1
|
Svistunov VO, Ehrmann KJ, Lencer WI, Schmieder SS. Sorting of complex sphingolipids within the cellular endomembrane systems. Front Cell Dev Biol 2025; 12:1490870. [PMID: 40078962 PMCID: PMC11897003 DOI: 10.3389/fcell.2024.1490870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
Cells contain a plethora of structurally diverse lipid species, which are unevenly distributed across the different cellular membrane compartments. Some of these lipid species require vesicular trafficking to reach their subcellular destinations. Here, we review recent advances made in the field that contribute to understanding lipid sorting during endomembrane trafficking.
Collapse
Affiliation(s)
- Victor O. Svistunov
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Kigumbi J. Ehrmann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Wayne I. Lencer
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Harvard Digestive Diseases Center, Boston, MA, United States
| | - S. S. Schmieder
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Buck AH, Nolte-'t Hoen ENM. The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Annu Rev Genet 2024; 58:409-432. [PMID: 39231450 DOI: 10.1146/annurev-genet-111523-102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
Collapse
Affiliation(s)
- Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom;
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;
| |
Collapse
|
3
|
Linne C, Heemskerk E, Zwanikken JW, Kraft DJ, Laan L. Optimality and cooperativity in superselective surface binding by multivalent DNA nanostars. SOFT MATTER 2024; 20:8515-8523. [PMID: 39417240 PMCID: PMC11484159 DOI: 10.1039/d4sm00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Weak multivalent interactions govern a large variety of biological processes like cell-cell adhesion and virus-host interactions. These systems distinguish sharply between surfaces based on receptor density, known as superselectivity. Present experimental studies typically involve tens or hundreds of interactions, resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems with few ligands, such as multi-domain proteins and bacteriophages binding to their host, show superselective behavior is an open question. Here, we address this question with a multivalent experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with each branch featuring a single stranded overhang that binds to complementary receptors on a target surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars can bind superselectively to surfaces and bind optimally at a valency of three, for a given binding strength and concentration. We explain this optimum by extending the current theory with interactions between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent interactions, by identifying cooperative mechanisms that lead to optimal selectivity, and providing quantitative values for the relevant parameters. These findings inspire additional design rules which improve future work on selective targeting in directed drug delivery.
Collapse
Affiliation(s)
- Christine Linne
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Eva Heemskerk
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Jos W Zwanikken
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Liedewij Laan
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
4
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthaeus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. Nat Commun 2024; 15:2767. [PMID: 38553473 PMCID: PMC10980822 DOI: 10.1038/s41467-024-47109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
Affiliation(s)
- Raluca Groza
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Kita Valerie Schmidt
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Paul Markus Müller
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Claire Schlack-Leigers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ursula Neu
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Claudia Matthaeus
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Justin Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Helge Ewers
- Institute of Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
5
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
6
|
Martino RA, Wang Q, Xu H, Hu G, Bell P, Arroyo EJ, Sims JJ, Wilson JM. Vector Affinity and Receptor Distribution Define Tissue-Specific Targeting in an Engineered AAV Capsid. J Virol 2023; 97:e0017423. [PMID: 37199615 PMCID: PMC10308920 DOI: 10.1128/jvi.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Unbiased in vivo selections of diverse capsid libraries can yield engineered capsids that overcome gene therapy delivery challenges like traversing the blood-brain barrier (BBB), but little is known about the parameters of capsid-receptor interactions that govern their improved activity. This hampers broader efforts in precision capsid engineering and is a practical impediment to ensuring the translatability of capsid properties between preclinical animal models and human clinical trials. In this work, we utilize the adeno-associated virus (AAV)-PHP.B-Ly6a model system to better understand the targeted delivery and BBB penetration properties of AAV vectors. This model offers a defined capsid-receptor pair that can be used to systematically define relationships between target receptor affinity and in vivo activity of engineered AAV vectors. Here, we report a high-throughput method for quantifying capsid-receptor affinity and demonstrate that direct binding assays can be used to organize a vector library into families with varied affinity for their target receptor. Our data indicate that efficient central nervous system transduction requires high levels of target receptor expression at the BBB, but it is not a requirement for receptor expression to be limited to the target tissue. We observed that enhanced receptor affinity leads to reduced transduction of off-target tissues but can negatively impact on-target cellular transduction and penetration of endothelial barriers. Together, this work provides a set of tools for defining vector-receptor affinities and demonstrates how receptor expression and affinity interact to impact the performance of engineered AAV vectors in targeting the central nervous system. IMPORTANCE Novel methods for measuring adeno-associated virus (AAV)-receptor affinities, especially in relation to vector performance in vivo, would be useful to capsid engineers as they develop AAV vectors for gene therapy applications and characterize their interactions with native or engineered receptors. Here, we use the AAV-PHP.B-Ly6a model system to assess the impact of receptor affinity on the systemic delivery and endothelial penetration properties of AAV-PHP.B vectors. We discuss how receptor affinity analysis can be used to isolate vectors with optimized properties, improve the interpretation of library selections, and ultimately translate vector activities between preclinical animal models and humans.
