1
|
Stypułkowska A, Kolenda R, Carolak E, Czajkowska J, Dutkiewicz A, Waszczuk W, Bińczyk W, Thurston TLM, Grzymajło K. SanA is an inner membrane protein mediating Salmonella Typhimurium infection. Microbiol Spectr 2025:e0283324. [PMID: 40304475 DOI: 10.1128/spectrum.02833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Bacterial membrane proteins like SanA are essential for environmental interactions, significantly affecting the physicochemical properties of the bacterial envelope and influencing Salmonella's antibiotic resistance and infection traits. Previous research links sanA deletion to increased Salmonella invasiveness, though the mechanisms are poorly understood. This study explores SanA's role in Salmonella infection both in vitro and in vivo. It examines its expression pattern, subcellular localization, and connection with the genetic background responsible for the infection phenotype following sanA knockout. Through subcellular fractionation and Western blotting, SanA was found mainly in the inner membrane. Transcriptional fusion indicated that sanA expression is important during late exponential and early stationary growth phases and remains significant 24 h post-host cell entry. Invasion assays showed that sanA deletion in bacteria grown to early stationary phase increased invasiveness, partly due to higher sicA expression regulated by nutrient availability. In vivo results supported these findings, with the sanA mutant exhibiting enhanced colonization of mouse organs but being outcompeted by the wild type in competitive infection. This study provides new insights into the role of SanA in Salmonella's response to environmental stress, including hostile environments, emphasizing the importance of inner membrane proteins in shaping bacterial fitness and pathogenicity.IMPORTANCESalmonella poses significant global health and economic challenges. Its successful infection depends on complex interactions between the bacteria and host cells, involving various proteins in the bacterial envelopes. One such protein, SanA, plays a role in bacterial interaction with the environment, affecting antibiotic resistance and infection capability. Previous studies revealed that removing the sanA gene increases Salmonella's ability to enter the host cells, though the underlying mechanisms were unclear. This research investigates SanA's role during infections, discovering its primary location in the inner bacterial membrane and its heightened activity during specific growth phases and post-host cell entry. Removing sanA made the bacteria more invasive, likely due to the upregulation of genes aiding host cell infection, especially in nutrient-rich conditions. In mouse infection experiments, SanA-deficient bacteria colonized organs more effectively but were less competitive when wild-type and mutant bacteria coexisted. This indicates SanA's role in managing environmental stress, enhancing Salmonella's infection and survival capabilities.
Collapse
Affiliation(s)
- Adrianna Stypułkowska
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Ewa Carolak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Joanna Czajkowska
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Agata Dutkiewicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Wiktoria Waszczuk
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| | - Wiktoria Bińczyk
- Faculty of Medicine, Wrocław Medical University, Wrocław, Lower Silesian Voivodeship, Poland
| | - Teresa L M Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, England, United Kingdom
| | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Lower Silesian Voivodeship, Poland
| |
Collapse
|
2
|
Lentsch V, Woller A, Rocker A, Aslani S, Moresi C, Ruoho N, Larsson L, Fattinger SA, Wenner N, Barazzone EC, Hardt WD, Loverdo C, Diard M, Slack E. Vaccine-enhanced competition permits rational bacterial strain replacement in the gut. Science 2025; 388:74-81. [PMID: 40179176 DOI: 10.1126/science.adp5011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025]
Abstract
Colonization of the intestinal lumen precedes invasive infection for a wide range of enteropathogenic and opportunistic pathogenic bacteria. We show that combining oral vaccination with engineered or selected niche-competitor strains permits pathogen exclusion and strain replacement in the mouse gut lumen. This approach can be applied either prophylactically to prevent invasion of nontyphoidal Salmonella strains, or therapeutically to displace an established Escherichia coli. Both intact adaptive immunity and metabolic niche competition are necessary for efficient vaccine-enhanced competition. Our findings imply that mucosal antibodies have evolved to work in the context of gut microbial ecology by influencing the outcome of competition. This has broad implications for the elimination of pathogenic and antibiotic-resistant bacterial reservoirs and for rational microbiota engineering.
