1
|
Gupta P, Khadake RM, Singh ON, Mirgane HA, Gupta D, Bhosale SV, Vrati S, Surjit M, Rode AB. Targeting Two-Tetrad RNA G-Quadruplex in the SARS-CoV-2 RNA Genome Using Tetraphenylethene Derivatives for Antiviral Therapy. ACS Infect Dis 2025; 11:784-795. [PMID: 40017008 DOI: 10.1021/acsinfecdis.5c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Targeting the specific RNA conformations that are crucial for SARS-CoV-2 replication is a viable antiviral approach. The SARS-CoV-2 genome contains GG repeats capable of forming unstable two-tetrad G-quadruplex (GQ) structures, which exist as a mix of conformations, including hairpin (Hp), intra-, and intermolecular GQs. RGQ-1, originating from the nucleocapsid gene's ORF, adopts a dynamic equilibrium of conformations, including intramolecular hairpin and G-quadruplex (Hp-GQ) structures, as confirmed by CD analysis. In this study, tetraphenylethene (TPE) derivatives were developed to target the Hp-GQ conformational equilibrium of RGQ-1. EMSA, fluorescence spectroscopy, and ITC assays confirmed that two TPE derivatives, TPE-MePy and TPE-Allyl Py, bind to RGQ-1. CD thermal melting experiments indicate that RGQ-1 is stabilized by 8.56 and 12.54 °C in the presence of TPE-MePy and TPE-Allyl Py, respectively. Additionally, luciferase assays demonstrated that TPE derivatives suppressed luciferase activity by 2.2-fold and 3.6-fold, respectively, shifting the HpGQ equilibrium toward the GQ conformation, as suggested by CD spectroscopy. Treatment of SARS-CoV-2-infected A549 cells with TPE derivatives reduced the levels of viral RNA, spikes, and nucleocapsid proteins. To explore their antiviral mechanism, preinfection and postinfection treatments were tested, revealing that the TPE derivatives specifically suppressed the postentry stages of viral replication without affecting viral entry. These findings highlight the therapeutic potential of TPE derivatives in inhibiting key gene expressions critical for SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Payal Gupta
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Rushikesh M Khadake
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Oinam Ningthemmani Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka 585367, India
| | - Dharmender Gupta
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka 585367, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Milan Surjit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad - Gurugram Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
2
|
Kledus F, Dobrovolná M, Mergny JL, Brázda V. Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses. Sci Rep 2025; 15:76. [PMID: 39747944 PMCID: PMC11696869 DOI: 10.1038/s41598-024-82613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Collapse
Affiliation(s)
- Filip Kledus
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Science , National Centre for Biomolecular Research Masaryk University , Kamenice 5, Brno, 625 00, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic
- Laboratoire d'Optique et Biosciences (LOB) , Ecole Polytechnique CNRS INSERM Institut Polytechnique de Paris , Palaiseau, 91120, France
| | - Václav Brázda
- Institute of Biophysics , Czech Academy of Sciences , Královopolská 135, Brno, 612 65, Czech Republic.
- Faculty of Chemistry , Brno University of Technology , Purkyňova 118, Brno, 61200, Czech Republic.
| |
Collapse
|
3
|
Sanchez-Martin V. Opportunities and challenges with G-quadruplexes as promising targets for drug design. Expert Opin Drug Discov 2024; 19:1339-1353. [PMID: 39291583 DOI: 10.1080/17460441.2024.2404230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION G-quadruplexes (G4s) are secondary structures formed in guanine-rich regions of nucleic acids (both DNA and RNA). G4s are significantly enriched at regulatory genomic regions and are associated with important biological processes ranging from telomere homeostasis and genome instability to transcription and translation. Importantly, G4s are related to health and diseases such as cancer, neurological diseases, as well as infections with viruses and microbial pathogens. Increasing evidence suggests the potential of G4s for designing new diagnostic and therapeutic strategies although in vivo studies are still at early stages. AREAS COVERED This review provides an updated summary of the literature describing the impact of G4s in human diseases and different approaches based on G4 targeting in therapy. EXPERT OPINION Within the G4 field, most of the studies have been performed in vitro and in a descriptive manner. Therefore, detailed mechanistic understanding of G4s in the biological context remains to be deciphered. In clinics, the use of G4s as therapeutic targets has been hindered due to the low selectivity profile and poor drug-like properties of G4 ligands. Future research on G4s may overcome current methodological and interventional limitations and shed light on these unique structural elements in the pathogenesis and treatment of diseases.
Collapse
Affiliation(s)
- Victoria Sanchez-Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Universidad de Sevilla-Spanish National Research Council (CSIC), Seville, Spain
- Departament of Genetics, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Mayer MD, Lange MJ. G-quadruplex formation in RNA aptamers selected for binding to HIV-1 capsid. Front Chem 2024; 12:1425515. [PMID: 39502140 PMCID: PMC11536715 DOI: 10.3389/fchem.2024.1425515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
HIV-1 capsid protein (CA) is essential for viral replication and interacts with numerous host factors to facilitate successful infection. Thus, CA is an integral target for the study of virus-host dynamics and therapeutic development. The multifaceted functions of CA stem from the ability of CA to assemble into distinct structural components that come together to form the mature capsid core. Each structural component, including monomers, pentamers, and hexamers, presents a variety of solvent-accessible surfaces. However, the structure-function relationships of these components that facilitate replication and virus-host interactions have yet to be fully elucidated. A major challenge is the genetic fragility of CA, which precludes the use of many common methods. To overcome these constraints, we identified CA-targeting aptamers with binding specificity for either the mature CA hexamer lattice alone or both the CA hexamer lattice and soluble CA hexamer. To enable utilization of these aptamers as molecular tools for the study of CA structure-function relationships in cells, understanding the higher-order structures of these aptamers is required. While our initial work on a subset of aptamers included predictive and qualitative biochemical characterizations that provided insight into aptamer secondary structures, these approaches were insufficient for determining more complex non-canonical architectures. Here, we further clarify aptamer structural motifs using focused, quantitative biophysical approaches, primarily through the use of multi-effective spectroscopic methods and thermodynamic analyses. Aptamer L15.20.1 displayed particularly strong, unambiguous indications of stable RNA G-quadruplex (rG4) formation under physiological conditions in a region of the aptamer also previously shown to be necessary for CA-aptamer interactions. Non-canonical structures, such as the rG4, have distinct chemical signatures and interfaces that may support downstream applications without the need for complex modifications or labels that may negatively affect aptamer folding. Thus, aptamer representative L15.20.1, containing a putative rG4 in a region likely required for aptamer binding to CA with probable function under cellular conditions, may be a particularly useful tool for the study of HIV-1 CA.
