1
|
Ruseska I, Tucak-Smajić A, Zimmer A. Elucidating the uptake and trafficking of nanostructured lipid carriers as delivery systems for miRNA. Eur J Pharm Sci 2025; 204:106973. [PMID: 39603431 DOI: 10.1016/j.ejps.2024.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Cationic nanostructured lipid carriers (cNLCs) represent promising non-viral carriers for nucleic acids, such as miRNAs, forming stable self-assembled miRNA complexes due to electrostatic interactions. Prepared by high-pressure homogenization, cNLC formulations, both with and without Nile Red dye demonstrated stable particle sizes in the range of 100-120 nm and positive surface charges (>30 mV), which are necessary for effective cellular uptake. The miRNA complexes formed at mass ratios of 1:2.5 and 1:5 showed similar stability and size, with positive zeta potentials, as well as high cell viability (> 80 %) in 3T3-L1 and MCF-7 cell lines. The cellular uptake studies of miRNA:cNLC complexes in both cell lines revealed that uptake was time- and concentration-dependent, with rapid initial uptake in 30 min and a zig-zag pattern over 24 h. To elucidate the endocytosis mechanism of miRNA:cNLC complexes, 3T3-L1 and MCF-7 cells were incubated with different inhibitors (chlorpromazine, 5-[N-ethyl-N-isopropyl] amiloride, dynasore, nystatin, or sodium azide with 2-deoxy-d-glucose). Results showed significant inhibition of uptake at low temperatures and with ATP depletion, suggesting endocytosis, particularly macropinocytosis, as the main uptake mechanism in 3T3-L1 cells. In MCF-7 cells, the uptake was less inhibited by the substances, indicating the need for more specific methods to fully decipher the endocytic mechanisms involved. Confocal laser scanning microscopy images revealed that the complexes are internalized in vesicles, and are primarily localized in the juxtanuclear region, suggesting trafficking through the endolysosomal system. Colocalization study with LysoTracker™ Green DND-26 showed significant colocalization of miRNA:cNLC complexes with lysosomes in 3T3-L1 cells, indicating trafficking through the endolysosomal system. In MCF-7 cells, colocalization was lower, suggesting macropinocytosis as the primary uptake mechanism. Additional studies showed partial colocalization between labeled NLCs and miRNA, indicating that about 50 % of miRNA is released from NLCs within 30 min post-transfection.
Collapse
Affiliation(s)
- Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria
| | - Amina Tucak-Smajić
- Department of Pharmaceutical Technology, University of Sarajevo - Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010, Graz, Austria.
| |
Collapse
|
2
|
Qian H, Zuo X, Man Y, Xu C, Luo P, Yao L, Geng R, Wang B, Niu S, Lin J, Cui Y. The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization. PLANT PHYSIOLOGY 2024; 197:kiaf023. [PMID: 39823294 DOI: 10.1093/plphys/kiaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity. Here, we demonstrated that the actin cytoskeleton alters the Pep1-triggered immune response. In addition, dual-color total internal reflection fluorescence-structured illumination microscopy (TIRF-SIM) showed that PEPR1 diffusion on the plasma membrane is closely related to the actin cytoskeleton. We performed single-particle tracking to quantify individual protein particles and found that the actin cytoskeleton notably regulates PEPR1 mobility and cluster size. More importantly, we demonstrated that actin filament reconfiguration is sufficient to inhibit Pep1-induced internalization, which alters the immune response. Taken together, these findings suggest that the actin cytoskeleton functions as an integration node for Pep1 signaling and PEPR1 endocytosis.
Collapse
Affiliation(s)
- Hongping Qian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Xinxiu Zuo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yi Man
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Changwen Xu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Pengyun Luo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Lijuan Yao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Ruohan Geng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Binghe Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Visonà A, Cavalaglio S, Labau S, Soulan S, Joisten H, Berger F, Dieny B, Morel R, Nicolas A. Substrate softness increases magnetic microdiscs-induced cytotoxicity. NANOSCALE ADVANCES 2024; 7:219-230. [PMID: 39569335 PMCID: PMC11575620 DOI: 10.1039/d4na00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Cytotoxicity of nanoparticles is primarily assessed on cells grown in plastic culture plates, a mechanical environment that is a million times stiffer than most of the human tissues. Here we question whether nanoparticles cytotoxicity is sensitive to the stiffness of the extracellular environment. To this end, we compare the metabolic activity, the proliferation and death rates, and the motility of a glioblastoma cancer cell line and a fibroblast cell line exposed to gold-coated Ni80Fe20 microdiscs when grown on a glass substrate or on a soft substrate whose mechanical properties are close to physiology. Our main result is that cells grown on soft substrates take up more microdiscs which results in greater toxic effects, but also that toxicity at similar particle load is more pronounced on soft substrates especially at large concentration of nanoparticles. These results suggest that both microdiscs uptake and their intracellular processing differ between soft and rigid substrates.
