1
|
van Genderen MNG, Kneppers J, Zaalberg A, Bekers EM, Bergman AM, Zwart W, Eduati F. Agent-based modeling of the prostate tumor microenvironment uncovers spatial tumor growth constraints and immunomodulatory properties. NPJ Syst Biol Appl 2024; 10:20. [PMID: 38383542 PMCID: PMC10881528 DOI: 10.1038/s41540-024-00344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Inhibiting androgen receptor (AR) signaling through androgen deprivation therapy (ADT) reduces prostate cancer (PCa) growth in virtually all patients, but response may be temporary, in which case resistance develops, ultimately leading to lethal castration-resistant prostate cancer (CRPC). The tumor microenvironment (TME) plays an important role in the development and progression of PCa. In addition to tumor cells, TME-resident macrophages and fibroblasts express AR and are therefore also affected by ADT. However, the interplay of different TME cell types in the development of CRPC remains largely unexplored. To understand the complex stochastic nature of cell-cell interactions, we created a PCa-specific agent-based model (PCABM) based on in vitro cell proliferation data. PCa cells, fibroblasts, "pro-inflammatory" M1-like and "pro-tumor" M2-like polarized macrophages are modeled as agents from a simple set of validated base assumptions. PCABM allows us to simulate the effect of ADT on the interplay between various prostate TME cell types. The resulting in vitro growth patterns mimic human PCa. Our PCABM can effectively model hormonal perturbations by ADT, in which PCABM suggests that CRPC arises in clusters of resistant cells, as is observed in multifocal PCa. In addition, fibroblasts compete for cellular space in the TME while simultaneously creating niches for tumor cells to proliferate in. Finally, PCABM predicts that ADT has immunomodulatory effects on macrophages that may enhance tumor survival. Taken together, these results suggest that AR plays a critical role in the cellular interplay and stochastic interactions in the TME that influence tumor cell behavior and CRPC development.
Collapse
Affiliation(s)
- Maisa N G van Genderen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Anniek Zaalberg
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Elise M Bekers
- Division of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Wilbert Zwart
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Qiao L, Sinha S, Abd El‐Hafeez AA, Lo I, Midde KK, Ngo T, Aznar N, Lopez‐Sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A circuit for secretion-coupled cellular autonomy in multicellular eukaryotic cells. Mol Syst Biol 2023; 19:e11127. [PMID: 36856068 PMCID: PMC10090951 DOI: 10.15252/msb.202211127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Cancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell's ability to "secrete-and-sense" growth factors (GFs): a poorly understood phenomenon. Using an integrated computational and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control, allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose-response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint GFs (e.g., the epidermal GF) as key stimuli for such self-sustenance. Findings highlight how the enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Amer Ali Abd El‐Hafeez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Present address:
Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer InstituteCairo UniversityCairoEgypt
| | - I‐Chung Lo
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Krishna K Midde
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Nicolas Aznar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Inmaculada Lopez‐Sanchez
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Vijay Gupta
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Marilyn G Farquhar
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, Jacob's School of EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Moores Comprehensive Cancer CenterUniversity of California San DiegoLa JollaCAUSA
- Department of Medicine, School of MedicineUniversity of California San DiegoLa JollaCAUSA
- Veterans Affairs Medical CenterLa JollaCAUSA
| |
Collapse
|
3
|
Lagzian M, Ehsan Razavi S, Goharimanesh M. Investigation on tumor cells growth by Taguchi method. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Masciale V, Banchelli F, Grisendi G, D’Amico R, Maiorana A, Stefani A, Morandi U, Stella F, Dominici M, Aramini B. Cancer Stem Cells and Cell Cycle Genes as Independent Predictors of Relapse in Non-small Cell Lung Cancer: Secondary Analysis of a Prospective Study. Stem Cells Transl Med 2022; 11:797-804. [PMID: 35674389 PMCID: PMC9397651 DOI: 10.1093/stcltm/szac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/07/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose Cancer stem cells (CSCs) are described as resistant to chemotherapy and radiotherapy. It has been shown that CSCs influence disease-free survival in patients undergoing surgery for lung cancer (NCT04634630). We recently described an overexpression of CSCs recurrence-related genes (RG) in lung cancer. This study aims to investigate CSC frequency and RG expression as predictors of disease-free survival in lung cancer. Experimental Design This secondary analysis of a prospective cohort study involved 22 surgical tumor specimens from 22 patients harboring early (I-II) and locally advanced (IIIA) stages ACL and SCCL. Cell population frequency analysis of ALDHhigh (CSCs) and ALDHlow (cancer cells) was performed on each tumor specimen. In addition, RG expression was assessed for 31 target genes separately in ALDHhigh and ALDHlow populations. CSCs frequency and RG expression were assessed as predictors of disease-free survival by Cox analysis. Results CSCs frequency and RG expression were independent predictors of disease-free survival. CSC frequency was not related to disease-free survival in early-stage patients (HR = 0.84, 95%CI = 0.53-1.33, P = .454), whereas it was a risk factor for locally advanced-stage patients (HR = 1.22, 95%CI = 1.09-1.35, P = .000). RG expression—if measured in CSCs—was related to a higher risk of recurrence (HR = 1.19, 95%CI = 1.03-1.39, P = .021). The effect of RG expression measured in cancer cells on disease-free survival was lower and was not statistically significant (HR = 1.12, 95%CI = 0.94-1.33, P = .196). Conclusions CSCs frequency and RG expression are independent predictors of relapse in lung cancer. Considering these results, CSCs and RG may be considered for both target therapy and prognosis.
Collapse
Affiliation(s)
| | | | | | - Roberto D’Amico
- Center of Medical Statistics, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Stefani
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, Forlì, Italy
| | | | - Beatrice Aramini
- Corresponding author: Beatrice Aramini, MD, PhD, Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 34 Carlo Forlanini Street, 47121 Forlì, Italy.
| |
Collapse
|
5
|
Cellular plasticity upon proton irradiation determines tumor cell radiosensitivity. Cell Rep 2022; 38:110422. [PMID: 35196495 DOI: 10.1016/j.celrep.2022.110422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/24/2021] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Proton radiotherapy has been implemented into the standard-of-care for cancer patients within recent years. However, experimental studies investigating cellular and molecular mechanisms are lacking, and prognostic biomarkers are needed. Cancer stem cell (CSC)-related biomarkers, such as aldehyde dehydrogenase (ALDH), are known to influence cellular radiosensitivity through inactivation of reactive oxygen species, DNA damage repair, and cell death. In a previous study, we found that ionizing radiation itself enriches for ALDH-positive CSCs. In this study, we analyze CSC marker dynamics in prostate cancer, head and neck cancer, and glioblastoma cells upon proton beam irradiation. We find that proton irradiation has a higher potential to target CSCs through induction of complex DNA damages, lower rates of cellular senescence, and minor alteration in histone methylation pattern compared with conventional photon irradiation. Mathematical modeling indicates differences in plasticity rates among ALDH-positive CSCs and ALDH-negative cancer cells between the two irradiation types.