Collapse
Affiliation(s)
- Miles D. Mayer
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| | - Margaret J. Lange
- Department of Molecular Microbiology and Immunology, Columbia, MO, United States
- Department of Biochemistry, Columbia, MO, United States
| |
Collapse
|
5
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
6
|
Štefan U, Brázda V, Plavec J, Marušič M. The influence of G-tract and loop length on the topological variability of putative five and six G-quartet DNA structures in the human genome. Int J Biol Macromol 2024; 280:136008. [PMID: 39326605 DOI: 10.1016/j.ijbiomac.2024.136008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Local variation of DNA structure and its dynamic nature play an essential role in the regulation of important biological processes. One of the most prominent noncanonical structures are G-quadruplexes, which form in vivo within guanine-rich regions and have been demonstrated to be involved in the regulation of transcription, translation and telomere maintenance. We provide an analysis of G-quadruplex formation in sequences with five and six guanine residues long G-tracts, which have emerged from the investigation of the gapless human genome and are associated with genes related to cancer and neurodegenerative diseases. We systematically explored the effect of G-tract and loop elongations by means of NMR and CD spectroscopy and polyacrylamide electrophoresis. Despite both types of elongation leading up to structural polymorphism, we successfully determined the topologies of four out of eight examined sequences, one of which contributes to a very scarce selection of currently known intramolecular four G-quartet structures in potassium solutions. We demonstrate that examined sequences are incompatible with five or six G-quartet structures with propeller loops, although the compatibility with other loop types cannot be factored out. Lastly, we propose a novel approach towards specific G-quadruplex targeting that could be implemented in structures with more than four G-quartets.
Collapse
Affiliation(s)
- Urša Štefan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
| | - Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Guo L, Huang W, Wen Q, Zhang S, Bordbar F, Xiao Z, Nie Q. The first embryonic landscape of G-quadruplexes related to myogenesis. BMC Biol 2024; 22:194. [PMID: 39256800 PMCID: PMC11389323 DOI: 10.1186/s12915-024-01993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND DNA G-quadruplexes (G4s) represent a distinctive class of non-canonical DNA secondary structures. Despite their recognition as potential therapeutic targets in some cancers, the developmental role of G4 structures remains enigmatic. Mammalian embryonic myogenesis studies are hindered by limitations, prompting the use of chicken embryo-derived myoblasts as a model to explore G4 dynamics. This study aims to reveal the embryonic G4s landscape and elucidate the underlying mechanisms for candidate G4s that influence embryonic myogenesis. RESULTS This investigation unveils a significant reduction in G4s abundance during myogenesis. G4s stabilizer pyridostatin impedes embryonic myogenesis, emphasizing the regulatory role of G4s in this process. G4 Cut&Tag sequencing and RNA-seq analyses identify potential G4s and DEGs influencing embryonic myogenesis. Integration of G4 and DEG candidates identifies 32 G4s located in promoter regions capable of modulating gene transcription. WGBS elucidates DNA methylation dynamics during embryonic myogenesis. Coordinating transcriptome data with DNA G4s and DNA methylation profiles constructs a G4-DMR-DEG network, revealing nine interaction pairs. Notably, the NFATC2 promoter region sequence is confirmed to form a G4 structure, reducing promoter mCpG content and upregulating NFATC2 transcriptional activity. CONCLUSIONS This comprehensive study unravels the first embryonic genomic G4s landscape, highlighting the regulatory role of NFATC2 G4 in orchestrating transcriptional activity through promoter DNA methylation during myogenesis.
Collapse
Affiliation(s)
- Lijin Guo
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Weiling Huang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Qi Wen
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Siyu Zhang
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Farhad Bordbar
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China
| | - Zhengzhong Xiao
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, & Lingnan Guangdong Laboratory of Agriculture, & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Schult P, Kümmerer BM, Hafner M, Paeschke K. Viral hijacking of hnRNPH1 unveils a G-quadruplex-driven mechanism of stress control. Cell Host Microbe 2024; 32:1579-1593.e8. [PMID: 39094585 DOI: 10.1016/j.chom.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/02/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Viral genomes are enriched with G-quadruplexes (G4s), non-canonical structures formed in DNA or RNA upon assembly of four guanine stretches into stacked quartets. Because of their critical roles, G4s are potential antiviral targets, yet their function remains largely unknown. Here, we characterize the formation and functions of a conserved G4 within the polymerase coding region of orthoflaviviruses of the Flaviviridae family. Using yellow fever virus, we determine that this G4 promotes viral replication and suppresses host stress responses via interactions with hnRNPH1, a host nuclear protein involved in RNA processing. G4 binding to hnRNPH1 causes its cytoplasmic retention with subsequent impacts on G4-containing tRNA fragments (tiRNAs) involved in stress-mediated reductions in translation. As a result, these host stress responses and associated antiviral effects are impaired. These data reveal that the interplay between hnRNPH1 and both host and viral G4 targets controls the integrated stress response and viral replication.
Collapse
Affiliation(s)
- Philipp Schult
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany; Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
9
|
Terrell JR, Le TT, Paul A, Brinton MA, Wilson WD, Poon GMK, Germann MW, Siemer JL. Structure of an RNA G-quadruplex from the West Nile virus genome. Nat Commun 2024; 15:5428. [PMID: 38926367 PMCID: PMC11208454 DOI: 10.1038/s41467-024-49761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Thao T Le
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jessica L Siemer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
10
|
Michel HM, Lemkul JA. Base pair dynamics, electrostatics, and thermodynamics at the LTR-III quadruplex:duplex junction. Biophys J 2024; 123:1129-1138. [PMID: 38576161 PMCID: PMC11079942 DOI: 10.1016/j.bpj.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
G-quadruplexes (GQs) play key regulatory roles within the human genome and have also been identified to play similar roles in other eukaryotes, bacteria, archaea, and viruses. Human immunodeficiency virus 1, the etiological agent of acquired immunodeficiency syndrome, can form two GQs in its long terminal repeat (LTR) promoter region, each of which act to regulate viral gene expression in opposing manners. The major LTR GQ, called LTR-III, is a distinct hybrid GQ containing a 12-nucleotide duplex loop attached to the quadruplex motif. The resulting quadruplex:duplex junction (QDJ) has been hypothesized to serve as a selective drug targeting site. To better understand the dynamics of this QDJ, we performed conventional and enhanced-sampling molecular dynamics simulations using the Drude-2017 force field. We observed unbiased and reversible formation of additional base pairs in the QDJ, between Ade4:Thy14 and Gua3:Thy14. Both base pairs were electrostatically favored, but geometric constraints within the junction may drive the formation of, and preference for, the Ade4:Thy14 base pair. Finally, we demonstrated that the base pairs are separated only by small energy barriers that may enable transitions between both base-paired states. Together, these simulations provide new insights into the dynamics, electrostatics, and thermodynamics of the LTR-III QDJ.
Collapse
Affiliation(s)
- Haley M Michel
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
11
|
Brázda V, Valková N, Dobrovolná M, Mergny JL. Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes. ACS OMEGA 2024; 9:4096-4101. [PMID: 38284014 PMCID: PMC10809645 DOI: 10.1021/acsomega.3c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Hepatitis delta virus (HDV) is a highly unusual RNA satellite virus that depends on the presence of hepatitis B virus (HBV) to be infectious. Its compact and variable single-stranded RNA genome consists of eight major genotypes distributed unevenly across different continents. The significance of noncanonical secondary structures such as G-quadruplexes (G4s) is increasingly recognized at the DNA and RNA levels, particularly for transcription, replication, and translation. G4s are formed from guanine-rich sequences and have been identified in the vast majority of viral, eukaryotic, and prokaryotic genomes. In this study, we analyzed the G4 propensity of HDV genomes by using G4Hunter. Unlike HBV, which has a G4 density similar to that of the human genome, HDV displays a significantly higher number of potential quadruplex-forming sequences (PQS), with a density more than four times greater than that of the human genome. This finding suggests a critical role for G4s in HDV, especially given that the PQS regions are conserved across HDV genotypes. Furthermore, the prevalence of G4-forming sequences may represent a promising target for therapeutic interventions to control HDV replication.
