1
|
Montandon SA, Beaudier P, Ullate-Agote A, Helleboid PY, Kummrow M, Roig-Puiggros S, Jabaudon D, Andersson L, Milinkovitch MC, Tzika AC. Regulatory and disruptive variants in the CLCN2 gene are associated with modified skin color pattern phenotypes in the corn snake. Genome Biol 2025; 26:73. [PMID: 40140900 PMCID: PMC11948899 DOI: 10.1186/s13059-025-03539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Snakes exhibit a broad variety of adaptive colors and color patterns, generated by the spatial arrangement of chromatophores, but little is known of the mechanisms responsible for these spectacular traits. Here, we investigate a mono-locus trait with two recessive alleles, motley and stripe, that both cause pattern aberrations in the corn snake. RESULTS We use mapping-by-sequencing to identify the genomic interval where the causal mutations reside. With our differential gene expression analyses, we find that CLCN2 (Chloride Voltage-Gated Channel 2), a gene within the genomic interval, is significantly downregulated in Motley embryonic skin. Furthermore, we identify the stripe allele as the insertion of an LTR-retrotransposon in CLCN2, resulting in a disruptive mutation of the protein. We confirm the involvement of CLCN2 in color pattern formation by producing knock-out snakes that present a phenotype similar to Stripe. In humans and mice, disruption of CLCN2 results in leukoencephalopathy, as well as retinal and testes degeneration. Our single-cell transcriptomic analyses in snakes reveal that CLCN2 is indeed expressed in chromatophores during embryogenesis and in the adult brain, but the behavior and fertility of Motley and Stripe corn snakes are not impacted. CONCLUSIONS Our genomic, transcriptomic, and functional analyses identify a plasma membrane anion channel to be involved in color pattern development in snakes and show that an active LTR-retrotransposon might be a key driver of trait diversification in corn snakes.
Collapse
Affiliation(s)
- Sophie A Montandon
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Bracco Suisse S.A., Plan-les-Ouates, Switzerland
| | - Pierre Beaudier
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Asier Ullate-Agote
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Present address: Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| | - Sergi Roig-Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Michel C Milinkovitch
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Athanasia C Tzika
- Laboratory of Artificial and Natural Evolution, Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Korzeniwsky KG, de Mello PL, Liang Y, Feltes M, Farber SA, Parichy DM. Dominant Negative Mitf Allele Impacts Melanophore and Xanthophore Development and Reveals Collaborative Interactions With Tfec in Zebrafish Chromatophore Lineages. Pigment Cell Melanoma Res 2025; 38:e70009. [PMID: 40123122 PMCID: PMC11931198 DOI: 10.1111/pcmr.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Ectothermic vertebrates exhibit a diverse array of pigment cell types-chromatophores-that provide valuable opportunities to uncover mechanisms of fate specification and how they evolve. Like melanocytes of mammals, the melanophores of teleosts and other ectotherms depend on basic helix-loop-helix leucine zipper transcription factors encoded by orthologues of MITF. A different chromatophore, the iridescent iridophore, depends on the closely related transcription factor Tfec. Requirements for the specification of other chromatophore lineages remain largely uncertain. Here we identify a new allele of the zebrafish Mitf gene, mitfa, that results in a complete absence of not only melanophores but also yellow-orange xanthophores. Harboring a missense substitution in the DNA-binding domain identical to previously isolated alleles of mouse, we show that this new allele has defects in chromatophore precursor survival and xanthophore differentiation that extend beyond those of mitfa loss-of-function. Additional genetic analyses revealed interactions between Mitfa and Tfec as a likely basis for the observed phenotypes. Our findings point to collaborative roles for Mitfa and Tfec in promoting chromatophore development, particularly in xanthophore lineages, and provide new insights into evolutionary aspects of MITF functions across vertebrates.