Collapse
|
6
|
Hsieh HL, Yu MC, Cheng LC, Yeh TS, Tsai MM. Molecular mechanism of therapeutic approaches for human gastric cancer stem cells. World J Stem Cells 2022; 14:76-91. [PMID: 35126829 PMCID: PMC8788185 DOI: 10.4252/wjsc.v14.i1.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/15/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a primary cause of cancer-related mortality worldwide, and even after therapeutic gastrectomy, survival rates remain poor. The presence of gastric cancer stem cells (GCSCs) is thought to be the major reason for resistance to anticancer treatment (chemotherapy or radiotherapy), and for the development of tumor recurrence, epithelial-mesenchymal transition, and metastases. Additionally, GCSCs have the capacity for self-renewal, differentiation, and tumor initiation. They also synthesize antiapoptotic factors, demonstrate higher performance of drug efflux pumps, and display cell plasticity abilities. Moreover, the tumor microenvironment (TME; tumor niche) that surrounds GCSCs contains secreted growth factors and supports angiogenesis and is thus responsible for the maintenance of the growing tumor. However, the genesis of GCSCs is unclear and exploration of the source of GCSCs is essential. In this review, we provide up-to-date information about GCSC-surface/intracellular markers and GCSC-mediated pathways and their role in tumor development. This information will support improved diagnosis, novel therapeutic approaches, and better prognosis using GCSC-targeting agents as a potentially effective treatment choice following surgical resection or in combination with chemotherapy and radiotherapy. To date, most anti-GCSC blockers when used alone have been reported as unsatisfactory anticancer agents. However, when used in combination with adjuvant therapy, treatment can improve. By providing insights into the molecular mechanisms of GCSCs associated with tumors in GC, the aim is to optimize anti-GCSCs molecular approaches for GC therapy in combination with chemotherapy, radiotherapy, or other adjuvant treatment.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan.
| |
Collapse
|
7
|
Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK. Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100017. [PMID: 34927168 PMCID: PMC8680587 DOI: 10.1002/anbr.202100017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microfluidic tumors-on-chips models have revolutionized anticancer therapeutic research by creating an ideal microenvironment for cancer cells. The tumor microenvironment (TME) includes various cell types and cancer stem cells (CSCs), which are postulated to regulate the growth, invasion, and migratory behavior of tumor cells. In this review, the biological niches of the TME and cancer cell behavior focusing on the behavior of CSCs are summarized. Conventional cancer models such as three-dimensional cultures and organoid models are reviewed. Opportunities for the incorporation of CSCs with tumors-on-chips are then discussed for creating tumor invasion models. Such models will represent a paradigm shift in the cancer community by allowing oncologists and clinicians to predict better which cancer patients will benefit from chemotherapy treatments.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Asli Kisim
- Department of Molecular Biology & Genetics, Izmir Institute of Technology, Gulbahce Kampusu, Urla, Izmir, 35430, Turkey
| | - Gizem Bati-Ayaz
- Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gregory J. Kubicek
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper, 2 Cooper Plaza, Camden, NJ 08103
| | - Devrim Pesen-Okvur
- Department of Molecular Biology & Genetics, Izmir Institute of Technology, Gulbahce Kampusu, Urla, Izmir, 35430, Turkey; Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Amir K. Miri
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028; School of Medical Engineering, Science, and Health, Rowan University, Camden, NJ 08103
| |
Collapse
|
8
|
Alfonso JCL, Grass GD, Welsh E, Ahmed KA, Teer JK, Pilon-Thomas S, Harrison LB, Cleveland JL, Mulé JJ, Eschrich SA, Torres-Roca JF, Enderling H. Tumor-immune ecosystem dynamics define an individual Radiation Immune Score to predict pan-cancer radiocurability. Neoplasia 2021; 23:1110-1122. [PMID: 34619428 PMCID: PMC8502777 DOI: 10.1016/j.neo.2021.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy efficacy is the result of radiation-mediated cytotoxicity coupled with stimulation of antitumor immune responses. We develop an in silico 3-dimensional agent-based model of diverse tumor-immune ecosystems (TIES) represented as anti- or pro-tumor immune phenotypes. We validate the model in 10,469 patients across 31 tumor types by demonstrating that clinically detected tumors have pro-tumor TIES. We then quantify the likelihood radiation induces antitumor TIES shifts toward immune-mediated tumor elimination by developing the individual Radiation Immune Score (iRIS). We show iRIS distribution across 31 tumor types is consistent with the clinical effectiveness of radiotherapy, and in combination with a molecular radiosensitivity index (RSI) combines to predict pan-cancer radiocurability. We show that iRIS correlates with local control and survival in a separate cohort of 59 lung cancer patients treated with radiation. In combination, iRIS and RSI predict radiation-induced TIES shifts in individual patients and identify candidates for radiation de-escalation and treatment escalation. This is the first clinically and biologically validated computational model to simulate and predict pan-cancer response and outcomes via the perturbation of the TIES by radiotherapy.
Collapse
Affiliation(s)
- Juan C L Alfonso
- Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Welsh
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Louis B Harrison
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Javier F Torres-Roca
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Heiko Enderling
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
9
|
Fiandaca G, Delitala M, Lorenzi T. A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer. Bull Math Biol 2021; 83:83. [PMID: 34129102 PMCID: PMC8205926 DOI: 10.1007/s11538-021-00914-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/25/2021] [Indexed: 10/31/2022]
Abstract
Hypoxia and acidity act as environmental stressors promoting selection for cancer cells with a more aggressive phenotype. As a result, a deeper theoretical understanding of the spatio-temporal processes that drive the adaptation of tumour cells to hypoxic and acidic microenvironments may open up new avenues of research in oncology and cancer treatment. We present a mathematical model to study the influence of hypoxia and acidity on the evolutionary dynamics of cancer cells in vascularised tumours. The model is formulated as a system of partial integro-differential equations that describe the phenotypic evolution of cancer cells in response to dynamic variations in the spatial distribution of three abiotic factors that are key players in tumour metabolism: oxygen, glucose and lactate. The results of numerical simulations of a calibrated version of the model based on real data recapitulate the eco-evolutionary spatial dynamics of tumour cells and their adaptation to hypoxic and acidic microenvironments. Moreover, such results demonstrate how nonlinear interactions between tumour cells and abiotic factors can lead to the formation of environmental gradients which select for cells with phenotypic characteristics that vary with distance from intra-tumour blood vessels, thus promoting the emergence of intra-tumour phenotypic heterogeneity. Finally, our theoretical findings reconcile the conclusions of earlier studies by showing that the order in which resistance to hypoxia and resistance to acidity arise in tumours depend on the ways in which oxygen and lactate act as environmental stressors in the evolutionary dynamics of cancer cells.
Collapse
Affiliation(s)
- Giada Fiandaca
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Marcello Delitala
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy.
| |
Collapse
|
10
|
Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Comput Biol 2021; 17:e1009081. [PMID: 34161319 PMCID: PMC8259971 DOI: 10.1371/journal.pcbi.1009081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue. The work addresses two distinctive phases in tumor development-the avascular and vascular phases-and in each stage two cases are considered-with and without normal healthy cells. The tumor growth rate increases considerably as closed vessel loops (anastomoses) form around the tumor cells resulting from tumor induced vascularization. When taking into account the host tissue around the tumor, the results show that competition between normal cells and cancer cells leads to the formation of a hypoxic tumor core within a relatively short period of time. Moreover, a dense intratumoral vascular network is formed throughout the entire lesion as a sign of a high malignancy grade, which is consistent with reported experimental data for several types of solid carcinomas. In comparison with other mathematical models of tumor development, in this work we introduce a multiscale simulation that models the cellular interactions and cell behavior as a consequence of the activation of oncogenes and deactivation of gene signaling pathways within each cell. Simulating a therapy that blocks relevant signaling pathways results in the prevention of further tumor growth and leads to an expressive decrease in its size (82% in the simulation).