Collapse
Affiliation(s)
- R. Alexander Martino
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiang Wang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hao Xu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gui Hu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgardo J. Arroyo
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua J. Sims
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Groza R, Schmidt KV, Müller PM, Ronchi P, Schlack-Leigers C, Neu U, Puchkov D, Dimova R, Matthäus C, Taraska J, Weikl TR, Ewers H. Adhesion energy controls lipid binding-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546235. [PMID: 37503169 PMCID: PMC10370163 DOI: 10.1101/2023.06.23.546235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
Collapse
|
8
|
Armanious A, Gerelli Y, Micciulla S, Pace HP, Welbourn RJL, Sjöberg M, Agnarsson B, Höök F. Probing the Separation Distance between Biological Nanoparticles and Cell Membrane Mimics Using Neutron Reflectometry with Sub-Nanometer Accuracy. J Am Chem Soc 2022; 144:20726-20738. [DOI: 10.1021/jacs.2c08456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonius Armanious
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Yuri Gerelli
- Institut Max von Laue-Paul Langevin (ILL), 38042Grenoble, France
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131Ancona, Italy
| | | | - Hudson P. Pace
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Rebecca J. L. Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OxonOX11 0QX, United Kingdom
| | - Mattias Sjöberg
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Björn Agnarsson
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 41296Gothenburg, Sweden
| |
Collapse
|
9
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
10
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Nguyen L, McCord KA, Bui DT, Bouwman KM, Kitova EN, Elaish M, Kumawat D, Daskhan GC, Tomris I, Han L, Chopra P, Yang TJ, Willows SD, Mason AL, Mahal LK, Lowary TL, West LJ, Hsu STD, Hobman T, Tompkins SM, Boons GJ, de Vries RP, Macauley MS, Klassen JS. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat Chem Biol 2022; 18:81-90. [PMID: 34754101 DOI: 10.1038/s41589-021-00924-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Emerging evidence suggests that host glycans influence severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal that the receptor-binding domain (RBD) of the spike (S) protein on SARS-CoV-2 recognizes oligosaccharides containing sialic acid (Sia), with preference for monosialylated gangliosides. Gangliosides embedded within an artificial membrane also bind to the RBD. The monomeric affinities (Kd = 100-200 μM) of gangliosides for the RBD are similar to another negatively charged glycan ligand of the RBD proposed as a viral co-receptor, heparan sulfate (HS) dp2-dp6 oligosaccharides. RBD binding and infection of SARS-CoV-2 pseudotyped lentivirus to angiotensin-converting enzyme 2 (ACE2)-expressing cells is decreased following depletion of cell surface Sia levels using three approaches: sialyltransferase (ST) inhibition, genetic knockout of Sia biosynthesis, or neuraminidase treatment. These effects on RBD binding and both pseudotyped and authentic SARS-CoV-2 viral entry are recapitulated with pharmacological or genetic disruption of glycolipid biosynthesis. Together, these results suggest that sialylated glycans, specifically glycolipids, facilitate viral entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kim M Bouwman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Elena N Kitova
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohamed Elaish
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Poultry Disease Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dhanraj Kumawat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ilhan Tomris
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ling Han
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Steven D Willows
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew L Mason
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lori J West
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Tom Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.,Department of Chemistry, University of Georgia, Athens, GA, USA.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Zhang Y, Li L, Wang J. Tuning cellular uptake of nanoparticles via ligand density: Contribution of configurational entropy. Phys Rev E 2021; 104:054405. [PMID: 34942735 DOI: 10.1103/physreve.104.054405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/25/2021] [Indexed: 01/01/2023]
Abstract
The bioactivity of nanoparticles (NPs) crucially depends on their ability to cross biological membranes. A fundamental understanding of cell-NP interaction is hence essential to improve the performance of the NP-based biomedical applications. Although extensive studies of cellular uptake have converged upon the idea that the uptake process is mainly regulated by the elastic deformation of the cell membrane or NP, recent experimental observations indicate the ligand density as another critical factor in modulating NP uptake into cells. In this study, we propose a theoretical model of the wrapping of an elastic vesicle NP by a finite lipid membrane to depict the relevant energetic and morphological evolutions during the wrapping process driven by forming receptor-ligand bonds. In this model, the deformations of the membrane and the vesicle NP are assumed to follow the continuum Canham-Helfrich framework, whereas the change of configurational entropy of receptors is described from statistical thermodynamics. Results show that the ligand density strongly affects the binding energy and configurational entropy of free receptors, thereby altering the morphology of the vesicle-membrane system in the steady wrapping state. For the wrapping process by the finite lipid membrane, we also find that there exists optimal ligand density for the maximum wrapping degree. These predictions are consistent with relevant experimental observations reported in the literature. We have further observed that there are transitions of various wrapping phases (no wrapping, partial wrapping, and full wrapping) in terms of ligand density, membrane tension, and molecular binding energy. In particular, the ligand and receptor shortage regimes for the small and high ligand density are, respectively, identified. These results may provide guidelines for the rational design of nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Yudie Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Long Li
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China.,PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Tuerkova A, Kasson PM. Computational methods to study enveloped viral entry. Biochem Soc Trans 2021; 49:2527-2537. [PMID: 34783344 PMCID: PMC10184508 DOI: 10.1042/bst20210190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
The protein-membrane interactions that mediate viral infection occur via loosely ordered, transient assemblies, creating challenges for high-resolution structure determination. Computational methods and in particular molecular dynamics simulation have thus become important adjuncts for integrating experimental data, developing mechanistic models, and suggesting testable hypotheses regarding viral function. However, the large molecular scales of virus-host interaction also create challenges for detailed molecular simulation. For this reason, continuum membrane models have played a large historical role, although they have become less favored for high-resolution models of protein assemblies and lipid organization. Here, we review recent progress in the field, with an emphasis on the insight that has been gained using a mixture of coarse-grained and atomic-resolution molecular dynamics simulations. Based on successes and challenges to date, we suggest a multiresolution strategy that should yield the best mixture of computational efficiency and physical fidelity. This strategy may facilitate further simulations of viral entry by a broader range of viruses, helping illuminate the diversity of viral entry strategies and the essential common elements that can be targeted for antiviral therapies.
Collapse
Affiliation(s)
- Alzbeta Tuerkova
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
14
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
15
|
Renard HF, Boucrot E. Unconventional endocytic mechanisms. Curr Opin Cell Biol 2021; 71:120-129. [PMID: 33862329 DOI: 10.1016/j.ceb.2021.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Endocytosis mediates the uptake of extracellular proteins, micronutrients and transmembrane cell surface proteins. Importantly, many viruses, toxins and bacteria hijack endocytosis to infect cells. The canonical pathway is clathrin-mediated endocytosis (CME) and is active in all eukaryotic cells to support critical house-keeping functions. Unconventional mechanisms of endocytosis exit in parallel of CME, to internalize specific cargoes and support various cellular functions. These clathrin-independent endocytic (CIE) routes use three distinct mechanisms: acute signaling-induced membrane remodeling drives macropinocytosis, activity-dependent bulk endocytosis (ADBE), massive endocytosis (MEND) and EGFR non-clathrin endocytosis (EGFR-NCE). Cargo capture and local membrane deformation by cytosolic proteins is used by fast endophilin-mediated endocytosis (FEME), IL-2Rβ endocytosis and ultrafast endocytosis at synapses. Finally, the formation of endocytic pits by clustering of extracellular lipids or cargoes according to the Glycolipid-Lectin (GL-Lect) hypothesis mediates the uptake of SV40 virus, Shiga and cholera toxins, and galectin-clustered receptors by the CLIC/GEEC and the endophilin-A3-mediated CIE.
