1
|
Nold JI, Tinnermann A, Fadai T, Mintah M, Morgenroth MS, Büchel C. Comparing neural responses to cutaneous heat and pressure pain in healthy participants. Sci Rep 2025; 15:14387. [PMID: 40274927 PMCID: PMC12022288 DOI: 10.1038/s41598-025-99247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Even though acute pain comes in many different shapes and forms, a lot of experimental pain studies predominantly employ cutaneous heat pain. This makes a comparison between different pain types and the link between findings from these experimental studies to clinical pain difficult. To bridge this gap, we investigated both cuff pressure pain and cutaneous heat pain using a within-subject design in combination with functional magnetic resonance imaging (fMRI). Noxious stimuli were applied with a 17-s duration at three different intensities above the pain threshold using a thermode and a computer-controlled cuff pressure device. Both pain modalities led to contralateral activation in the anterior insula and parietal operculum. Heat pain showed greater activation in the precentral gyrus, pontine reticular nucleus, and dorsal posterior insula, whilst pressure pain showed greater activation in the primary somatosensory cortex and bilateral superior parietal lobules. Most importantly, the time course of the fMRI signal changes differed between modalities, with pressure pain peaking in the first stimulus half, whereas heat pain led to a prolonged and increasing response across the stimulus duration with a peak in the second stimulus half. Our findings suggest that pressure and heat pain lead to common as well as different (temporal) activation patterns in key pain processing regions.
Collapse
Affiliation(s)
- Janne Ina Nold
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tahmine Fadai
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marilyn Mintah
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marie-Sophie Morgenroth
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Steininger MO, White MP, Lengersdorff L, Zhang L, Smalley AJ, Kühn S, Lamm C. Nature exposure induces analgesic effects by acting on nociception-related neural processing. Nat Commun 2025; 16:2037. [PMID: 40082419 PMCID: PMC11906725 DOI: 10.1038/s41467-025-56870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025] Open
Abstract
Nature exposure has numerous health benefits and might reduce self-reported acute pain. Given the multi-faceted and subjective quality of pain and methodological limitations of prior research, it is unclear whether the evidence indicates genuine analgesic effects or results from domain-general effects and subjective reporting biases. This preregistered neuroimaging study investigates how nature modulates nociception-related and domain-general brain responses to acute pain. Healthy participants (N = 49) receiving electrical shocks report lower pain when exposed to virtual nature compared to matched urban or indoor control settings. Multi-voxel signatures of pain-related brain activation patterns demonstrate that this subjective analgesic effect is associated with reductions in nociception-related rather than domain-general cognitive-emotional neural pain processing. Preregistered region-of-interest analyses corroborate these results, highlighting reduced activation of areas connected to somatosensory aspects of pain processing (thalamus, secondary somatosensory cortex, and posterior insula). These findings demonstrate that virtual nature exposure enables genuine analgesic effects through changes in nociceptive and somatosensory processing, advancing our understanding of how nature may be used to complement non-pharmacological pain treatment. That this analgesic effect can be achieved with easy-to-administer virtual nature exposure has important practical implications and opens novel avenues for research on the precise mechanisms by which nature impacts our mind and brain.
Collapse
Affiliation(s)
- Maximilian O Steininger
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Mathew P White
- Cognitive Science Hub, University of Vienna, Vienna, Austria
- European Centre for Environment and Human Health, University of Exeter, Truro, UK
- Environment and Climate Research Hub, University of Vienna, Vienna, Austria
| | - Lukas Lengersdorff
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Lei Zhang
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Developmental Science, School of Psychology, University of Birmingham, Birmingham, UK
| | - Alexander J Smalley
- European Centre for Environment and Human Health, University of Exeter, Truro, UK
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Department of Psychiatry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claus Lamm
- Social, Cognitive, and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
- Cognitive Science Hub, University of Vienna, Vienna, Austria.
- Environment and Climate Research Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Hadjis GE, Atlas LY, Mouseli P, Sexton CA, McAndrews MP, Moayedi M. Subjective salience ratings are a reliable proxy for physiological measures of arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.30.605866. [PMID: 40060581 PMCID: PMC11888199 DOI: 10.1101/2024.07.30.605866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Pain is an inherently salient multidimensional experience that signals potential bodily threats and promotes nocifensive behaviours. Any stimulus can be salient depending on its features and context. This poses a challenge in delineating pain-specific processes in the brain, rather than salience-driven activity. It is thus essential to salience match control (innocuous) stimuli and noxious stimuli, to remove salience effects, when aiming to delineate pain-specific mechanisms. Previous studies have salience-matched either through subjective salience ratings or the skin conductance response (SCR). The construct of salience is not intuitive, and thus matching through self-report poses challenges. SCR is used as a proxy measure that captures physiological arousal, which overcomes the nebulous construct of salience. However, SCR cannot be used to salience-match in real-time (i.e., during an experiment) and assumes an association between salience and physiological arousal elicited by painful and non-painful stimuli, but this has not been explicitly tested. To determine whether salience and physiological arousal are associated, thirty-five healthy adults experienced 30 heat pain and 30 non-painful electric stimuli of varying intensities. Stimuli were subjectively matched for salience and SCR was measured to each presentation. A linear mixed model found no differences in SCR between salience-matched heat and electric stimuli. A mediation analysis showed that salience fully mediated the relationship between stimulus intensity and SCR (proportion mediated=83%). In conclusion, salience and physiological arousal are associated, and subjective salience ratings are a suitable for salience-matching pain with non-painful stimuli. Future work can thus use subjective salience ratings to delineate pain-specific processes.
Collapse
Affiliation(s)
- Georgia E Hadjis
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada M5G 1G6
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Pedram Mouseli
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada M5G 1G6
| | - Christine A Sexton
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada M5G 1G6
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada, M5T 2S8
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada M5G 1G6
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada, M5T 2S8
- University of Toronto Centre for the Study of Pain, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada M5G 1G6
| |
Collapse
|
4
|
Cernera S, Gemicioglu T, Berezutskaya J, Csaky R, Verwoert M, Polyakov D, Papadopoulos S, Spagnolo V, Astudillo JG, Kumar S, Alawieh H, Kelly D, Keough JRG, Minhas A, Dold M, Han Y, McClanahan A, Mustafa M, Gonzalez-Espana JJ, Garro F, Vujic A, Kacker K, Kapeller C, Geukes S, Verbaarschot C, Wimmer M, Sultana M, Ahmadi S, Herff C, Sburlea AI, Jeunet C, Thompson DE, Semprini M, Andersen R, Stavisky S, Kinney-Lang E, Lotte F, Thielen J, Chen X, Peterson V, Gunduz A, Vaughan T, Valeriani D. Master classes of the tenth international brain-computer interface meeting: showcasing the research of BCI trainees. J Neural Eng 2025; 22:022001. [PMID: 39914028 DOI: 10.1088/1741-2552/adb335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
The Tenth International brain-computer interface (BCI) meeting was held June 6-9, 2023, in the Sonian Forest in Brussels, Belgium. At that meeting, 21 master classes, organized by the BCI Society's Postdoc & Student Committee, supported the Society's goal of fostering learning opportunities and meaningful interactions for trainees in BCI-related fields. Master classes provide an informal environment where senior researchers can give constructive feedback to the trainee on their chosen and specific pursuit. The topics of the master classes span the whole gamut of BCI research and techniques. These include data acquisition, neural decoding and analysis, invasive and noninvasive stimulation, and ethical and transitional considerations. Additionally, master classes spotlight innovations in BCI research. Herein, we discuss what was presented within the master classes by highlighting each trainee and expert researcher, providing relevant background information and results from each presentation, and summarizing discussion and references for further study.