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | | | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| |
Collapse
|
11
|
Qiao L, Sinha S, El-hafeez AAA, Lo I, Midde KK, Ngo T, Aznar N, Lopez-sanchez I, Gupta V, Farquhar MG, Rangamani P, Ghosh P. A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotes.. [DOI: 10.1101/2021.03.18.436048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTCancers represent complex autonomous systems, displaying self-sufficiency in growth signaling. Autonomous growth is fueled by a cancer cell’s ability to ‘secrete-and-sense’ growth factors: a poorly understood phenomenon. Using an integrated systems and experimental approach, here we dissect the impact of a feedback-coupled GTPase circuit within the secretory pathway that imparts secretion-coupled autonomy. The circuit is assembled when the Ras-superfamily monomeric GTPase Arf1, and the heterotrimeric GTPase Giαβγ and their corresponding GAPs and GEFs are coupled by GIV/Girdin, a protein that is known to fuel aggressive traits in diverse cancers. One forward and two key negative feedback loops within the circuit create closed-loop control (CLC), allow the two GTPases to coregulate each other, and convert the expected switch-like behavior of Arf1-dependent secretion into an unexpected dose response alignment behavior of sensing and secretion. Such behavior translates into cell survival that is self-sustained by stimulus-proportionate secretion. Proteomic studies and protein-protein interaction network analyses pinpoint growth factors (e.g., the epidermal growth factor; EGF) as a key stimuli for such self-sustenance. Findings highlight how enhanced coupling of two biological switches in cancer cells is critical for multiscale feedback control to achieve secretion-coupled autonomy of growth factors.SYNOPSIS IMAGESTANDFIRST TEXTThis work defines the inner workings of a Golgi-localized molecular circuitry comprised of coupled GTPases, which empowers cells to achieve self-sufficiency in growth factor signaling by creating a secrete-and-sense autocrine loop.HIGHLIGHTS/MAIN FINDINGSModeling and experimental approaches were used to dissect a coupled GTPase circuit.Coupling enables closed loop feedback and mutual control of GTPases.Coupling generates dose response alignment behavior of sensing and secretion of growth factors.Coupling is critical for multiscale feedback control to achieve secretion-coupled autonomy.
Collapse
|
12
|
BAILEY LORAD, KOMAROVA NATALIAL. CELLULAR FEEDBACK NETWORKS AND THEIR RESILIENCE AGAINST MUTATIONS. J BIOL SYST 2021. [DOI: 10.1142/s0218339021400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many tissues undergo a steady turnover, where cell divisions are on average balanced with cell deaths. Cell fate decisions such as stem cell (SC) differentiations, proliferations, or differentiated cell (DC) deaths, may be controlled by cell populations through cell-to-cell signaling. Here, we examine a class of mathematical models of turnover in SC lineages to understand engineering design principles of control (feedback) loops, that may operate in such systems. By using ordinary differential equations that describe the co-dynamics of SCs and DCs, we study the effect of different types of mutations that interfere with feedback present within cellular networks. For instance, we find that mutants that do not participate in feedback are less dangerous in the sense that they will not rise from low numbers, whereas mutants that do not respond to feedback signals could rise and replace the wild-type population. Additionally, we asked if different feedback networks can have different degrees of resilience against such mutations. We found that all minimal networks, that is networks consisting of exactly one feedback loop that is sufficient for homeostatic stability of the wild-type population, are equally vulnerable. Mutants with a weakened/eliminated feedback parameter might expand from lower numbers and either enter unlimited growth or reach an equilibrium with an increased number of SCs and DCs. Therefore, from an evolutionary viewpoint, it appears advantageous to combine feedback loops, creating redundant feedback networks. Interestingly, from an engineering prospective, not all such redundant systems are equally resilient. For some of them, any mutation that weakens/eliminates one of the loops will lead to a population growth of SCs. For others, the population of SCs can actually shrink as a result of “cutting” one of the loops, thus slowing down further unwanted transformations.
Collapse
|
13
|
Scott JG, Maini PK, Anderson ARA, Fletcher AG. Inferring Tumor Proliferative Organization from Phylogenetic Tree Measures in a Computational Model. Syst Biol 2021; 69:623-637. [PMID: 31665523 DOI: 10.1093/sysbio/syz070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
We use a computational modeling approach to explore whether it is possible to infer a solid tumor's cellular proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor's evolution in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.].
Collapse
Affiliation(s)
- Jacob G Scott
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.,Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Sistigu A, Musella M, Galassi C, Vitale I, De Maria R. Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Front Immunol 2020; 11:2166. [PMID: 33193295 PMCID: PMC7609361 DOI: 10.3389/fimmu.2020.02166] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cell dormancy is a common feature of human tumors and represents a major clinical barrier to the long-term efficacy of anticancer therapies. Dormant cancer cells, either in primary tumors or disseminated in secondary organs, may reawaken and relapse into a more aggressive disease. The mechanisms underpinning dormancy entry and exit strongly resemble those governing cancer cell stemness and include intrinsic and contextual cues. Cellular and molecular components of the tumor microenvironment persistently interact with cancer cells. This dialog is highly dynamic, as it evolves over time and space, strongly cooperates with intrinsic cell nets, and governs cancer cell features (like quiescence and stemness) and fate (survival and outgrowth). Therefore, there is a need for deeper insight into the biology of dormant cancer (stem) cells and the mechanisms regulating the equilibrium quiescence-versus-proliferation are vital in our pursuit of new therapeutic opportunities to prevent cancer from recurring. Here, we review and discuss microenvironmental regulations of cancer dormancy and its parallels with cancer stemness, and offer insights into the therapeutic strategies adopted to prevent a lethal recurrence, by either eradicating resident dormant cancer (stem) cells or maintaining them in a dormant state.
Collapse
Affiliation(s)
- Antonella Sistigu
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Martina Musella
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo (TO), Candiolo, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| |
Collapse
|
15
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Yu JS, Bagheri N. Agent-Based Models Predict Emergent Behavior of Heterogeneous Cell Populations in Dynamic Microenvironments. Front Bioeng Biotechnol 2020; 8:249. [PMID: 32596213 PMCID: PMC7301008 DOI: 10.3389/fbioe.2020.00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/10/2020] [Indexed: 01/18/2023] Open
Abstract
Computational models are most impactful when they explain and characterize biological phenomena that are non-intuitive, unexpected, or difficult to study experimentally. Countless equation-based models have been built for these purposes, but we have yet to realize the extent to which rules-based models offer an intuitive framework that encourages computational and experimental collaboration. We develop ARCADE, a multi-scale agent-based model to interrogate emergent behavior of heterogeneous cell agents within dynamic microenvironments and demonstrate how complexity of intracellular metabolism and signaling modules impacts emergent dynamics. We perform in silico case studies on context, competition, and heterogeneity to demonstrate the utility of our model for gaining computational and experimental insight. Notably, there exist (i) differences in emergent behavior between colony and tissue contexts, (ii) linear, non-linear, and multimodal consequences of parameter variation on competition in simulated co-cultures, and (iii) variable impact of cell and population heterogeneity on emergent outcomes. Our extensible framework is easily modified to explore numerous biological systems, from tumor microenvironments to microbiomes.