Collapse
Affiliation(s)
- Henri-François Renard
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Science (NARILIS), University of Namur, Rue de Bruxelles 61, B-50000, Namur, Belgium.
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
16
|
Ripa I, Andreu S, López-Guerrero JA, Bello-Morales R. Membrane Rafts: Portals for Viral Entry. Front Microbiol 2021; 12:631274. [PMID: 33613502 PMCID: PMC7890030 DOI: 10.3389/fmicb.2021.631274] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/14/2021] [Indexed: 02/02/2023] Open
Abstract
Membrane rafts are dynamic, small (10-200 nm) domains enriched with cholesterol and sphingolipids that compartmentalize cellular processes. Rafts participate in roles essential to the lifecycle of different viral families including virus entry, assembly and/or budding events. Rafts seem to participate in virus attachment and recruitment to the cell surface, as well as the endocytic and non-endocytic mechanisms some viruses use to enter host cells. In this review, we will introduce the specific role of rafts in viral entry and define cellular factors implied in the choice of one entry pathway over the others. Finally, we will summarize the most relevant information about raft participation in the entry process of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Sabina Andreu
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
17
|
Debets VE, Janssen LMC, Šarić A. Characterising the diffusion of biological nanoparticles on fluid and cross-linked membranes. SOFT MATTER 2020; 16:10628-10639. [PMID: 33084724 DOI: 10.1039/d0sm00712a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tracing the motion of macromolecules, viruses, and nanoparticles adsorbed onto cell membranes is currently the most direct way of probing the complex dynamic interactions behind vital biological processes, including cell signalling, trafficking, and viral infection. The resulting trajectories are usually consistent with some type of anomalous diffusion, but the molecular origins behind the observed anomalous behaviour are usually not obvious. Here we use coarse-grained molecular dynamics simulations to help identify the physical mechanisms that can give rise to experimentally observed trajectories of nanoscopic objects moving on biological membranes. We find that diffusion on membranes of high fluidities typically results in normal diffusion of the adsorbed nanoparticle, irrespective of the concentration of receptors, receptor clustering, or multivalent interactions between the particle and membrane receptors. Gel-like membranes on the other hand result in anomalous diffusion of the particle, which becomes more pronounced at higher receptor concentrations. This anomalous diffusion is characterised by local particle trapping in the regions of high receptor concentrations and fast hopping between such regions. The normal diffusion is recovered in the limit where the gel membrane is saturated with receptors. We conclude that hindered receptor diffusivity can be a common reason behind the observed anomalous diffusion of viruses, vesicles, and nanoparticles adsorbed on cell and model membranes. Our results enable direct comparison with experiments and offer a new route for interpreting motility experiments on cell membranes.
Collapse
Affiliation(s)
- V E Debets
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
18
|
Membrane deformation by the cholera toxin beta subunit requires more than one binding site. Proc Natl Acad Sci U S A 2020; 117:17467-17469. [PMID: 32641504 DOI: 10.1073/pnas.2011359117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Abstract
My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).
Collapse
Affiliation(s)
- Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland;
| |
Collapse
|
20
|
Structured clustering of the glycosphingolipid GM1 is required for membrane curvature induced by cholera toxin. Proc Natl Acad Sci U S A 2020; 117:14978-14986. [PMID: 32554490 DOI: 10.1073/pnas.2001119117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AB5 bacterial toxins and polyomaviruses induce membrane curvature as a mechanism to facilitate their entry into host cells. How membrane bending is accomplished is not yet fully understood but has been linked to the simultaneous binding of the pentameric B subunit to multiple copies of glycosphingolipid receptors. Here, we probe the toxin membrane binding and internalization mechanisms by using a combination of superresolution and polarized localization microscopy. We show that cholera toxin subunit B (CTxB) can induce membrane curvature only when bound to multiple copies of its glycosphingolipid receptor, GM1, and the ceramide structure of GM1 is likely not a determinant of this activity as assessed in model membranes. A mutant CTxB capable of binding only a single GM1 fails to generate curvature either in model membranes or in cells, and clustering the mutant CTxB-single-GM1 complexes by antibody cross-linking does not rescue the membrane curvature phenotype. We conclude that both the multiplicity and specific geometry of GM1 binding sites are necessary for the induction of membrane curvature. We expect this to be a general rule of membrane behavior for all AB5 toxins and polyomaviruses that bind glycosphingolipids to invade host cells.
Collapse
|
21
|
Koehler M, Delguste M, Sieben C, Gillet L, Alsteens D. Initial Step of Virus Entry: Virion Binding to Cell-Surface Glycans. Annu Rev Virol 2020; 7:143-165. [PMID: 32396772 DOI: 10.1146/annurev-virology-122019-070025] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Virus infection is an intricate process that requires the concerted action of both viral and host cell components. Entry of viruses into cells is initiated by interactions between viral proteins and cell-surface receptors. Various cell-surface glycans function as initial, usually low-affinity attachment factors, providing a first anchor of the virus to the cell surface, and further facilitate high-affinity binding to virus-specific cell-surface receptors, while other glycans function as specific entry receptors themselves. It is now possible to rapidly identify specific glycan receptors using different techniques, define atomic-level structures of virus-glycan complexes, and study these interactions at the single-virion level. This review provides a detailed overview of the role of glycans in viral infection and highlights experimental approaches to study virus-glycan binding along with specific examples. In particular, we highlight the development of the atomic force microscope to investigate interactions with glycans at the single-virion level directly on living mammalian cells, which offers new perspectives to better understand virus-glycan interactions in physiologically relevant conditions.
