1
|
Nielsen BF, Saad-Roy CM, Metcalf CJE, Viboud C, Grenfell BT. Eco-evolutionary dynamics of pathogen immune-escape: deriving a population-level phylodynamic curve. J R Soc Interface 2025; 22:20240675. [PMID: 40172571 PMCID: PMC11963905 DOI: 10.1098/rsif.2024.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 04/04/2025] Open
Abstract
The phylodynamic curve (Grenfell et al. 2004 Science 303, 327-332 (doi:10.1126/science.1090727)) conceptualizes how immunity shapes the rate of viral adaptation in a non-monotonic fashion, through its opposing effects on viral abundance and the strength of selection. However, concrete and quantitative model realizations of this influential concept are rare. Here, we present an analytic, stochastic framework in which a population-scale phylodynamic curve emerges dynamically, allowing us to address questions regarding the risk and timing of the emergence of viral immune escape variants. We explore how pathogen- and population-specific parameters such as strength of immunity, transmissibility, seasonality and antigenic constraints affect the emergence risk. For pathogens exhibiting pronounced seasonality, we find that the timing of likely immune-escape variant emergence depends on the level of case importation between regions. Motivated by the COVID-19 pandemic, we probe the likely effects of non-pharmaceutical interventions (NPIs), and the lifting thereof, on the risk of viral escape variant emergence. Looking ahead, the framework has the potential to become a useful tool for probing how natural immunity, as well as choices in vaccine design and distribution and the implementation of NPIs, affect the evolution of common viral pathogens.
Collapse
Affiliation(s)
| | - Chadi M. Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Townsend JP, Hassler HB, Dornburg A. Optimal Annual COVID-19 Vaccine Boosting Dates Following Previous Booster Vaccination or Breakthrough Infection. Clin Infect Dis 2025; 80:316-322. [PMID: 39589144 PMCID: PMC11848277 DOI: 10.1093/cid/ciae559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND COVID-19 booster vaccinations mitigate transmission and reduce the morbidity and mortality associated with infection. However, the optimal date for booster administration remains uncertain. Geographic variation in infection rates throughout the year makes it challenging to intuit the best yearly booster administration date to effectively prevent infection, and also challenging to provide best guidance on how to alter booster administration in response to a breakthrough infection. METHODS We leveraged longitudinal antibody and reinfection probabilities with spatiotemporal projections of COVID-19 incidence to develop a geographically informed approach to optimizing the timing of booster vaccination. We assessed the delay in booster vaccination that is warranted following breakthrough infections whenever they occur during the year, enabling a personalized assessment of optimal timing that acknowledges and respects diversity of COVID-19 immune status, addressing a substantial barrier to uptake. RESULTS Yearly booster vaccination on any date is beneficial to prevention of infection. However, each location exhibits as much as a 3-4-fold range in degree of protection by date of uptake. Optimal COVID-19 booster vaccination dates are location-specific, typically in early autumn in the Northern Hemisphere. Infection late in the interval between boosts substantially alters the optimal boosting date. CONCLUSIONS Considerable benefit accrues from aptly timing COVID-19 booster vaccination campaigns, which can be tailored to specific locations. Individuals can acquire the greatest benefit from booster vaccination by timing it optimally, including delaying in cases of infection late in the interval between boosts. These results provide location-specific guidance for public health policy, healthcare provider recommendations, and individual decision-making.
Collapse
Affiliation(s)
- Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Program in Microbiology, Yale University, New Haven, Connecticut, USA
| | - Hayley B Hassler
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Nielsen BF, Berrig C, Grenfell BT, Andreasen V. One hundred years of influenza A evolution. Theor Popul Biol 2024; 159:25-34. [PMID: 39094981 DOI: 10.1016/j.tpb.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 07/05/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Leveraging the simplicity of nucleotide mismatch distributions, we provide an intuitive window into the evolution of the human influenza A 'nonstructural' (NS) gene segment. In an analysis suggested by the eminent Danish biologist Freddy B. Christiansen, we illustrate the existence of a continuous genetic "backbone" of influenza A NS sequences, steadily increasing in nucleotide distance to the 1918 root over more than a century. The 2009 influenza A/H1N1 pandemic represents a clear departure from this enduring genetic backbone. Utilizing nucleotide distance maps and phylogenetic analyses, we illustrate remaining uncertainties regarding the origin of the 2009 pandemic, highlighting the complexity of influenza evolution. The NS segment is interesting precisely because it experiences less pervasive positive selection, and departs less strongly from neutral evolution than e.g. the HA antigen. Consequently, sudden deviations from neutral diversification can indicate changes in other genes via the hitchhiking effect. Our approach employs two measures based on nucleotide mismatch counts to analyze the evolutionary dynamics of the NS gene segment. The rooted Hamming map of distances between a reference sequence and all other sequences over time, and the unrooted temporal Hamming distribution which captures the distribution of genotypic distances between simultaneously circulating viruses, thereby revealing patterns of nucleotide diversity and epi-evolutionary dynamics.