Collapse
Affiliation(s)
- Václav Brázda
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Natália Valková
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
| | - Michaela Dobrovolná
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 118, Brno 61200, Czech Republic
| | - Jean-Louis Mergny
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 621 00, Czech Republic
- Laboratoire
d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, Palaiseau 91120, France
| |
Collapse
|
12
|
Kastl M, Hersperger F, Kierdorf K, Paeschke K. Detection of G-Quadruplex DNA Structures in Macrophages. Methods Mol Biol 2024; 2713:453-462. [PMID: 37639141 DOI: 10.1007/978-1-0716-3437-0_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In addition to the canonical B-DNA conformation, DNA can fold into different secondary structures. Among them are G-quadruplex structures (G4s). G4 structures are very stable and can fold in specific guanine-rich regions in DNA and RNA. Different in silico, in vitro, and in cellulo experiments have shown that G4 structures form so far in all tested organisms. There are over 700,000 predicted G4s in higher eukaryotes, but it is so far assumed that not all will form at the same time. Their formation is dynamically regulated by proteins and is cell type-specific and even changes during the cell cycle or during different exogenous or endogenous stimuli (e.g., infection or developmental stages) can alter the G4 level. G4s have been shown to accumulate in cancer cells where they contribute to gene expression changes and the mutagenic burden of the tumor. Specific targeting of G4 structures to impact the expression of oncogenes is currently discussed as an anti-cancer treatment. In a tumor microenvironment, not only the tumor cells will be targeted by G4 stabilization but also immune cells such as macrophages. Although G4s were detected in multiple organisms and different cell types, only little is known about their role in immune cells. Here, we provide a detailed protocol to detect G4 formation in the nucleus of macrophages of vertebrates and invertebrates by microscopic imaging.
Collapse
Affiliation(s)
- Melanie Kastl
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Fabian Hersperger
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
13
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
14
|
Dabral P, Uppal T, Verma SC. G-quadruplexes of KSHV oriLyt play important roles in promoting lytic DNA replication. Microbiol Spectr 2023; 11:e0531622. [PMID: 37800915 PMCID: PMC10714766 DOI: 10.1128/spectrum.05316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.
Collapse
Affiliation(s)
- Prerna Dabral
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
15
|
Yella VR, Vanaja A. Computational analysis on the dissemination of non-B DNA structural motifs in promoter regions of 1180 cellular genomes. Biochimie 2023; 214:101-111. [PMID: 37311475 DOI: 10.1016/j.biochi.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The promoter regions of gene regulation are under evolutionary constraints and earlier studies uncovered that they are characterized by enrichment of functional non-B DNA structural signatures like curved DNA, cruciform DNA, G-quadruplex, triple-helical DNA, slipped DNA structures, and Z-DNA. However, these studies are restricted to a few model organisms, single non-B DNA motif types, or whole genomic sequences, and their comparative accumulation in promoter regions of different domains of life has not been reported comprehensively. In this study, for the first time, we investigated the preponderance of non-B DNA-prone motifs in promoter regions in 1180 genomes belonging to 28 taxonomic groups using the non-B DNA Motif Search Tool (nBMST). The trends suggest that they are predominant in promoters compared to the upstream and downstream regions of all three domains of life and variably linked to taxonomic groups. Cruciform DNA motif is the most abundant form of non-B DNA, spanning from archaea to lower eukaryotes. Curved DNA motifs are prominent in host-associated bacteria, and suppressed in mammals. Triplex-DNA and slipped DNA structure repeats are discretely dispersed in all lineages. G-quadruplex motifs are significantly enriched in mammals. We also observed that the unique enrichment of non-B DNA in promoters is strongly linked to genome GC, size, evolutionary time divergence, and ecological adaptations. Overall, our work systematically reports the unique non-B DNA structural landscape of cellular organisms from the perspective of the cis-regulatory code of genomes.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India.
| | - Akkinepally Vanaja
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India; KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Guntur, 522302, Andhra Pradesh, India
| |
Collapse
|
16
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
17
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
18
|
Kaur B, Sharma P, Arora P, Sood V. QUFIND: tool for comparative prediction and mining of G4 quadruplexes overlapping with CpG islands. Front Genet 2023; 14:1265808. [PMID: 37953924 PMCID: PMC10634401 DOI: 10.3389/fgene.2023.1265808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures in DNA that have been shown to be involved in gene regulation. They play a vital role in the cellular processes and several pathogens including bacteria, fungi, and viruses have also been shown to possess G4s that help them in their pathogenesis. Additionally, cross-talk among the CpG islands and G4s has been shown to influence biological processes. The virus-encoded G4s are affected by the mutational landscape leading to the formation/deletion of these G4s. Therefore, understanding and predicting these multivariate effects on traditional and non-traditional quadruplexes forms an important area of research, that is, yet to be investigated. We have designed a user-friendly webserver QUFIND (http://soodlab.com/qufinder/) that can predict traditional as well as non-traditional quadruplexes in a given sequence. QUFIND is connected with ENSEMBL and NCBI so that the sequences can be fetched in a real-time manner. The algorithm is designed in such a way that the user is provided with multiple options to customize the base (A, T, G, or C), size of the stem (2-5), loop length (1-30), number of bulges (1-5) as well as the number of mismatches (0-2) enabling the identification of any of the secondary structure as per their interest. QUFIND is designed to predict both CpG islands as well as G4s in a given sequence. Since G4s are very short as compared to the CpG islands, hence, QUFIND can also predict the overlapping G4s within CpG islands. Therefore, the user has the flexibility to identify either overlapping or non-overlapping G4s along with the CpG islands. Additionally, one section of QUFIND is dedicated to comparing the G4s in two viral sequences. The visualization is designed in such a manner that the user is able to see the unique quadruplexes in both the input sequences. The efficiency of QUFIND is calculated on G4s obtained from G4 high throughput sequencing data (n = 1000) or experimentally validated G4s (n = 329). Our results revealed that QUFIND is able to predict G4-quadruplexes obtained from G4-sequencing data with 90.06% prediction accuracy whereas experimentally validated quadruplexes were predicted with 97.26% prediction accuracy.