Collapse
Affiliation(s)
- Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Christian Sieben
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Laurent Gillet
- Immunology-Vaccinology Laboratory, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health center (FARAH), University of Liège, 4000 Liège, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| |
Collapse
|
22
|
Asor R, Khaykelson D, Ben-Nun-Shaul O, Levi-Kalisman Y, Oppenheim A, Raviv U. pH stability and disassembly mechanism of wild-type simian virus 40. SOFT MATTER 2020; 16:2803-2814. [PMID: 32104873 PMCID: PMC7189960 DOI: 10.1039/c9sm02436k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs.
Collapse
Affiliation(s)
- Roi Asor
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Influence of cell-penetrating peptides on the activity and stability of virus-based nanoparticles. Int J Pharm 2020; 576:119008. [DOI: 10.1016/j.ijpharm.2019.119008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023]
|
24
|
Wang J, Min J, Eghtesadi SA, Kane RS, Chilkoti A. Quantitative Study of the Interaction of Multivalent Ligand-Modified Nanoparticles with Breast Cancer Cells with Tunable Receptor Density. ACS NANO 2020; 14:372-383. [PMID: 31899613 DOI: 10.1021/acsnano.9b05689] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Multivalent nanoparticles that target a cell surface receptor that is overexpressed by cancer cells are a promising delivery system for cancer therapy. However, the impact of the receptor density and nanoparticle ligand valency on the cell uptake has not been studied in a system where both variables can be systematically tuned over a wide range. To address this lacuna, we report cell-uptake studies on a genetically engineered breast cancer cell line with tunable ErbB2 expression by a polypeptide micelle with tunable ligand valency. We examined the uptake of ErbB2-targeting micelles at 5 ligand densities and 11 receptor densities. We identified a matching pattern between receptors and ligands in which a receptor-to-ligand density ratio of 0.7-4.5 and a minimum of ∼1.6 bonds are required to initiate receptor-mediated endocytosis. Lower and upper limits of receptor density in the cell-uptake profile suggested a standard by which to categorize breast cancer patients as ErbB2-low, ErbB2-medium, and ErbB2-high, with each group expected to respond differently to multivalent therapeutic nanoparticles. At ErbB2-medium and ErbB2-high levels, increasing the ligand valency to 40-valent ErbB2-targeting peptides for a 20 nm radius nanoparticle accelerated the cell uptake, suggesting that the use of nanoparticles with high ligand valency for drug delivery will greatly benefit patients in these two groups. This study advances our understanding of how to rationally optimize nanotechnology for targeted drug delivery.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Junseon Min
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Seyed Ali Eghtesadi
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
25
|
Chen YJ, Liu X, Tsai B. SV40 Hijacks Cellular Transport, Membrane Penetration, and Disassembly Machineries to Promote Infection. Viruses 2019; 11:v11100917. [PMID: 31590347 PMCID: PMC6832212 DOI: 10.3390/v11100917] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
During entry, a virus must be transported through the endomembrane system of the host cell, penetrate a cellular membrane, and undergo capsid disassembly, to reach the cytosol and often the nucleus in order to cause infection. To do so requires the virus to coordinately exploit the action of cellular membrane transport, penetration, and disassembly machineries. How this is accomplished remains enigmatic for many viruses, especially for viruses belonging to the nonenveloped virus family. In this review, we present the current model describing infectious entry of the nonenveloped polyomavirus (PyV) SV40. Insights from SV40 entry are likely to provide strategies to combat PyV-induced diseases, and to illuminate cellular trafficking, membrane transport, and disassembly mechanisms.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA.
| | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA.
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 3043, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Parveen N, Rydell GE, Larson G, Hytönen VP, Zhdanov VP, Höök F, Block S. Competition for Membrane Receptors: Norovirus Detachment via Lectin Attachment. J Am Chem Soc 2019; 141:16303-16311. [PMID: 31533424 DOI: 10.1021/jacs.9b06036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virus internalization into the host cells occurs via multivalent interactions, in which a single virus binds to multiple receptors in parallel. Because of analytical and experimental limitations this complex type of interaction is still poorly understood and quantified. Herein, the multivalent interaction of norovirus-like particles (noroVLPs) with H or B type 1 glycosphingolipids (GSLs), embedded in a supported phospholipid bilayer, is investigated by following the competition between noroVLPs and a lectin (from Ralstonia solanacearum) upon binding to these GSLs. Changes in noroVLP and lectin coverage, caused by competition, were monitored for both GSLs and at different GSL concentrations using quartz crystal microbalance with dissipation monitoring. The study yields information about the minimum GSL concentration needed for (i) noroVLPs to achieve firm attachment to the bilayer prior to competition and to (ii) remain firmly attached to the bilayer during competition. We show that these two concentrations are almost identical for the H type 1-noroVLP interaction but differ for B type 1, indicating an accumulation of B type 1 GSLs in the noroVLP-bilayer interaction area. Furthermore, the GSL concentration required for firm attachment is significantly larger for H type 1 than for B type 1, indicating a higher affinity of noroVLP toward B type 1. This finding is supported by extracting the energy of single noroVLP-H type 1 and noroVLP-B type 1 bonds from the competition kinetics, which were estimated to be 5 and 6 kcal/mol, respectively. This demonstrates the potential of utilizing competitive binding kinetics to analyze multivalent interactions, which has remained difficult to quantify using conventional approaches.
