. Although various mathematical models have been devised previously to model the Lenski data, the present model has advantages in terms of overall simplicity and conceptual accessibility. The model also clearly illustrates a number of features of the evolutionary process that are otherwise not obvious, such as the roles of epistasis and historical contingency in adaptation and why evolution is time irreversible ('Dollo's law'). The reason for this irreversibility is that genomes become increasingly integrated or organized, and this organization becomes a novel selective factor itself, against which future generations must compete. Selection for integrated or synergistic networks, systems or sets of mutations or traits, not for individual mutations, confers the main adaptive advantage. The result is a punctuated form of evolution that follows a logarithmic occurrence probability, in which evolution proceeds very quickly when interactomes begin to form but which slows as interactomes become more robust and the difficulty of integrating new mutations increases. Sufficient parameters exist in the game to suggest not only how equilibrium or stasis is reached but also the conditions in which it will be punctuated, the factors governing the rate at which genomic organization occurs and novel traits appear, and how population size, genome size and gene variability affect these.
Collapse
Affiliation(s)
| | - Morton I Bernstein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
29
|
Hsu SK, Lai WY, Novak J, Lehner F, Jakšić AM, Versace E, Schlötterer C. Reproductive isolation arises during laboratory adaptation to a novel hot environment. Genome Biol 2024; 25:141. [PMID: 38807159 PMCID: PMC11134630 DOI: 10.1186/s13059-024-03285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Reproductive isolation can result from adaptive processes (e.g., ecological speciation and mutation-order speciation) or stochastic processes such as "system drift" model. Ecological speciation predicts barriers to gene flow between populations from different environments, but not among replicate populations from the same environment. In contrast, reproductive isolation among populations independently adapted to the same/similar environment can arise from both mutation-order speciation or system drift. RESULTS In experimentally evolved populations adapting to a hot environment for over 100 generations, we find evidence for pre- and postmating reproductive isolation. On one hand, an altered lipid metabolism and cuticular hydrocarbon composition pointed to possible premating barriers between the ancestral and replicate evolved populations. On the other hand, the pronounced gene expression differences in male reproductive genes may underlie the postmating isolation among replicate evolved populations adapting to the same environment with the same standing genetic variation. CONCLUSION Our study confirms that replicated evolution experiments provide valuable insights into the mechanisms of speciation. The rapid emergence of the premating reproductive isolation during temperature adaptation showcases incipient ecological speciation. The potential evidence of postmating reproductive isolation among replicates gave rise to two hypotheses: (1) mutation-order speciation through a common selection on early fecundity leading to an inherent inter-locus sexual conflict; (2) system drift with genetic drift along the neutral ridges.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Johannes Novak
- Institute of Animal Nutrition and Functional Plant Compounds, Vetmeduni Vienna, Vienna, Austria
| | - Felix Lehner
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present Address: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of London, London, UK
| | | |
Collapse
|
30
|
Glaser-Schmitt A, Ramnarine TJS, Parsch J. Rapid evolutionary change, constraints and the maintenance of polymorphism in natural populations of Drosophila melanogaster. Mol Ecol 2024; 33:e17024. [PMID: 37222070 DOI: 10.1111/mec.17024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Allele frequencies can shift rapidly within natural populations. Under certain conditions, repeated rapid allele frequency shifts can lead to the long-term maintenance of polymorphism. In recent years, studies of the model insect Drosophila melanogaster have suggested that this phenomenon is more common than previously believed and is often driven by some form of balancing selection, such as temporally fluctuating or sexually antagonistic selection. Here we discuss some of the general insights into rapid evolutionary change revealed by large-scale population genomic studies, as well as the functional and mechanistic causes of rapid adaptation uncovered by single-gene studies. As an example of the latter, we consider a regulatory polymorphism of the D. melanogaster fezzik gene. Polymorphism at this site has been maintained at intermediate frequency over an extended period of time. Regular observations from a single population over a period of 7 years revealed significant differences in the frequency of the derived allele and its variance across collections between the sexes. These patterns are highly unlikely to arise from genetic drift alone or from the action of sexually antagonistic or temporally fluctuating selection individually. Instead, the joint action of sexually antagonistic and temporally fluctuating selection can best explain the observed rapid and repeated allele frequency shifts. Temporal studies such as those reviewed here further our understanding of how rapid changes in selection can lead to the long-term maintenance of polymorphism as well as improve our knowledge of the forces driving and limiting adaptation in nature.