Collapse
Affiliation(s)
| | | | - Yipeng Liang
- Department of BiologyUniversity of VirginiaVirginiaUSA
| | - McKenna Feltes
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Steven A. Farber
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - David M. Parichy
- Department of BiologyUniversity of VirginiaVirginiaUSA
- Department of Cell BiologyUniversity of VirginiaVirginiaUSA
| |
Collapse
|
3
|
Huang D, Kapadia EH, Liang Y, Shriver LP, Dai S, Patti GJ, Humbel BM, Laudet V, Parichy DM. Agouti and BMP signaling drive a naturally occurring fate conversion of melanophores to leucophores in zebrafish. Proc Natl Acad Sci U S A 2025; 122:e2424180122. [PMID: 40305763 PMCID: PMC11874323 DOI: 10.1073/pnas.2424180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 05/02/2025] Open
Abstract
The often-distinctive pigment patterns of vertebrates are varied in form and function and depend on several types of pigment cells derived from embryonic neural crest or latent stem cells of neural crest origin. These cells and the patterns they produce have been useful for uncovering features of differentiation and morphogenesis that underlie adult phenotypes, and they offer opportunities to discover how patterns and the cell types themselves have diversified. In zebrafish, a body pattern of stripes arises by self-organizing interactions among three types of pigment cells. Yet these fish also exhibit white ornamentation on their fins that depends on the transdifferentiation of black melanophores to white cells, "melanoleucophores." To identify mechanisms underlying this conversion we used ultrastructural, transcriptomic, mutational, and other approaches. We show that melanophore-melanoleucophore transition depends on regional BMP signals transduced through noncanonical receptors (Rgmb-Neo1a-Lrig2) as well as BMP-dependent signaling by Agouti genes, asip1 and asip2b. These signals lead to expression of transcription factor genes including foxd3 and runx3 that are necessary to induce loss of melanin, curtail new melanin production, and deploy a pathway for accumulating guanine crystals that, together, confer a white phenotype. These analyses uncover an important role for positional information in specifying ornamentation in zebrafish and show how tissue environmental cues and an altered gene regulatory program have allowed terminal addition of a distinct phenotype to a preexisting cell type.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Emaan H. Kapadia
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Leah P. Shriver
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Shengkun Dai
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Bruno M. Humbel
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - David M. Parichy
- Department of Biology, University of Virginia, Charlottesville, VA22903
- Department of Cell Biology, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
4
|
Ishihara H, Kanda S. Inconspicuous breeding coloration to conceal eggs during mouthbrooding in male cardinalfish. iScience 2024; 27:111490. [PMID: 39759023 PMCID: PMC11700633 DOI: 10.1016/j.isci.2024.111490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Animals exhibit colorations optimal for their niche, which hides their existence from other organisms. In Apogoninae fishes, the father broods their egg inside their mouth. Since the color of eggs is different from parental fish, it can disrupt the optimal camouflage coloration of parental fish if the lower jaw is transparent. Here, we identified male- and breeding season-specific whitish coloration consisting of iridophores in the lower jaw. Artificial implantation of eggs inside the mouth of females and males showed that iridophores in the lower jaws concealed the conspicuous coloration of eggs only in males. In addition, it was revealed that iridophore development in the lower jaw is induced by androgen through the Alkal-Ltk pathway. These results suggest that androgen-dependent breeding colorations in males, which have been considered to attract females, may serve the opposite function, "inconspicuous breeding coloration" in these species.
Collapse
Affiliation(s)
- Hikaru Ishihara
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Shinji Kanda
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
5
|
Tzika AC, Ullate-Agote A, Helleboid PY, Kummrow M. PMEL is involved in snake colour pattern transition from blotches to stripes. Nat Commun 2024; 15:7655. [PMID: 39227572 PMCID: PMC11371805 DOI: 10.1038/s41467-024-51927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Kelsh RN. Myron Gordon Award Lecture 2023: Painting the neural crest: How studying pigment cells illuminates neural crest cell biology. Pigment Cell Melanoma Res 2024; 37:555-561. [PMID: 38010612 DOI: 10.1111/pcmr.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023]
Abstract
It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of colourless, shady, parade and choker mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world-it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
7
|
Wang W, Yang N, Wang L, Zhu Y, Chu X, Xu W, Li Y, Xu Y, Gao L, Zhang B, Zhang G, Sun Q, Wang W, Wang Q, Zhang W, Chen D. The TET-Sall4-BMP regulatory axis controls craniofacial cartilage development. Cell Rep 2024; 43:113873. [PMID: 38427557 DOI: 10.1016/j.celrep.2024.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
Craniofacial microsomia (CFM) is a congenital defect that usually results from aberrant development of embryonic pharyngeal arches. However, the molecular basis of CFM pathogenesis is largely unknown. Here, we employ the zebrafish model to investigate mechanisms of CFM pathogenesis. In early embryos, tet2 and tet3 are essential for pharyngeal cartilage development. Single-cell RNA sequencing reveals that loss of Tet2/3 impairs chondrocyte differentiation due to insufficient BMP signaling. Moreover, biochemical and genetic evidence reveals that the sequence-specific 5mC/5hmC-binding protein, Sall4, binds the promoter of bmp4 to activate bmp4 expression and control pharyngeal cartilage development. Mechanistically, Sall4 directs co-phase separation of Tet2/3 with Sall4 to form condensates that mediate 5mC oxidation on the bmp4 promoter, thereby promoting bmp4 expression and enabling sufficient BMP signaling. These findings suggest the TET-BMP-Sall4 regulatory axis is critical for pharyngeal cartilage development. Collectively, our study provides insights into understanding craniofacial development and CFM pathogenesis.