Collapse
Affiliation(s)
- Bjarke Frost Nielsen
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, United States of America; Department of Science and Environment, Roskilde University, Roskilde, Denmark; Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Berrig
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America.
| | - Viggo Andreasen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
4
|
Khurana MP, Curran-Sebastian J, Scheidwasser N, Morgenstern C, Rasmussen M, Fonager J, Stegger M, Tang MHE, Juul JL, Escobar-Herrera LA, Møller FT, Albertsen M, Kraemer MUG, du Plessis L, Jokelainen P, Lehmann S, Krause TG, Ullum H, Duchêne DA, Mortensen LH, Bhatt S. High-resolution epidemiological landscape from ~290,000 SARS-CoV-2 genomes from Denmark. Nat Commun 2024; 15:7123. [PMID: 39164246 PMCID: PMC11335946 DOI: 10.1038/s41467-024-51371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative. We identify a consistent rise in viral diversity over time, with notable spikes upon the importation of novel variants (e.g., Delta and Omicron). By linking genomic data with rich individual-level demographic data from national registers, we find that individuals aged < 15 and > 75 years had a lower contribution to molecular change (i.e., branch lengths) compared to other age groups, but similar molecular evolutionary rates, suggesting a lower likelihood of introducing novel variants. Similarly, we find greater molecular change among vaccinated individuals, suggestive of immune evasion. We also observe evidence of transmission in rural areas to follow predictable diffusion processes. Conversely, urban areas are expectedly more complex due to their high mobility, emphasising the role of population structure in driving virus spread. Our analyses highlight the added value of integrating genomic data with detailed demographic and spatial information, particularly in the absence of structured infection surveys.
Collapse
Affiliation(s)
- Mark P Khurana
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jacob Curran-Sebastian
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Neil Scheidwasser
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Morten Rasmussen
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Virus Research and Development Laboratory, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Man-Hung Eric Tang
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jonas L Juul
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Sune Lehmann
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tyra G Krause
- Epidemiological Infectious Disease Preparedness, Statens Serum Institut Copenhagen, Copenhagen, Denmark
| | | | - David A Duchêne
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Laust H Mortensen
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Statistics Denmark, Copenhagen, Denmark
| | - Samir Bhatt
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
5
|
Pierre CN, Adams LE, Higgins JS, Anasti K, Goodman D, Mielke D, Stanfield-Oakley S, Powers JM, Li D, Rountree W, Wang Y, Edwards RJ, Alam SM, Ferrari G, Tomaras GD, Haynes BF, Baric RS, Saunders KO. Non-neutralizing SARS-CoV-2 N-terminal domain antibodies protect mice against severe disease using Fc-mediated effector functions. PLoS Pathog 2024; 20:e1011569. [PMID: 38900807 PMCID: PMC11218955 DOI: 10.1371/journal.ppat.1011569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/02/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.