Collapse
Affiliation(s)
- Jessica S Yu
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Neda Bagheri
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States.,Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL, United States.,Center for Synthetic Biology, Northwestern University, Evanston, IL, United States.,Biology, University of Washington, Seattle, WA, United States.,Chemical Engineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Niida A, Hasegawa T, Innan H, Shibata T, Mimori K, Miyano S. A unified simulation model for understanding the diversity of cancer evolution. PeerJ 2020; 8:e8842. [PMID: 32296600 PMCID: PMC7150545 DOI: 10.7717/peerj.8842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/02/2020] [Indexed: 01/24/2023] Open
Abstract
Because cancer evolution underlies the therapeutic difficulties of cancer, it is clinically important to understand the evolutionary dynamics of cancer. Thus far, a number of evolutionary processes have been proposed to be working in cancer evolution. However, there exists no simulation model that can describe the different evolutionary processes in a unified manner. In this study, we constructed a unified simulation model for describing the different evolutionary processes and performed sensitivity analysis on the model to determine the conditions in which cancer growth is driven by each of the different evolutionary processes. Our sensitivity analysis has successfully provided a series of novel insights into the evolutionary dynamics of cancer. For example, we found that, while a high neutral mutation rate shapes neutral intratumor heterogeneity (ITH) characterized by a fractal-like pattern, a stem cell hierarchy can also contribute to shaping neutral ITH by apparently increasing the mutation rate. Although It has been reported that the evolutionary principle shaping ITH shifts from selection to accumulation of neutral mutations during colorectal tumorigenesis, our simulation revealed the possibility that this evolutionary shift is triggered by drastic evolutionary events that occur in a short time and confer a marked fitness increase on one or a few cells. This result helps us understand that each process works not separately but simultaneously and continuously as a series of phases of cancer evolution. Collectively, this study serves as a basis to understand in greater depth the diversity of cancer evolution.
Collapse
Affiliation(s)
- Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanori Hasegawa
- Division of Health Medical Data Science, Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospita, Beppu, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Bessonov N, Pinna G, Minarsky A, Harel-Bellan A, Morozova N. Mathematical modeling reveals the factors involved in the phenomena of cancer stem cells stabilization. PLoS One 2019; 14:e0224787. [PMID: 31710617 PMCID: PMC6844488 DOI: 10.1371/journal.pone.0224787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer Stem Cells (CSC), a subset of cancer cells resembling normal stem cells with self-renewal and asymmetric division capabilities, are present at various but low proportions in many tumors and are thought to be responsible for tumor relapses following conventional cancer therapies. In vitro, most intriguingly, isolated CSCs rapidly regenerate the original population of stem and non-stem cells (non-CSCs) as shown by various investigators. This phenomenon still remains to be explained. We propose a mathematical model of cancer cell population dynamics, based on the main parameters of cell population growth, including the proliferation rates, the rates of cell death and the frequency of symmetric and asymmetric cell divisions both in CSCs and non-CSCs sub-populations, and taking into account the stabilization phenomenon. The analysis of the model allows determination of time-varying corridors of probabilities for different cell fates, given the particular dynamics of cancer cells populations; and determination of a cell-cell communication factors influencing these time-varying probabilities of cell behavior (division, transition) scenarios. Though the results of the model have to be experimentally confirmed, we can anticipate the development of several fundamental and practical applications based on the theoretical results of the model.
Collapse
Affiliation(s)
- Nikolay Bessonov
- Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Guillaume Pinna
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
| | - Andrey Minarsky
- Saint-Petersburg Academic University, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Annick Harel-Bellan
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
- Institut des Hautes Etudes Scientiques (IHES), Bures-sur-Yvette, France
| | - Nadya Morozova
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris‐Sud, University Paris‐Saclay, Gif‐sur‐Yvette, France
- Institut des Hautes Etudes Scientiques (IHES), Bures-sur-Yvette, France
- * E-mail:
| |
Collapse
|
19
|
Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, Kshitiz. Systems Biology of Cancer Metastasis. Cell Syst 2019; 9:109-127. [PMID: 31465728 PMCID: PMC6716621 DOI: 10.1016/j.cels.2019.07.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is no longer viewed as a linear cascade of events but rather as a series of concurrent, partially overlapping processes, as successfully metastasizing cells assume new phenotypes while jettisoning older behaviors. The lack of a systemic understanding of this complex phenomenon has limited progress in developing treatments for metastatic disease. Because metastasis has traditionally been investigated in distinct physiological compartments, the integration of these complex and interlinked aspects remains a challenge for both systems-level experimental and computational modeling of metastasis. Here, we present some of the current perspectives on the complexity of cancer metastasis, the multiscale nature of its progression, and a systems-level view of the processes underlying the invasive spread of cancer cells. We also highlight the gaps in our current understanding of cancer metastasis as well as insights emerging from interdisciplinary systems biology approaches to understand this complex phenomenon.
Collapse
Affiliation(s)
- Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Margo P Cain
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Vanaja
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Paul A Kurywchak
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andre Levchenko
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Raghu Kalluri
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA.
| |
Collapse
|
20
|
Chronic iron exposure and c-Myc/H-ras-mediated transformation in fallopian tube cells alter the expression of EVI1, amplified at 3q26.2 in ovarian cancer. Oncogenesis 2019; 8:46. [PMID: 31434871 PMCID: PMC6704182 DOI: 10.1038/s41389-019-0154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underlying the pathogenesis of high-grade serous epithelial ovarian cancers (HGSOC) are not yet well defined although key precursor cells have been identified (including fimbriated fallopian tube epithelium, FTSECs). Since iron is elevated in endometriotic cysts and the pelvic cavity, it is suggested that this source of redox-active iron may contribute to ovarian cancer pathogenesis. Specifically, sources of nontransferrin-bound iron (NTBI) within the pelvic cavity could arise from ovulation, retrograde menstruation, follicular fluid, or iron overload conditions (i.e., hemochromatosis). Herein, we investigated the cellular response of p53-inactivated and telomerase-expressing (immortalized) FTSECs (Pax8+/FoxJ1−) to NTBI (presented as ferric ammonium citrate (FAC), supplemented in media for >2 months) in order to assess its ability to promote the transition to a tumor-like phenotype; this cellular response was compared with immortalized FTSECs transformed with H-RasV12A and c-MycT58A. Both approaches resulted in increased cell numbers and expression of the oncogenic transcriptional regulator, ecotropic virus integration site 1 (EVI1, a gene most frequently amplified at 3q26.2 in HGSOC, represented by multiple variants), along with other oncogenic gene products. In contrast to the transformed cells, FAC-exposed FTSECs elicited elevated migratory capacity (and epithelial–mesenchymal transition mRNA profile) along with increased expression of DNA damage response proteins (i.e., FANCD2) and hTERT mRNA relative to controls. Interestingly, in FAC-exposed FTSECs, EVI1 siRNA attenuated hTERT mRNA expression, whereas siRNAs targeting β-catenin and BMI1 (both elevated with chronic iron exposure) reduced Myc and Cyclin D1 proteins. Collectively, our novel findings provide strong foundational evidence for potential iron-induced initiation events, including EVI1 alterations, in the pathogenesis of HGSOC, warranting further in depth investigations. Thus, these findings will substantially advance our understanding of the contribution of iron enriched within the pelvic cavity, which may identify patients at risk of developing this deadly disease.