Collapse
Affiliation(s)
- Weigang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Na Yang
- Institute of Biomedical Research, Yunnan University, Kunming, China; Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Liangliang Wang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yuanxiang Zhu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Xiao Chu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Weijie Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yawei Li
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Yihai Xu
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Lina Gao
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Guoqiang Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China.
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Wenxin Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, China.
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming, China.
| |
Collapse
|
8
|
Liao Y, Shi H, Han T, Jiang D, Lu B, Shi G, Zhu C, Li G. Pigment Identification and Gene Expression Analysis during Erythrophore Development in Spotted Scat ( Scatophagus argus) Larvae. Int J Mol Sci 2023; 24:15356. [PMID: 37895036 PMCID: PMC10607709 DOI: 10.3390/ijms242015356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Red coloration is considered an economically important trait in some fish species, including spotted scat, a marine aquaculture fish. Erythrophores are gradually covered by melanophores from the embryonic stage. Despite studies of black spot formation and melanophore coloration in the species, little is known about erythrophore development, which is responsible for red coloration. 1-phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to inhibit melanogenesis and contribute to the visualization of embryonic development. In this study, spotted scat embryos were treated with 0.003% PTU from 0 to 72 h post fertilization (hpf) to inhibit melanin. Erythrophores were clearly observed during the embryonic stage from 14 to 72 hpf, showing an initial increase (14 to 36 hpf), followed by a gradual decrease (36 to 72 hpf). The number and size of erythrophores at 36 hpf were larger than those at 24 and 72 hpf. At 36 hpf, LC-MS and absorbance spectrophotometry revealed that the carotenoid content was eight times higher than the pteridine content, and β-carotene and lutein were the main pigments related to red coloration in spotted scat larvae. Compared with their expression in the normal hatching group, rlbp1b, rbp1.1, and rpe65a related to retinol metabolism and soat2 and apoa1 related to steroid hormone biosynthesis and steroid biosynthesis were significantly up-regulated in the PTU group, and rh2 associated with phototransduction was significantly down-regulated. By qRT-PCR, the expression levels of genes involved in carotenoid metabolism (scarb1, plin6, plin2, apoda, bco1, and rep65a), pteridine synthesis (gch2), and chromatophore differentiation (slc2a15b and csf1ra) were significantly higher at 36 hpf than at 24 hpf and 72 hpf, except for bco1. These gene expression profiles were consistent with the developmental changes of erythrophores. These findings provide insights into pigment cell differentiation and gene function in the regulation of red coloration and contribute to selective breeding programs for ornamental aquatic animals.
Collapse
Affiliation(s)
- Yongguan Liao
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Tong Han
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Baoyue Lu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Gang Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (H.S.); (T.H.); (D.J.); (G.S.); (C.Z.)
| |
Collapse
|
9
|
Miyadai M, Takada H, Shiraishi A, Kimura T, Watakabe I, Kobayashi H, Nagao Y, Naruse K, Higashijima SI, Shimizu T, Kelsh RN, Hibi M, Hashimoto H. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023; 150:dev202114. [PMID: 37823232 PMCID: PMC10617610 DOI: 10.1242/dev.202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.
Collapse
Affiliation(s)
- Motohiro Miyadai
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroyuki Takada
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akiko Shiraishi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Watakabe
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Hikaru Kobayashi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yusuke Nagao
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Takashi Shimizu
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Masahiko Hibi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hisashi Hashimoto
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
10
|
Dao UM, Lederer I, Tabor RL, Shahid B, Graves CW, Seidel HS. Stripes and loss of color in ball pythons (Python regius) are associated with variants affecting endothelin signaling. G3 (BETHESDA, MD.) 2023; 13:jkad063. [PMID: 37191439 PMCID: PMC10320763 DOI: 10.1093/g3journal/jkad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023]
Abstract
Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.