Collapse
Affiliation(s)
- Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Malka Ganj, India
| | - Priya Sharma
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Malka Ganj, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| |
Collapse
|
19
|
Razzaq M, Han JH, Ravichandran S, Kim J, Bae JY, Park MS, Kannappan S, Chung WC, Ahn JH, Song MJ, Kim KK. Stabilization of RNA G-quadruplexes in the SARS-CoV-2 genome inhibits viral infection via translational suppression. Arch Pharm Res 2023; 46:598-615. [PMID: 37563335 DOI: 10.1007/s12272-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The G-quadruplex (G4) formed in single-stranded DNAs or RNAs plays a key role in diverse biological processes and is considered as a potential antiviral target. In the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 25 putative G4-forming sequences are predicted; however, the effects of G4-binding ligands on SARS-CoV-2 replication have not been studied in the context of viral infection. In this study, we investigated whether G4-ligands suppressed SARS-CoV-2 replication and whether their antiviral activity involved stabilization of viral RNA G4s and suppression of viral gene expression. We found that pyridostatin (PDS) suppressed viral gene expression and genome replication as effectively as the RNA polymerase inhibitor remdesivir. Biophysical analyses revealed that the 25 predicted G4s in the SARS-CoV-2 genome formed a parallel G4 structure. In particular, G4-644 and G4-3467 located in the 5' region of ORF1a, formed a G4 structure that could be effectively stabilized by PDS. We also showed that PDS significantly suppressed translation of the reporter genes containing these G4s. Taken together, our results demonstrate that stabilization of RNA G4s by PDS in the SARS-CoV-2 genome inhibits viral infection via translational suppression, highlighting the therapeutic potential of G4-ligands in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Ho Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biology, Stanford University, Stanford, United States of America
| | - Jaehyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Pávová M, Reyes-Gutiérrez PE, Kozák J, Dobiaš J, Yurenko Y, Lepšík M, Teplý F, Weber J. Helquat dyes targeting G-quadruplexes as a new class of anti-HIV-1 inhibitors. Sci Rep 2023; 13:6096. [PMID: 37055553 PMCID: PMC10102027 DOI: 10.1038/s41598-023-33263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
The secondary structure of nucleic acids containing quartets of guanines, termed G-quadruplexes, is known to regulate the transcription of many genes. Several G-quadruplexes can be formed in the HIV-1 long terminal repeat promoter region and their stabilization results in the inhibition of HIV-1 replication. Here, we identified helquat-based compounds as a new class of anti-HIV-1 inhibitors that inhibit HIV-1 replication at the stage of reverse transcription and provirus expression. Using Taq polymerase stop and FRET melting assays, we have demonstrated their ability to stabilize G-quadruplexes in the HIV-1 long-terminal repeat sequence. Moreover, these compounds were not binding to the general G-rich region, but rather to G-quadruplex-forming regions. Finally, docking and molecular dynamics calculations indicate that the structure of the helquat core greatly affects the binding mode to the individual G-quadruplexes. Our findings can provide useful information for the further rational design of inhibitors targeting G-quadruplexes in HIV-1.
Collapse
Affiliation(s)
- Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Paul Eduardo Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jaroslav Kozák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Juraj Dobiaš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Filip Teplý
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 160 00, Czech Republic.
| |
Collapse
|
21
|
Bonaventure B, Goujon C. [The DEAD box RNA helicase DDX42 is an intrinsic inhibitor of positive-strand RNA viruses]. Med Sci (Paris) 2023; 39:322-325. [PMID: 37094262 DOI: 10.1051/medsci/2023039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Boris Bonaventure
- Institut de recherche en infectiologie de Montpellier, CNRS, université de Montpellier, Montpellier, France - Adresse actuelle : Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, États-Unis
| | - Caroline Goujon
- Institut de recherche en infectiologie de Montpellier, CNRS, université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Chung WC, Ravichandran S, Park D, Lee GM, Kim YE, Choi Y, Song MJ, Kim KK, Ahn JH. G-quadruplexes formed by Varicella-Zoster virus reiteration sequences suppress expression of glycoprotein C and regulate viral cell-to-cell spread. PLoS Pathog 2023; 19:e1011095. [PMID: 36630443 PMCID: PMC9873165 DOI: 10.1371/journal.ppat.1011095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 01/02/2023] [Indexed: 01/12/2023] Open
Abstract
G-quadruplex (G4) formed by repetitive guanosine-rich sequences plays important roles in diverse cellular processes; however, its roles in viral infection are not fully understood. In this study, we investigated the genome-wide distribution of G4-forming sequences (G4 motifs) in Varicella-Zoster virus (VZV) and found that G4 motifs are enriched in the internal repeat short and the terminal repeat short regions flanking the unique short region and also in some reiteration (R) sequence regions. A high density of G4 motifs in the R2 region was found on the template strand of ORF14, which encodes glycoprotein C (gC), a virulent factor for viral growth in skin. Analyses such as circular dichroism spectroscopy, thermal difference spectra, and native polyacrylamide gel electrophoresis with oligodeoxynucleotides demonstrated that several G4 motifs in ORF14 form stable G4 structures. In transfection assays, gC expression from the G4-disrupted ORF14 gene was increased at the transcriptional level and became more resistant to suppression by G4-ligand treatment. The recombinant virus containing the G4-disrupted ORF14 gene expressed a higher level of gC mRNA, while it showed a slightly reduced growth. This G4-disrupted ORF14 virus produced smaller plaques than the wild-type virus. Our results demonstrate that G4 formation via reiteration sequences suppresses gC expression during VZV infection and regulates viral cell-to-cell spread.
Collapse
Affiliation(s)
- Woo-Chang Chung
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Daegyu Park
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gwang Myeong Lee
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Youngju Choi
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Ruggiero E, Richter SN. Targeting G-quadruplexes to achieve antiviral activity. Bioorg Med Chem Lett 2023; 79:129085. [PMID: 36423824 PMCID: PMC9760570 DOI: 10.1016/j.bmcl.2022.129085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
With the emergence of new viruses in the human population and the fast mutation rates of existing viruses, new antiviral targets and compounds are needed. Most existing antiviral drugs are active against proteins of a handful of viruses. Most of these proteins in the end affect viral nucleic acid processing, but direct nucleic acid targeting is less represented due to the difficulty of selectively acting at the nucleic acid of interest. Recently, nucleic acids have been shown to fold in structures alternative to the classic double helix and Watson and Crick base-pairing. Among these non-canonical structures, G-quadruplexes (G4s) have attracted interest because of their key biological roles that are being discovered. Molecules able to selectively target G4s have been developed and since G4s have been investigated as targets in several human pathologies, including viral infections. Here, after briefly introducing viruses, G4s and the G4-binding molecules with antiviral properties, we comment on the mechanisms at the base of the antiviral activity reported for G4-binding molecules. Understanding how G4-ligands act in infected cells will possibly help designing and developing next-generation antiviral drugs.
Collapse
Affiliation(s)
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Italy; Microbiology and Virology Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
24
|
Qin G, Zhao C, Yang J, Wang Z, Ren J, Qu X. Unlocking G-Quadruplexes as Targets and Tools against COVID-19. CHINESE J CHEM 2022; 41:CJOC202200486. [PMID: 36711116 PMCID: PMC9874442 DOI: 10.1002/cjoc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
The applicability of G-quadruplexes (G4s) as antiviral targets, therapeutic agents and diagnostic tools for coronavirus disease 2019 (COVID-19) is currently being evaluated, which has drawn the extensive attention of the scientific community. During the COVID-19 pandemic, research in this field is rapidly accumulating. In this review, we summarize the latest achievements and breakthroughs in the use of G4s as antiviral targets, therapeutic agents and diagnostic tools for COVID-19, particularly using G4 ligands. Finally, strength and weakness regarding G4s in anti-SARS-CoV-2 field are highlighted for prospective future projects.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
25
|
Teng Y, Zhu M, Chi Y, Li L, Jin Y. Can G-quadruplex become a promising target in HBV therapy? Front Immunol 2022; 13:1091873. [PMID: 36591216 PMCID: PMC9797731 DOI: 10.3389/fimmu.2022.1091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The chronic infection with hepatitis B virus (HBV) is an important health problem that affects millions of people worldwide. Current therapies for HBV always suffer from a poor response rate, common side effects, and the need for lifelong treatment. Novel therapeutic targets are expected. Interestingly, non-canonical structures of nucleic acids play crucial roles in the regulation of gene expression. Especially the formation of G-quadruplexes (G4s) in G-rich strands has been demonstrated to affect many bioprocesses including replication, transcription, and translation, showing great potential as targets in anticancer and antiviral therapies. In this review, we summarize recent antiviral studies about G4s and discuss the potential roles of G4 structures in antiviral therapy for HBV.