Collapse
|
21
|
Karolak A, Poonja S, Rejniak KA. Morphophenotypic classification of tumor organoids as an indicator of drug exposure and penetration potential. PLoS Comput Biol 2019; 15:e1007214. [PMID: 31310602 PMCID: PMC6660094 DOI: 10.1371/journal.pcbi.1007214] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/26/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
The dynamics of tumor progression is driven by multiple factors, which can be exogenous to the tumor (microenvironment) or intrinsic (genetic, epigenetic or due to intercellular interactions). While tumor heterogeneity has been extensively studied on the level of cell genetic profiles or cellular composition, tumor morphological diversity has not been given as much attention. The limited analysis of tumor morphophenotypes may be attributed to the lack of accurate models, both experimental and computational, capable of capturing changes in tumor morphology with fine levels of spatial detail. Using a three-dimensional, agent-based, lattice-free computational model, we generated a library of multicellular tumor organoids, the experimental analogues of in vivo tumors. By varying three biologically relevant parameters-cell radius, cell division age and cell sensitivity to contact inhibition, we showed that tumor organoids with similar growth dynamics can express distinct morphologies and possess diverse cellular compositions. Taking advantage of the high-resolution of computational modeling, we applied the quantitative measures of compactness and accessible surface area, concepts that originated from the structural biology of proteins. Based on these analyses, we demonstrated that tumor organoids with similar sizes may differ in features associated with drug effectiveness, such as potential exposure to the drug or the extent of drug penetration. Both these characteristics might lead to major differences in tumor organoid's response to therapy. This indicates that therapeutic protocols should not be based solely on tumor size, but take into account additional tumor features, such as their morphology or cellular packing density.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
| | - Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
22
|
Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface 2019; 15:rsif.2017.0703. [PMID: 29367239 DOI: 10.1098/rsif.2017.0703] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
A main goal of mathematical and computational oncology is to develop quantitative tools to determine the most effective therapies for each individual patient. This involves predicting the right drug to be administered at the right time and at the right dose. Such an approach is known as precision medicine. Mathematical modelling can play an invaluable role in the development of such therapeutic strategies, since it allows for relatively fast, efficient and inexpensive simulations of a large number of treatment schedules in order to find the most effective. This review is a survey of mathematical models that explicitly take into account the spatial architecture of three-dimensional tumours and address tumour development, progression and response to treatments. In particular, we discuss models of epithelial acini, multicellular spheroids, normal and tumour spheroids and organoids, and multi-component tissues. Our intent is to showcase how these in silico models can be applied to patient-specific data to assess which therapeutic strategies will be the most efficient. We also present the concept of virtual clinical trials that integrate standard-of-care patient data, medical imaging, organ-on-chip experiments and computational models to determine personalized medical treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dmitry A Markov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Lisa J McCawley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
23
|
Gong P, Wang H, Zhang J, Fu Y, Zhu Z, Wang J, Yin Y, Wang H, Zhou Z, Yang J, Liu L, Gou M, Zeng M, Yuan J, Wang F, Pan X, Xiang R, Weissman SM, Qi F, Liu L. Telomere Maintenance-Associated PML Is a Potential Specific Therapeutic Target of Human Colorectal Cancer. Transl Oncol 2019; 12:1164-1176. [PMID: 31207547 PMCID: PMC6580093 DOI: 10.1016/j.tranon.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere length maintenance is essential for cell proliferation, which is particularly prominent in cancer. We validate that the primary colorectal tumors exhibit heterogeneous telomere lengths but mostly (90%) short telomeres relative to normal tissues. Intriguingly, relatively short telomeres are associated with tumor malignancy as indicated by poorly differentiated state, and these tumors contain more cancer stem-like cells (CSLCs) identified by several commonly used markers CD44, EPHB2 or LGR5. Moreover, promyelocytic leukemia (PML) and ALT-associated PML nuclear bodies (APBs) are frequently found in tumors with short telomeres and high proliferation. In contrast, distant normal tissues rarely or only minimally express PML. Inhibition of PML and APBs by an ATR inhibitor decreases proliferation of CSLCs and organoids, suggesting a potential therapeutic target to progressive colorectal tumors. Together, telomere maintenance underling tumor progression is connected with CSLCs.
Collapse
Affiliation(s)
- Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingsong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yudong Fu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhengmao Zhu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinmiao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinghua Yuan
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Wang
- Department of Genetics, Tianjin Medical University, Tianjin, 300070, China
| | - Xinghua Pan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Rong Xiang
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy
| | - Sherman M Weissman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, 2011 Collaborative Innovation Center for Biotherapy; Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
24
|
Macklin P. When Seeing Isn't Believing: How Math Can Guide Our Interpretation of Measurements and Experiments. Cell Syst 2019; 5:92-94. [PMID: 28837815 DOI: 10.1016/j.cels.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mathematical thought experiments probe the meaning and pitfalls of experimental measurements and demonstrate that caution is in order when measuring heterogeneity.
Collapse
Affiliation(s)
- Paul Macklin
- Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| |
Collapse
|
25
|
Robinson NJ, Taylor DJ, Schiemann WP. Stem cells, immortality, and the evolution of metastatic properties in breast cancer: telomere maintenance mechanisms and metastatic evolution. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:39. [PMID: 31440584 PMCID: PMC6706062 DOI: 10.20517/2394-4722.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most significant cause of cancer-related death in women around the world. The vast majority of breast cancer-associated mortality stems from metastasis, which remains an incurable disease state. Metastasis results from evolution of clones that possess the insidious properties required for dissemination and colonization of distant organs. These clonal populations are descended from breast cancer stem cells (CSCs), which are also responsible for their prolonged maintenance and continued evolution. Telomeres impose a lifespan on cells that can be extended when they are actively elongated, as occurs in CSCs. Thus, changes in telomere structure serve to promote the survival of CSCs and subsequent metastatic evolution. The selection of telomere maintenance mechanism (TMM) has important consequences not only for CSC survival and evolution, but also for their coordination of various signaling pathways that choreograph the metastatic cascade. Targeting the telomere maintenance machinery may therefore provide a boon to the treatment of metastatic breast cancer. Here we review the two major TMMs and the roles they play in the development of stem and metastatic breast cancer cells. We also highlight current and future approaches to targeting these mechanisms in clinical settings to alleviate metastatic breast cancers.
Collapse
Affiliation(s)
- Nathaniel J. Robinson
- Department of Pathology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - Derek J. Taylor
- Department of Pharmacology, Case Western Reserve University
School of Medicine, Cleveland, OH 44106, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve
University, Cleveland, OH 44106 USA
| |
Collapse
|
26
|
Peitzsch C, Nathansen J, Schniewind SI, Schwarz F, Dubrovska A. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma: Identification, Characterization and Clinical Implications. Cancers (Basel) 2019; 11:cancers11050616. [PMID: 31052565 PMCID: PMC6562868 DOI: 10.3390/cancers11050616] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/21/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most commonly diagnosed cancer worldwide. Despite advances in the treatment management, locally advanced disease has a poor prognosis, with a 5-year survival rate of approximately 50%. The growth of HNSCC is maintained by a population of cancer stem cells (CSCs) which possess unlimited self-renewal potential and induce tumor regrowth if not completely eliminated by therapy. The population of CSCs is not only a promising target for tumor treatment, but also an important biomarker to identify the patients at risk for therapeutic failure and disease progression. This review aims to provide an overview of the recent pre-clinical and clinical studies on the biology and potential therapeutic implications of HNSCC stem cells.