Collapse
Affiliation(s)
- Stephanie Cernera
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Tan Gemicioglu
- School of Information Science, Cornell University, New York, NY, United States of America
| | - Julia Berezutskaya
- Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Richard Csaky
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Maxime Verwoert
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Daniel Polyakov
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Agricultural, Biological, Cognitive Robotics Initiative, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Sotirios Papadopoulos
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Lyon, France
| | - Valeria Spagnolo
- Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-UNL, Santa Fe, Argentina
| | - Juliana Gonzalez Astudillo
- Sorbonne Université, Paris Brain Institute (ICM), CNRS UMR722, INRIA Paris, INSERM U1127, AP- HP Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Satyam Kumar
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hussein Alawieh
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Dion Kelly
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joanna R G Keough
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Araz Minhas
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Dold
- Data-Driven NeuroTechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yiyuan Han
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Alexander McClanahan
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Mousa Mustafa
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
| | | | - Florencia Garro
- Italian Institute of Technology, University of Genoa, Genoa, Italy
| | - Angela Vujic
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Kriti Kacker
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | | | - Simon Geukes
- Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Ceci Verbaarschot
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | | | - Sara Ahmadi
- Data-Driven NeuroTechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Christian Herff
- Department of Neurosurgery, Faculty for Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Andreea Ioana Sburlea
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Camille Jeunet
- University Bordeaux, CNRS, EPHE, INCIA, UMR5287, F-33000 Bordeaux, France
| | - David E Thompson
- Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, United States of America
| | | | - Richard Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Sergey Stavisky
- Department of Neurological Surgery, University of California, Davis, CA, United States of America
| | - Eli Kinney-Lang
- BCI4Kids, Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Fabien Lotte
- Inria center at the university of Bordeaux/LaBRI, Talence, France
| | - Jordy Thielen
- Data-Driven NeuroTechnology Lab, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Xing Chen
- Ophthalmology Department, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Victoria Peterson
- Instituto de Matemática Aplicada del Litoral, IMAL, CONICET-UNL, Santa Fe, Argentina
| | - Aysegul Gunduz
- Department of Biomedical Engineering, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States of America
| | - Theresa Vaughan
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, United States of America
| | - Davide Valeriani
- Technogym UK, 2 The Blvd, Cain Rd, RG12 1WP Bracknell, United Kingdom
| |
Collapse
|
5
|
Mackey S, Aghaeepour N, Gaudilliere B, Kao MC, Kaptan M, Lannon E, Pfyffer D, Weber K. Innovations in acute and chronic pain biomarkers: enhancing diagnosis and personalized therapy. Reg Anesth Pain Med 2025; 50:110-120. [PMID: 39909549 PMCID: PMC11877092 DOI: 10.1136/rapm-2024-106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025]
Abstract
Pain affects millions worldwide, posing significant challenges in diagnosis and treatment. Despite advances in understanding pain mechanisms, there remains a critical need for validated biomarkers to enhance diagnosis, prognostication, and personalized therapy. This review synthesizes recent advancements in identifying and validating acute and chronic pain biomarkers, including imaging, molecular, sensory, and neurophysiological approaches. We emphasize the emergence of composite, multimodal strategies that integrate psychosocial factors to improve the precision and applicability of biomarkers in chronic pain management. Neuroimaging techniques like MRI and positron emission tomography provide insights into structural and functional abnormalities related to pain, while electrophysiological methods like electroencepholography and magnetoencepholography assess dysfunctional processing in the pain neuroaxis. Molecular biomarkers, including cytokines, proteomics, and metabolites, offer diagnostic and prognostic potential, though extensive validation is needed. Integrating these biomarkers with psychosocial factors into clinical practice can revolutionize pain management by enabling personalized treatment strategies, improving patient outcomes, and potentially reducing healthcare costs. Future directions include the development of composite biomarker signatures, advances in artificial intelligence, and biomarker signature integration into clinical decision support systems. Rigorous validation and standardization efforts are also necessary to ensure these biomarkers are clinically useful. Large-scale collaborative research will be vital to driving progress in this field and implementing these biomarkers in clinical practice. This comprehensive review highlights the potential of biomarkers to transform acute and chronic pain management, offering hope for improved diagnosis, treatment personalization, and patient outcomes.
Collapse
Affiliation(s)
- Sean Mackey
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nima Aghaeepour
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | - Brice Gaudilliere
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | - Ming-Chih Kao
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Merve Kaptan
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Edward Lannon
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Dario Pfyffer
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kenneth Weber
- Division of Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
6
|
Wolf MI, Wittkamp CA, Rose M. Differential neural activity predicts the long-term stability of the effects of positive and negative expectations on pain. Sci Rep 2024; 14:27874. [PMID: 39537677 PMCID: PMC11561249 DOI: 10.1038/s41598-024-77693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Expectations modulating pain perception is a well-researched phenomenon, but less is known about the persistence of expectation effects over longer time-courses. In this preregistered study, we examined the persistence of positive (placebo) and negative (nocebo) expectation effects over one week and investigated whether neural activity on day 1 (fMRI) can predict the stability of these effects one week later (n = 41). We tested whether expectations were reflected in EEG oscillatory activity at the second measurement. Both positive and negative pain modulation effects persisted over the tested time-period and did not undergo extinction. Expectations of higher compared to lower pain led to larger theta-to-alpha EEG activity. Most interestingly, differential neural activity in fMRI was correlated with persistent expectations. Individual differences in the persistence of positive expectation effects were related to reduced amygdala activity and enhanced activity in the anterior insula and dorsolateral prefrontal cortex (DLPFC) during the first session. In contrast, persistence of negative expectation effects was predicted by enhanced thalamus activity. Our findings indicate relatively stable placebo and nocebo effects over longer time courses, but this persistence is based on different neural areas for positive and negative expectations.