Collapse
Affiliation(s)
- Uyen M Dao
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Izabella Lederer
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Ray L Tabor
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Basmah Shahid
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Chiron W Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Hannah S Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
11
|
Kabangu M, Cecil R, Strohl L, Timoshevskaya N, Smith JJ, Voss SR. Leukocyte Tyrosine Kinase ( Ltk) Is the Mendelian Determinant of the Axolotl Melanoid Color Variant. Genes (Basel) 2023; 14:904. [PMID: 37107662 PMCID: PMC10137446 DOI: 10.3390/genes14040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The great diversity of color patterns observed among amphibians is largely explained by the differentiation of relatively few pigment cell types during development. Mexican axolotls present a variety of color phenotypes that span the continuum from leucistic to highly melanistic. The melanoid axolotl is a Mendelian variant characterized by large numbers of melanophores, proportionally fewer xanthophores, and no iridophores. Early studies of melanoid were influential in developing the single-origin hypothesis of pigment cell development, wherein it has been proposed that all three pigment cell types derive from a common progenitor cell, with pigment metabolites playing potential roles in directing the development of organelles that define different pigment cell types. Specifically, these studies identified xanthine dehydrogenase (XDH) activity as a mechanism for the permissive differentiation of melanophores at the expense of xanthophores and iridophores. We used bulked segregant RNA-Seq to screen the axolotl genome for melanoid candidate genes and identify the associated locus. Dissimilar frequencies of single-nucleotide polymorphisms were identified between pooled RNA samples of wild-type and melanoid siblings for a region on chromosome 14q. This region contains gephyrin (Gphn), an enzyme that catalyzes the synthesis of the molybdenum cofactor that is required for XDH activity, and leukocyte tyrosine kinase (Ltk), a cell surface signaling receptor that is required for iridophore differentiation in zebrafish. Wild-type Ltk crispants present similar pigment phenotypes to melanoid, strongly implicating Ltk as the melanoid locus. In concert with recent findings in zebrafish, our results support the idea of direct fate specification of pigment cells and, more generally, the single-origin hypothesis of pigment cell development.
Collapse
Affiliation(s)
- Mirindi Kabangu
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY 40536, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raissa Cecil
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY 40536, USA
| | | | | | - Jeramiah J. Smith
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Stephen R. Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS, Yang X, Rodrigues FSLM, Carney TJ, Bavister G, Schwetlick H, Dawes JHP, Rocco A, Makeev VJ, Kelsh RN. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors. Nat Commun 2023; 14:1258. [PMID: 36878908 PMCID: PMC9988989 DOI: 10.1038/s41467-023-36876-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Collapse
Affiliation(s)
| | - Karen Camargo Sosa
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
| | - Masataka Nikaido
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo Pref., 678-1297, Japan
| | - Noah Shriever
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- A.A. Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
| | - Xueyan Yang
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- The MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | | | - Thomas J Carney
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, 59 Nanyang Drive, Yunnan Garden, 636921, Singapore
| | - Gemma Bavister
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, GU2 7XH, Guildford, UK
- Department of Physics, FEPS, University of Surrey, GU2 7XH, Guildford, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory 'Regulatory Genomics', Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Robert N Kelsh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
13
|
Krug J, Perner B, Albertz C, Mörl H, Hopfenmüller VL, Englert C. Generation of a transparent killifish line through multiplex CRISPR/Cas9mediated gene inactivation. eLife 2023; 12:81549. [PMID: 36820520 PMCID: PMC10010688 DOI: 10.7554/elife.81549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2023] Open
Abstract
Body pigmentation is a limitation for in vivo imaging and thus for the performance of longitudinal studies in biomedicine. A possibility to circumvent this obstacle is the employment of pigmentation mutants, which are used in fish species like zebrafish and medaka. To address the basis of aging, the short-lived African killifish Nothobranchius furzeri has recently been established as a model organism. Despite its short lifespan, N. furzeri shows typical signs of mammalian aging including telomere shortening, accumulation of senescent cells, and loss of regenerative capacity. Here, we report the generation of a transparent N. furzeri line by the simultaneous inactivation of three key loci responsible for pigmentation. We demonstrate that this stable line, named klara, can serve as a tool for different applications including behavioral experiments and the establishment of a senescence reporter by integration of a fluorophore into the cdkn1a (p21) locus and in vivo microscopy of the resulting line.