Collapse
Affiliation(s)
- Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
| | - Jacqueline Nathansen
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sebastian I Schniewind
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Franziska Schwarz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner site Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01307 Dresden, Germany.
| |
Collapse
|
27
|
Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochem Pharmacol 2019; 162:169-176. [DOI: 10.1016/j.bcp.2018.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
|
28
|
Gallaher JA, Brown JS, Anderson ARA. The impact of proliferation-migration tradeoffs on phenotypic evolution in cancer. Sci Rep 2019; 9:2425. [PMID: 30787363 PMCID: PMC6382810 DOI: 10.1038/s41598-019-39636-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tumors are not static masses of cells but dynamic ecosystems where cancer cells experience constant turnover and evolve fitness-enhancing phenotypes. Selection for different phenotypes may vary with (1) the tumor niche (edge or core), (2) cell turnover rates, (3) the nature of the tradeoff between traits, and (4) whether deaths occur in response to demographic or environmental stochasticity. Using a spatially-explicit agent-based model, we observe how two traits (proliferation rate and migration speed) evolve under different tradeoff conditions with different turnover rates. Migration rate is favored over proliferation at the tumor's edge and vice-versa for the interior. Increasing cell turnover rates slightly slows tumor growth but accelerates the rate of evolution for both proliferation and migration. The absence of a tradeoff favors ever higher values for proliferation and migration, while a convex tradeoff tends to favor proliferation, often promoting the coexistence of a generalist and specialist phenotype. A concave tradeoff favors migration at low death rates, but switches to proliferation at higher death rates. Mortality via demographic stochasticity favors proliferation, and environmental stochasticity favors migration. While all of these diverse factors contribute to the ecology, heterogeneity, and evolution of a tumor, their effects may be predictable and empirically accessible.
Collapse
Affiliation(s)
- Jill A Gallaher
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
29
|
Metzcar J, Wang Y, Heiland R, Macklin P. A Review of Cell-Based Computational Modeling in Cancer Biology. JCO Clin Cancer Inform 2019; 3:1-13. [PMID: 30715927 PMCID: PMC6584763 DOI: 10.1200/cci.18.00069] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer's ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.
Collapse
|
30
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Abstract
Research endeavors originally generated stem cell definitions for the purpose of describing normally sustainable developmental and tissue turnover processes in various species, including humans. The notion of investigating cells that possess a vague capacity of “stamm (phylum)” can be traced back to the late 19th century, mainly concentrating on cells that could produce the germline or the entire blood system. Lately, such undertakings have been recapitulated for oncogenesis, tumor growth, and cancer cell resistance to oncolytic therapies. However, due to the complexity and basic life-origin mechanisms comprising the genetic and epigenetic repertoire of the stemness in every developing or growing cell, presently there are ongoing debates regarding the biological essentials of the stem cell-like tumor initiation cells (ie, cancer stem cells; CSCs). This conceptual analysis focuses on the potential pitfalls of extrapolating that CSCs bear major traits of stemness. We propose a novel nomenclature of Tumor Survival Cells (TSCs) to further define tumor cells behaving like CSCs, based on the ruthless and detrimental features of Cancer Cell Survivology that appears fundamentally different from stem cell biology. Hence, precise academic separation of TSCs from all the stem cell-related labels applied to these unique tumor cells may help to improve scientific reasoning and strategies to decode the desperado-like survival behaviors of TSCs to eventually overcome cancer.
Collapse
Affiliation(s)
- Yang D Teng
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Lei Wang
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Serdar Kabatas
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts.,2 Department of Neurosurgery, Harvard Medical School , Boston, Massachusetts.,3 Division of SCI Research, VA Boston Healthcare System , Boston, Massachusetts
| | - Henning Ulrich
- 4 Departamento de Bioquímica, Instituto de Química , Universidade de São Paulo, São Paulo, Brazil
| | - Ross D Zafonte
- 1 Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital Network, Brigham and Women's Hospital, and Massachusetts General Hospital , Boston, Massachusetts
| |
Collapse
|
32
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
33
|
Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc Natl Acad Sci U S A 2018; 115:5774-5779. [PMID: 29760052 DOI: 10.1073/pnas.1716552115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence suggests that a subset of human cancers grows as single clonal expansions. In such a nearly neutral evolution scenario, it is possible to infer the early ancestral tree of a full-grown tumor. We hypothesized that early tree reconstruction can provide insights into the mobility phenotypes of tumor cells during their first few cell divisions. We explored this hypothesis by means of a computational multiscale model of tumor expansion incorporating the glandular structure of colorectal tumors. After calibrating the model to multiregional and single gland data from 19 human colorectal tumors using approximate Bayesian computation, we examined the role of early tumor cell mobility in shaping the private mutation patterns of the final tumor. The simulations showed that early cell mixing in the first tumor gland can result in side-variegated patterns where the same private mutations could be detected on opposite tumor sides. In contrast, absence of early mixing led to nonvariegated, sectional mutation patterns. These results suggest that the patterns of detectable private mutations in colorectal tumors may be a marker of early cell movement and hence the invasive and metastatic potential of the tumor at the start of the growth. In alignment with our hypothesis, we found evidence of early abnormal cell movement in 9 of 15 invasive colorectal carcinomas ("born to be bad"), but in none of 4 benign adenomas. If validated with a larger dataset, the private mutation patterns may be used for outcome prediction among screen-detected lesions with unknown invasive potential.
Collapse
|
34
|
Poleszczuk J, Macklin P, Enderling H. Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth. Methods Mol Biol 2018; 1516:335-346. [PMID: 27044046 DOI: 10.1007/7651_2016_346] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
Collapse
Affiliation(s)
- Jan Poleszczuk
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33647, USA
| | - Paul Macklin
- Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33647, USA.
| |
Collapse
|
35
|
Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA, Sengupta S, Ben-Jacob E, Levine H, Onuchic JN. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 2017; 13:rsif.2015.1106. [PMID: 27170649 PMCID: PMC4892257 DOI: 10.1098/rsif.2015.1106] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/15/2016] [Indexed: 01/14/2023] Open
Abstract
Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA Metastasis Research Center, MD Anderson Cancer Center, Houston, TX 77025, USA
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Chemistry, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| |
Collapse
|
36
|
Iwasaki WM, Innan H. Simulation framework for generating intratumor heterogeneity patterns in a cancer cell population. PLoS One 2017; 12:e0184229. [PMID: 28877206 PMCID: PMC5587296 DOI: 10.1371/journal.pone.0184229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
As cancer cell populations evolve, they accumulate a number of somatic mutations, resulting in heterogeneous subclones in the final tumor. Understanding the mechanisms that produce intratumor heterogeneity is important for selecting the best treatment. Although some studies have involved intratumor heterogeneity simulations, their model settings differed substantially. Thus, only limited conditions were explored in each. Herein, we developed a general framework for simulating intratumor heterogeneity patterns and a simulator (tumopp). Tumopp offers many setting options so that simulations can be carried out under various settings. Setting options include how the cell division rate is determined, how daughter cells are placed, and how driver mutations are treated. Furthermore, to account for the cell cycle, we introduced a gamma function for the waiting time involved in cell division. Tumopp also allows simulations in a hexagonal lattice, in addition to a regular lattice that has been used in previous simulation studies. A hexagonal lattice produces a more biologically reasonable space than a regular lattice. Using tumopp, we investigated how model settings affect the growth curve and intratumor heterogeneity pattern. It was found that, even under neutrality (with no driver mutations), tumopp produced dramatically variable patterns of intratumor heterogeneity and tumor morphology, from tumors in which cells with different genetic background are well intermixed to irregular shapes of tumors with a cluster of closely related cells. This result suggests a caveat in analyzing intratumor heterogeneity with simulations with limited settings, and tumopp will be useful to explore intratumor heterogeneity patterns in various conditions.