Collapse
Affiliation(s)
- Amanda Glaser-Schmitt
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Timothy J S Ramnarine
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - John Parsch
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
31
|
Lai WY, Nolte V, Jakšić AM, Schlötterer C. Evolution of Phenotypic Variance Provides Insights into the Genetic Basis of Adaptation. Genome Biol Evol 2024; 16:evae077. [PMID: 38620076 PMCID: PMC11057206 DOI: 10.1093/gbe/evae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Most traits are polygenic, and the contributing loci can be identified by genome-wide association studies. The genetic basis of adaptation (adaptive architecture) is, however, difficult to characterize. Here, we propose to study the adaptive architecture of traits by monitoring the evolution of their phenotypic variance during adaptation to a new environment in well-defined laboratory conditions. Extensive computer simulations show that the evolution of phenotypic variance in a replicated experimental evolution setting can distinguish between oligogenic and polygenic adaptive architectures. We compared gene expression variance in male Drosophila simulans before and after 100 generations of adaptation to a novel hot environment. The variance change in gene expression was indistinguishable for genes with and without a significant change in mean expression after 100 generations of evolution. We suggest that the majority of adaptive gene expression evolution can be explained by a polygenic architecture. We propose that tracking the evolution of phenotypic variance across generations can provide an approach to characterize the adaptive architecture.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
- Present address: École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
32
|
Li Y, Barton JP. Correlated Allele Frequency Changes Reveal Clonal Structure and Selection in Temporal Genetic Data. Mol Biol Evol 2024; 41:msae060. [PMID: 38507665 PMCID: PMC10986812 DOI: 10.1093/molbev/msae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/02/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
In evolving populations where the rate of beneficial mutations is large, subpopulations of individuals with competing beneficial mutations can be maintained over long times. Evolution with this kind of clonal structure is commonly observed in a wide range of microbial and viral populations. However, it can be difficult to completely resolve clonal dynamics in data. This is due to limited read lengths in high-throughput sequencing methods, which are often insufficient to directly measure linkage disequilibrium or determine clonal structure. Here, we develop a method to infer clonal structure using correlated allele frequency changes in time-series sequence data. Simulations show that our method recovers true, underlying clonal structures when they are known and accurately estimate linkage disequilibrium. This information can then be combined with other inference methods to improve estimates of the fitness effects of individual mutations. Applications to data suggest novel clonal structures in an E. coli long-term evolution experiment, and yield improved predictions of the effects of mutations on bacterial fitness and antibiotic resistance. Moreover, our method is computationally efficient, requiring orders of magnitude less run time for large data sets than existing methods. Overall, our method provides a powerful tool to infer clonal structures from data sets where only allele frequencies are available, which can also improve downstream analyses.
Collapse
Affiliation(s)
- Yunxiao Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| |
Collapse
|
33
|
Kess T, Lehnert SJ, Bentzen P, Duffy S, Messmer A, Dempson JB, Newport J, Whidden C, Robertson MJ, Chaput G, Breau C, April J, Gillis C, Kent M, Nugent CM, Bradbury IR. Variable parallelism in the genomic basis of age at maturity across spatial scales in Atlantic Salmon. Ecol Evol 2024; 14:e11068. [PMID: 38584771 PMCID: PMC10995719 DOI: 10.1002/ece3.11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 04/09/2024] Open
Abstract
Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (Salmo salar), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci. However, the genetic basis of sea age within North American Atlantic Salmon populations remains unclear, as does the potential for a parallel trans-Atlantic genomic basis to sea age. Here, we used a large single-nucleotide polymorphism (SNP) array and low-coverage whole-genome resequencing to explore the genomic basis of sea age variation in North American Atlantic Salmon. We found significant associations at the gene and SNP level with a large-effect locus (vgll3) previously identified in European populations, indicating genetic parallelism, but found that this pattern varied based on both sex and geographic region. We also identified nonrepeated sets of highly predictive loci associated with sea age among populations and sexes within North America, indicating polygenicity and low rates of genomic parallelism. Despite low genome-wide parallelism, we uncovered a set of conserved molecular pathways associated with sea age that were consistently enriched among comparisons, including calcium signaling, MapK signaling, focal adhesion, and phosphatidylinositol signaling. Together, our results indicate parallelism of the molecular basis of sea age in North American Atlantic Salmon across large-effect genes and molecular pathways despite population-specific patterns of polygenicity. These findings reveal roles for both contingency and repeated adaptation at the molecular level in the evolution of life history variation.