Collapse
Affiliation(s)
- Verena Lentsch
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Medical Research Council (MRC) Translational Immunology Discovery Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Aurore Woller
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Selma Aslani
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Claudia Moresi
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Niina Ruoho
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Louise Larsson
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | - Wolf-Dietrich Hardt
- Institute for Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Claude Loverdo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin (LJP), Paris, France
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
| | - Emma Slack
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Basel Research Centre for Child Health, Basel, Switzerland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Santamaria de Souza N, Cherrak Y, Andersen TB, Vetsch M, Barthel M, Kroon S, Bakkeren E, Schubert C, Christen P, Kiefer P, Vorholt JA, Nguyen BD, Hardt WD. Context-dependent change in the fitness effect of (in)organic phosphate antiporter glpT during Salmonella Typhimurium infection. Nat Commun 2025; 16:1912. [PMID: 39994176 PMCID: PMC11850910 DOI: 10.1038/s41467-025-56851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Salmonella enterica is a frequent cause of foodborne diseases, which is attributed to its adaptability. Even within a single host, expressing a gene can be beneficial in certain infection stages but neutral or even detrimental in others as previously shown for flagellins. Mutants deficient for the conserved glycerol-3-phosphate and phosphate antiporter glpT have been shown to be positively selected in nature, clinical, and laboratory settings. This suggests that different selective pressures select for the presence or absence of GlpT in a context dependent fashion, a phenomenon known as antagonistic pleiotropy. Using mutant libraries and reporters, we investigated the fitness of glpT-deficient mutants during murine orogastric infection. While glpT-deficient mutants thrive during initial growth in the gut lumen, where GlpT's capacity to import phosphate is disadvantageous, they are counter-selected by macrophages. The dichotomy showcases the need to study the spatial and temporal heterogeneity of enteric pathogens' fitness across distinct lifestyles and niches. Insights into the differential adaptation during infection may reveal opportunities for therapeutic interventions.
Collapse
Affiliation(s)
| | - Yassine Cherrak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Thea Bill Andersen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Michel Vetsch
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Erik Bakkeren
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Schubert
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Berdejo D, Mortier J, Cambré A, Sobota M, Van Eyken R, Kim TD, Vanoirbeek K, García Gonzalo D, Pagán R, Diard M, Aertsen A. Evolutionary trade-off between heat shock resistance, growth at high temperature, and virulence expression in Salmonella Typhimurium. mBio 2024; 15:e0310523. [PMID: 38349183 PMCID: PMC10936172 DOI: 10.1128/mbio.03105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the evolutionary dynamics of foodborne pathogens throughout our food production chain is of utmost importance. In this study, we reveal that Salmonella Typhimurium can readily and reproducibly acquire vastly increased heat shock resistance upon repeated exposure to heat shock. Counterintuitively, this boost in heat shock resistance was invariantly acquired through loss-of-function mutations in the dnaJ gene, encoding a heat shock protein that acts as a molecular co-chaperone of DnaK and enables its role in protein folding and disaggregation. As a trade-off, however, the acquisition of heat shock resistance inevitably led to attenuated growth at 37°C and higher temperatures. Interestingly, loss of DnaJ also downregulated the activity of the master virulence regulator HilD, thereby lowering the fraction of virulence-expressing cells within the population and attenuating virulence in mice. By connecting heat shock resistance evolution to attenuation of HilD activity, our results confirm the complex interplay between stress resistance and virulence in Salmonella Typhimurium. IMPORTANCE Bacterial pathogens such as Salmonella Typhimurium are equipped with both stress response and virulence features in order to navigate across a variety of complex inhospitable environments that range from food-processing plants up to the gastrointestinal tract of its animal host. In this context, however, it remains obscure whether and how adaptation to one environment would obstruct fitness in another. In this study, we reveal that severe heat stress counterintuitively, but invariantly, led to the selection of S. Typhimurium mutants that are compromised in the activity of the DnaJ heat shock protein. While these mutants obtained massively increased heat resistance, their virulence became greatly attenuated. Our observations, therefore, reveal a delicate balance between optimal tuning of stress response and virulence features in bacterial pathogens.