Collapse
Affiliation(s)
- Ye Teng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Zhu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuan Chi
- Pharmaceutical Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Lijing Li
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lijing Li, ; Ye Jin,
| |
Collapse
|
26
|
Frasson I, Soldà P, Nadai M, Tassinari M, Scalabrin M, Gokhale V, Hurley LH, Richter SN. Quindoline-derivatives display potent G-quadruplex-mediated antiviral activity against herpes simplex virus 1. Antiviral Res 2022; 208:105432. [PMID: 36228762 PMCID: PMC9720158 DOI: 10.1016/j.antiviral.2022.105432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that regulate key biological processes, from transcription to genome replication both in humans and viruses. The herpes simplex virus-1 (HSV-1) genome is prone to form G4s that, along with proteins, regulate its viral cycle. General G4 ligands have been shown to hamper the viral cycle, pointing to viral G4s as original antiviral targets. Because cellular G4s are also normally present in infected cells, the quest for improved anti-HSV-1 G4 ligands is still open. Here, we evaluated a series of new quindoline-derivatives which showed high binding to and stabilization of the viral G4s. They displayed nanomolar-range anti-HSV-1 activity paralleled by negligible cytotoxicity in human cells, thus proving remarkable selectivity. The best-in-class compound inhibited the viral life cycle at the early times post infection up to the step of viral genome replication. In infected human cells, it reduced expression of ICP4, the main viral transcription factor, by stabilizing the G4s embedded in ICP4 promoter. Quindoline-derivatives thus emerge as a new class of G4 ligands with potent dual anti HSV-1 activity.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Vijay Gokhale
- BIO5 Institute, University of Arizona, Tucson, AZ, 85721, United States
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
27
|
Zhai LY, Su AM, Liu JF, Zhao JJ, Xi XG, Hou XM. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. Int J Biol Macromol 2022; 221:1476-1490. [PMID: 36130641 PMCID: PMC9482720 DOI: 10.1016/j.ijbiomac.2022.09.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies. To date, antiviral drugs against SARS-CoV-2 have mainly focused on proteases or polymerases. Notably, noncanonical nucleic acid structures called G-quadruplexes (G4s) have been identified in many viruses in recent years, and numerous G4 ligands have been developed. During this pandemic, literature on SARS-CoV-2 G4s is rapidly accumulating. Here, we first summarize the recent progress in the identification of SARS-CoV-2 G4s and their intervention by ligands. We then introduce the potential interacting proteins of SARS-CoV-2 G4s from both the virus and the host that may regulate G4 functions. The innovative strategy to use G4s as a diagnostic tool in SARS-CoV-2 detection is also reviewed. Finally, we discuss some key questions to be addressed in the future.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190 Gif-sur-Yvette, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
28
|
Belachew B, Gao J, Byrd AK, Raney KD. Hepatitis C virus nonstructural protein NS3 unfolds viral G-quadruplex RNA structures. J Biol Chem 2022; 298:102486. [PMID: 36108740 PMCID: PMC9582721 DOI: 10.1016/j.jbc.2022.102486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 09/03/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver-related diseases and hepatocellular carcinoma. The helicase domain of one of the nonstructural proteins of HCV, NS3 (nonstructural protein 3), is essential for viral replication; however, its specific biological role is still under investigation. Here, we set out to determine the interaction between a purified recombinant full length NS3 and synthetic guanine-rich substrates that represent the conserved G-quadruplex (G4)-forming sequences in the HCV-positive and HCV-negative strands. We performed fluorescence anisotropy binding, G4 reporter duplex unwinding, and G4RNA trapping assays to determine the binding and G4 unfolding activity of NS3. Our data suggest that NS3 can unfold the conserved G4 structures present within the genome and the negative strand of HCV. Additionally, we found the activity of NS3 on a G4RNA was reduced significantly in the presence of a G4 ligand. The ability of NS3 to unfold HCV G4RNA could imply a novel biological role of the viral helicase in replication.
Collapse
Affiliation(s)
- Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
29
|
Vannutelli A, Schell L, Perreault JP, Ouangraoua A. GAIA: G-quadruplexes in alive creature database. Nucleic Acids Res 2022; 51:D135-D140. [PMID: 35971612 PMCID: PMC9825426 DOI: 10.1093/nar/gkac657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes (G4) are 3D structures that are found in both DNA and RNA. Interest in this structure has grown over the past few years due to both its implication in diverse biological mechanisms and its potential use as a therapeutic target, to name two examples. G4s in humans have been widely studied; however, the level of their study in other species remains relatively minimal. That said, progress in this field has resulted in the prediction of G4s structures in various species, ranging from bacteria to eukaryotes. These predictions were analysed in a previous study which revealed that G4s are present in all living kingdoms. To date, eleven different databases have grouped the various G4s depending on either their structures, on the proteins that might bind them, or on their location in the various genomes. However, none of these databases contains information on their location in the transcriptome of many of the implicated species. The GAIA database was designed so as to make this data available online in a user-friendly manner. Through its web interface, users can query GAIA to filter G4s, which, we hope, will help the research in this field. GAIA is available at: https://gaia.cobius.usherbrooke.ca.
Collapse
Affiliation(s)
- Anaïs Vannutelli
- Department of Biochemistry and Functional Genomics, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, QC J1E 4K8, Canada,Department of Computer Science, Faculté des sciences, Université de Sherbrooke, QC J1K 2R1, Canada
| | | | - Jean-Pierre Perreault
- Correspondence may also be addressed to Jean-Pierre Perreault. Tel: +1 819 821 8000 (Ext 75310);
| | - Aïda Ouangraoua
- To whom correspondence should be addressed. Tel: +1 819 821 8000 (Ext 62014);
| |
Collapse
|
30
|
Dobrovolná M, Bohálová N, Peška V, Wang J, Luo Y, Bartas M, Volná A, Mergny JL, Brázda V. The Newly Sequenced Genome of Pisum sativum Is Replete with Potential G-Quadruplex-Forming Sequences-Implications for Evolution and Biological Regulation. Int J Mol Sci 2022; 23:8482. [PMID: 35955617 PMCID: PMC9369095 DOI: 10.3390/ijms23158482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
Collapse
Affiliation(s)
- Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Vratislav Peška
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
| | - Jiawei Wang
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Yu Luo
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, CEDEX, 91405 Orsay, France
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Adriana Volná
- Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, CEDEX, 91128 Palaiseau, France; (J.W.); (Y.L.)