Collapse
Affiliation(s)
- Watal M. Iwasaki
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, 240–0193, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, SOKENDAI (Graduate University for Advanced Studies), Shonan Village, Hayama, 240–0193, Japan
- * E-mail:
| |
Collapse
|
37
|
Hu Z, Sun R, Curtis C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim Biophys Acta Rev Cancer 2017; 1867:109-126. [PMID: 28274726 DOI: 10.1016/j.bbcan.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Alexander A. Spector
- Department
of Biomedical Engineering and ‡Translational Tissue Engineering
Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Institute for Nanobiotechnology (INBT) and ∥Department of Material Sciences & Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore 21218, Maryland, United States
| | - Warren L. Grayson
- Department
of Biomedical Engineering and ‡Translational Tissue Engineering
Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Institute for Nanobiotechnology (INBT) and ∥Department of Material Sciences & Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore 21218, Maryland, United States
| |
Collapse
|
39
|
Marcucci F, Ghezzi P, Rumio C. The role of autophagy in the cross-talk between epithelial-mesenchymal transitioned tumor cells and cancer stem-like cells. Mol Cancer 2017; 16:3. [PMID: 28137290 PMCID: PMC5282816 DOI: 10.1186/s12943-016-0573-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and cancer stem-like cells (CSC) are becoming highly relevant targets in anticancer drug discovery. A large body of evidence suggests that epithelial-mesenchymal transitioned tumor cells (EMT tumor cells) and CSCs have similar functions. There is also an overlap regarding the stimuli that can induce the generation of EMT tumor cells and CSCs. Moreover, direct evidence has been brought that EMT can give rise to CSCs. It is unclear however, whether EMT tumor cells should be considered CSCs or if they have to undergo further changes. In this article we summarize available evidence suggesting that, indeed, additional programs must be engaged and we propose that macroautophagy (hereafter, autophagy) represents a key trait distinguishing CSCs from EMT tumor cells. Thus, CSCs have often been reported to be in an autophagic state and blockade of autophagy inhibits CSCs. On the other hand, there is ample evidence showing that EMT and autophagy are distinct events. CSCs, however, represent, by themselves, a heterogeneous population. Thus, CSCs have been distinguished in predominantly non-cycling and cycling CSCs, the latter representing CSCs that self-renew and replenish the pool of differentiated tumor cells. We now suggest that the non-cycling CSC subpopulation is in an autophagic state. We propose also two models to explain the relationship between EMT tumor cells and these two major CSC subpopulations: a branching model in which EMT tumor cells can give rise to cycling or non-cycling CSCs, respectively, and a hierarchical model in which EMT tumor cells are first induced to become autophagic CSCs and, subsequently, cycling CSCs. Finally, we address the therapeutic consequences of these insights.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, via Trentacoste 2, 20133, Milan, Italy.
| | - Pietro Ghezzi
- Brighton & Sussex Medical School, Trafford Centre, University of Sussex, Falmer, Brighton, BN1 9RY, UK
| | - Cristiano Rumio
- Dipartimento di Scienze Farmacologiche e Biomolecolari, University of Milano, via Trentacoste 2, 20133, Milan, Italy
| |
Collapse
|
40
|
Stiehl T, Lutz C, Marciniak-Czochra A. Emergence of heterogeneity in acute leukemias. Biol Direct 2016; 11:51. [PMID: 27733173 PMCID: PMC5062896 DOI: 10.1186/s13062-016-0154-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Leukemias are malignant proliferative disorders of the blood forming system. Sequencing studies demonstrate that the leukemic cell population consists of multiple clones. The genetic relationship between the different clones, referred to as the clonal hierarchy, shows high interindividual variability. So far, the source of this heterogeneity and its clinical relevance remain unknown. We propose a mathematical model to study the emergence and evolution of clonal heterogeneity in acute leukemias. The model allows linking properties of leukemic clones in terms of self-renewal and proliferation rates to the structure of the clonal hierarchy. RESULTS Computer simulations imply that the self-renewal potential of the first emerging leukemic clone has a major impact on the total number of leukemic clones and on the structure of their hierarchy. With increasing depth of the clonal hierarchy the self-renewal of leukemic clones increases, whereas the proliferation rates do not change significantly. The emergence of deep clonal hierarchies is a complex process that is facilitated by a cooperativity of different mutations. CONCLUSION Comparison of patient data and simulation results suggests that the self-renewal of leukemic clones increases with the emergence of clonal heterogeneity. The structure of the clonal hierarchy may serve as a marker for patient prognosis. REVIEWERS This article was reviewed by Marek Kimmel, Tommaso Lorenzi and Tomasz Lipniacki.
Collapse
Affiliation(s)
- Thomas Stiehl
- Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, 69120, Germany. .,Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, 69120, Germany. .,Bioquant Center, Heidelberg University, Im Neuenheimer Feld 297, Heidelberg, 69120, Germany.
| | - Christoph Lutz
- Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, Heidelberg, 69120, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, 69120, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, 69120, Germany.,Bioquant Center, Heidelberg University, Im Neuenheimer Feld 297, Heidelberg, 69120, Germany
| |
Collapse
|
41
|
Qian M, Wang DC, Chen H, Cheng Y. Detection of single cell heterogeneity in cancer. Semin Cell Dev Biol 2016; 64:143-149. [PMID: 27619166 DOI: 10.1016/j.semcdb.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 11/19/2022]
Abstract
Single cell heterogeneity has already been highlighted in cancer classification, diagnosis, and treatment. Recent advanced technologies have gained more ability to reveal the heterogeneity on single cell level. In this review, we listed various detection targets applied in single cell study, including tumor tissue cells, circulating tumor cells (CTCs), disseminated tumor cells (DTCs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), and cancer stem cells (CSCs). We further discussed and compared detection methods using these detection targets in different fields to reveal single cell heterogeneity in cancer. We focused not only on the methods that have already been established and validated, but also on newly developed methods. In morphology and phenotype, the methods mainly included cell imaging and immune-staining. In genomics and proteomics, the main methods were single cell sequencing and single cell western blotting. Collectively, from using these methods, we can have a better understanding of the single cell variation, as well as what kind of variation it is and how the variation works. Our observations imply that study on single cell heterogeneity in cancer is an important step to precision medicine. The development of technologies in detection of single cell heterogeneity will be sure to improve the diagnosis and treatment in cancer.
Collapse
Affiliation(s)
- Mengjia Qian
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai 200032, China
| | - Diane C Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai 200032, China.
| | - Hao Chen
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.
| |
Collapse
|
42
|
Pearson AT, Jackson TL, Nör JE. Modeling head and neck cancer stem cell-mediated tumorigenesis. Cell Mol Life Sci 2016; 73:3279-89. [PMID: 27151511 PMCID: PMC5312795 DOI: 10.1007/s00018-016-2226-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 12/22/2022]
Abstract
A large body of literature has emerged supporting the importance of cancer stem cells (CSCs) in the pathogenesis of head and neck cancers. CSCs are a subpopulation of cells within a tumor that share the properties of self-renewal and multipotency with stem cells from normal tissue. Their functional relevance to the pathobiology of cancer arises from the unique properties of tumorigenicity, chemotherapy resistance, and their ability to metastasize and invade distant tissues. Several molecular profiles have been used to discriminate a stem cell from a non-stem cell. CSCs can be grown for study and further enriched using a number of in vitro techniques. An evolving option for translational research is the use of mathematical and computational models to describe the role of CSCs in complex tumor environments. This review is focused discussing the evidence emerging from modeling approaches that have clarified the impact of CSCs to the biology of cancer.