Collapse
Affiliation(s)
- Daniel Berdejo
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Tom Dongmin Kim
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kristof Vanoirbeek
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Diego García Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | | | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Xiang N, Wong CW, Guo X, Wang S. Infectivity responses of Salmonella enterica to bacteriophages on maize seeds and maize sprouts. Curr Res Food Sci 2024; 8:100708. [PMID: 38444730 PMCID: PMC10912052 DOI: 10.1016/j.crfs.2024.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Salmonella enterica (S. enterica) is a major foodborne pathogen leading to a large number of outbreaks and bringing food safety concerns to sprouts. The control of S. enterica on maize sprouts is important because raw maize sprouts have been gaining attention as a novel superfood. Compared to conventional chemical methods, the applications of bacteriophages are regarded as natural and organic. This study investigated the effects of a 2 h phage cocktail (SF1 and SI1, MOI 1000) soaking on reducing the populations of three Salmonella enterica strains: S. Enteritidis S5-483, S. Typhimurium S5-536, and S. Agona PARC5 on maize seeds and during the storage of maize sprouts. The results showed that the phage cocktail treatment effectively reduced populations of S. enterica strains by 1-3 log CFU/g on maize seeds and decreased population of S. Agona PACR5 by 1.16 log CFU/g on maize sprouts from 7.55 log CFU/g at day 0 of the storage period. On the other hand, the upregulations of flagella gene pefA by 1.5-folds and membrane gene lpxA by 23-folds in S. Typhimurium S5-536 indicated a differential response to the phage cocktail treatment. Conversely, stress response genes ompR, rpoS, and recA, as well as the DNA repair gene yafD, were downregulated in S. Agona PARC5. This work shows the use of bacteriophages could contribute as a part of hurdle effect to reduce S. enterica populations and is beneficial to develop strategies for controlling foodborne pathogens in the production and storage of maize sprouts.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| | - Xinbo Guo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, 120-2205 East Mall, Vancouver, BC, V6R 1Z4, Canada
| |
Collapse
|
7
|
Ciolli Mattioli C, Eisner K, Rosenbaum A, Wang M, Rivalta A, Amir A, Golding I, Avraham R. Physiological stress drives the emergence of a Salmonella subpopulation through ribosomal RNA regulation. Curr Biol 2023; 33:4880-4892.e14. [PMID: 37879333 PMCID: PMC10843543 DOI: 10.1016/j.cub.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Bacteria undergo cycles of growth and starvation to which they must adapt swiftly. One important strategy for adjusting growth rates relies on ribosomal levels. Although high ribosomal levels are required for fast growth, their dynamics during starvation remain unclear. Here, we analyzed ribosomal RNA (rRNA) content of individual Salmonella cells by using fluorescence in situ hybridization (rRNA-FISH) and measured a dramatic decrease in rRNA numbers only in a subpopulation during nutrient limitation, resulting in a bimodal distribution of cells with high and low rRNA content. During nutritional upshifts, the two subpopulations were associated with distinct phenotypes. Using a transposon screen coupled with rRNA-FISH, we identified two mutants, DksA and RNase I, acting on rRNA transcription shutdown and degradation, which abolished the formation of the subpopulation with low rRNA content. Our work identifies a bacterial mechanism for regulation of ribosomal bimodality that may be beneficial for population survival during starvation.
Collapse
Affiliation(s)
- Camilla Ciolli Mattioli
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kfir Eisner
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aviel Rosenbaum
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mengyu Wang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andre' Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ariel Amir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Roi Avraham
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
9
|
Kandolo O, Cherrak Y, Filella-Merce I, Le Guenno H, Kosta A, Espinosa L, Santucci P, Verthuy C, Lebrun R, Nilges M, Pellarin R, Durand E. Acinetobacter type VI secretion system comprises a non-canonical membrane complex. PLoS Pathog 2023; 19:e1011687. [PMID: 37769028 PMCID: PMC10564176 DOI: 10.1371/journal.ppat.1011687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
A. baumannii can rapidly acquire new resistance mechanisms and persist on abiotic surface, enabling the colonization of asymptomatic human host. In Acinetobacter the type VI secretion system (T6SS) is involved in twitching, surface motility and is used for interbacterial competition allowing the bacteria to uptake DNA. A. baumannii possesses a T6SS that has been well studied for its regulation and specific activity, but little is known concerning its assembly and architecture. The T6SS nanomachine is built from three architectural sub-complexes. Unlike the baseplate (BP) and the tail-tube complex (TTC), which are inherited from bacteriophages, the membrane complex (MC) originates from bacteria. The MC is the most external part of the T6SS and, as such, is subjected to evolution and adaptation. One unanswered question on the MC is how such a gigantesque molecular edifice is inserted and crosses the bacterial cell envelope. The A. baumannii MC lacks an essential component, the TssJ lipoprotein, which anchors the MC to the outer membrane. In this work, we studied how A. baumannii compensates the absence of a TssJ. We have characterized for the first time the A. baumannii's specific T6SS MC, its unique characteristic, its membrane localization, and assembly dynamics. We also defined its composition, demonstrating that its biogenesis employs three Acinetobacter-specific envelope-associated proteins that define an intricate network leading to the assembly of a five-proteins membrane super-complex. Our data suggest that A. baumannii has divided the function of TssJ by (1) co-opting a new protein TsmK that stabilizes the MC and by (2) evolving a new domain in TssM for homo-oligomerization, a prerequisite to build the T6SS channel. We believe that the atypical species-specific features we report in this study will have profound implication in our understanding of the assembly and evolutionary diversity of different T6SSs, that warrants future investigation.