Collapse
Affiliation(s)
- Johannes Krug
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Birgit Perner
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Core Facility Imaging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)JenaGermany
| | - Carolin Albertz
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Hanna Mörl
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Vera L Hopfenmüller
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)JenaGermany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University JenaJenaGermany
| |
Collapse
|
14
|
Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR, Kros A, Witzigmann D, Campbell F. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201095. [PMID: 35218106 PMCID: PMC9461706 DOI: 10.1002/adma.202201095] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 05/04/2023]
Abstract
Lipid nanoparticles (LNPs) are the leading nonviral technologies for the delivery of exogenous RNA to target cells in vivo. As systemic delivery platforms, these technologies are exemplified by Onpattro, an approved LNP-based RNA interference therapy, administered intravenously and targeted to parenchymal liver cells. The discovery of systemically administered LNP technologies capable of preferential RNA delivery beyond hepatocytes has, however, proven more challenging. Here, preceded by comprehensive mechanistic understanding of in vivo nanoparticle biodistribution and bodily clearance, an LNP-based messenger RNA (mRNA) delivery platform is rationally designed to preferentially target the hepatic reticuloendothelial system (RES). Evaluated in embryonic zebrafish, validated in mice, and directly compared to LNP-mRNA systems based on the lipid composition of Onpattro, RES-targeted LNPs significantly enhance mRNA expression both globally within the liver and specifically within hepatic RES cell types. Hepatic RES targeting requires just a single lipid change within the formulation of Onpattro to switch LNP surface charge from neutral to anionic. This technology not only provides new opportunities to treat liver-specific and systemic diseases in which RES cell types play a key role but, more importantly, exemplifies that rational design of advanced RNA therapies must be preceded by a robust understanding of the dominant nano-biointeractions involved.
Collapse
Affiliation(s)
- Roy Pattipeiluhu
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Gabriela Arias-Alpizar
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Genc Basha
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Karen Y T Chan
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Jeroen Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Thomas H Sharp
- BioNanoPatterning, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, 2333 RC, The Netherlands
| | - Mohammad-Amin Moradi
- Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, 5600 MB, The Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Pieter R Cullis
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| | - Dominik Witzigmann
- NanoMedicines Research Group, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver, V6T 1Z3, Canada
| | - Frederick Campbell
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
15
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
16
|
Sutton G, Kelsh RN, Scholpp S. Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Front Cell Dev Biol 2021; 9:782445. [PMID: 34912811 PMCID: PMC8667473 DOI: 10.3389/fcell.2021.782445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field's potential future directions.
Collapse
Affiliation(s)
- Gemma Sutton
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
17
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
18
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
19
|
McCluskey BM, Liang Y, Lewis VM, Patterson LB, Parichy DM. Pigment pattern morphospace of Danio fishes: evolutionary diversification and mutational effects. Biol Open 2021; 10:271991. [PMID: 34463758 PMCID: PMC8487636 DOI: 10.1242/bio.058814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular and cellular mechanisms underlying variation in adult form remain largely unknown. Adult pigment patterns of fishes in the genus Danio, which includes zebrafish, Danio rerio, consist of horizontal stripes, vertical bars, spots and uniform patterns, and provide an outstanding opportunity to identify causes of species level variation in a neural crest derived trait. Understanding pigment pattern variation requires quantitative approaches to assess phenotypes, yet such methods have been mostly lacking for pigment patterns. We introduce metrics derived from information theory that describe patterns and pattern variation in Danio fishes. We find that these metrics used singly and in multivariate combinations are suitable for distinguishing general pattern types, and can reveal even subtle phenotypic differences attributable to mutations. Our study provides new tools for analyzing pigment pattern in Danio and potentially other groups, and sets the stage for future analyses of pattern morphospace and its mechanistic underpinnings. Summary: A multidimensional morphospace for pigment patterns yields quantitative insights into the evolution and genetics of diverse pigment patterns across zebrafish and related species.