Collapse
Affiliation(s)
- Tony Kess
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Sarah J. Lehnert
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Steven Duffy
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Amber Messmer
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - J. Brian Dempson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Jason Newport
- Marine Environmental Research Infrastructure for Data Integration and Application NetworkHalifaxNova ScotiaCanada
| | | | - Martha J. Robertson
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Gerald Chaput
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Cindy Breau
- Fisheries and Oceans CanadaGulf Fisheries CentreMonctonNew BrunswickCanada
| | - Julien April
- Ministère des Forêts de la Faune et des ParcsQuebecQuebecCanada
| | - Carole‐Anne Gillis
- Gespe'gewa'gi, Mi'gma'qi, ListugujGespe'gewa'gi Institute of Natural UnderstandingQuebecQuebecCanada
| | - Matthew Kent
- Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
| | - Cameron M. Nugent
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| | - Ian R. Bradbury
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
34
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
35
|
Terasaki Hart DE, Wang IJ. Genomic architecture controls multivariate adaptation to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17179. [PMID: 38403891 DOI: 10.1111/gcb.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.
Collapse
Affiliation(s)
- Drew E Terasaki Hart
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
- The Nature Conservancy, Arlington, Virginia, USA
- CSIRO Environment, Brisbane, Queensland, Australia
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
36
|
Howe NS, Hale MC, Waters CD, Schaal SM, Shedd KR, Larson WA. Genomic evidence for domestication selection in three hatchery populations of Chinook salmon, Oncorhynchus tshawytscha. Evol Appl 2024; 17:e13656. [PMID: 38357359 PMCID: PMC10866082 DOI: 10.1111/eva.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Fish hatcheries are widely used to enhance fisheries and supplement declining wild populations. However, substantial evidence suggests that hatchery fish are subject to differential selection pressures compared to their wild counterparts. Domestication selection, or adaptation to the hatchery environment, poses a risk to wild populations if traits specific to success in the hatchery environment have a genetic component and there is subsequent introgression between hatchery and wild fish. Few studies have investigated domestication selection in hatcheries on a genomic level, and even fewer have done so in parallel across multiple hatchery-wild population pairs. In this study, we used low-coverage whole-genome sequencing to investigate signals of domestication selection in three separate hatchery populations of Chinook salmon, Oncorhynchus tshawytscha, after approximately seven generations of divergence from their corresponding wild progenitor populations. We sequenced 192 individuals from populations across Southeast Alaska and estimated genotype likelihoods at over six million loci. We discovered a total of 14 outlier peaks displaying high genetic differentiation (F ST) between hatchery-wild pairs, although no peaks were shared across the three comparisons. Peaks were small (53 kb on average) and often displayed elevated absolute genetic divergence (D xy) and linkage disequilibrium, suggesting some level of domestication selection has occurred. Our study provides evidence that domestication selection can lead to genetic differences between hatchery and wild populations in only a few generations. Additionally, our data suggest that population-specific adaptation to hatchery environments likely occurs through different genetic pathways, even for populations with similar standing genetic variation. These results highlight the need to collect paired genotype-phenotype data to understand how domestication may be affecting fitness and to identify potential management practices that may mitigate genetic risks despite multiple pathways of domestication.