Collapse
Affiliation(s)
- Maren-Isabel Wolf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Arne Wittkamp
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
7
|
Zhang LB, Chen YX, Li ZJ, Geng XY, Zhao XY, Zhang FR, Bi YZ, Lu XJ, Hu L. Advances and challenges in neuroimaging-based pain biomarkers. Cell Rep Med 2024; 5:101784. [PMID: 39383872 PMCID: PMC11513815 DOI: 10.1016/j.xcrm.2024.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
Identifying neural biomarkers of pain has long been a central theme in pain neuroscience. Here, we review the state-of-the-art candidates for neural biomarkers of acute and chronic pain. We classify these potential neural biomarkers into five categories based on the nature of their target variables, including neural biomarkers of (1) within-individual perception, (2) between-individual sensitivity, and (3) discriminability for acute pain, as well as (4) assessment and (5) prospective neural biomarkers for chronic pain. For each category, we provide a synthesized review of candidate biomarkers developed using neuroimaging techniques including functional magnetic resonance imaging (fMRI), structural magnetic resonance imaging (sMRI), and electroencephalography (EEG). We also discuss the conceptual and practical challenges in developing neural biomarkers of pain. Addressing these challenges, optimal biomarkers of pain can be developed to deepen our understanding of how the brain represents pain and ultimately help alleviate patients' suffering and improve their well-being.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | - Yu-Xin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Jiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Yi Geng
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yue Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Rui Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yan-Zhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Chen M, Wu X, Zhang L, Zhang F, Li L, Zhang Y, Xiong D, Qiu Y, Hu L, Xiao W. Neural mechanisms underlying placebo and nocebo effects in tonic muscle pain. Neuroimage 2024; 300:120877. [PMID: 39353538 DOI: 10.1016/j.neuroimage.2024.120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pain is a highly subjective and multidimensional experience, significantly influenced by various psychological factors. Placebo analgesia and nocebo hyperalgesia exemplify this influence, where inert treatments result in pain relief or exacerbation, respectively. While extensive research has elucidated the psychological and neural mechanisms behind these effects, most studies have focused on transient pain stimuli. To explore these mechanisms in the context of tonic pain, we conducted a study using a 15-minute tonic muscle pain induction procedure, where hypertonic saline was infused into the left masseter of healthy participants. We collected real-time Visual Analogue Scale (VAS) scores and functional magnetic resonance imaging (fMRI) data during the induction of placebo analgesia and nocebo hyperalgesia via conditioned learning. Our findings revealed that placebo analgesia was more pronounced and lasted longer than nocebo hyperalgesia. Real-time pain ratings correlated significantly with neural activity in several brain regions. Notably, the putamen was implicated in both effects, while the caudate and other regions were differentially involved in placebo and nocebo effects. These findings confirm that the tonic muscle pain paradigm can be used to investigate the mechanisms of placebo and nocebo effects and indicate that placebo analgesia and nocebo hyperalgesia may have more distinct than common neural bases.
Collapse
Affiliation(s)
- Min Chen
- Department of Anesthesiology, Shenzhen Samii Medical Center, Guangdong Province, China
| | - Xiao Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Libo Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Fengrui Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Linling Li
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong Province, China
| | - Yingying Zhang
- Department of Anesthesiology, Loudi Central Hospital, Hunan Province, China
| | - Donglin Xiong
- Department of Neurology, Loudi Central Hospital, Hunan Province, China
| | - Yunhai Qiu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong Province, China
| | - Li Hu
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Weibo Xiao
- Department of Neurology, Loudi Central Hospital, Hunan Province, China; Department of Pain, Nanshan Hospital of Shenzhen City, Guangdong Medical College, Guangdong Province, China.
| |
Collapse
|
9
|
Faramarzi A, Fooladi M, Yousef Pour M, Khodamoradi E, Chehreh A, Amiri S, shavandi M, Sharini H. Clinical utility of fMRI in evaluating of LSD effect on pain-related brain networks in healthy subjects. Heliyon 2024; 10:e34401. [PMID: 39165942 PMCID: PMC11334886 DOI: 10.1016/j.heliyon.2024.e34401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Objective We aimed to evaluate the effect of Lysergic acid diethylamide (LSD) on the pain neural network (PNN) in healthy subjects using functional magnetic resonance imaging (fMRI). Methods Twenty healthy volunteers participated in a balanced-order crossover study, receiving intravenous administration of LSD and placebo in two fMRI scanning sessions. Brain regions associated with pain processing were analyzed by amplitude of low-frequency fluctuation (ALFF), independent component analysis (ICA), functional connectivity and dynamic casual modeling (DCM). Results ALFF analysis demonstrated that LSD effectively relieves pain due to modulation in the neural network associated with pain processing. ICA analysis showed more active voxels in anterior cingulate cortex (ACC), thalamus (THL)-left, THL-right, insula cortex (IC)-right, parietal operculum (PO)-left, PO-right and frontal pole (FP)-right in the placebo session than the LSD session. There were more active voxels in FP-left and IC-left in the LSD session compared to the placebo session. Functional brain connectivity was observed between THL-left and PO-right and between PO-left with FP-left, FP-right and IC-left in the placebo session. In the LSD session, functional connectivity of PO-left with FP-left and FP-right was observed. The effective connectivity between left anterior insula cortex (lAIC)-lAIC, lAIC-dorsolateral prefrontal cortex (dlPFC) and secondary somatosensory cortex (SII)-dlPFC were significantly different. Finally, the correlation between fMRI biomarkers and clinical pain criteria was calculated. Conclusion This study enhances our understanding of the LSD effect on the architecture and neural behavior of pain in healthy subjects and provides great promise for future research in the field of cognitive science and pharmacology.
Collapse
Affiliation(s)
- A. Faramarzi
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - M. Fooladi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Yousef Pour
- Faculty of Medicine, Aja University of Medical Science, Tehran, Iran
| | - E. Khodamoradi
- Department of Radiology and Nuclear Medicine, Faculty of Paramedical, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - A. Chehreh
- Medical Physics Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - S. Amiri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. shavandi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - H. Sharini
- Department of Biomedical Engineering, Faculty of Medicine, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
10
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
11
|
Lee SA, Lee JJ, Han J, Choi M, Wager TD, Woo CW. Brain representations of affective valence and intensity in sustained pleasure and pain. Proc Natl Acad Sci U S A 2024; 121:e2310433121. [PMID: 38857402 PMCID: PMC11194486 DOI: 10.1073/pnas.2310433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.
Collapse
Affiliation(s)
- Soo Ahn Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH03755
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon16419, Republic of Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon16419, Republic of Korea
| |
Collapse
|
12
|
Leng J, Zhu J, Yan Y, Yu X, Liu M, Lou Y, Liu Y, Gao L, Sun Y, He T, Yang Q, Feng C, Wang D, Zhang Y, Xu Q, Xu F. Multilevel Laser-Induced Pain Measurement with Wasserstein Generative Adversarial Network - Gradient Penalty Model. Int J Neural Syst 2024; 34:2350067. [PMID: 38149912 DOI: 10.1142/s0129065723500673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pain is an experience of unpleasant sensations and emotions associated with actual or potential tissue damage. In the global context, billions of people are affected by pain disorders. There are particular challenges in the measurement and assessment of pain, and the commonly used pain measuring tools include traditional subjective scoring methods and biomarker-based measures. The main tools for biomarker-based analysis are electroencephalography (EEG), electrocardiography and functional magnetic resonance. The EEG-based quantitative pain measurements are of immense value in clinical pain management and can provide objective assessments of pain intensity. The assessment of pain is now primarily limited to the identification of the presence or absence of pain, with less research on multilevel pain. High power laser stimulation pain experimental paradigm and five pain level classification methods based on EEG data augmentation are presented. First, the EEG features are extracted using modified S-transform, and the time-frequency information of the features is retained. Based on the pain recognition effect, the 20-40[Formula: see text]Hz frequency band features are optimized. Afterwards the Wasserstein generative adversarial network with gradient penalty is used for feature data augmentation. It can be inferred from the good classification performance of features in the parietal region of the brain that the sensory function of the parietal lobe region is effectively activated during the occurrence of pain. By comparing the latest data augmentation methods and classification algorithms, the proposed method has significant advantages for the five-level pain dataset. This research provides new ways of thinking and research methods related to pain recognition, which is essential for the study of neural mechanisms and regulatory mechanisms of pain.