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; (M.D.); (N.B.); (V.P.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
31
|
Zhai LY, Liu JF, Zhao JJ, Su AM, Xi XG, Hou XM. Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. J Med Chem 2022; 65:10161-10182. [PMID: 35862260 DOI: 10.1021/acs.jmedchem.2c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China.,Laboratory of Biology and Applied Pharmacology, CNRS UMR 8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| |
Collapse
|
32
|
Frasson I. Editorial: Biology of non-canonical nucleic acids from humans to pathogens. Front Microbiol 2022; 13:981679. [PMID: 35935211 PMCID: PMC9345759 DOI: 10.3389/fmicb.2022.981679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
|
33
|
Ruggiero E, Lavezzo E, Grazioli M, Zanin I, Marušič M, Plavec J, Richter SN, Toppo S. Human Virus Genomes Are Enriched in Conserved Adenine/Thymine/Uracil Multiple Tracts That Pause Polymerase Progression. Front Microbiol 2022; 13:915069. [PMID: 35722311 PMCID: PMC9198555 DOI: 10.3389/fmicb.2022.915069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The DNA secondary structures that deviate from the classic Watson and Crick base pairing are increasingly being reported to form transiently in the cell and regulate specific cellular mechanisms. Human viruses are cell parasites that have evolved mechanisms shared with the host cell to support their own replication and spreading. Contrary to human host cells, viruses display a diverse array of nucleic acid types, which include DNA or RNA in single-stranded or double-stranded conformations. This heterogeneity improves the possible occurrence of non-canonical nucleic acid structures. We have previously shown that human virus genomes are enriched in G-rich sequences that fold in four-stranded nucleic acid secondary structures, the G-quadruplexes.Here, by extensive bioinformatics analysis on all available genomes, we showed that human viruses are enriched in highly conserved multiple A (and T or U) tracts, with such an array that they could in principle form quadruplex structures. By circular dichroism, NMR, and Taq polymerase stop assays, we proved that, while A/T/U-quadruplexes do not form, these tracts still display biological significance, as they invariably trigger polymerase pausing within two bases from the A/T/U tract. “A” bases display the strongest effect. Most of the identified A-tracts are in the coding strand, both at the DNA and RNA levels, suggesting their possible relevance during viral translation. This study expands on the presence and mechanism of nucleic acid secondary structures in human viruses and provides a new direction for antiviral research.
Collapse
Affiliation(s)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Marco Grazioli
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Irene Zanin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Maja Marušič
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua, Padua, Italy.,CRIBI Biotechnology Center, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Castelli M, Doria F, Freccero M, Colombo G, Moroni E. Studying the Dynamics of a Complex G-Quadruplex System: Insights into the Comparison of MD and NMR Data. J Chem Theory Comput 2022; 18:4515-4528. [PMID: 35666124 PMCID: PMC9281369 DOI: 10.1021/acs.jctc.2c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Molecular dynamics
(MD) simulations are coming of age in the study
of nucleic acids, including specific tertiary structures such as G-quadruplexes.
While being precious for providing structural and dynamic information
inaccessible to experiments at the atomistic level of resolution,
MD simulations in this field may still be limited by several factors.
These include the force fields used, different models for ion parameters,
ionic strengths, and water models. We address various aspects of this
problem by analyzing and comparing microsecond-long atomistic simulations
of the G-quadruplex structure formed by the human immunodeficiency
virus long terminal repeat (HIV LTR)-III sequence for which nuclear
magnetic resonance (NMR) structures are available. The system is studied
in different conditions, systematically varying the ionic strengths,
ion numbers, and water models. We comparatively analyze the dynamic
behavior of the G-quadruplex motif in various conditions and assess
the ability of each simulation to satisfy the nuclear magnetic resonance
(NMR)-derived experimental constraints and structural parameters.
The conditions taking into account K+-ions to neutralize
the system charge, mimicking the intracellular ionic strength, and
using the four-atom water model are found to be the best in reproducing
the experimental NMR constraints and data. Our analysis also reveals
that in all of the simulated environments residues belonging to the
duplex moiety of HIV LTR-III exhibit the highest flexibility.
Collapse
Affiliation(s)
- Matteo Castelli
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, V.le Taramelli 12, 27100 Pavia, Italy.,Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| | - Elisabetta Moroni
- Institute of Chemical Sciences and Technologies SCITEC-CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
35
|
Meier-Stephenson V. G4-quadruplex-binding proteins: review and insights into selectivity. Biophys Rev 2022; 14:635-654. [PMID: 35791380 PMCID: PMC9250568 DOI: 10.1007/s12551-022-00952-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
There are over 700,000 putative G4-quadruplexes (G4Qs) in the human genome, found largely in promoter regions, telomeres, and other regions of high regulation. Growing evidence links their presence to functionality in various cellular processes, where cellular proteins interact with them, either stabilizing and/or anchoring upon them, or unwinding them to allow a process to proceed. Interest in understanding and manipulating the plethora of processes regulated by these G4Qs has spawned a new area of small-molecule binder development, with attempts to mimic and block the associated G4-binding protein (G4BP). Despite the growing interest and focus on these G4Qs, there is limited data (in particular, high-resolution structural information), on the nature of these G4Q-G4BP interactions and what makes a G4BP selective to certain G4Qs, if in fact they are at all. This review summarizes the current literature on G4BPs with regards to their interactions with G4Qs, providing groupings for binding mode, drawing conclusions around commonalities and highlighting information on specific interactions where available.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
36
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
37
|
Ruggiero E, Frasson I, Tosoni E, Scalabrin M, Perrone R, Marušič M, Plavec J, Richter SN. Fused in Liposarcoma Protein, a New Player in the Regulation of HIV-1 Transcription, Binds to Known and Newly Identified LTR G-Quadruplexes. ACS Infect Dis 2022; 8:958-968. [PMID: 35502456 PMCID: PMC9112328 DOI: 10.1021/acsinfecdis.1c00508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/29/2022]
Abstract
HIV-1 integrated long terminal repeat (LTR) promoter activity is modulated by folding of its G-rich region into non-canonical nucleic acids structures, such as G-quadruplexes (G4s), and their interaction with cellular proteins. Here, by a combined pull-down/mass spectrometry/Western-blot approach, we identified the fused in liposarcoma (FUS) protein and found it to preferentially bind and stabilize the least stable and bulged LTR G4, especially in the cell environment. The outcome of this interaction is the down-regulation of viral transcription, as assessed in a reporter assay with LTR G4 mutants in FUS-silencing conditions. These data indicate that the complexity and dynamics of HIV-1 LTR G4s are much greater than previously envisaged. The G-rich LTR region, with its diverse G4 landscape and multiple cell protein interactions, stands out as prime sensing center for the fine regulation of viral transcription. This region thus represents a rational antiviral target for inhibiting both the actively transcribing and latent viruses.