Collapse
Affiliation(s)
- Natasha S. Howe
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Matthew C. Hale
- Department of BiologyTexas Christian UniversityFort WorthTexasUSA
| | - Charles D. Waters
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Sara M. Schaal
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| | - Kyle R. Shedd
- Alaska Department of Fish and Game, Division of Commercial FisheriesGene Conservation LaboratoryAnchorageAlaskaUSA
| | - Wesley A. Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries ServiceAlaska Fisheries Science Center, Auke Bay LaboratoriesJuneauAlaskaUSA
| |
Collapse
|
37
|
Zaghloul GY, Eissa HA, Zaghloul AY, Kelany MS, Hamed MA, Moselhy KME. Impact of some heavy metal accumulation in different organs on fish quality from Bardawil Lake and human health risks assessment. GEOCHEMICAL TRANSACTIONS 2024; 25:1. [PMID: 38206422 PMCID: PMC10785404 DOI: 10.1186/s12932-023-00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Bardawil Lake is a unique aquatic ecosystem that provides a habitat for various fish and other marine organisms. This study aimed to analyze the quality of fish species to prove that this lake is free of pollution, not other Egyptian lakes, due to the accumulation of some heavy metals (Cd, Pb, Cu, and Zn) in various tissues of fish species that were caught from this lake. Thirty-five fish samples were caught during the Spring of 2018 from seven different species: Mugil cephalus, Liza auratus, Sparus aurata, Dicentrarchus labrax, Siganus rivulatus, Anguilla angilla, and Solae solea. The Association of Official Analytical Chemists methods using a spectrophotometer determined the biochemical composition. In contrast, atomic absorption spectrometry (AAS) was employed to determine the heavy metals expressed by µg/g wet weight. Results exposed that the accumulation of essential micronutrient (Cu, Zn) content was higher than toxic elements (Cd & Pb) in muscles in order to Zn > Cu > Pb > Cd. Muscles < gills < liver in order of all metals except Pb with order muscles < liver < gills. The metals studied in the muscles were lower than those set by the WHO and the EU standards. The carcinogenic risk with lower allowable limits of 1 × 10-6 to 1 × 10-4 in both normal and high consumption groups; target and total target hazard quotients (THQ & HI) in muscles were < 1. The biochemical composition level was highest in the liver, except for protein, which was highest in muscle for all fish species. There is no evidence of harmful contaminants in the muscular tissue of the fish sampled from Bardawil Lake, although fishing activity. However, customers should know that health concerns may be associated with overeating fish.
Collapse
Affiliation(s)
- Ghada Y Zaghloul
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Cairo, Egypt.
| | - Hoda A Eissa
- Fish Reproduction and Spawning Lab National, InstituteofOceanographyand Fisheries, Cairo, Egypt
| | - Amira Y Zaghloul
- Senior Specialist Egyptian Holding Company for Biological Products and Vaccines, VACSERA, Cairo, Egypt
| | - Mahmoud S Kelany
- Microbiology Lab National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Mohamed A Hamed
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Khalid M El Moselhy
- Marine Pollution Lab National, Institute of Oceanography and Fisheries, Cairo, Egypt
| |
Collapse
|
38
|
Schlötterer C. Unraveling the Molecular Basis of Stabilizing Selection by Experimental Evolution. Genome Biol Evol 2023; 15:evad220. [PMID: 38092037 PMCID: PMC10718812 DOI: 10.1093/gbe/evad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Stabilizing selection provides a challenge to molecular population genetics. Although stabilizing selection is ubiquitous, its genomic signature is difficult to distinguish from demographic signals. Experimental evolution provides a promising approach to characterize genomic regions exposed to stabilizing selection. A recent experimental evolution study of Aedes aegypti populations evolving either with or without sexual selection found a pattern of genetic differentiation suggestive of relaxed stabilizing selection. I argue that this study could not have detected the signal of relaxed stabilizing selection. I highlight why incorrect statistical methods resulted in a high number of false positive candidate single nucleotide polymorphism (SNPs) and discuss the fallacy of functional validation of candidate SNPs for polygenic traits by RNA-mediated knockdown.
Collapse
|
39
|
Xiao C, Duarri‐Redondo S, Thorhölludottir DAV, Chen Y, Schlötterer C. Non-additive effects between genotypes: Implications for competitive fitness assays. Ecol Evol 2023; 13:e10713. [PMID: 37941737 PMCID: PMC10630047 DOI: 10.1002/ece3.10713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Competitive fitness assays are widely used in evolutionary biology and typically rely on a reference strain to compare different focal genotypes. This approach implicitly relies on the absence of interaction between the competing genotypes. In other words, the performance of the reference strain must not depend on the competitor. This report scrutinized this assumption by competing diverged Drosophila simulans populations against a common reference strain. We detected strong evidence for interaction between the competing genotypes: (1) Frequency-dependent selection was common with opposite effects in genetically diverged populations. (2) Temporal heterogeneity of fitness estimates, which can be partially attributed to a competitor-specific delay in the eclosion of the reference strain. We propose that this inconsistent behavior of the reference strain can be considered a specific case of a genotype × environment interaction. Focal populations could modify the environment of the reference strain, either indirectly by altering the microbiome composition and food availability or directly by genotype-specific cannibalism. Our results provide new insights into the interaction of diverged genotypes and have important implications for the interpretation of competitive fitness assays.