Collapse
Affiliation(s)
- Jiancai Leng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jianqun Zhu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yihao Yan
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xin Yu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Ming Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yitai Lou
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yanbing Liu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Licai Gao
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yuan Sun
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Tianzheng He
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qingbo Yang
- School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Chao Feng
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Dezheng Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Yang Zhang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, P. R. China
| | - Qing Xu
- Shandong Institute of Scientific and Technical Information, Jinan 250101, P. R. China
| | - Fangzhou Xu
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
13
|
Tu Y, Li Z, Zhang L, Zhang H, Bi Y, Yue L, Hu L. Pain-preferential thalamocortical neural dynamics across species. Nat Hum Behav 2024; 8:149-163. [PMID: 37813996 DOI: 10.1038/s41562-023-01714-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Searching for pain-preferential neural activity is essential for understanding and managing pain. Here, we investigated the preferential role of thalamocortical neural dynamics in encoding pain using human neuroimaging and rat electrophysiology across three studies. In study 1, we found that painful stimuli preferentially activated the medial-dorsal (MD) thalamic nucleus and its functional connectivity with the dorsal anterior cingulate cortex (dACC) and insula in two human functional magnetic resonance imaging (fMRI) datasets (n = 399 and n = 25). In study 2, human fMRI and electroencephalography fusion analyses (n = 220) revealed that pain-preferential MD responses were identified 89-295 ms after painful stimuli. In study 3, rat electrophysiology further showed that painful stimuli preferentially activated MD neurons and MD-ACC connectivity. These converging cross-species findings provided evidence for pain-preferential thalamocortical neural dynamics, which could guide future pain evaluation and management strategies.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenjiang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huijuan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Corradi‐Dell'Acqua C, Hofstetter C, Sharvit G, Hugli O, Vuilleumier P. Healthcare experience affects pain-specific responses to others' suffering in the anterior insula. Hum Brain Mapp 2023; 44:5655-5671. [PMID: 37608624 PMCID: PMC10619377 DOI: 10.1002/hbm.26468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Medical students and professional healthcare providers often underestimate patients' pain, together with decreased neural responses to pain information in the anterior insula (AI), a brain region implicated in self-pain processing and negative affect. However, the functional significance and specificity of these neural changes remains debated. Across two experiments, we recruited university medical students and emergency nurses to test the role of healthcare experience on the brain reactivity to other's pain, emotions, and beliefs, using both pictorial and verbal cues. Brain responses to self-pain was also assessed and compared with those to observed pain. Our results confirmed that healthcare experience decreased the activity in AI in response to others' suffering. This effect was independent from stimulus modality (pictures or texts), but specific for pain, as it did not generalize to inferences about other mental or affective states. Furthermore, representational similarity and multivariate pattern analysis revealed that healthcare experience impacted specifically a component of the neural representation of others' pain that is shared with that of first-hand nociception, and related more to AI than to other pain-responsive regions. Taken together, our study suggests a decreased propensity to appraise others' suffering as one's own, associated with a reduced recruitment of pain-specific information in AI. These findings provide new insights into neural mechanisms leading to pain underestimation by caregivers in clinical settings.
Collapse
Affiliation(s)
- Corrado Corradi‐Dell'Acqua
- Theory of Pain Laboratory, Department of Psychology, Faculty of Psychology and Educational Sciences (FPSE)University of GenevaGenevaSwitzerland
- Geneva Neuroscience CenterUniversity of GenevaGenevaSwitzerland
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
| | - Christoph Hofstetter
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
| | - Gil Sharvit
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
- Swiss Center for Affective Sciences, University of GenevaGenevaSwitzerland
- Balgrist University Hospital and University of ZurichZurichSwitzerland
| | - Olivier Hugli
- Emergency Department, University Hospital of Lausanne (UHL)LausanneSwitzerland
| | - Patrik Vuilleumier
- Geneva Neuroscience CenterUniversity of GenevaGenevaSwitzerland
- Laboratory of Behavioural Neurology and Imaging of Cognition, Department of NeuroscienceUniversity Medical Center, University of GenevaGenevaSwitzerland
- Swiss Center for Affective Sciences, University of GenevaGenevaSwitzerland
| |
Collapse
|
15
|
Büchel C. The role of expectations, control and reward in the development of pain persistence based on a unified model. eLife 2023; 12:81795. [PMID: 36972108 PMCID: PMC10042542 DOI: 10.7554/elife.81795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic, or persistent pain affects more than 10% of adults in the general population. This makes it one of the major physical and mental health care problems. Although pain is an important acute warning signal that allows the organism to take action before tissue damage occurs, it can become persistent and its role as a warning signal thereby inadequate. Although per definition, pain can only be labeled as persistent after 3 months, the trajectory from acute to persistent pain is likely to be determined very early and might even start at the time of injury. The biopsychosocial model has revolutionized our understanding of chronic pain and paved the way for psychological treatments for persistent pain, which routinely outperform other forms of treatment. This suggests that psychological processes could also be important in shaping the very early trajectory from acute to persistent pain and that targeting these processes could prevent the development of persistent pain. In this review, we develop an integrative model and suggest novel interventions during early pain trajectories, based on predictions from this model.
Collapse
Affiliation(s)
- Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Wang S, Su Q, Qin W, Yu C, Liang M. Both fine-grained and coarse-grained spatial patterns of neural activity measured by functional MRI show preferential encoding of pain in the human brain. Neuroimage 2023; 272:120049. [PMID: 36963739 DOI: 10.1016/j.neuroimage.2023.120049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
How pain emerges from human brain remains an unresolved question in pain neuroscience. Neuroimaging studies have suggested that all brain areas activated by painful stimuli were also activated by tactile stimuli, and vice versa. Nonetheless, pain-preferential spatial patterns of voxel-level activation in the brain have been observed when distinguishing painful and tactile brain activations using multivariate pattern analysis (MVPA). According to two hypotheses, the neural activity pattern preferentially encoding pain could exist at a global, coarse-grained, regional level, corresponding to the "pain connectome" hypothesis proposing that pain-preferential information may be encoded by the synchronized activity across multiple distant brain regions, and/or exist at a local, fine-grained, voxel level, corresponding to the "intermingled specialized/preferential neurons" hypothesis proposing that neurons responding specially or preferentially to pain could be present and intermingled with non-pain neurons within a voxel. Here, we systematically investigated the spatial scales of pain-distinguishing information in the human brain measured by fMRI using machine learning techniques, and found that pain-distinguishing information could be detected at both coarse-grained spatial scales across widely distributed brain regions and fine-grained spatial scales within many local areas. Importantly, the spatial distribution of pain-distinguishing information in the brain varies across individuals and such inter-individual variations may be related to a person's trait about pain perception, particularly the pain vigilance and awareness. These results provide new insights into the long-standing question of how pain is represented in the human brain and help the identification of characteristic neuroimaging measurements of pain.