Collapse
Affiliation(s)
- Ona Kandolo
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Yassine Cherrak
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Isaac Filella-Merce
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Hugo Le Guenno
- Microscopy Core Facility, Aix Marseille Univ, CNRS, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | - Artemis Kosta
- Microscopy Core Facility, Aix Marseille Univ, CNRS, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille, France
| | - Pierre Santucci
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
| | - Christophe Verthuy
- Proteomic Core Facility IMM, Marseille Protéomique (MaP), Aix Marseille Univ, Marseille Cedex 20, France
| | - Régine Lebrun
- Proteomic Core Facility IMM, Marseille Protéomique (MaP), Aix Marseille Univ, Marseille Cedex 20, France
| | - Michael Nilges
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
| | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Paris, France
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS)-UMR 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies and Biotechnologie (IM2B), Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille, France
| |
Collapse
|
10
|
Gül E, Bakkeren E, Salazar G, Steiger Y, Abi Younes A, Clerc M, Christen P, Fattinger SA, Nguyen BD, Kiefer P, Slack E, Ackermann M, Vorholt JA, Sunagawa S, Diard M, Hardt WD. The microbiota conditions a gut milieu that selects for wild-type Salmonella Typhimurium virulence. PLoS Biol 2023; 21:e3002253. [PMID: 37651408 PMCID: PMC10499267 DOI: 10.1371/journal.pbio.3002253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/13/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Guillem Salazar
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emma Slack
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute for Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Microbiology and Swiss Institute of Bioinformatics, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Médéric Diard
- Biozentrum, University of Basel, Basel, Switzerland
- Botnar Research Centre for Child Health, Basel, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Saleh DO, Horstmann JA, Giralt-Zúñiga M, Weber W, Kaganovitch E, Durairaj AC, Klotzsch E, Strowig T, Erhardt M. SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner. PLoS Pathog 2023; 19:e1011451. [PMID: 37315106 DOI: 10.1371/journal.ppat.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.
Collapse
Affiliation(s)
- Doaa Osama Saleh
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Abilash Chakravarthy Durairaj
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
12
|
Dolores Arista-Regalado A, Barba-León J, Humberto Bustamante V, Alberto Flores-Valdez M, Gaona J, Juliana Fajardo-Guerrero M. hilD is required for the active internalization of Salmonella Newport into cherry tomatoes. J Food Prot 2023; 86:100085. [PMID: 37003533 DOI: 10.1016/j.jfp.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Salmonella enterica is a foodborne pathogen that can be internalized into fresh produce. Most of the Salmonella virulence genes are clustered in regions denominated Salmonella Pathogenicity Islands (SPI). SPI-1 encodes a Type Three Secretion System (T3SS-1) and effector proteins that allow the internalization of Salmonella into animal cells. HilD is a transcriptional regulator that induces expression of SPI-1 genes and other related virulence genes located outside of this island. Here, we assessed the role of hilD in the internalization of Salmonella Newport and Typhimurium into cherry tomatoes, by evaluating either an isolate from an avocado orchard, S. Newport-45, and the laboratory strain S. Typhimurium SL1344 and their isogenic mutants in hilD. The internalization of these bacteria was carried out by using a temperature gradient of 12 °C. The transcription of hilD and invA was tested by qRT-PCR experiments. Our results show that S. Newport-45 hilD mutant viable cells obtained from the interior of the fruit were decreased (2.7-fold), compared with those observed for S. Typhimurium SL1344. Interestingly, at 3 days post-inoculation, the cells recovered from S. Newport-45 hilD mutant were similar to those recovered from all the strains evaluated, suggesting that hilD is required only for the initial internalization of S. Newport.
Collapse
|