Collapse
Affiliation(s)
- Emanuela Ruggiero
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Elena Tosoni
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Matteo Scalabrin
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| | - Rosalba Perrone
- Buck
Institute for Research on Aging, 8001 Redwood Boulevard, Novato, California 94945, United States
| | - Maja Marušič
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Janez Plavec
- Slovenian
NMR Center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, via Aristide Gabelli 63, Padua 35121, Italy
| |
Collapse
|
38
|
Frasson I, Pirota V, Richter SN, Doria F. Multimeric G-quadruplexes: A review on their biological roles and targeting. Int J Biol Macromol 2022; 204:89-102. [PMID: 35124022 DOI: 10.1016/j.ijbiomac.2022.01.197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
In human cells, nucleic acids adopt several non-canonical structures that regulate key cellular processes. Among them, G-quadruplexes (G4s) are stable structures that form in guanine-rich regions in vitro and in cells. G4 folded/unfolded state shapes numerous cellular processes, including genome replication, transcription, and translation. Moreover, G4 folding is involved in genomic instability. G4s have been described to multimerize, forming high-order structures in both DNA and/or RNA strands. Multimeric G4s can be formed by adjacent intramolecular G4s joined by stacking interactions or connected by short loops. Multimeric G4s can also originate from the assembly of guanines embedded on independent DNA or RNA strands. Notably, crucial regions of the human genome, such as the 3'-terminal overhang of the telomeric DNA as well as the open reading frame of genes involved in the preservation of neuron viability in the human central and peripheral nervous system are prone to form multimeric G4s. The biological importance of such structures has been recently described, with multimeric G4s playing potentially protective or deleterious effects in the pathogenic cascade of various diseases. Here, we portray the multifaceted scenario of multimeric G4s, in terms of structural properties, biological roles, and targeting strategies.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy; G4-INTERACT, USERN, v. le Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Filippo Doria
- Department of Chemistry, University of Pavia, v. le Taramelli 10, 27100 Pavia, Italy.
| |
Collapse
|
39
|
Holoubek J, Bednářová K, Haviernik J, Huvarová I, Dvořáková Z, Černý J, Outlá M, Salát J, Konkol'ová E, Boura E, Růžek D, Vorlíčková M, Eyer L, Renčiuk D. Guanine quadruplexes in the RNA genome of the tick-borne encephalitis virus: their role as a new antiviral target and in virus biology. Nucleic Acids Res 2022; 50:4574-4600. [PMID: 35420134 PMCID: PMC9071444 DOI: 10.1093/nar/gkac225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
We have identified seven putative guanine quadruplexes (G4) in the RNA genome of tick-borne encephalitis virus (TBEV), a flavivirus causing thousands of human infections and numerous deaths every year. The formation of G4s was confirmed by biophysical methods on synthetic oligonucleotides derived from the predicted TBEV sequences. TBEV-5, located at the NS4b/NS5 boundary and conserved among all known flaviviruses, was tested along with its mutated variants for interactions with a panel of known G4 ligands, for the ability to affect RNA synthesis by the flaviviral RNA-dependent RNA polymerase (RdRp) and for effects on TBEV replication fitness in cells. G4-stabilizing TBEV-5 mutations strongly inhibited RdRp RNA synthesis and exhibited substantially reduced replication fitness, different plaque morphology and increased sensitivity to G4-binding ligands in cell-based systems. In contrast, strongly destabilizing TBEV-5 G4 mutations caused rapid reversion to the wild-type genotype. Our results suggest that there is a threshold of stability for G4 sequences in the TBEV genome, with any deviation resulting in either dramatic changes in viral phenotype or a rapid return to this optimal level of G4 stability. The data indicate that G4s are critical elements for efficient TBEV replication and are suitable targets to tackle TBEV infection.
Collapse
Affiliation(s)
- Jiří Holoubek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jan Haviernik
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Ivana Huvarová
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic
| | - Zuzana Dvořáková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Jiří Černý
- Faculty of Tropical Agrisciences, Czech University of Life Sciences Prague, CZ-16500 Prague, Czech Republic
| | - Martina Outlá
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Jiří Salát
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Eva Konkol'ová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy ofSciences, CZ-16000 Prague, Czech Republic
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-62500 Brno, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| | - Luděk Eyer
- Veterinary Research Institute, Emerging Viral Diseases, Brno CZ-62100, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-37005 Ceske Budejovice, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno CZ-61200, Czech Republic
| |
Collapse
|
40
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
41
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
42
|
Zok T, Kraszewska N, Miskiewicz J, Pielacinska P, Zurkowski M, Szachniuk M. ONQUADRO: a database of experimentally determined quadruplex structures. Nucleic Acids Res 2022; 50:D253-D258. [PMID: 34986600 PMCID: PMC8728301 DOI: 10.1093/nar/gkab1118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
ONQUADRO is an advanced database system that supports the study of the structures of canonical and non-canonical quadruplexes. It combines a relational database that collects comprehensive information on tetrads, quadruplexes, and G4-helices; programs to compute structure parameters and visualise the data; scripts for statistical analysis; automatic updates and newsletter modules; and a web application that provides a user interface. The database is a self-updating resource, with new information arriving once a week. The preliminary data are downloaded from the Protein Data Bank, processed, annotated, and completed. As of August 2021, ONQUADRO contains 1,661 tetrads, 518 quadruplexes, and 30 G4-helices found in 467 experimentally determined 3D structures of nucleic acids. Users can view and download their description: sequence, secondary structure (dot-bracket, classical diagram, arc diagram), tertiary structure (ball-and-stick, surface or vdw-ball model, layer diagram), planarity, twist, rise, chi angle (value and type), loop characteristics, strand directionality, metal ions, ONZ, and Webba da Silva classification (the latter by loop topology and tetrad combination), origin structure ID, assembly ID, experimental method, and molecule type. The database is freely available at https://onquadro.cs.put.poznan.pl/. It can be used on both desktop computers and mobile devices.