Collapse
Affiliation(s)
- Sijia Wang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunshui Yu
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China; Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Technology, School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Thapaliya G, Eldeghaidy S, Asghar M, McGing J, Radford S, Francis S, Moran GW. The relationship between Central Nervous System morphometry changes and key symptoms in Crohn’s disease. Brain Imaging Behav 2022; 17:149-160. [PMID: 36409402 PMCID: PMC10049962 DOI: 10.1007/s11682-022-00742-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
Abstract
AbstractAlterations in grey matter volume (GMV) and cortical thickness (CT) in Crohn’s disease (CD) patients has been previously documented. However, the findings are inconsistent, and not a true representation of CD burden, as only CD patients in remission have been studied thus far. We investigate alterations in brain morphometry in patients with active CD and those in remission, and study relationships between brain structure and key symptoms of fatigue, abdominal pain, and extraintestinal manifestations (EIM). Magnetic Resonance Imaging brain scans were collected in 89 participants; 34 CD participants with active disease, 13 CD participants in remission and 42 healthy controls (HCs); Voxel based morphometry (VBM) assessed GMV and white matter volume (WMV), and surface-based analysis assessed cortical thickness (CT). We show a significant reduction in global cerebrospinal fluid (CSF) volume in CD participants compared with HCs, as well as, a reduction in regional GMV, WMV and CT in the left precentral gyrus (motor cortex), and an increase in GMV in the frontal brain regions in CD compared with HCs. Atrophy of the supplementary motor area (SMA) was associated with greater fatigue in CD. We also show alterations in brain structure in multiple regions in CD associated with abdominal pain and extraintestinal inflammations (EIMs). These brain structural alterations likely reflect neuroplasticity to a chronic systemic inflammatory response, abdominal pain, EIMs and fatigue. These findings will aid our understanding of the cross-linking between chronic inflammation, brain structural changes and key unexplained CD symptomatology like fatigue.
Collapse
Affiliation(s)
- Gita Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Sally Eldeghaidy
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
- School of Biosciences and Future Food Beacon, The University of Nottingham, Nottingham, UK
| | - Michael Asghar
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Jordan McGing
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Shellie Radford
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
| | - Susan Francis
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK
| | - Gordon William Moran
- NIHR Nottingham Biomedical Research Centre, The University of Nottingham, Nottingham University Hospitals NHS Trust and School of Medicine, Nottingham, UK.
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, UK.
- Translational Medical Sciences Unit, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
19
|
Han Y, Valentini E, Halder S. Classification of Tonic Pain Experience based on Phase Connectivity in the Alpha Frequency Band of the Electroencephalogram using Convolutional Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3542-3545. [PMID: 36086245 DOI: 10.1109/embc48229.2022.9871353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The complexity of brain activity involved in the generation of the experience of pain makes it hard to identify neural markers able to predict pain states. The within and between subjects variability of pain hinders the predictive potential of machine learning models trained across participants. This challenge can be tackled by implementing deep learning classifiers based on convolutional neural networks (CNNs). We targeted phase-based connectivity in the alpha band recorded with electroencephalography (EEG) during resting states and sensory conditions (eyes open [O] and closed [C] as resting states, and warm [W] and hot [H] water as sensory conditions). Connectivity features were extracted and re-organized as square matrices, because CNNs are effective in detecting the patterns from 2D data. To assess the classifier performance we implemented two complementary approaches: we 1) trained and tested the classifier with data from all participants, and 2) using a leave-one-out approach, that is excluding one participant at a time during training while using their data as a test set. The accuracy of binary classification between pain condition (H) and eyes open resting state (O) was 94.16% with the first approach, and 61.01 % with the leave-one-out approach. Clinical relevance-Further validation of the CNN classifier may help caregivers track the rehabilitation of chronic pain patients and dynamically modify the therapy. Further refinement of the model may allow its application in critical care setting with unresponsive patients to identify pain-like states otherwise incommunicable to medical personnel.
Collapse
|
20
|
Hewitt D, Newton-Fenner A, Henderson J, Fallon NB, Brown C, Stancak A. Intensity-dependent modulation of cortical somatosensory processing during external, low-frequency peripheral nerve stimulation in humans. J Neurophysiol 2022; 127:1629-1641. [PMID: 35611988 PMCID: PMC9190739 DOI: 10.1152/jn.00511.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
External low-frequency peripheral nerve stimulation (LFS) has been proposed as a novel method for neuropathic pain relief. Previous studies have reported that LFS elicits long-term depression-like effects on human pain perception when delivered at noxious intensities, whereas lower intensities are ineffective. To shed light on cortical regions mediating the effects of LFS, we investigated changes in somatosensory-evoked potentials (SEPs) during four LFS intensities. LFS was applied to the radial nerve (600 pulses, 1 Hz) of 24 healthy participants at perception (1 times), low (5 times), medium (10 times), and high intensities (15 times detection threshold). SEPs were recorded during LFS, and averaged SEPs in 10 consecutive 1-min epochs of LFS were analyzed using source dipole modeling. Changes in resting electroencephalography (EEG) were investigated after each LFS block. Source activity in the midcingulate cortex (MCC) decreased linearly during LFS, with greater attenuation at stronger LFS intensities, and in the ipsilateral operculo-insular cortex during the two lowest LFS stimulus intensities. Increased LFS intensities resulted in greater augmentation of contralateral primary sensorimotor cortex (SI/MI) activity. Stronger LFS intensities were followed by increased α (alpha, 9-11 Hz) band power in SI/MI and decreased θ (theta, 3-5 Hz) band power in MCC. Intensity-dependent attenuation of MCC activity with LFS is consistent with a state of long-term depression. Sustained increases in contralateral SI/MI activity suggests that effects of LFS on somatosensory processing may also be dependent on satiation of SI/MI. Further research could clarify if the activation of SI/MI during LFS competes with nociceptive processing in neuropathic pain.NEW & NOTEWORTHY Somatosensory-evoked potentials during low-frequency stimulation of peripheral nerves were examined at graded stimulus intensities. Low-frequency stimulation was associated with decreased responsiveness in the midcingulate cortex and increased responsiveness in primary sensorimotor cortex. Greater intensities were associated with increased midcingulate cortex θ band power and decreased sensorimotor cortex α band power. Results further previous evidence of an inhibition of somatosensory processing during and after low-frequency stimulation and point toward a potential augmentation of activity in somatosensory processing regions.
Collapse
Affiliation(s)
- Danielle Hewitt
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Alice Newton-Fenner
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| | - Jessica Henderson
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Nicholas B. Fallon
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Christopher Brown
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Andrej Stancak
- 1Department of Psychological Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Common and stimulus-type-specific brain representations of negative affect. Nat Neurosci 2022; 25:760-770. [DOI: 10.1038/s41593-022-01082-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/25/2022] [Indexed: 01/16/2023]
|
22
|
Horing B, Büchel C. The human insula processes both modality-independent and pain-selective learning signals. PLoS Biol 2022; 20:e3001540. [PMID: 35522696 PMCID: PMC9116652 DOI: 10.1371/journal.pbio.3001540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/18/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
Prediction errors (PEs) are generated when there are differences between an expected and an actual event or sensory input. The insula is a key brain region involved in pain processing, and studies have shown that the insula encodes the magnitude of an unexpected outcome (unsigned PEs). In addition to signaling this general magnitude information, PEs can give specific information on the direction of this deviation-i.e., whether an event is better or worse than expected. It is unclear whether the unsigned PE responses in the insula are selective for pain or reflective of a more general processing of aversive events irrespective of modality. It is also unknown whether the insula can process signed PEs at all. Understanding these specific mechanisms has implications for understanding how pain is processed in the brain in both health and in chronic pain conditions. In this study, 47 participants learned associations between 2 conditioned stimuli (CS) with 4 unconditioned stimuli (US; painful heat or loud sound, of one low and one high intensity each) while undergoing functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) measurements. We demonstrate that activation in the anterior insula correlated with unsigned intensity PEs, irrespective of modality, indicating an unspecific aversive surprise signal. Conversely, signed intensity PE signals were modality specific, with signed PEs following pain but not sound located in the dorsal posterior insula, an area implicated in pain intensity processing. Previous studies have identified abnormal insula function and abnormal learning as potential causes of pain chronification. Our findings link these results and suggest that a misrepresentation of learning relevant PEs in the insular cortex may serve as an underlying factor in chronic pain.