Collapse
Affiliation(s)
- Alexander T Pearson
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan School of Medicine, 1500 E. Medical Center Dr., SPC 5848, Ann Arbor, MI, 48109-5848, USA.
| | - Trachette L Jackson
- Department of Mathematics, University of Michigan School of Literature, Sciences, and the Arts, Ann Arbor, MI, USA
| | - Jacques E Nör
- Department of Restorative Sciences, University of Michigan School of Dentistry, 1011 N. University Rm. 2309, Ann Arbor, MI, 48109-1078, USA.
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Marcucci F, Rumio C, Lefoulon F. Anti-Cancer Stem-like Cell Compounds in Clinical Development - An Overview and Critical Appraisal. Front Oncol 2016; 6:115. [PMID: 27242955 PMCID: PMC4861739 DOI: 10.3389/fonc.2016.00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem-like cells (CSC) represent a subpopulation of tumor cells with elevated tumor-initiating potential. Upon differentiation, they replenish the bulk of the tumor cell population. Enhanced tumor-forming capacity, resistance to antitumor drugs, and metastasis-forming potential are the hallmark traits of CSCs. Given these properties, it is not surprising that CSCs have become a therapeutic target of prime interest in drug discovery. In fact, over the last few years, an enormous number of articles describing compounds endowed with anti-CSC activities have been published. In the meanwhile, several of these compounds and also approaches that are not based on the use of pharmacologically active compounds (e.g., vaccination, radiotherapy) have progressed into clinical studies. This article gives an overview of these compounds, proposes a tentative classification, and describes their biological properties and their developmental stage. Eventually, we discuss the optimal clinical setting for these compounds, the need for biomarkers allowing patient selection, the redundancy of CSC signaling pathways and the utility of employing combinations of anti-CSC compounds and the therapeutic limitations posed by the plasticity of CSCs.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
| | | |
Collapse
|
44
|
Zeng X, Han I, Abd-El-Barr M, Aljuboori Z, Anderson JE, Chi JH, Zafonte RD, Teng YD. The Effects of Thermal Preconditioning on Oncogenic and Intraspinal Cord Growth Features of Human Glioma Cells. Cell Transplant 2016; 25:2099-2109. [PMID: 27151267 DOI: 10.3727/096368916x691493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adult rodent spinal cord presents an inhibitory environment for donor cell survival, impeding efficiency for xenograft-based modeling of gliomas. We postulated that mild thermal preconditioning may influence the fate of the implanted tumor cells. To test this hypothesis, high-grade human astrocytoma G55 and U87 cells were cultured under 37C and 38.5C to mimic regular experimental or core body temperatures of rodents, respectively. In vitro, the 38.5C-conditioned cells, relative to 37C, grew slightly faster. Compared to U87 cells, G55 cells demonstrated a greater response to the temperature difference. Hyperthermal culture markedly increased production of Hsp27 in most G55 cells, but only promoted transient expression of cancer stem cell marker CD133 in a small cell subpopulation. We subsequently transplanted G55 cells following 37C or 38.5C culture into the C2 or T10 spinal cord of adult female immunodeficient rats (3 rats/each locus/per temperature; total: 12 rats). Systematic analyses revealed that 38.5C-preconditioned G55 cells grew more malignantly at either C2 or T10 as determined by tumor size, outgrowth profile, resistance to bolus intratumor administration of 5-fluorouracil (0.1 mol), and posttumor survival (p0.05; n=6/group). Therefore, thermal preconditioning of glioma cells may be an effective way to influence the in vitro and in vivo oncological contour of glioma cells. Future studies are needed for assessing the potential oncogenic modifying effect of hyperthermia regimens on glioma cells.
Collapse
|
45
|
Kumar S, Kulkarni R, Sen S. Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering. Phys Biol 2016; 13:036001. [DOI: 10.1088/1478-3975/13/3/036001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Konstorum A, Hillen T, Lowengrub J. Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 2016; 78:754-785. [PMID: 27113934 DOI: 10.1007/s11538-016-0161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/15/2016] [Indexed: 12/24/2022]
Abstract
The exact mechanisms of spontaneous tumor remission or complete response to treatment are phenomena in oncology that are not completely understood. We use a concept from ecology, the Allee effect, to help explain tumor extinction in a model of tumor growth that incorporates feedback regulation of stem cell dynamics, which occurs in many tumor types where certain signaling molecules, such as Wnts, are upregulated. Due to feedback and the Allee effect, a tumor may become extinct spontaneously or after therapy even when the entire tumor has not been eradicated by the end of therapy. We quantify the Allee effect using an 'Allee index' that approximates the area of the basin of attraction for tumor extinction. We show that effectiveness of combination therapy in cancer treatment may occur due to the increased probability that the system will be in the Allee region after combination treatment versus monotherapy. We identify therapies that can attenuate stem cell self-renewal, alter the Allee region and increase its size. We also show that decreased response of tumor cells to growth inhibitors can reduce the size of the Allee region and increase stem cell densities, which may help to explain why this phenomenon is a hallmark of cancer.
Collapse
Affiliation(s)
- Anna Konstorum
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Thomas Hillen
- Centre for Mathematical Biology, University of Alberta, Edmonton, AB, Canada
| | - John Lowengrub
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
47
|
Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse. Stem Cells Int 2015; 2016:3923527. [PMID: 26858759 PMCID: PMC4686719 DOI: 10.1155/2016/3923527] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022] Open
Abstract
It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.
Collapse
|
48
|
Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 2015; 525:261-4. [PMID: 26308893 PMCID: PMC4782800 DOI: 10.1038/nature14971] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 07/23/2015] [Indexed: 01/01/2023]
Abstract
Most cancers in humans are large, measuring centimetres in diameter, and composed of many billions of cells. An equivalent mass of normal cells would be highly heterogeneous as a result of the mutations that occur during each cell division. What is remarkable about cancers is that virtually every neoplastic cell within a large tumour often contains the same core set of genetic alterations, with heterogeneity confined to mutations that emerge late during tumour growth. How such alterations expand within the spatially constrained three-dimensional architecture of a tumour, and come to dominate a large, pre-existing lesion, has been unclear. Here we describe a model for tumour evolution that shows how short-range dispersal and cell turnover can account for rapid cell mixing inside the tumour. We show that even a small selective advantage of a single cell within a large tumour allows the descendants of that cell to replace the precursor mass in a clinically relevant time frame. We also demonstrate that the same mechanisms can be responsible for the rapid onset of resistance to chemotherapy. Our model not only provides insights into spatial and temporal aspects of tumour growth, but also suggests that targeting short-range cellular migratory activity could have marked effects on tumour growth rates.
Collapse
Affiliation(s)
- Bartlomiej Waclaw
- School of Physics and Astronomy, University of Edinburgh, JCMB, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Ivana Bozic
- Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, Massachusetts 02138, USA
- Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Meredith E Pittman
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, 401 North Broadway, Weinberg 2242, Baltimore, Maryland 21231, USA
| | - Ralph H Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, 401 North Broadway, Weinberg 2242, Baltimore, Maryland 21231, USA
| | - Bert Vogelstein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, 401 North Broadway, Weinberg 2242, Baltimore, Maryland 21231, USA
- Ludwig Center and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, Baltimore, Maryland 21287, USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Harvard University, One Brattle Square, Cambridge, Massachusetts 02138, USA
- Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|