Collapse
Affiliation(s)
- Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Natalia Kraszewska
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Joanna Miskiewicz
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Paulina Pielacinska
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Michal Zurkowski
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
43
|
Ngwe Tun MM, Sakura T, Sakurai Y, Kurosaki Y, Inaoka DK, Shioda N, Yasuda J, Kita K, Morita K. Antiviral activity of 5-aminolevulinic acid against variants of severe acute respiratory syndrome coronavirus 2. Trop Med Health 2022; 50:6. [PMID: 34991723 PMCID: PMC8739347 DOI: 10.1186/s41182-021-00397-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began to emerge in 2020 and have been spreading globally during the coronavirus disease 2019 (COVID-19) pandemic. Despite the presence of different COVID-19 vaccines, the discovery of effective antiviral therapeutics for the treatment of patients infected with SARS-CoV-2 are still urgently needed. A natural amino acid, 5-aminolevulinic acid (5-ALA), has exhibited both antiviral and anti-inflammatory activities. In a previous study, we demonstrated an in vitro antiviral effect of 5-ALA against SARS-CoV-2 infection without significant cytotoxicity. In the present study, we sought to investigate whether 5-ALA with or without sodium ferrous citrate (SFC) can inhibit in vitro both the original SARS-CoV-2 Wuhan strain and its variants, including the Alpha, Beta, Gamma and Delta strains. METHODS The antiviral activity of ALA with or without SFC was determined in Vero-E6 cell. The virus inhibition was quantified by real time RT-PCR. RESULTS Co-administration of 5-ALA and SFC inhibited the Wuhan, Alpha and Delta variants of SARS-CoV-2 with IC50 values of 235, 173 and 397 µM, respectively, and the Beta and Gamma variants with IC50 values of 1311 and 1516 µM. CONCLUSION Our study suggests that 5-ALA with SFC warrants accelerated clinical evaluation as an antiviral drug candidate for treating patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Takaya Sakura
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Yohei Kurosaki
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Daniel Ken Inaoka
- Shionogi Global Infectious Diseases Division, Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
44
|
Detecting G4 unwinding. Methods Enzymol 2022; 672:261-281. [DOI: 10.1016/bs.mie.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Xu J, Huang H, Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS AU 2021; 1:2146-2161. [PMID: 34977886 PMCID: PMC8715485 DOI: 10.1021/jacsau.1c00451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 05/11/2023]
Abstract
A G-quadruplex (G4) is a four-stranded nucleic acid secondary structure maintained by Hoogsteen hydrogen bonds established between four guanines. Experimental studies and bioinformatics predictions support the hypothesis that these structures are involved in different cellular functions associated with both DNA and RNA processes. An increasing number of diseases have been shown to be associated with abnormal G4 regulation. Here, we describe the existence of G4 and then discuss G4-related pathogenic mechanisms in neurodegenerative diseases and the viral life cycle. Furthermore, we focus on the role of G4s in the design of antiviral therapy and neuropharmacology, including G4 ligands, G4-based aptamers, G4-related proteins, and CRISPR-based sequence editing, along with a discussion of limitations and insights into the prospects of this unusual nucleic acid secondary structure in therapeutics. Finally, we highlight progress and challenges in this field and the potential G4-related research fields.
Collapse
Affiliation(s)
- Jinglei Xu
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Haiyan Huang
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiang Zhou
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- Email to X.Z.:
| |
Collapse
|
46
|
Molnár OR, Végh A, Somkuti J, Smeller L. Characterization of a G-quadruplex from hepatitis B virus and its stabilization by binding TMPyP4, BRACO19 and PhenDC3. Sci Rep 2021; 11:23243. [PMID: 34853392 PMCID: PMC8636512 DOI: 10.1038/s41598-021-02689-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
Specific guanine rich nucleic acid sequences can form non-canonical structures, like the four stranded G-quadruplex (GQ). We studied the GQ-forming sequence (named HepB) found in the genome of the hepatitis B virus. Fluorescence-, infrared- and CD-spectroscopy were used. HepB shows a hybrid form in presence of K+, but Na+, Li+, and Rb+ induce parallel structure. Higher concentrations of metal ions increase the unfolding temperature, which was explained by a short thermodynamic calculation. Temperature stability of the GQ structure was determined for all these ions. Na+ has stronger stabilizing effect on HepB than K+, which is highly unusual. The transition temperatures were 56.6, 53.8, 58.5 and 54.4 °C for Na+, K+, Li+, and Rb+ respectively. Binding constants for Na+ and K+ were 10.2 mM and 7.1 mM respectively. Study of three ligands designed in cancer research for GQ targeting (TMPyP4, BRACO19 and PhenDC3) showed unequivocally their binding to HepB. Binding was proven by the increased stability of the bound form. The stabilization was higher than 20 °C for TMPyP4 and PhenDC3, while it was considerably lower for BRACO19. These results might have medical importance in the fight against the hepatitis B virus.
Collapse
Affiliation(s)
- Orsolya Réka Molnár
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - András Végh
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.,Department of Ophthalmology, Semmelweis University, Budapest, 1085, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, 1094, Hungary.
| |
Collapse
|
47
|
Somkuti J, Molnár OR, Grád A, Smeller L. Pressure Perturbation Studies of Noncanonical Viral Nucleic Acid Structures. BIOLOGY 2021; 10:1173. [PMID: 34827166 PMCID: PMC8615049 DOI: 10.3390/biology10111173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
G-quadruplexes are noncanonical structures formed by guanine-rich sequences of the genome. They are found in crucial loci of the human genome, they take part in the regulation of important processes like cell proliferation and cell death. Much less is known about the subjects of this work, the viral G-quadruplexes. We have chosen three potentially G-quadruplex-forming sequences of hepatitis B. We measured the stability and the thermodynamic parameters of these quadruplexes. We also investigated the potential stabilization of these G-quadruplexes by binding a special ligand that was originally developed for cancer therapy. Fluorescence and infrared spectroscopic measurements were performed over wide temperature and pressure ranges. Our experiments indicate the small unfolding volume change of all three oligos. We found a difference between the unfolding of the 2-quartet and the 3-quartet G-quadruplexes. All three G-quadruplexes were stabilized by TMPyP4, which is a cationic porphyrin developed for stabilizing the human telomere.
Collapse
Affiliation(s)
| | | | | | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (J.S.); (O.R.M.); (A.G.)
| |
Collapse
|
48
|
Ruggiero E, Zanin I, Terreri M, Richter SN. G-Quadruplex Targeting in the Fight against Viruses: An Update. Int J Mol Sci 2021; 22:ijms222010984. [PMID: 34681641 PMCID: PMC8538215 DOI: 10.3390/ijms222010984] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed.
Collapse
|
49
|
Li Z, Qian SH, Wang F, Mohamed HI, Yang G, Chen ZX, Wei D. G-quadruplexes in genomes of viruses infecting eukaryotes or prokaryotes are under different selection pressures from hosts. J Genet Genomics 2021; 49:20-29. [PMID: 34601118 DOI: 10.1016/j.jgg.2021.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
G-quadruplexes in viral genomes can be applied as the targets of antiviral therapies, which has attracted wide interest. However, it is still not clear whether the pervasive number of such elements in the viral world is the result of natural selection for functionality. In this study, we identified putative quadruplex-forming sequences (PQSs) across the known viral genomes and analyzed the abundance, structural stability, and conservation of viral PQSs. A Viral Putative G-quadruplex Database (ViPGD,http://jsjds.hzau.edu.cn/MBPC/ViPGD/index.php/home/index) was constructed to collect the details of each viral PQS, which provides guidance for selecting the desirable PQS. The PQS with two putative G-tetrads (G2-PQS) was significantly enriched in both eukaryotic viruses and prokaryotic viruses, while the PQSs with three putative G-tetrads (G3-PQS) were only enriched in eukaryotic viruses and depleted in prokaryotic viruses. The structural stability of PQSs in prokaryotic viruses was significantly lower than that in eukaryotic viruses. Conservation analysis showed that the G2-PQS, instead of G3-PQS, was highly conserved within the genus. This suggested that the G2-quadruplex might play an important role in viral biology, and the difference in the occurrence of G-quadruplex between eukaryotic viruses and prokaryotic viruses may result from the different selection pressures from hosts.
Collapse
Affiliation(s)
- Zhen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Hu Qian
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Hany I Mohamed
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Guangfu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China; International joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China.
| | - Zhen-Xia Chen
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518124, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
50
|
Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation. BIOTECH 2021; 10:biotech10040020. [PMID: 35822794 PMCID: PMC9245464 DOI: 10.3390/biotech10040020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called “RGG motif”-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the “NIQI motif”-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.
Collapse
|