Collapse
Affiliation(s)
- Nagma Parveen
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden.,Laboratory for Photochemistry and Spectroscopy, Department of Chemistry , KU Leuven , Leuven , Belgium
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg , Sweden
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology and BioMediTech , Tampere University , Tampere, Finland and Fimlab Laboratories , Tampere , Finland
| | - Vladimir P Zhdanov
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden.,Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk , Russia
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| | - Stephan Block
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden.,Department of Chemistry and Biochemistry , Freie Universität Berlin , Berlin , Germany
| |
Collapse
|
27
|
Müller M, Lauster D, Wildenauer HHK, Herrmann A, Block S. Mobility-Based Quantification of Multivalent Virus-Receptor Interactions: New Insights Into Influenza A Virus Binding Mode. NANO LETTERS 2019; 19:1875-1882. [PMID: 30719917 DOI: 10.1021/acs.nanolett.8b04969] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Viruses, such as influenza A, typically bind to the plasma membrane of their host by engaging multiple membrane receptors in parallel, thereby forming so-called multivalent interactions that are created by the collective action of multiple weak ligand-receptor bonds. The overall interaction strength can be modulated by changing the number of engaged receptors. This feature is used by viruses to achieve a sufficiently firm attachment to the host's plasma membrane but also allows progeny viruses to leave the plasma membrane after completing the virus replication cycle. Design of strategies to prevent infection, for example, by disturbing these attachment and detachment processes upon application of antivirals, requires quantification of the underlying multivalent interaction in absence and presence of antivirals. This is still an unresolved problem, as there is currently no approach available that allows for determining the valency (i.e., of the number of receptors bound to a particular virus) on the level of single viruses under equilibrium conditions. Herein, we track the motion of single influenza A/X31 viruses (IAVs; interacting with the ganglioside GD1a incorporated in a supported lipid bilayer) using total internal reflection fluorescence microscopy and show that IAV residence time distributions can be deconvoluted from valency effects by taking the IAV mobility into account. The so-derived off-rate distributions, expressed in dependence of an average, apparent valency, show the expected decrease in off-rate with increasing valency but also show an unexpected peak structure, which can be linked to a competition in the opposing functionalities of the two influenza A virus spike proteins, hemagglutinin (HA), and neuraminidase (NA). By application of the antiviral zanamivir that inhibits the activity of NA, we provide direct evidence, how the HA/NA balance modulates this virus-receptor interaction, allowing us to assess the inhibition concentration of zanamivir based on its effect on the multivalent interaction.
Collapse
Affiliation(s)
- Matthias Müller
- Department of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces" , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Daniel Lauster
- Department of Biology, Molecular Biophysics , Humboldt-Universität zu Berlin, IRI Life Sciences , Invalidenstr. 42 , 10115 Berlin , Germany
| | - Helen H K Wildenauer
- Department of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces" , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics , Humboldt-Universität zu Berlin, IRI Life Sciences , Invalidenstr. 42 , 10115 Berlin , Germany
| | - Stephan Block
- Department of Chemistry and Biochemistry, Emmy-Noether Group "Bionanointerfaces" , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| |
Collapse
|
28
|
Asor R, Khaykelson D, Ben-nun-Shaul O, Oppenheim A, Raviv U. Effect of Calcium Ions and Disulfide Bonds on Swelling of Virus Particles. ACS OMEGA 2019; 4:58-64. [PMID: 30729220 PMCID: PMC6356861 DOI: 10.1021/acsomega.8b02753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 05/08/2023]
Abstract
Multivalent ions affect the structure and organization of virus nanoparticles. Wild-type simian virus 40 (wt SV40) is a nonenveloped virus belonging to the polyomavirus family, whose external diameter is 48.4 nm. Calcium ions and disulfide bonds are involved in the stabilization of its capsid and are playing a role in its assembly and disassembly pathways. Using solution small-angle X-ray scattering (SAXS), we found that the volume of wt SV40 swelled by about 17% when both of its calcium ions were chelated by ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid and its disulfide bonds were reduced by dithiothreitol. By applying osmotic stress, the swelling could be reversed. DNA-containing virus-like particles behaved in a similar way. The results provide insight into the structural role of calcium ions and disulfide bonds in holding the capsid proteins in compact conformation.
Collapse
Affiliation(s)
- Roi Asor
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Daniel Khaykelson
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
| | - Orly Ben-nun-Shaul
- Department
of Haematology, The Hebrew University-Hadassah
Medical School, Ein Karem, Jerusalem 91120, Israel
| | - Ariella Oppenheim
- Department
of Haematology, The Hebrew University-Hadassah
Medical School, Ein Karem, Jerusalem 91120, Israel
| | - Uri Raviv
- Institute
of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat
Ram, Jerusalem 9190401, Israel
- E-mail: . Phone: +972-2-6586030. Fax: +972-2-566-0425
| |
Collapse
|
29
|
Cheng CY, Liao YH, Hsieh CL. High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. NANOSCALE 2019; 11:568-577. [PMID: 30548049 DOI: 10.1039/c8nr06789a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanoparticles have been used extensively in biology-related research and many applications require direct visualization of individual nanoparticles by optical microscopy. For long-term and high-speed measurements, scattering-based microscopy is a unique technique because of the stable and indefinite scattering signals. In scattering-based single-particle measurements, large nanoparticles are usually needed in order to generate sufficient signals for detection. However, larger nanoparticles introduce greater mass loading, experience stronger steric hindrance, and are more prone to crosslinking. In this work, we demonstrate coherent brightfield (COBRI) microscopy with enhanced contrast and show its capability of direct visualization of very small nanoparticles in scattering at a high speed. COBRI microscopy allows us to visualize and track single metallic and dielectric nanoparticles, as small as 10 nm, at 1000 frames per second. A quantitative relationship between the linear scattering cross section of the nanoparticle and its COBRI contrast is reported. Using COBRI microscopy, we further demonstrate the tracking of 10 nm gold nanoparticles labeled to lipid molecules in supported bilayer membranes, showing that the small nanoparticles may facilitate single-molecule measurements with reduced perturbation. Furthermore, the identical imaging sensitivities of COBRI and interferometric scattering (iSCAT) microscopy, the reflection counterpart of COBRI, is demonstrated at an equal illumination intensity. Finally, future improvements in the speed and sensitivity of scattering-based interference microscopy are discussed.
