1
|
Deniz Ö, Aragona F, Pezzino G, Cancellieri E, Bozaci S, Tümer KÇ, Fazio F. Modeling climate change effects on some biochemical parameters in horse. Res Vet Sci 2025; 189:105630. [PMID: 40168832 DOI: 10.1016/j.rvsc.2025.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Changes in the global climate pose a severe threat to human and animal welfare and productivity. Total proteins (TP), globulins (GLOB), albumins (ALB), alkaline phosphatase (ALP), creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), blood urea nitrogen (BUN), γ-glutamyl transferase (GGT), and creatinine (CREA) were evaluated during a three-year monitoring period (2021-23) on 16 Thoroughbred retired mares from the regional Golkoy Breeding Farm in Kastamonu- Turkey. The following thermal and hygrometric parameters were gathered: ambient temperature (AT), relative humidity (RH) and ventilation (VT), and the Temperature-Humidity Index (THI) was then calculated. Blood samples were collected on the first of each month from January 2021 to December 2023 and the obtained serum was used for the analysis, variations in environmental parameters were correlated to changes in biochemical profile. Two-way for repeated measure ANOVA showed a significant effect of month for AT (<0.0001), RH (<0.0001), and THI (<0.0001), and on TP (p < 0.001), GLOB (p < 0.001), ALB (p < 0.0001), ALP (p < 0.01), CK (p < 0.01), LDH (p < 0.001), AST (p < 0.0001), BUN (p < 0.0001), GGT (p < 0.0001), and CREA (p < 0.0001). ALP, CK, LDH, AST, and BUN values increased during the hottest periods, while GGT showed decreasing values during the summer. CREA showed positive correlation with AT, and LDH and CREA exhibited negative correlation with RH. These results may be useful for the monitoring of horses' physiological conditions as a result of climate change.
Collapse
Affiliation(s)
- Ömer Deniz
- Kastamonu University, Faculty of Veterinary Medicine, Department of Clinical Science and Internal Medicine, 37200, Merkez, Kastamonu, Turkey
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy.
| | - Gaetana Pezzino
- Laboratory of Immunology and Biotherapy, Department Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Enrico Cancellieri
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy
| | - Serkan Bozaci
- Kastamonu University, Faculty of Veterinary Medicine, Department of Clinical Science and Internal Medicine, 37200, Merkez, Kastamonu, Turkey
| | - Kenan Çağrı Tümer
- Kastamonu University, Faculty of Veterinary Medicine, Department of Clinical Science and Internal Medicine, 37200, Merkez, Kastamonu, Turkey
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
2
|
Zhao SY, Liu HK, Xie ZS, Wu YM, Wu PL, Liu T, Yang WQ, Wu J, Fu J, Wang CM, James AA, Chen XG. Vision guides the twilight search for oviposition sites of the Asian tiger mosquito, Aedes albopictus. PLoS Negl Trop Dis 2024; 18:e0012674. [PMID: 39602395 PMCID: PMC11602101 DOI: 10.1371/journal.pntd.0012674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Oviposition site selection is an important component of vector mosquito reproductive biology. The Asian Tiger mosquito, Aedes albopictus, is a major and important vector of arboviruses including Dengue. Previous studies documented the preference of gravid females for small, dark-colored water containers as oviposition sites, which they sought during the twilight period (dusk) of their locomotor activity. Vision plays an important role in this behavior, and factors such as the shape, size, and color of the container, light intensity, polarization, spectrum, and other visual cues guide the search for suitable oviposition sites, but the mechanistic factors driving this behavior are unclear. METHODOLOGY/PRINCIPAL FINDINGS We blindfolded adult female compound eyes and observed the effects of a lack of vision on the ability to discriminate and utilize preferred oviposition sites. Furthermore, the transcriptomes of blindfolded mosquitoes were screened to identify genes with vision-sensitive expression profiles and gene-editing was used to create non-functional mutations in two of them, rhodopsin-like (mutation designated 'rho-l△807') and kynurenine hydroxylase (mutation designated 'khw'). Behavioral tests of both mutant and control strains revealed that the rho-l△807 mutant mosquitoes had a significant decrease in their ability to search for preferred oviposition sites that correlated with a reduced ability to recognize long-wavelength red light. The khw mutant mosquitoes also had a reduced ability to identify preferred oviposition sites that correlated with reductions in their ability to respond to variations in daily brightness and their ability to discriminate among different color options of the containers and background monochromatic light. CONCLUSIONS/SIGNIFICANCE This study underscores the importance of visual cues in the oviposition site selection behavior of adult female Ae. albopictus. We demonstrate that wild-type rho-l and kh gene products play a crucial role in this behavior, as mutants exhibit altered sensitivity or recognition of light intensity and substrate colors.