Collapse
Affiliation(s)
- Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Wuyts E, Morrens M. The Biology of BDSM: A Systematic Review. J Sex Med 2022; 19:144-157. [PMID: 36963978 DOI: 10.1016/j.jsxm.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 01/22/2023]
Abstract
INTRODUCTION BDSM is an abbreviation used to reference the concepts of bondage and discipline, dominance and submission, sadism and masochism, enacted by power exchanges between consensual partners. In recent years, attention has shifted from the idea of BDSM as a pathological and tabooed niche practice towards viewing BDSM as a healthy form of intimacy. AIM This systematic review brings together all existing literature on the biology of BDSM and places it in a broader biological context. METHODS A systematic search was conducted on PubMed, Web of Science and PsycARTICLES, of which 10 articles are included and discussed in this systematic review. RESULTS There is evidence for cortisol changes in submissives as a result of a BDSM interaction, suggesting involvement of the physiological stress system. Endocannabinoid changes implicate the pleasure and reward system. In dominants, this biologically measured pleasure seemed to be dependent on power play rather than pain play. Testosterone and oxytocin are also implicated in BDSM, though their role is less evident. Research into brain region activity patterns related to BDSM interest suggests a role for the parietal operculum and ventral striatum in the context of the pleasure and reward system, the primary and secondary somatosensory cortex in the context of pain perception, empathy-related circuits such as the anterior insula, anterior midcingulate cortex and sensorimotor cortex and the left frontal cortex in the context of social and sexual interactions. Pain thresholds are shown to be higher in submissive individuals and a BDSM interaction may cause pain thresholds to rise in submissives as well. CONCLUSION BDSM interactions are complex and influenced by several psychological, social and biological processes. Though research is limited, there is emerging evidence for an interaction between several biological systems involved in these types of interests and activities. This means there is an important role for future research to replicate and supplement current results.
Collapse
Affiliation(s)
- Elise Wuyts
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Campus Drie Eiken, University of Antwerp, Antwerp, Belgium
- University Department of Psychiatry, Campus Duffel, Duffel, Belgium
| |
Collapse
|
24
|
Sirigu A, Desmurget M. Somatosensory awareness in the parietal operculum. Brain 2021; 144:3558-3560. [PMID: 34791060 DOI: 10.1093/brain/awab415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Tonic somatosensory responses and deficits of tactile awareness converge in the parietal operculum’ by Del Vecchio et al. (doi:10.1093/brain/awab384).
Collapse
Affiliation(s)
- Angela Sirigu
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France.,iMIND, Center of Excellence for Autism, le Vinatier Hospital, Bron, France
| | - Michel Desmurget
- Institute of Cognitive Sciences Marc Jeannerod, CNRS/UMR, 5229 Bron, France
| |
Collapse
|
25
|
Atlas LY. A social affective neuroscience lens on placebo analgesia. Trends Cogn Sci 2021; 25:992-1005. [PMID: 34538720 PMCID: PMC8516707 DOI: 10.1016/j.tics.2021.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
Pain is a fundamental experience that promotes survival. In humans, pain stands at the intersection of multiple health crises: chronic pain, the opioid epidemic, and health disparities. The study of placebo analgesia highlights how social, cognitive, and affective processes can directly shape pain, and identifies potential paths for mitigating these crises. This review examines recent progress in the study of placebo analgesia through affective science. It focuses on how placebo effects are shaped by expectations, affect, and the social context surrounding treatment, and discusses neurobiological mechanisms of placebo, highlighting unanswered questions and implications for health. Collaborations between clinicians and social and affective scientists can address outstanding questions and leverage placebo to reduce pain and improve human health.
Collapse
Affiliation(s)
- Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
26
|
Huber J, Ruehl M, Flanagin V, Zu Eulenburg P. Delineating neural responses and functional connectivity changes during vestibular and nociceptive stimulation reveal the uniqueness of cortical vestibular processing. Brain Struct Funct 2021; 227:779-791. [PMID: 34611776 PMCID: PMC8930960 DOI: 10.1007/s00429-021-02394-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023]
Abstract
Vestibular information is ubiquitous and often processed jointly with visual, somatosensory and proprioceptive information. Among the cortical brain regions associated with human vestibular processing, area OP2 in the parietal operculum has been proposed as vestibular core region. However, delineating responses uniquely to vestibular stimulation in this region using neuroimaging is challenging for several reasons: First, the parietal operculum is a cytoarchitectonically heterogeneous region responding to multisensory stimulation. Second, artificial vestibular stimulation evokes confounding somatosensory and nociceptive responses blurring responses contributing to vestibular perception. Furthermore, immediate effects of vestibular stimulation on the organization of functional networks have not been investigated in detail yet. Using high resolution neuroimaging in a task-based and functional connectivity approach, we compared two equally salient stimuli—unilateral galvanic vestibular (GVS) and galvanic nociceptive stimulation (GNS)—to disentangle the processing of both modalities in the parietal operculum and characterize their effects on functional network architecture. GNS and GVS gave joint responses in area OP1, 3, 4, and the anterior and middle insula, but not in area OP2. GVS gave stronger responses in the parietal operculum just adjacent to OP3 and OP4, whereas GNS evoked stronger responses in area OP1, 3 and 4. Our results underline the importance of considering this common pathway when interpreting vestibular neuroimaging experiments and underpin the role of area OP2 in central vestibular processing. Global network changes were found during GNS, but not during GVS. This lack of network reconfiguration despite the saliency of GVS may reflect the continuous processing of vestibular information in the awake human.
Collapse
Affiliation(s)
- Judita Huber
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Maxine Ruehl
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Virginia Flanagin
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Zu Eulenburg
- Graduate School of Systemic Neurosciences, Department of Biology II and Neurobiology, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
- Institute for Neuroradiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
27
|
Examining the Neurobiology of Non-Suicidal Self-Injury in Children and Adolescents: The Role of Reward Responsivity. J Clin Med 2021; 10:jcm10163561. [PMID: 34441857 PMCID: PMC8396887 DOI: 10.3390/jcm10163561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although prior work has shown heightened response to negative outcomes and reduced response to positive outcomes in youth with a history of non-suicidal self-injury (NSSI), little is known about the neural processes underlying these responses. Thus, this study examined associations between NSSI engagement and functional activation in specific regions of interest (ROIs) and whole-brain connectivity between striatal, frontal, and limbic region seeds during monetary and social reward tasks. To test for specificity of the influence of NSSI, analyses were conducted with and without depressive symptoms as a covariate. We found that NSSI was associated with decreased activation following monetary gains in all ROIs, even after controlling for depressive symptoms. Exploratory connectivity analyses found that NSSI was associated with differential connectivity between regions including the DS, vmPFC, insula, and parietal operculum cortex when controlling for depressive symptoms. Disrupted connectivity between these regions could suggest altered inhibitory control of emotions and pain processing in individuals with NSSI. Findings suggest dysfunctional reward processes in youth with NSSI, even very early in the course of the behavior.