Collapse
Affiliation(s)
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, USA
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, USA
| | | | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, USA.,Biology Department, Rhode Island College, Providence, USA.,Department of Cell Biology, University of Virginia, Charlottesville, USA
| |
Collapse
|
20
|
Eom DS, Patterson LB, Bostic RR, Parichy DM. Immunoglobulin superfamily receptor Junctional adhesion molecule 3 (Jam3) requirement for melanophore survival and patterning during formation of zebrafish stripes. Dev Biol 2021; 476:314-327. [PMID: 33933422 PMCID: PMC10069301 DOI: 10.1016/j.ydbio.2021.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Adhesive interactions are essential for tissue patterning and morphogenesis yet difficult to study owing to functional redundancies across genes and gene families. A useful system in which to dissect roles for cell adhesion and adhesion-dependent signaling is the pattern formed by pigment cells in skin of adult zebrafish, in which stripes represent the arrangement of neural crest derived melanophores, cells homologous to melanocytes. In a forward genetic screen for adult pattern defects, we isolated the pissarro (psr) mutant, having a variegated phenotype of spots, as well as defects in adult fin and lens. We show that psr corresponds to junctional adhesion protein 3b (jam3b) encoding a zebrafish orthologue of the two immunoglobulin-like domain receptor JAM3 (JAM-C), known for roles in adhesion and signaling in other developing tissues, and for promoting metastatic behavior of human and murine melanoma cells. We found that zebrafish jam3b is expressed post-embryonically in a variety of cells including melanophores, and that jam3b mutants have defects in melanophore survival. Jam3b supported aggregation of cells in vitro and was required autonomously by melanophores for an adherent phenotype in vivo. Genetic analyses further indicated both overlapping and non-overlapping functions with the related receptor, Immunoglobulin superfamily 11 (Igsf11) and Kit receptor tyrosine kinase. These findings suggest a model for Jam3b function in zebrafish melanophores and hint at the complexity of adhesive interactions underlying pattern formation.
Collapse
Affiliation(s)
- Dae Seok Eom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | - Raegan R Bostic
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
21
|
Moreno MM, Barrell WB, Godwin A, Guille M, Liu KJ. Anaplastic lymphoma kinase (alk), a neuroblastoma associated gene, is expressed in neural crest domains during embryonic development of Xenopus. Gene Expr Patterns 2021; 40:119183. [PMID: 34020009 PMCID: PMC7616747 DOI: 10.1016/j.gep.2021.119183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Neuroblastoma is a neural crest-derived paediatric cancer that is the most common and deadly solid extracranial tumour of childhood. It arises when neural crest cells fail to follow their differentiation program to give rise to cells of the sympathoadrenal lineage. These undifferentiated cells can proliferate and migrate, forming tumours mostly found associated with the adrenal glands. Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) are linked to high-risk cases, where extensive therapy is ineffective. However, the role of ALK in embryonic development, downstream signal transduction and in metastatic transformation of the neural crest is poorly understood. Here, we demonstrate high conservation of the ALK protein sequences among vertebrates. We then examine alk mRNA expression in the frog models Xenopus laevis and Xenopus tropicalis. Using in situ hybridisation of Xenopus embryos, we show that alk is expressed in neural crest domains throughout development, suggesting a possible role in neuroblastoma initiation. Lastly, RT-qPCR analyses show high levels of alk expression at tadpole stages. Collectively, these data may begin to elucidate how alk functions in neural crest cells and how its deregulation can result in tumorigenesis.
Collapse
Affiliation(s)
- Marcela M Moreno
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Annie Godwin
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
22
|
Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D. Nile Tilapia: A Model for Studying Teleost Color Patterns. J Hered 2021; 112:469-484. [PMID: 34027978 DOI: 10.1093/jhered/esab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Tao Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guangyuan Liang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengmeng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- the Department of Biology, University of Maryland, College Park, MD
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
23
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
24
|
Mao R, Zhang X, Kong Y, Wu S, Huo HQ, Kong Y, Wang Z, Liu Y, Jia Z, Zhou Z. Transcriptome Regulation by Oncogenic ALK Pathway in Mammalian Cortical Development Revealed by Single-Cell RNA Sequencing. Cereb Cortex 2021; 31:3911-3924. [PMID: 33791755 DOI: 10.1093/cercor/bhab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022] Open
Abstract
Precise regulation of embryonic neurodevelopment is crucial for proper structural organization and functioning of the adult brain. The key molecular machinery orchestrating this process remains unclear. Anaplastic lymphoma kinase (ALK) is an oncogenic receptor-type protein tyrosine kinase that is specifically and transiently expressed in developing nervous system. However, its role in the mammalian brain development is unknown. We found that transient embryonic ALK inactivation caused long-lasting abnormalities in the adult mouse brain, including impaired neuronal connectivity and cognition, along with delayed neuronal migration and decreased neuronal proliferation during neurodevelopment. scRNA-seq on human cerebral organoids revealed a delayed transition of cell-type composition. Molecular characterization identified a group of differentially expressed genes (DEGs) that were temporally regulated by ALK at distinct developmental stages. In addition to oncogenes, many DEGs found by scRNA-seq are associated with neurological or neuropsychiatric disorders. Our study demonstrates a pivotal role of oncogenic ALK pathway in neurodevelopment and characterized cell-type-specific transcriptome regulated by ALK for better understanding mammalian cortical development.