Collapse
Affiliation(s)
- Si Yu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Kai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhen Sheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Ming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei Lin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tong Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen Qiang Yang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - JunYu Fu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chun Mei Wang
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Unneberg P, Larsson M, Olsson A, Wallerman O, Petri A, Bunikis I, Vinnere Pettersson O, Papetti C, Gislason A, Glenner H, Cartes JE, Blanco-Bercial L, Eriksen E, Meyer B, Wallberg A. Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins. Nat Commun 2024; 15:6297. [PMID: 39090106 PMCID: PMC11294593 DOI: 10.1038/s41467-024-50239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.
Collapse
Affiliation(s)
- Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Anna Petri
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden
| | | | - Astthor Gislason
- Marine and Freshwater Research Institute, Pelagic Division, Reykjavik, Iceland
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joan E Cartes
- Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain
| | | | | | - Bettina Meyer
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carlvon Ossietzky University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
4
|
Schartmüller B, Anderson P, McKee D, Connan-McGinty S, Kopec TP, Daase M, Johnsen G, Berge J. Development and calibration of a high dynamic range and autonomous ocean-light instrument to measure sub-surface profiles in ice-covered waters. APPLIED OPTICS 2023; 62:8308-8315. [PMID: 38037934 DOI: 10.1364/ao.502437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 12/02/2023]
Abstract
The optical chain and logger (OptiCAL) is an autonomous ice-tethered observatory equipped with multiple light sensors for mapping the variation of light with depth. We describe the instrument and present an ensemble calibration for downwelling irradiance E P A R in [µm o l m -2 s -1]. Results from a long-term deployment in the Arctic Ocean demonstrate that the OptiCAL can cover the high dynamic range of under-ice light levels from July to November and produce realistic values in terms of magnitude when compared to modeled surface irradiance. Transient features of raised light levels at specific depths associated with nearby leads in the ice underline the importance of depth-resolved light measurements.
Collapse
|
5
|
Grant S, Johnsen G, McKee D, Zolich A, Cohen JH. Spectral and RGB analysis of the light climate and its ecological impacts using an all-sky camera system in the Arctic. APPLIED OPTICS 2023; 62:5139-5150. [PMID: 37707217 DOI: 10.1364/ao.480454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/22/2023] [Indexed: 09/15/2023]
Abstract
The ArcLight observatory provides an hourly continuous time series of all-sky images providing light climate data (intensity, spectral composition, and photoperiod) from the Arctic (Svalbard at 79°N). Until recently, no complete annual time series of light climate relevant for biological processes has been provided from the high Arctic because of insufficient sensitivity of commercial light sensors during the Polar Night. The ArcLight set up is unique, as it provides both all-sky images and the corresponding integrated spectral irradiance in the visible part of the solar electromagnetic spectrum (E P A R ). Here we present a further development providing hourly diel-annual dynamics from 2020 of the irradiance partitioned into the red, green, and blue parts of the solar spectrum and illustrate their relation to weather conditions, and sun and moon trajectories. We show that there is variation between the RGB proportions of irradiance throughout the year, with the blue part of the spectrum showing the greatest variation, which is dependent on weather conditions (i.e., cloud cover). We further provide an example of the biological impact of these spectral variations in the light climate using in vivo Chl a-specific absorption coefficients of diatoms (mean of six low light acclimated northern-Arctic bloom-forming species) to model total algal light absorption (AQ t o t a l ) and the corresponding fraction of quanta used by Photosystem II (AQPSII) (O 2 production) in RGB bands and the potential impacts on the photoreceptor response, suggesting periods where repair and maintenance functions dominate activity in the absence of appreciable levels of red or green light. The method used here can be applied to light climate data and spectral response data worldwide to give localized ecological models of AQ.
Collapse
|
6
|
Hyman R. The Arctic after dark: a secret world of hidden life. Nature 2023; 616:238-241. [PMID: 37045924 DOI: 10.1038/d41586-023-00976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
7
|
Evidence of separate influence of moon and sun on light synchronization of mussel's daily rhythm during the polar night. iScience 2023; 26:106168. [PMID: 36876122 PMCID: PMC9978622 DOI: 10.1016/j.isci.2023.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.
Collapse
|
8
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Häfker NS, Connan-McGinty S, Hobbs L, McKee D, Cohen JH, Last KS. Animal behavior is central in shaping the realized diel light niche. Commun Biol 2022; 5:562. [PMID: 35676530 PMCID: PMC9177748 DOI: 10.1038/s42003-022-03472-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/10/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractAnimal behavior in space and time is structured by the perceived day/night cycle. However, this is modified by the animals’ own movement within its habitat, creating a realized diel light niche (RDLN). To understand the RDLN, we investigated the light as experienced by zooplankton undergoing synchronized diel vertical migration (DVM) in an Arctic fjord around the spring equinox. We reveal a highly dampened light cycle with diel changes being about two orders of magnitude smaller compared to the surface or a static depth. The RDLN is further characterized by unique wavelength-specific irradiance cycles. We discuss the relevance of RDLNs for animal adaptations and interactions, as well as implications for circadian clock entrainment in the wild and laboratory.
Collapse
|