Collapse
Affiliation(s)
- Ching-Ya Cheng
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, 10617 Taipei, Taiwan.
| | | | | |
Collapse
|
30
|
Nathan L, Daniel S. Single Virion Tracking Microscopy for the Study of Virus Entry Processes in Live Cells and Biomimetic Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:13-43. [PMID: 31317494 PMCID: PMC7122913 DOI: 10.1007/978-3-030-14741-9_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The most widely-used assays for studying viral entry, including infectivity, cofloatation, and cell-cell fusion assays, yield functional information but provide low resolution of individual entry steps. Structural characterization provides high-resolution conformational information, but on its own is unable to address the functional significance of these conformations. Single virion tracking microscopy techniques provide more detail on the intermediate entry steps than infection assays and more functional information than structural methods, bridging the gap between these methods. In addition, single virion approaches also provide dynamic information about the kinetics of entry processes. This chapter reviews single virion tracking techniques and describes how they can be applied to study specific virus entry steps. These techniques provide information complementary to traditional ensemble approaches. Single virion techniques may either probe virion behavior in live cells or in biomimetic platforms. Synthesizing information from ensemble, structural, and single virion techniques ultimately yields a more complete understanding of the viral entry process than can be achieved by any single method alone.
Collapse
Affiliation(s)
- Lakshmi Nathan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
31
|
Yu Y, Gao Y, Yu Y. "Waltz" of Cell Membrane-Coated Nanoparticles on Lipid Bilayers: Tracking Single Particle Rotation in Ligand-Receptor Binding. ACS NANO 2018; 12:11871-11880. [PMID: 30421608 DOI: 10.1021/acsnano.8b04880] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the binding of nanoparticles to receptors on biomembranes is critical to the development and screening of therapeutic materials. A prevailing understanding is that multivalent ligand-receptor binding leads to slower and confined translational motion of nanoparticles. In contrast, we report in this study distinct types of rotational dynamics of nanoparticles during their seemingly similar translational confinements in ligand-receptor binding. Our nanoparticles are fluorescently anisotropic and camouflaged with T cell membranes. As they bind to ligands on planar lipid bilayers, the particles transition from back-and-forth rocking motion to circling and eventually confined circling motion, while "hopping" between translational confinements. Both rotational and translational motions of the nanoparticles become more confined at higher ligand density. The time-dependent changes in particle rotation reveal different stages in the progression of multivalent binding between the cell-membrane coated nanoparticles and their ligands. Our work also demonstrates the promise of using combined rotational and translational single particle tracking to resolve biological interactions that could be "hidden" in translational measurements alone.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Yuan Gao
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Yan Yu
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
32
|
Peerboom N, Schmidt E, Trybala E, Block S, Bergström T, Pace HP, Bally M. Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity. ACS Infect Dis 2018; 4:944-953. [PMID: 29688001 DOI: 10.1021/acsinfecdis.7b00270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Discovery and development of new antiviral therapies essentially rely on two key factors: an in-depth understanding of the mechanisms involved in viral infection and the development of fast and versatile drug screening platforms. To meet those demands, we present a biosensing platform to probe virus-cell membrane interactions on a single particle level. Our method is based on the formation of supported lipid bilayers from cell membrane material. Using total internal reflection fluorescence microscopy, we report the contribution of viral and cellular components to the interaction kinetics of herpes simplex virus type 1 with the cell membrane. Deletion of glycoprotein C (gC), the main viral attachment glycoprotein, or deletion of heparan sulfate, an attachment factor on the cell membrane, leads to an overall decrease in association of virions to the membrane and faster dissociation from the membrane. In addition to this, we perform binding inhibition studies using the antiviral compound heparin to estimate its IC50 value. Finally, single particle tracking is used to characterize the diffusive behavior of the virus particles on the supported lipid bilayers. Altogether, our results promote this platform as a complement to existing bioanalytical assays, being at the interface between simplified artificial membrane models and live cell experiments.
Collapse
Affiliation(s)
- Nadia Peerboom
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Eneas Schmidt
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Edward Trybala
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10B, 413 46 Göteborg, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 141 95 Berlin, Germany
| | - Tomas Bergström
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10B, 413 46 Göteborg, Sweden
| | - Hudson P. Pace
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
- Wallenberg Centre for Molecular Medicine and Department of Clinical Microbiology, Umeå University, NUS Målpunkt R, 901 85 Umeå, Sweden
| |
Collapse
|
33
|
Parveen N, Borrenberghs D, Rocha S, Hendrix J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018; 10:E250. [PMID: 29748498 PMCID: PMC5977243 DOI: 10.3390/v10050250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022] Open
Abstract
Viruses are simple agents exhibiting complex reproductive mechanisms. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious viral particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that we employ routinely to investigate viruses. We provide a brief overview of the microscopy hardware needed and discuss the different methods and their application. In particular, we review how we applied (i) single-molecule Förster resonance energy transfer (smFRET) to probe the subviral human immunodeficiency virus (HIV-1) integrase (IN) quaternary structure; (ii) single particle tracking to study interactions of the simian virus 40 with membranes; (iii) 3D confocal microscopy and smFRET to quantify the HIV-1 pre-integration complex content and quaternary structure; (iv) image correlation spectroscopy to quantify the cytosolic HIV-1 Gag assembly, and finally; (v) super-resolution microscopy to characterize the interaction of HIV-1 with tetherin during assembly. We hope this review is an incentive for setting up and applying similar single-virus imaging studies in daily virology practice.
Collapse
Affiliation(s)
- Nagma Parveen
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Doortje Borrenberghs
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Susana Rocha
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
| | - Jelle Hendrix
- Laboratory for Photochemistry and Spectroscopy, Molecular Imaging and Photonics Division, Chemistry Department, KU Leuven, B-3001 Leuven, Belgium.
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
34
|
Parveen N, Rimkute I, Block S, Rydell GE, Midtvedt D, Larson G, Hytönen VP, Zhdanov VP, Lundgren A, Höök F. Membrane Deformation Induces Clustering of Norovirus Bound to Glycosphingolipids in a Supported Cell-Membrane Mimic. J Phys Chem Lett 2018; 9:2278-2284. [PMID: 29624391 DOI: 10.1021/acs.jpclett.8b00433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy have been used to investigate binding of norovirus-like particles (noroVLPs) to a supported (phospho)lipid bilayer (SLB) containing a few percent of H or B type 1 glycosphingolipid (GSL) receptors. Although neither of these GSLs spontaneously form domains, noroVLPs were observed to form micron-sized clusters containing typically up to about 30 VLP copies, especially for B type 1, which is a higher-affinity receptor. This novel finding is explained by proposing a model implying that VLP-induced membrane deformation promotes VLP clustering, a hypothesis that was further supported by observing that functionalized gold nanoparticles were able to locally induce SLB deformation. Because similar effects are likely possible also at cellular membranes, our findings are interesting beyond a pure biophysicochemical perspective as they shed new light on what may happen during receptor-mediated uptake of viruses as well as nanocarriers in drug delivery.