Collapse
Affiliation(s)
- Camille N. Pierre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lily E. Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jaclyn S. Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Dieter Mielke
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John M. Powers
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
6
|
Harari S, Miller D, Fleishon S, Burstein D, Stern A. Using big sequencing data to identify chronic SARS-Coronavirus-2 infections. Nat Commun 2024; 15:648. [PMID: 38245511 PMCID: PMC10799923 DOI: 10.1038/s41467-024-44803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The evolution of SARS-Coronavirus-2 (SARS-CoV-2) has been characterized by the periodic emergence of highly divergent variants. One leading hypothesis suggests these variants may have emerged during chronic infections of immunocompromised individuals, but limited data from these cases hinders comprehensive analyses. Here, we harnessed millions of SARS-CoV-2 genomes to identify potential chronic infections and used language models (LM) to infer chronic-associated mutations. First, we mined the SARS-CoV-2 phylogeny and identified chronic-like clades with identical metadata (location, age, and sex) spanning over 21 days, suggesting a prolonged infection. We inferred 271 chronic-like clades, which exhibited characteristics similar to confirmed chronic infections. Chronic-associated mutations were often high-fitness immune-evasive mutations located in the spike receptor-binding domain (RBD), yet a minority were unique to chronic infections and absent in global settings. The probability of observing high-fitness RBD mutations was 10-20 times higher in chronic infections than in global transmission chains. The majority of RBD mutations in BA.1/BA.2 chronic-like clades bore predictive value, i.e., went on to display global success. Finally, we used our LM to infer hundreds of additional chronic-like clades in the absence of metadata. Our approach allows mining extensive sequencing data and providing insights into future evolutionary patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheri Harari
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Shay Fleishon
- Israeli Health Intelligence Agency, Public Health Division, Ministry of Health, Jerusalem, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Lam C, Johnson-Mackinnon J, Basile K, Fong W, Suster CJ, Gall M, Agius J, Chandra S, Draper J, Martinez E, Drew A, Wang Q, Chen SC, Kok J, Dwyer DE, Sintchenko V, Rockett RJ. A laboratory framework for ongoing optimization of amplification-based genomic surveillance programs. Microbiol Spectr 2023; 11:e0220223. [PMID: 37966271 PMCID: PMC10715188 DOI: 10.1128/spectrum.02202-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE This study provides a laboratory framework to ensure ongoing relevance and performance of amplification-based whole genome sequencing to strengthen public health surveillance during extended outbreaks or pandemics. The framework integrates regular reviews of the performance of a genomic surveillance system and highlights the importance of ongoing monitoring and the identification and implementation of improvements to whole genome sequencing methods to enhance public health responses to pathogen outbreaks.
Collapse
Affiliation(s)
- Connie Lam
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jessica Johnson-Mackinnon
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Kerri Basile
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
| | - Winkie Fong
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Carl J.E. Suster
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Mailie Gall
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jessica Agius
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Shona Chandra
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jenny Draper
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Elena Martinez
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Drew
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Sharon C. Chen
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Dominic E. Dwyer
- Centre for Infectious Diseases and Microbiology - Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebecca J. Rockett
- Centre for Infectious Diseases and Microbiology - Public Health, Institute for Clinical Pathology and Medical Research Westmead Hospital, Westmead, Australia
- Faculty of Medicine and Health, Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Pierre CN, Adams LE, Anasti K, Goodman D, Stanfield-Oakley S, Powers JM, Li D, Rountree W, Wang Y, Edwards RJ, Munir Alam S, Ferrari G, Tomaras GD, Haynes BF, Baric RS, Saunders KO. Non-neutralizing SARS-CoV-2 N-terminal domain antibodies protect mice against severe disease using Fc-mediated effector functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550460. [PMID: 37546738 PMCID: PMC10402036 DOI: 10.1101/2023.07.25.550460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of this non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb infusion did not suppress infectious viral titers in the lung as potently as NTD neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Finally, Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection in SARS-CoV-2 infection. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.
Collapse
Affiliation(s)
- Camille N Pierre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Duke University School of Medicine, Durham, NC USA
| | - Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
| | | | - John M Powers
- Department of Immunology, Duke University, Durham, NC USA
| | - Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Medicine, Duke University School of Medicine, Durham, NC USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Surgery, Duke University School of Medicine, Durham, NC USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Surgery, Duke University School of Medicine, Durham, NC USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC USA
- Department of Immunology, Duke University, Durham, NC USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Duke University School of Medicine, Durham, NC USA
- Department of Immunology, Duke University, Durham, NC USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC USA
- Department of Surgery, Duke University School of Medicine, Durham, NC USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC USA
- Department of Immunology, Duke University, Durham, NC USA
| |
Collapse
|