Collapse
|
28
|
Hewitt D, Byrne A, Henderson J, Newton-Fenner A, Tyson-Carr J, Fallon N, Brown C, Stancak A. Inhibition of cortical somatosensory processing during and after low frequency peripheral nerve stimulation in humans. Clin Neurophysiol 2021; 132:1481-1495. [PMID: 34023628 DOI: 10.1016/j.clinph.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Transcutaneous low-frequency stimulation (LFS) elicits long-term depression-like effects on human pain perception. However, the neural mechanisms underlying LFS are poorly understood. We investigated cortical activation changes occurring during LFS and if changes were associated with reduced nociceptive processing and increased amplitude of spontaneous cortical oscillations post-treatment. METHODS LFS was applied to the radial nerve of 25 healthy volunteers over two sessions using active (1 Hz) or sham (0.02 Hz) frequencies. Changes in resting electroencephalography (EEG) and laser-evoked potentials (LEPs) were investigated before and after LFS. Somatosensory-evoked potentials were recorded during LFS and source analysis was carried out. RESULTS Ipsilateral midcingulate and operculo-insular cortex source activity declined linearly during LFS. Active LFS was associated with attenuated long-latency LEP amplitude in ipsilateral frontocentral electrodes and increased resting alpha (8-12 Hz) and beta (16-24 Hz) band power in electrodes overlying operculo-insular, sensorimotor and frontal cortical regions. Reduced ipsilateral operculo-insular cortex source activity during LFS correlated with a smaller post-treatment alpha-band power increase. CONCLUSIONS LFS attenuated somatosensory processing both during and after stimulation. SIGNIFICANCE Results further our understanding of the attenuation of somatosensory processing both during and after LFS.
Collapse
Affiliation(s)
- Danielle Hewitt
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.
| | - Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Jessica Henderson
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Alice Newton-Fenner
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Christopher Brown
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Hofmeier B, Wertz J, Refat F, Hinrichs P, Saemisch J, Singer W, Rüttiger L, Klose U, Knipper M, Wolpert S. Functional biomarkers that distinguish between tinnitus with and without hyperacusis. Clin Transl Med 2021; 11:e378. [PMID: 34047478 PMCID: PMC8140185 DOI: 10.1002/ctm2.378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Benedikt Hofmeier
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Jakob Wertz
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Fatma Refat
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany.,Department of Otolaryngology, Audio-Vestibular Medicine Unit, Minia University, Minya, Egypt
| | - Pauline Hinrichs
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Jörg Saemisch
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany
| | - Stephan Wolpert
- Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, University of Tübingen, Tübingen, Germany.,Department of Otolaryngology, Head and Neck Surgery, Hearing Research Centre Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Strube A, Rose M, Fazeli S, Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. eLife 2021; 10:62809. [PMID: 33594976 PMCID: PMC7924946 DOI: 10.7554/elife.62809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Lee JJ, Kim HJ, Čeko M, Park BY, Lee SA, Park H, Roy M, Kim SG, Wager TD, Woo CW. A neuroimaging biomarker for sustained experimental and clinical pain. Nat Med 2021; 27:174-182. [PMID: 33398159 DOI: 10.1038/s41591-020-1142-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Sustained pain is a major characteristic of clinical pain disorders, but it is difficult to assess in isolation from co-occurring cognitive and emotional features in patients. In this study, we developed a functional magnetic resonance imaging signature based on whole-brain functional connectivity that tracks experimentally induced tonic pain intensity and tested its sensitivity, specificity and generalizability to clinical pain across six studies (total n = 334). The signature displayed high sensitivity and specificity to tonic pain across three independent studies of orofacial tonic pain and aversive taste. It also predicted clinical pain severity and classified patients versus controls in two independent studies of clinical low back pain. Tonic and clinical pain showed similar network-level representations, particularly in somatomotor, frontoparietal and dorsal attention networks. These patterns were distinct from representations of experimental phasic pain. This study identified a brain biomarker for sustained pain with high potential for clinical translation.
Collapse
Affiliation(s)
- Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Marta Čeko
- Institute of Cognitive Science, University of Colorado, Boulder CO, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder CO, USA
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,McConnell Brain Imaging Centre, Montreal Neurological institute and Hospital, McGill University, Montreal, QC, Canada
| | - Soo Ahn Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover NH, USA.
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea. .,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea. .,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, South Korea. .,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
32
|
Liberati G, Mulders D, Algoet M, van den Broeke EN, Santos SF, Ribeiro Vaz JG, Raftopoulos C, Mouraux A. Insular responses to transient painful and non-painful thermal and mechanical spinothalamic stimuli recorded using intracerebral EEG. Sci Rep 2020; 10:22319. [PMID: 33339884 PMCID: PMC7749115 DOI: 10.1038/s41598-020-79371-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
Brief thermo-nociceptive stimuli elicit low-frequency phase-locked local field potentials (LFPs) and high-frequency gamma-band oscillations (GBOs) in the human insula. Although neither of these responses constitute a direct correlate of pain perception, previous findings suggest that insular GBOs may be strongly related to the activation of the spinothalamic system and/or to the processing of thermal information. To disentangle these different features of the stimulation, we compared the insular responses to brief painful thermonociceptive stimuli, non-painful cool stimuli, mechano-nociceptive stimuli, and innocuous vibrotactile stimuli, recorded using intracerebral electroencephalograpic activity in 7 epileptic patients (9 depth electrodes, 58 insular contacts). All four types of stimuli elicited consistent low-frequency phase-locked LFPs throughout the insula, possibly reflecting supramodal activity. The latencies of thermo-nociceptive and cool low-frequency phase-locked LFPs were shorter in the posterior insula compared to the anterior insula, suggesting a similar processing of thermal input initiating in the posterior insula, regardless of whether the input produces pain and regardless of thermal modality. In contrast, only thermo-nociceptive stimuli elicited an enhancement of insular GBOs, suggesting that these activities are not simply related to the activation of the spinothalamic system or to the conveyance of thermal information.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| | - Dounia Mulders
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
33
|
Fauchon C, Meunier D, Faillenot I, Pomares FB, Bastuji H, Garcia-Larrea L, Peyron R. The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG. Cereb Cortex Commun 2020; 1:tgaa088. [PMID: 34296144 PMCID: PMC8152828 DOI: 10.1093/texcom/tgaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.