Collapse
Affiliation(s)
- Nagma Parveen
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| | - Inga Rimkute
- Department of Clinical Chemistry and Transfusion Medicine , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Stephan Block
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| | - Gustaf E Rydell
- Department of Clinical Chemistry and Transfusion Medicine , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Daniel Midtvedt
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine , Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences and BioMediTech , University of Tampere, Finland and Fimlab Laboratories , Tampere , Finland
| | - Vladimir P Zhdanov
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
- Boreskov Institute of Catalysis , Russian Academy of Sciences , Novosibirsk , Russia
| | - Anders Lundgren
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| | - Fredrik Höök
- Department of Physics , Chalmers University of Technology , Gothenburg , Sweden
| |
Collapse
|
35
|
Abstract
An implicit aim in cellular infection biology is to understand the mechanisms how viruses, microbes, eukaryotic parasites, and fungi usurp the functions of host cells and cause disease. Mechanistic insight is a deep understanding of the biophysical and biochemical processes that give rise to an observable phenomenon. It is typically subject to falsification, that is, it is accessible to experimentation and empirical data acquisition. This is different from logic and mathematics, which are not empirical, but built on systems of inherently consistent axioms. Here, we argue that modeling and computer simulation, combined with mechanistic insights, yields unprecedented deep understanding of phenomena in biology and especially in virus infections by providing a way of showing sufficiency of a hypothetical mechanism. This ideally complements the necessity statements accessible to empirical falsification by additional positive evidence. We discuss how computational implementations of mathematical models can assist and enhance the quantitative measurements of infection dynamics of enveloped and non-enveloped viruses and thereby help generating causal insights into virus infection biology.
Collapse
|
36
|
Ortiz Mellet C, Nierengarten JF, García Fernández JM. Multivalency as an action principle in multimodal lectin recognition and glycosidase inhibition: a paradigm shift driven by carbon-based glyconanomaterials. J Mater Chem B 2017; 5:6428-6436. [PMID: 32264409 DOI: 10.1039/c7tb00860k] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has witnessed a series of discoveries that question the traditional paradigm of multivalency as a "safe" strategy to enhance the binding affinity of a lectin receptor to its cognate carbohydrate ligand. Upon following the initial reports on the supplementary effects operating in the presence of a third carbohydrate species (heteromultivalent effect), the observation of functional promiscuity of glyco(mimetic)ligands elicited by (hetero)multivalency, spreading from lectins to glycoprocessing enzymes (inhibitory multivalent effect), has raised concerns about the potential consequences of glyconanomaterials binding to non-cognate proteins and creating messiness or noise in the processes they participate in. Carbon-based glycomaterials, specifically glyconanodiamonds and glycofullerenes, have been instrumental in increasing our awareness of the frequency of these lectin-enzyme crosstalk behaviours elicited by multivalency, driving a reformulation of the rules and concepts in glycoscience towards a "generalized multivalency" scenario.
Collapse
Affiliation(s)
- Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/ Profesor García González 1, 41011 Sevilla, Spain.
| | | | | |
Collapse
|
37
|
Parveen N, Block S, Zhdanov VP, Rydell GE, Höök F. Detachment of Membrane Bound Virions by Competitive Ligand Binding Induced Receptor Depletion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4049-4056. [PMID: 28350474 DOI: 10.1021/acs.langmuir.6b04582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multivalent receptor-mediated interactions between virions and a lipid membrane can be weakened using competitive nonpathogenic ligand binding. In particular, the subsequent binding of such ligands can induce detachment of bound virions, a phenomenon of crucial relevance for the development of new antiviral drugs. Focusing on the simian virus 40 (SV40) and recombinant cholera toxin B subunit (rCTB), and using (monosialotetrahexosyl)ganglioside (GM1) as their common receptor in a supported lipid bilayer (SLB), we present the first detailed investigation of this phenomenon by employing the quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy assisted 2D single particle tracking (SPT) techniques. Analysis of the QCM-D-measured release kinetics made it possible to determine the binding strength of a single SV40-GM1 pair. The release dynamics of SV40, monitored by SPT, revealed that a notable fraction of SV40 becomes mobile just before the release, allowing to estimate the distribution of SV40-bound GM1 receptors just prior to release.
Collapse
Affiliation(s)
- Nagma Parveen
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| | - Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk, Russia
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg , Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology , Gothenburg, Sweden
| |
Collapse
|
38
|
Lee DW, Hsu HL, Bacon KB, Daniel S. Image Restoration and Analysis of Influenza Virions Binding to Membrane Receptors Reveal Adhesion-Strengthening Kinetics. PLoS One 2016; 11:e0163437. [PMID: 27695072 PMCID: PMC5047597 DOI: 10.1371/journal.pone.0163437] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022] Open
Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interactions can be studied in depth while maintaining control over host receptor type and concentration. However, several experimental design challenges and quantitative image analysis limitations prevent the widespread use of this approach. One main challenge of SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching. These situations could render current particle tracking software to yield biased binding kinetic data caused by intermittent tracking error. Hence, we developed an effective image restoration algorithm for SPT applications called STAWASP that reveals particles with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our improvements to the SPT binding assay experiment and imaging procedures by monitoring X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight changes to the peripheral oligosaccharide structures can affect the binding rate and residence times of viruses. We were able to detect viruses binding weakly to a glycolipid called GM3, which was undetected via assays such as surface plasmon resonance. The binding rate was around 28 folds higher when the virus bound to a different glycolipid called GD1a, which has a sialic acid group extending further away from the bilayer surface than GM3. The improved imaging allowed us to obtain binding residence time distributions that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically fitted these distributions using a time-dependent unbinding rate parameter, koff, which diverges from standard treatment of koff as a constant. We further explain how to convert these models to fit ensemble-averaged binding data obtained by assays such as surface plasmon resonance.