Collapse
Affiliation(s)
- Changyi Xiao
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Sara Duarri‐Redondo
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Dagny A. V. Thorhölludottir
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Yiwen Chen
- Institut für PopulationsgenetikVetmeduni ViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | | |
Collapse
|
40
|
Babik W, Dudek K, Marszałek M, Palomar G, Antunes B, Sniegula S. The genomic response to urbanization in the damselfly Ischnura elegans. Evol Appl 2023; 16:1805-1818. [PMID: 38029064 PMCID: PMC10681423 DOI: 10.1111/eva.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/19/2023] [Indexed: 12/01/2023] Open
Abstract
The complex and rapid environmental changes brought about by urbanization pose significant challenges to organisms. The multifaceted effects of urbanization often make it difficult to define and pinpoint the very nature of adaptive urban phenotypes. In such situations, scanning genomes for regions differentiated between urban and non-urban populations may be an attractive approach. Here, we investigated the genomic signatures of adaptation to urbanization in the damselfly Ischnura elegans sampled from 31 rural and urban localities in three geographic regions: southern and northern Poland, and southern Sweden. Genome-wide variation was assessed using more than 370,000 single nucleotide polymorphisms (SNPs) genotyped by ddRADseq. Associations between SNPs and the level of urbanization were tested using two genetic environment association methods: Latent Factors Mixed Models and BayPass. While we found numerous candidate SNPs and a highly significant overlap between candidates identified by the two methods within the geographic regions, there was a distinctive lack of repeatability between the geographic regions both at the level of individual SNPs and of genomic regions. However, we found "synapse organization" at the top of the functional categories enriched among the genes located in the proximity of the candidate urbanization SNPs. Interestingly, the overall significance of "synapse organization" was built up by the accretion of different genes associated with candidate SNPs in different geographic regions. This finding is consistent with the highly polygenic nature of adaptation, where the response may be achieved through a subtle adjustment of allele frequencies in different genes that contribute to adaptive phenotypes. Taken together, our results point to a polygenic adaptive response in the nervous system, specifically implicating genes involved in synapse organization, which mirrors the findings from several genomic and behavioral studies of adaptation to urbanization in other taxa.
Collapse
Affiliation(s)
- W. Babik
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - K. Dudek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - M. Marszałek
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - G. Palomar
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
- Department of Genetics, Physiology and Microbiology, Faculty of Biological SciencesComplutense University of MadridMadridSpain
| | - B. Antunes
- Faculty of Biology, Institute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - S. Sniegula
- Department of Ecosystem Conservation, Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
41
|
Lee CE. Genome architecture underlying salinity adaptation in the invasive copepod Eurytemora affinis species complex: A review. iScience 2023; 26:107851. [PMID: 37752947 PMCID: PMC10518491 DOI: 10.1016/j.isci.2023.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
With climate change, habitat salinity is shifting rapidly throughout the globe. In addition, many destructive freshwater invaders are recent immigrants from saline habitats. Recently, populations of the copepod Eurytemora affinis species complex have invaded freshwater habitats multiple times independently from saline estuaries on three continents. This review discusses features of this species complex that could enhance their evolutionary potential during rapid environmental change. Remarkably, across independent freshwater invasions, natural selection has repeatedly favored the same alleles far more than expected. This high degree of parallelism is surprising, given the expectation of nonparallel evolution for polygenic adaptation. Factors such as population structure and the genome architecture underlying critical traits under selection might help drive rapid adaptation and parallel evolution. Given the preponderance of saline-to-freshwater invasions and climate-induced salinity change, the principles found here could provide invaluable insights into mechanisms operating in other systems and the potential for adaptation in a changing planet.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, 430 Lincoln Drive, Birge Hall, Madison, WI 53706, USA
| |
Collapse
|
42
|
Höllinger I, Wölfl B, Hermisson J. A theory of oligogenic adaptation of a quantitative trait. Genetics 2023; 225:iyad139. [PMID: 37550847 PMCID: PMC10550320 DOI: 10.1093/genetics/iyad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/20/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023] Open
Abstract