Collapse
Affiliation(s)
- Camille Fauchon
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - David Meunier
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Aix Marseille Université, CNRS, INT (Institute of Neuroscience de la Timone), Marseille 13005 France
| | - Isabelle Faillenot
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - Florence B Pomares
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W6, Canada
| | - Hélène Bastuji
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Luis Garcia-Larrea
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Roland Peyron
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France.,Service de Neurologie et Centre de la Douleur du CHU de St-Etienne, St-Etienne 42055, France
| |
Collapse
|
34
|
Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020; 226:117548. [PMID: 33186712 PMCID: PMC7836236 DOI: 10.1016/j.neuroimage.2020.117548] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rob Gregory
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Wendy-Elizabeth Davies
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Lee Harrison
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Jonathan C W Brooks
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
35
|
Tinnermann A, Büchel C, Cohen-Adad J. Cortico-spinal imaging to study pain. Neuroimage 2020; 224:117439. [PMID: 33039624 DOI: 10.1016/j.neuroimage.2020.117439] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Functional magnetic resonance imaging of the brain has helped to reveal mechanisms of pain perception in health and disease. Recently, imaging approaches have been developed that allow recording neural activity simultaneously in the brain and in the spinal cord. These approaches offer the possibility to examine pain perception in the entire central pain system and in addition, to investigate cortico-spinal interactions during pain processing. Although cortico-spinal imaging is a promising technique, it bears challenges concerning data acquisition and data analysis strategies. In this review, we discuss studies that applied simultaneous imaging of the brain and spinal cord to explore central pain processing. Furthermore, we describe different MR-related acquisition techniques, summarize advantages and disadvantages of approaches that have been implemented so far and present software that has been specifically developed for the analysis of spinal fMRI data to address challenges of spinal data analysis.
Collapse
Affiliation(s)
- Alexandra Tinnermann
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany.
| | - Christian Büchel
- Department for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck School of Cognition, Leipzig, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
36
|
Su Q, Song Y, Zhao R, Liang M. A review on the ongoing quest for a pain signature in the human brain. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Developing an objective biomarker for pain assessment is crucial for understanding neural coding mechanisms of pain in the human brain as well as for effective treatment of pain disorders. Neuroimaging techniques have been proven to be powerful tools in the ongoing quest for a pain signature in the human brain. Although there is still a long way to go before achieving a truly successful pain signature based on neuroimaging techniques, important progresses have been made through great efforts in the last two decades by the Pain Society. Here, we focus on neural responses to transient painful stimuli in healthy people, and review the relevant studies on the identification of a neuroimaging signature for pain.
Collapse
Affiliation(s)
- Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
- These authors contributed equally to this work
| | - Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
- These authors contributed equally to this work
| | - Rui Zhao
- Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
37
|
Abstract
People often experience two types of pain: social pain and physical pain. The former is related to psychological distance from other people or social groups, whereas the latter is associated with actual or potential tissue damage. Social pain caused by interpersonal interactions causes negative feelings in individuals and has negative consequences to the same degree as physical pain. Various studies have shown an interaction between social pain and physical pain, not only in behavioral performance but also in activities within shared neural regions. Accordingly, the present paper reviews: (1) the interaction between social pain and physical pain in individuals’ behavioral performances; and (2) the overlap in neural circuitry as regards the processing of social pain and physical pain. Understanding the relationship between social pain and physical pain might provide new insights into the nature of these two types of pain, and thus may further contribute to the treatment of illnesses associated with both types of painful experience.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhuo Kong
- Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Geuter S, Reynolds Losin EA, Roy M, Atlas LY, Schmidt L, Krishnan A, Koban L, Wager TD, Lindquist MA. Multiple Brain Networks Mediating Stimulus-Pain Relationships in Humans. Cereb Cortex 2020; 30:4204-4219. [PMID: 32219311 DOI: 10.1093/cercor/bhaa048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The brain transforms nociceptive input into a complex pain experience comprised of sensory, affective, motivational, and cognitive components. However, it is still unclear how pain arises from nociceptive input and which brain networks coordinate to generate pain experiences. We introduce a new high-dimensional mediation analysis technique to estimate distributed, network-level patterns that formally mediate the relationship between stimulus intensity and pain. We applied the model to a large-scale analysis of functional magnetic resonance imaging data (N = 284), focusing on brain mediators of the relationship between noxious stimulus intensity and trial-to-trial variation in pain reports. We identify mediators in both traditional nociceptive pathways and in prefrontal, midbrain, striatal, and default-mode regions unrelated to nociception in standard analyses. The whole-brain mediators are specific for pain versus aversive sounds and are organized into five functional networks. Brain mediators predicted pain ratings better than previous brain measures, including the neurologic pain signature (Wager et al. 2013). Our results provide a broader view of the networks underlying pain experience, as well as novel brain targets for interventions.
Collapse
Affiliation(s)
- Stephan Geuter
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.,Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Vorwerk International & Co. KmG, Zurich, Switzerland
| | | | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.,National Center on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.,National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Liane Schmidt
- Control-Interoception-Attention Team, Institute du Cerveau et de la Moelle épinière, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Anjali Krishnan
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY, USA
| | - Leonie Koban
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Control-Interoception-Attention Team, Institute du Cerveau et de la Moelle épinière, INSERM UMR 1127, CNRS UMR 7225, Sorbonne University, Paris, France.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Marketing Area, INSEAD, Fontainebleau, France
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.,Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Presidential Cluster in Neuroscience and Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
39
|
Spisak T, Kincses B, Schlitt F, Zunhammer M, Schmidt-Wilcke T, Kincses ZT, Bingel U. Pain-free resting-state functional brain connectivity predicts individual pain sensitivity. Nat Commun 2020; 11:187. [PMID: 31924769 PMCID: PMC6954277 DOI: 10.1038/s41467-019-13785-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023] Open
Abstract
Individual differences in pain perception are of interest in basic and clinical research as altered pain sensitivity is both a characteristic and a risk factor for many pain conditions. It is, however, unclear how individual sensitivity to pain is reflected in the pain-free resting-state brain activity and functional connectivity. Here, we identify and validate a network pattern in the pain-free resting-state functional brain connectome that is predictive of interindividual differences in pain sensitivity. Our predictive network signature allows assessing the individual sensitivity to pain without applying any painful stimulation, as might be valuable in patients where reliable behavioural pain reports cannot be obtained. Additionally, as a direct, non-invasive readout of the supraspinal neural contribution to pain sensitivity, it may have implications for translational research and the development and assessment of analgesic treatment strategies.
Collapse
Affiliation(s)
- Tamas Spisak
- Department of Neurology, University Hospital Essen, Hufelandstrasse, 5545147, Essen, Germany.
| | - Balint Kincses
- Department of Neurology, University of Szeged, Tisza Lajos krt. 113, 6725, Szeged, Hungary
| | - Frederik Schlitt
- Department of Neurology, University Hospital Essen, Hufelandstrasse, 5545147, Essen, Germany
| | - Matthias Zunhammer
- Department of Neurology, University Hospital Essen, Hufelandstrasse, 5545147, Essen, Germany
| | - Tobias Schmidt-Wilcke
- Institute of Clinical Neuroscience and Medical Psychology, University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Mauritius Therapieklinik, Strümper Str. 111, 40670, Meerbusch, Meerbusch, Germany
| | - Zsigmond T Kincses
- Department of Neurology, University of Szeged, Tisza Lajos krt. 113, 6725, Szeged, Hungary
| | - Ulrike Bingel
- Department of Neurology, University Hospital Essen, Hufelandstrasse, 5545147, Essen, Germany
| |
Collapse
|
40
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|