Collapse
Affiliation(s)
- Donald W. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Hung-Lun Hsu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kaitlyn B. Bacon
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
39
|
Block S, Zhdanov VP, Höök F. Quantification of Multivalent Interactions by Tracking Single Biological Nanoparticle Mobility on a Lipid Membrane. NANO LETTERS 2016; 16:4382-90. [PMID: 27241273 DOI: 10.1021/acs.nanolett.6b01511] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macromolecular association commonly occurs via dynamic engagement of multiple weak bonds referred to as multivalent interactions. The distribution of the number of bonds, combined with their strong influence on the residence time, makes it very demanding to quantify this type of interaction. To address this challenge in the context of virology, we mimicked the virion association to a cell membrane by attaching lipid vesicles (100 nm diameter) to a supported lipid bilayer via multiple, identical cholesterol-based DNA linker molecules, each mimicking an individual virion-receptor link. Using total internal reflection microscopy to track single attached vesicles combined with a novel filtering approach, we show that histograms of the vesicle diffusion coefficient D exhibit a spectrum of distinct peaks, which are associated with vesicles differing in the number, n, of linking DNA tethers. These peaks are only observed if vesicles with transient changes in n are excluded from the analysis. D is found to be proportional to 1/n, in excellent agreement with the free draining model, allowing to quantify transient changes of n on the single vesicle level and to extract transition rates between individual linking states. Necessary imaging conditions to extend the analysis to multivalent interactions in general are also reported.
Collapse
Affiliation(s)
- Stephan Block
- Division of Biological Physics, Department of Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Vladimir P Zhdanov
- Division of Biological Physics, Department of Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
- Boreskov Institute of Catalysis, Russian Academy of Sciences , Novosibirsk 630090, Russia
| | - Fredrik Höök
- Division of Biological Physics, Department of Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
40
|
The Greater Affinity of JC Polyomavirus Capsid for α2,6-Linked Lactoseries Tetrasaccharide c than for Other Sialylated Glycans Is a Major Determinant of Infectivity. J Virol 2015; 89:6364-75. [PMID: 25855729 DOI: 10.1128/jvi.00489-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/30/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The human JC polyomavirus (JCPyV) establishes an asymptomatic, persistent infection in the kidneys of the majority of the population and is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in immunosuppressed individuals. The Mad-1 strain of JCPyV, a brain isolate, was shown earlier to require α2,6-linked sialic acid on the lactoseries tetrasaccharide c (LSTc) glycan for attachment to host cells. In contrast, a JCPyV kidney isolate type 3 strain, WT3, has been reported to interact with sialic acid-containing gangliosides, but the role of these glycans in JCPyV infection has remained unclear. To help rationalize these findings and probe the effects of strain-specific differences on receptor binding, we performed a comprehensive analysis of the glycan receptor specificities of these two representative JCPyV strains using high-resolution X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, and correlated these data with the results of infectivity assays. We show here that capsid proteins of Mad-1 and WT3 JCPyV can both engage LSTc as well as multiple sialylated gangliosides. However, the binding affinities exhibit subtle differences, with the highest affinity observed for LSTc. Engagement of LSTc is a prerequisite for functional receptor engagement, while the more weakly binding gangliosides are not required for productive infection. Our findings highlight the complexity of virus-carbohydrate interactions and demonstrate that subtle differences in binding affinities, rather than the binding event alone, help determine tissue tropism and viral pathogenesis. IMPORTANCE Viral infection is initiated by attachment to receptors on host cells, and this event plays an important role in viral disease. We investigated the receptor-binding properties of human JC polyomavirus (JCPyV), a virus that resides in the kidneys of the majority of the population and can cause the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML) in the brains of immunosuppressed individuals. JCPyV has been reported to interact with multiple carbohydrate receptors, and we sought to clarify how the interactions between JCPyV and cellular carbohydrate receptors influenced infection. Here we demonstrate that JCPyV can engage numerous sialylated carbohydrate receptors. However, the virus displays preferential binding to LSTc, and only LSTc mediates a productive infection. Our findings demonstrate that subtle differences in binding affinity, rather than receptor engagement alone, are a key determinant of viral infection.
Collapse
|
41
|
Zhdanov VP. Kinetics of virus entry by endocytosis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042715. [PMID: 25974535 DOI: 10.1103/physreve.91.042715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 06/04/2023]
Abstract
Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
42
|
O'Hara SD, Stehle T, Garcea R. Glycan receptors of the Polyomaviridae: structure, function, and pathogenesis. Curr Opin Virol 2014; 7:73-8. [PMID: 24983512 DOI: 10.1016/j.coviro.2014.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/27/2014] [Indexed: 11/16/2022]
Abstract
Multiple glycans have been identified as potential cell surface binding motifs for polyomaviruses (PyVs) using both crystallographic structural determinations and in vitro binding assays. However, binding alone does not necessarily imply that a glycan is a functional receptor, and confirmation that specific glycans are important for infection has proved challenging. In vivo analysis of murine polyomavirus (MPyV) infection has shown that subtle alterations in PyV-glycan interactions alone can result in dramatic changes in pathogenicity, implying that similar effects will be found for other PyVs. Our discussion will review the assays used for determining virus-glycan binding, and how these relate to known PyV tropism and pathogenesis.
Collapse
Affiliation(s)
- Samantha D O'Hara
- Department of Molecular, Cellular, Developmental Biology, University of Colorado-Boulder, 347 UCB, Boulder, CO 80309, United States; BioFrontiers Institute, University of Colorado-Boulder, 596 UCB, Boulder, CO 80309, United States
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany; Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Robert Garcea
- Department of Molecular, Cellular, Developmental Biology, University of Colorado-Boulder, 347 UCB, Boulder, CO 80309, United States; BioFrontiers Institute, University of Colorado-Boulder, 596 UCB, Boulder, CO 80309, United States.
| |
Collapse
|