Collapse
Affiliation(s)
- Andrea Visonà
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Sébastien Cavalaglio
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Sébastien Labau
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Sébastien Soulan
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| | - Hélène Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - François Berger
- Univ. Grenoble Alpes, INSERM, CHU Grenoble, BrainTech Lab Grenoble F-38000 France
| | - Bernard Dieny
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec Grenoble F-38000 France
| | - Alice Nicolas
- Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec Grenoble INP, LTM Grenoble F-38000 France
| |
Collapse
|
4
|
Rennert E, Vaikuntanathan S. A thermodynamic framework for nonequilibrium self-assembly and force morphology tradeoffs in branched actin networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567734. [PMID: 39464062 PMCID: PMC11507704 DOI: 10.1101/2023.11.19.567734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Branched actin networks are involved in a variety of cellular processes, most notably the formation of lamellipodia in the leading edge of the cell. These systems adapt to varying loads through force dependent assembly rates that allow the network density and material properties to be modulated. Recent experimental work has described growth and force feedback mechanisms in these systems. Here, we consider the role played by energy dissipation in determining the kind of growth-force-morphology curves obtained in experiments. We construct a minimal model of the branched actin network self assembly process incorporating some of the established mechanisms. Our minimal analytically tractable model is able to reproduce experimental trends in density and growth rate. Further, we show how these trends depend crucially on entropy dissipation and change quantitatively if the entropy dissipation is parametrically set to values corresponding to a quasistatic state. Finally, we also identify the potential energy costs of adaptive behavior by branched actin networks, using insights from our minimal models. We suggest that the dissipative cost in the system beyond what is necessary to move the load may be necessary to maintain an adaptive steady state. Our results hence show how constraints from stochastic thermodynamics and non-equilibrium thermodynamics may bound or constrain the structures that result in such force generating processes.
Collapse
|
5
|
Hill JM, Cai S, Carver MD, Drubin DG. A role for cross-linking proteins in actin filament network organization and force generation. Proc Natl Acad Sci U S A 2024; 121:e2407838121. [PMID: 39405356 PMCID: PMC11513903 DOI: 10.1073/pnas.2407838121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024] Open
Abstract
The high turgor pressure across the plasma membrane of yeasts creates a requirement for substantial force production by actin polymerization and myosin motor activity for clathrin-mediated endocytosis (CME). Endocytic internalization is severely impeded in the absence of fimbrin, an actin filament crosslinking protein called Sac6 in budding yeast. Here, we combine live-cell imaging and mathematical modeling to gain insights into the role of actin filament crosslinking proteins in force generation. Genetic manipulation showed that CME sites with more crosslinking proteins are more effective at internalization under high load. Simulations of an experimentally constrained, agent-based mathematical model recapitulate the result that endocytic networks with more double-bound fimbrin molecules internalize the plasma membrane against elevated turgor pressure more effectively. Networks with large numbers of crosslinks also have more growing actin filament barbed ends at the plasma membrane, where the addition of new actin monomers contributes to force generation and vesicle internalization. Our results provide a richer understanding of the crucial role played by actin filament crosslinking proteins during actin network force generation, highlighting the contribution of these proteins to the self-organization of the actin filament network and force generation under increased load.
Collapse
Affiliation(s)
- Jennifer M. Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Songlin Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael D. Carver
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| |
Collapse
|
6
|
Singh SB, Rajput SS, Sharma A, Kataria S, Dutta P, Ananthanarayanan V, Nandi A, Patil S, Majumdar A, Subramanyam D. Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin-mediated endocytosis. eLife 2024; 13:e98363. [PMID: 39382268 PMCID: PMC11643626 DOI: 10.7554/elife.98363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.