Collapse
Affiliation(s)
- Rui Mao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China.,School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| | - Xiaoyun Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, 528400 China
| | - Youyong Kong
- School of Computer Science and Engineering, Southeast University, Nanjing, 210096 China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China.,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Hai-Qin Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China.,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Kong
- School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| | - Zhen Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China.,Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8 Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8 Canada
| | - Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030 China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China.,Zhongshan Institute for Drug Discovery, The Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, 528400 China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
25
|
P-Glycoprotein Inhibitor Tariquidar Plays an Important Regulatory Role in Pigmentation in Larval Zebrafish. Cells 2021; 10:cells10030690. [PMID: 33804686 PMCID: PMC8003715 DOI: 10.3390/cells10030690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Zebrafish has emerged as a powerful model in studies dealing with pigment development and pathobiology of pigment diseases. Due to its conserved pigment pattern with established genetic background, the zebrafish is used for screening of active compounds influencing melanophore, iridophore, and xanthophore development and differentiation. In our study, zebrafish embryos and larvae were used to investigate the influence of third-generation noncompetitive P-glycoprotein inhibitor, tariquidar (TQR), on pigmentation, including phenotype effects and changes in gene expression of chosen chromatophore differentiation markers. Five-day exposure to increasing TQR concentrations (1 µM, 10 µM, and 50 µM) resulted in a dose-dependent augmentation of the area covered with melanophores but a reduction in the area covered by iridophores. The observations were performed in three distinct regions-the eye, dorsal head, and tail. Moreover, TQR enhanced melanophore renewal after depigmentation caused by 0.2 mM 1-phenyl-2-thiourea (PTU) treatment. qPCR analysis performed in 56-h post-fertilization (hpf) embryos demonstrated differential expression patterns of genes related to pigment development and differentiation. The most substantial findings include those indicating that TQR had no significant influence on leukocyte tyrosine kinase, GTP cyclohydrolase 2, tyrosinase-related protein 1, and forkhead box D3, however, markedly upregulated tyrosinase, dopachrome tautomerase and melanocyte inducing transcription factor, and downregulated purine nucleoside phosphorylase 4a. The present study suggests that TQR is an agent with multidirectional properties toward pigment cell formation and distribution in the zebrafish larvae and therefore points to the involvement of P-glycoprotein in this process.
Collapse
|
26
|
Petratou K, Spencer SA, Kelsh RN, Lister JA. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS One 2021; 16:e0244794. [PMID: 33439865 PMCID: PMC7806166 DOI: 10.1371/journal.pone.0244794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later. We show that Mitfa represses tfec expression, revealing a likely mechanism contributing to the decision between melanocyte and iridophore fate. Our data are consistent with the long-standing proposal of a tripotent progenitor restricted to pigment cell fates. Moreover, we investigate activation, maintenance and function of tfec in multipotent NCSCs, demonstrating for the first time its role in the gene regulatory network forming and maintaining early neural crest cells. In summary, we build on our previous work to characterise the gene regulatory network governing iridophore development, establishing Tfec as the master regulator driving iridophore specification from multipotent progenitors, while shedding light on possible cellular mechanisms of progressive fate restriction.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Samantha A. Spencer
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
27
|
Owen JP, Kelsh RN, Yates CA. A quantitative modelling approach to zebrafish pigment pattern formation. eLife 2020; 9:52998. [PMID: 32716296 PMCID: PMC7384860 DOI: 10.7554/elife.52998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/21/2020] [Indexed: 12/14/2022] Open
Abstract
Pattern formation is a key aspect of development. Adult zebrafish exhibit a striking striped pattern generated through the self-organisation of three different chromatophores. Numerous investigations have revealed a multitude of individual cell-cell interactions important for this self-organisation, but it has remained unclear whether these known biological rules were sufficient to explain pattern formation. To test this, we present an individual-based mathematical model incorporating all the important cell-types and known interactions. The model qualitatively and quantitatively reproduces wild type and mutant pigment pattern development. We use it to resolve a number of outstanding biological uncertainties, including the roles of domain growth and the initial iridophore stripe, and to generate hypotheses about the functions of leopard. We conclude that our rule-set is sufficient to recapitulate wild-type and mutant patterns. Our work now leads the way for further in silico exploration of the developmental and evolutionary implications of this pigment patterning system.