Rapid phenotypic adaptation is widespread in nature, but the underlying genetic dynamics remain controversial. Whereas population genetics envisages sequential beneficial substitutions, quantitative genetics assumes a collective response through subtle shifts in allele frequencies. This dichotomy of a monogenic and a highly polygenic view of adaptation raises the question of a middle ground, as well as the factors controlling the transition. Here, we consider an additive quantitative trait with equal locus effects under Gaussian stabilizing selection that adapts to a new trait optimum after an environmental change. We present an analytical framework based on Yule branching processes to describe how phenotypic adaptation is achieved by collective changes in allele frequencies at the underlying loci. In particular, we derive an approximation for the joint allele-frequency distribution conditioned on the trait mean as a comprehensive descriptor of the adaptive architecture. Depending on the model parameters, this architecture reproduces the well-known patterns of sequential, monogenic sweeps, or of subtle, polygenic frequency shifts. Between these endpoints, we observe oligogenic architecture types that exhibit characteristic patterns of partial sweeps. We find that a single compound parameter, the population-scaled background mutation rate Θbg, is the most important predictor of the type of adaptation, while selection strength, the number of loci in the genetic basis, and linkage only play a minor role.
Collapse
Affiliation(s)
- Ilse Höllinger
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Benjamin Wölfl
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Vienna and Veterinary Medical University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Joachim Hermisson
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
43
|
Langmüller AM, Nolte V, Dolezal M, Schlötterer C. The genomic distribution of transposable elements is driven by spatially variable purifying selection. Nucleic Acids Res 2023; 51:9203-9213. [PMID: 37560917 PMCID: PMC10516647 DOI: 10.1093/nar/gkad635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
It is widely accepted that the genomic distribution of transposable elements (TEs) mainly reflects the outcome of purifying selection and insertion bias (1). Nevertheless, the relative importance of these two evolutionary forces could not be tested thoroughly. Here, we introduce an experimental system, which allows separating purifying selection from TE insertion bias. We used experimental evolution to study the TE insertion patterns in Drosophila simulans founder populations harboring 1040 insertions of an active P-element. After 10 generations at a large population size, we detected strong selection against P-element insertions. The exception were P-element insertions in genomic regions for which a strong insertion bias has been proposed (2-4). Because recurrent P-element insertions cannot explain this pattern, we conclude that purifying selection, with variable strength along the chromosomes, is the major determinant of the genomic distribution of P-elements. Genomic regions with relaxed purifying selection against P-element insertions exhibit normal levels of purifying selection against base substitutions. This suggests that different types of purifying selection operate on base substitutions and P-element insertions. Our results highlight the power of experimental evolution to understand basic evolutionary processes, which are difficult to infer from patterns of natural variation alone.
Collapse
Affiliation(s)
- Anna M Langmüller
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|
44
|
Potticary AL, Cunningham CB, McKinney EC, Moore PJ, Belay AT, Moore AJ. Insect homolog of oxytocin/vasopressin associated with parenting of males but not females in a subsocial beetle. Evolution 2023; 77:2029-2038. [PMID: 37343551 DOI: 10.1093/evolut/qpad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
Parental care is thought to evolve through modification of behavioral precursors, which predicts that mechanistic changes occur in the genes underlying those traits. The duplicated gene system of oxytocin/vasopressin has been broadly co-opted across vertebrates to influence parenting, from a preduplication ancestral role in water balance. It remains unclear whether co-option of these genes for parenting is limited to vertebrates. Here, we experimentally tested for associations between inotocin gene expression and water balance, parental acceptance of offspring, and active parenting in the subsocial beetle Nicrophorus orbicollis, to test whether this single-copy homolog of the oxytocin/vasopressin system has similarly been co-opted for parental care in a species with elaborate parenting. As expected, inotocin was associated with water balance in both sexes. Inotocin expression increased around sexual maturation in both males and females, although more clearly in males. Finally, inotocin expression was not associated with acceptance of larvae, but was associated with a transition to male but not female parenting. Moreover, level of offspring provisioning behavior and gene expression were positively correlated in males but uncorrelated in females. Our results suggest a broad co-option of this system for parenting that may have existed prior to gene duplication.