Collapse
Affiliation(s)
- Surya Bansi Singh
- National Centre for Cell Science, SP Pune University CampusPuneIndia
- SP Pune UniversityPuneIndia
| | - Shatruhan Singh Rajput
- Indian Institute of Science Education and ResearchPuneIndia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court RoadCambridgeUnited Kingdom
| | - Aditya Sharma
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | - Sujal Kataria
- Indian Institute of Science Education and ResearchPuneIndia
| | - Priyanka Dutta
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology, Bombay PowaiMumbaiIndia
| | | | - Amitabha Majumdar
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| |
Collapse
|
7
|
Settle AH, Winer BY, de Jesus MM, Seeman L, Wang Z, Chan E, Romin Y, Li Z, Miele MM, Hendrickson RC, Vorselen D, Perry JSA, Huse M. β2 integrins impose a mechanical checkpoint on macrophage phagocytosis. Nat Commun 2024; 15:8182. [PMID: 39294148 PMCID: PMC11411054 DOI: 10.1038/s41467-024-52453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling. Using phosphoproteomics, we identified β2 integrins as critical mediators of this mechanically regulated phagocytic switch. Macrophages lacking β2 integrins or their downstream effectors, Talin1 and Vinculin, exhibited specific defects in phagocytic cup architecture and selective suppression of stiff cargo uptake. We conclude that integrin signaling serves as a mechanical checkpoint during phagocytosis to pair cargo rigidity to the appropriate mode of engulfment.
Collapse
Affiliation(s)
- Alexander H Settle
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Y Winer
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel M de Jesus
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauren Seeman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaoquan Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology & Molecular Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yevgeniy Romin
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M Miele
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
| | - Daan Vorselen
- Cell Biology and Immunology, Wageningen University & Research, Wageningen, The Netherlands
| | - Justin S A Perry
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology & Molecular Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Morgan Huse
- Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology & Molecular Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
8
|
Hill JM, Cai S, Carver MD, Drubin DG. A Role for Cross-linking Proteins in Actin Filament Network Organization and Force Generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590161. [PMID: 38659919 PMCID: PMC11042252 DOI: 10.1101/2024.04.19.590161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The high turgor pressure across the plasma membrane of yeasts creates a requirement for substantial force production by actin polymerization and myosin motor activity for clathrin-mediated endocytosis (CME). Endocytic internalization is severely impeded in the absence of fimbrin, an actin filament crosslinking protein called Sac6 in budding yeast. Here, we combine live-cell imaging and mathematical modeling to gain new insights into the role of actin filament crosslinking proteins in force generation. Genetic manipulation showed that CME sites with more crosslinking proteins are more effective at internalization under high load. Simulations of an experimentally constrained, agent-based mathematical model recapitulate the result that endocytic networks with more double-bound fimbrin molecules internalize the plasma membrane against elevated turgor pressure more effectively. Networks with large numbers of crosslinks also have more growing actin filament barbed ends at the plasma membrane, where the addition of new actin monomers contributes to force generation and vesicle internalization. Our results provide a richer understanding of the crucial role played by actin filament crosslinking proteins during actin network force generation, highlighting the contribution of these proteins to the self-organization of the actin filament network and force generation under increased load.
Collapse
Affiliation(s)
- Jennifer M Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Songlin Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Michael D Carver
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
9
|
Sudakov NP, Chang HM, Renn TY, Klimenkov IV. Degenerative and Regenerative Actin Cytoskeleton Rearrangements, Cell Death, and Paradoxical Proliferation in the Gills of Pearl Gourami ( Trichogaster leerii) Exposed to Suspended Soot Microparticles. Int J Mol Sci 2023; 24:15146. [PMID: 37894826 PMCID: PMC10607021 DOI: 10.3390/ijms242015146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The effect is studied of water-suspended soot microparticles on the actin cytoskeleton, apoptosis, and proliferation in the gill epithelium of pearl gourami. To this end, the fish are kept in aquariums with 0.005 g/L of soot for 5 and 14 days. Laser confocal microscopy is used to find that at the analyzed times of exposure to the pollutant zones appear in the gill epithelium, where the actin framework of adhesion belts dissociates and F-actin either forms clumps or concentrates perinuclearly. It is shown that the exposure to soot microparticles enhances apoptosis. On day 5, suppression of the proliferation of cells occurs, but the proliferation increases to the control values on day 14. Such a paradoxical increase in proliferation may be a compensatory process, maintaining the necessary level of gill function under the exposure to toxic soot. This process may occur until the gills' recovery reserve is exhausted. In general, soot microparticles cause profound changes in the actin cytoskeleton in gill cells, greatly enhance cell death, and influence cell proliferation as described. Together, these processes may cause gill dysfunction and affect the viability of fish.