Collapse
Affiliation(s)
- Ahva L Potticary
- Department of Entomology, University of Georgia, Athens, GA, United States
| | | | | | - Patricia J Moore
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Amsale T Belay
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Allen J Moore
- Department of Entomology, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Chen H, Pelizzola M, Futschik A. Haplotype based testing for a better understanding of the selective architecture. BMC Bioinformatics 2023; 24:322. [PMID: 37633901 PMCID: PMC10463365 DOI: 10.1186/s12859-023-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND The identification of genomic regions affected by selection is one of the most important goals in population genetics. If temporal data are available, allele frequency changes at SNP positions are often used for this purpose. Here we provide a new testing approach that uses haplotype frequencies instead of allele frequencies. RESULTS Using simulated data, we show that compared to SNP based test, our approach has higher power, especially when the number of candidate haplotypes is small or moderate. To improve power when the number of haplotypes is large, we investigate methods to combine them with a moderate number of haplotype subsets. Haplotype frequencies can often be recovered with less noise than SNP frequencies, especially under pool sequencing, giving our test an additional advantage. Furthermore, spurious outlier SNPs may lead to false positives, a problem usually not encountered when working with haplotypes. Post hoc tests for the number of selected haplotypes and for differences between their selection coefficients are also provided for a better understanding of the underlying selection dynamics. An application on a real data set further illustrates the performance benefits. CONCLUSIONS Due to less multiple testing correction and noise reduction, haplotype based testing is able to outperform SNP based tests in terms of power in most scenarios.
Collapse
Affiliation(s)
- Haoyu Chen
- University of Veterinary Medicine Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | | | | |
Collapse
|
46
|
Tavares H, Readshaw A, Kania U, de Jong M, Pasam RK, McCulloch H, Ward S, Shenhav L, Forsyth E, Leyser O. Artificial selection reveals complex genetic architecture of shoot branching and its response to nitrate supply in Arabidopsis. PLoS Genet 2023; 19:e1010863. [PMID: 37616321 PMCID: PMC10482290 DOI: 10.1371/journal.pgen.1010863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/06/2023] [Accepted: 07/08/2023] [Indexed: 08/26/2023] Open
Abstract
Quantitative traits may be controlled by many loci, many alleles at each locus, and subject to genotype-by-environment interactions, making them difficult to map. One example of such a complex trait is shoot branching in the model plant Arabidopsis, and its plasticity in response to nitrate. Here, we use artificial selection under contrasting nitrate supplies to dissect the genetic architecture of this complex trait, where loci identified by association mapping failed to explain heritability estimates. We found a consistent response to selection for high branching, with correlated responses in other traits such as plasticity and flowering time. Genome-wide scans for selection and simulations suggest that at least tens of loci control this trait, with a distinct genetic architecture between low and high nitrate treatments. While signals of selection could be detected in the populations selected for high branching on low nitrate, there was very little overlap in the regions selected in three independent populations. Thus the regulatory network controlling shoot branching can be tuned in different ways to give similar phenotypes.