Collapse
Affiliation(s)
- Nikolay P. Sudakov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Ting-Yi Renn
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Igor V. Klimenkov
- Department of Cell Ultrastructure, Limnological Institute, Siberian Branch, Russian Academy of Sciences, 3 Ulan-Batorskaya St., 664033 Irkutsk, Russia;
| |
Collapse
|
10
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Jasnin M, Hervy J, Balor S, Bouissou A, Proag A, Voituriez R, Schneider J, Mangeat T, Maridonneau-Parini I, Baumeister W, Dmitrieff S, Poincloux R. Elasticity of podosome actin networks produces nanonewton protrusive forces. Nat Commun 2022; 13:3842. [PMID: 35789161 PMCID: PMC9253342 DOI: 10.1038/s41467-022-30652-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells.
Collapse
Affiliation(s)
- Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Jordan Hervy
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Balor
- Plateforme de Microscopie Électronique Intégrative, Centre de Biologie Intégrative, CNRS, UPS, Toulouse, France
| | - Anaïs Bouissou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Amsha Proag
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Integrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | | | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
13
|
Boiero Sanders M, Toret CP, Guillotin A, Antkowiak A, Vannier T, Robinson RC, Michelot A. Specialization of actin isoforms derived from the loss of key interactions with regulatory factors. EMBO J 2022; 41:e107982. [PMID: 35178724 PMCID: PMC8886540 DOI: 10.15252/embj.2021107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
A paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin‐binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.
Collapse
Affiliation(s)
| | - Christopher P Toret
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Audrey Guillotin
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Adrien Antkowiak
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Thomas Vannier
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Alphée Michelot
- CNRS, IBDM, Turing Centre for Living Systems, Aix Marseille Univ, Marseille, France
| |
Collapse
|
14
|
Reda B, Alphée M, Julien H, Olivia DR. Non-linear elastic properties of actin patches to partially rescue yeast endocytosis efficiency in the absence of the cross-linker Sac6. SOFT MATTER 2022; 18:1479-1488. [PMID: 35088793 DOI: 10.1039/d1sm01437d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Clathrin mediated endocytosis is an essential and complex cellular process involving more than 60 proteins. In yeast, successful endocytosis requires counteracting a large turgor pressure. To this end, yeasts assemble actin patches, which accumulate elastic energy during their assembly. We investigated the material properties of reconstituted actin patches from a wild-type (WT) strain and a mutant strain lacking the cross-linker Sac6 (sac6Δ), which has reduced endocytosis efficiency in live cells. We hypothesized that a change in the viscous properties of the actin patches, which would dissipate more mechanical energy, could explain this reduced efficiency. There was however no significant difference in the viscosity of both types of patches. However, we discovered a significantly different non-linear elastic response. While WT patches had a constant elastic modulus at different stress values, sac6Δ patches had a lower elastic modulus at low stress, before stiffening at higher ones, up to values similar to those of WT patches. To understand the consequences of this discovery, we performed, in vivo, a precise analysis of actin patch dynamics. Our analysis reveals that a small fraction of actin patches successfully complete endocytosis in sac6Δ cells, provided that those assemble an excess of actin at the membrane compared to WT. This observation indicates that the non-linear elastic properties of actin networks in sac6Δ cells contribute to rescue endocytosis, requiring nevertheless more actin material to build-up the necessary stored elastic energy.
Collapse
Affiliation(s)
- Belbahri Reda
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, Paris, France.
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Michelot Alphée
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Heuvingh Julien
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, Paris, France.
| | - du Roure Olivia
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
15
|
Laplaud V, Levernier N, Pineau J, Roman MS, Barbier L, Sáez PJ, Lennon-Duménil AM, Vargas P, Kruse K, du Roure O, Piel M, Heuvingh J. Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. SCIENCE ADVANCES 2021; 7:eabe3640. [PMID: 34215576 PMCID: PMC11057708 DOI: 10.1126/sciadv.abe3640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The cell cortex is a contractile actin meshwork, which determines cell shape and is essential for cell mechanics, migration, and division. Because its thickness is below optical resolution, there is a tendency to consider the cortex as a thin uniform two-dimensional layer. Using two mutually attracted magnetic beads, one inside the cell and the other in the extracellular medium, we pinch the cortex of dendritic cells and provide an accurate and time-resolved measure of its thickness. Our observations draw a new picture of the cell cortex as a highly dynamic layer, harboring large fluctuations in its third dimension because of actomyosin contractility. We propose that the cortex dynamics might be responsible for the fast shape-changing capacity of highly contractile cells that use amoeboid-like migration.