Collapse
Affiliation(s)
- Hugo Tavares
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anne Readshaw
- Department of Biology, University of York, York, United Kingdom
| | - Urszula Kania
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Maaike de Jong
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Raj K. Pasam
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Hayley McCulloch
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Sally Ward
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Liron Shenhav
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Forsyth
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
47
|
Reid BN, Star B, Pinsky ML. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod ( Gadus morhua). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220190. [PMID: 37246382 DOI: 10.1098/rstb.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 05/30/2023] Open
Abstract
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Bastiaan Star
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| |
Collapse
|
48
|
Whitehouse LS, Schrider DR. Timesweeper: accurately identifying selective sweeps using population genomic time series. Genetics 2023; 224:iyad084. [PMID: 37157914 PMCID: PMC10324941 DOI: 10.1093/genetics/iyad084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/25/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Despite decades of research, identifying selective sweeps, the genomic footprints of positive selection, remains a core problem in population genetics. Of the myriad methods that have been developed to tackle this task, few are designed to leverage the potential of genomic time-series data. This is because in most population genetic studies of natural populations, only a single period of time can be sampled. Recent advancements in sequencing technology, including improvements in extracting and sequencing ancient DNA, have made repeated samplings of a population possible, allowing for more direct analysis of recent evolutionary dynamics. Serial sampling of organisms with shorter generation times has also become more feasible due to improvements in the cost and throughput of sequencing. With these advances in mind, here we present Timesweeper, a fast and accurate convolutional neural network-based tool for identifying selective sweeps in data consisting of multiple genomic samplings of a population over time. Timesweeper analyzes population genomic time-series data by first simulating training data under a demographic model appropriate for the data of interest, training a one-dimensional convolutional neural network on said simulations, and inferring which polymorphisms in this serialized data set were the direct target of a completed or ongoing selective sweep. We show that Timesweeper is accurate under multiple simulated demographic and sampling scenarios, identifies selected variants with high resolution, and estimates selection coefficients more accurately than existing methods. In sum, we show that more accurate inferences about natural selection are possible when genomic time-series data are available; such data will continue to proliferate in coming years due to both the sequencing of ancient samples and repeated samplings of extant populations with faster generation times, as well as experimentally evolved populations where time-series data are often generated. Methodological advances such as Timesweeper thus have the potential to help resolve the controversy over the role of positive selection in the genome. We provide Timesweeper as a Python package for use by the community.
Collapse
Affiliation(s)
- Logan S Whitehouse
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
49
|
Rundell TB, Brunelli M, Alvi A, Safian G, Capobianco C, Tu W, Subedi S, Fiumera A, Musselman LP. Polygenic adaptation to overnutrition reveals a role for cholinergic signaling in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544888. [PMID: 37398379 PMCID: PMC10312690 DOI: 10.1101/2023.06.14.544888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Overnutrition by high-sugar (HS) feeding reduces both the lifespan and healthspan across taxa. Pressuring organisms to adapt to overnutrition can highlight genes and pathways important for the healthspan in stressful environments. We used an experimental evolution approach to adapt four replicate, outbred population pairs of Drosophila melanogaster to a HS or control diet. Sexes were separated and aged on either diet until mid-life, then mated to produce the next generation, allowing enrichment for protective alleles over time. All HS-selected populations increased their lifespan and were therefore used as a platform to compare allele frequencies and gene expression. Pathways functioning in the nervous system were overrepresented in the genomic data and showed evidence for parallel evolution, although very few genes were the same across replicates. Acetylcholine-related genes, including the muscarinic receptor mAChR-A, showed significant changes in allele frequency in multiple selected populations and differential expression on a HS diet. Using genetic and pharmacological approaches, we show that cholinergic signaling affects Drosophila feeding in a sugar-specific fashion. Together, these results suggest that adaptation produces changes in allele frequencies that benefit animals under conditions of overnutrition and that it is repeatable at the pathway level.
Collapse
|
50
|
Schlötterer C. How predictable is adaptation from standing genetic variation? Experimental evolution in Drosophila highlights the central role of redundancy and linkage disequilibrium. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220046. [PMID: 37004724 PMCID: PMC10067264 DOI: 10.1098/rstb.2022.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Experimental evolution is well-suited to test the predictability of evolution without the confounding effects of inaccurate forecasts about future environments. Most of the literature about parallel (and thus predictable) evolution has been carried out in asexual microorganisms, which adapt by de novo mutations. Nevertheless, parallel evolution has also been studied in sexual species at the genomic level. Here, I review the evidence for parallel evolution in Drosophila, the best-studied obligatory outcrossing model for adaptation from standing genetic variation in the laboratory. Similar to asexual microorganisms, evidence for parallel evolution varies between the focal hierarchical levels. Selected phenotypes consistently respond in a very predicable way, but the underlying allele frequency changes are much less predictable. The most important insight is that the predictability of the genomic selection response for polygenic traits depends highly on the founder population and to a much lesser extent on the selection regime. This implies that predicting adaptive genomic response is challenging and requires a good understanding of the adaptive architecture (including linkage disequilibrium) in the ancestral populations. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria
| |
Collapse
|