Collapse
Affiliation(s)
- Valentin Laplaud
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Nicolas Levernier
- Department of Theoretical Physics, University of Geneva, Geneva, Switzerland
| | - Judith Pineau
- Institut Curie, INSERM U932, PSL University, Paris, France
| | | | - Lucie Barbier
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Pablo J Sáez
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | | | - Pablo Vargas
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Karsten Kruse
- Departments of Biochemistry and Theoretical Physics and NCCR for Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Univ Paris, Sorbonne Université, Paris, France.
| |
Collapse
|
16
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
17
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
18
|
Lemière J, Ren Y, Berro J. Rapid adaptation of endocytosis, exocytosis and eisosomes after an acute increase in membrane tension in yeast cells. eLife 2021; 10:62084. [PMID: 33983119 PMCID: PMC9045820 DOI: 10.7554/elife.62084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
During clathrin-mediated endocytosis (CME) in eukaryotes, actin assembly is required to overcome large membrane tension and turgor pressure. However, the molecular mechanisms by which the actin machinery adapts to varying membrane tension remain unknown. In addition, how cells reduce their membrane tension when they are challenged by hypotonic shocks remains unclear. We used quantitative microscopy to demonstrate that cells rapidly reduce their membrane tension using three parallel mechanisms. In addition to using their cell wall for mechanical protection, yeast cells disassemble eisosomes to buffer moderate changes in membrane tension on a minute time scale. Meanwhile, a temporary reduction in the rate of endocytosis for 2–6 min and an increase in the rate of exocytosis for at least 5 min allow cells to add large pools of membrane to the plasma membrane. We built on these results to submit the cells to abrupt increases in membrane tension and determine that the endocytic actin machinery of fission yeast cells rapidly adapts to perform CME. Our study sheds light on the tight connection between membrane tension regulation, endocytosis, and exocytosis.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Department of Cell Biology, Yale University, New Haven, United States
| |
Collapse
|
19
|
Mote RD, Yadav J, Singh SB, Tiwari M, V SL, Patil S, Subramanyam D. Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness. J Biol Chem 2020; 295:16888-16896. [PMID: 33087446 PMCID: PMC7864080 DOI: 10.1074/jbc.ac120.014343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/19/2020] [Indexed: 11/06/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate.
Collapse
Affiliation(s)
- Ridim D Mote
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Babasaheb Ambedkar Marathwada University, Aurangabad, India; Applied Parasitology Research Laboratory, Department of Zoology, JES College, Jalna, India
| | - Jyoti Yadav
- Indian Institute of Science Education and Research, Pune, India
| | - Surya Bansi Singh
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Savitribai Phule Pune University, Pune, India
| | - Mahak Tiwari
- National Centre for Cell Science, SP Pune University Campus, Pune, India; Savitribai Phule Pune University, Pune, India
| | - Shinde Laxmikant V
- Babasaheb Ambedkar Marathwada University, Aurangabad, India; Applied Parasitology Research Laboratory, Department of Zoology, JES College, Jalna, India
| | - Shivprasad Patil
- Indian Institute of Science Education and Research, Pune, India.
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University Campus, Pune, India.
| |
Collapse
|
20
|
Day KJ, Stachowiak JC. Biophysical forces in membrane bending and traffic. Curr Opin Cell Biol 2020; 65:72-77. [PMID: 32229366 PMCID: PMC7529674 DOI: 10.1016/j.ceb.2020.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
Intracellular trafficking requires extensive changes in membrane morphology. Cells use several distinct molecular factors and physical cues to remodel membranes. Here, we highlight recent advances in identifying the biophysical mechanisms of membrane curvature generation. In particular, we focus on the cooperation of molecular and physical drivers of membrane bending during three stages of vesiculation: budding, cargo selection, and scission. Taken together, the studies reviewed here emphasize that, rather than a single dominant mechanism, several mechanisms typically work in parallel during each step of membrane remodeling. Important challenges for the future of this field are to understand how multiple mechanisms work together synergistically and how a series of stochastic events can be combined to achieve a deterministic result-assembly of the trafficking vesicle.
Collapse
Affiliation(s)
- Kasey J Day
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, 107 W. Dean Keeton St., C0800, Austin, TX, 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, TX, 78712, USA.
| |
Collapse
|