Collapse
Affiliation(s)
- Jennifer P Owen
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| | - Christian A Yates
- Department of Biology and Biochemistry and Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
28
|
Volkening A. Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns. Curr Opin Genet Dev 2020; 63:78-85. [PMID: 32604031 DOI: 10.1016/j.gde.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Zebrafish are characterized by dark and light stripes, but mutants display a rich variety of altered patterns. These patterns arise from the interactions of brightly colored pigment cells, making zebrafish a self-organization problem. The diversity of patterns present in zebrafish and other emerging fish models provides an excellent system for elucidating how genes, cell behavior, and visible animal characteristics are related. With the goal of highlighting how experimental and mathematical approaches can be used to link these scales, I overview current descriptions of zebrafish patterning, describe advances in the understanding of the mechanisms underlying cell communication, and discuss new work that moves beyond zebrafish to explore patterning in evolutionary relatives.
Collapse
Affiliation(s)
- Alexandria Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Sciences and Applied Mathematics, Evanston, IL 60208, USA.
| |
Collapse
|
29
|
Volkening A, Abbott MR, Chandra N, Dubois B, Lim F, Sexton D, Sandstede B. Modeling Stripe Formation on Growing Zebrafish Tailfins. Bull Math Biol 2020; 82:56. [PMID: 32356149 DOI: 10.1007/s11538-020-00731-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/26/2022]
Abstract
As zebrafish develop, black and gold stripes form across their skin due to the interactions of brightly colored pigment cells. These characteristic patterns emerge on the growing fish body, as well as on the anal and caudal fins. While wild-type stripes form parallel to a horizontal marker on the body, patterns on the tailfin gradually extend distally outward. Interestingly, several mutations lead to altered body patterns without affecting fin stripes. Through an exploratory modeling approach, our goal is to help better understand these differences between body and fin patterns. By adapting a prior agent-based model of cell interactions on the fish body, we present an in silico study of stripe development on tailfins. Our main result is a demonstration that two cell types can produce stripes on the caudal fin. We highlight several ways that bone rays, growth, and the body-fin interface may be involved in patterning, and we raise questions for future work related to pattern robustness.
Collapse
Affiliation(s)
- A Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
| | - M R Abbott
- Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - N Chandra
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - B Dubois
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - F Lim
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - D Sexton
- Department of Mathematics, University of Idaho, Moscow, ID, USA
| | - B Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI, USA
- Data Science Initiative, Brown University, Providence, RI, USA
| |
Collapse
|
30
|
Bian C, Chen W, Ruan Z, Hu Z, Huang Y, Lv Y, Xu T, Li J, Shi Q, Ge W. Genome and Transcriptome Sequencing of casper and roy Zebrafish Mutants Provides Novel Genetic Clues for Iridophore Loss. Int J Mol Sci 2020; 21:ijms21072385. [PMID: 32235607 PMCID: PMC7177266 DOI: 10.3390/ijms21072385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals.
Collapse
Affiliation(s)
- Chao Bian
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| |
Collapse
|
31
|
Abstract
Self-organized pattern behavior is ubiquitous throughout nature, from fish schooling to collective cell dynamics during organism development. Qualitatively these patterns display impressive consistency, yet variability inevitably exists within pattern-forming systems on both microscopic and macroscopic scales. Quantifying variability and measuring pattern features can inform the underlying agent interactions and allow for predictive analyses. Nevertheless, current methods for analyzing patterns that arise from collective behavior capture only macroscopic features or rely on either manual inspection or smoothing algorithms that lose the underlying agent-based nature of the data. Here we introduce methods based on topological data analysis and interpretable machine learning for quantifying both agent-level features and global pattern attributes on a large scale. Because the zebrafish is a model organism for skin pattern formation, we focus specifically on analyzing its skin patterns as a means of illustrating our approach. Using a recent agent-based model, we simulate thousands of wild-type and mutant zebrafish patterns and apply our methodology to better understand pattern variability in zebrafish. Our methodology is able to quantify the differential impact of stochasticity in cell interactions on wild-type and mutant patterns, and we use our methods to predict stripe and spot statistics as a function of varying cellular communication. Our work provides an approach to automatically quantifying biological patterns and analyzing agent-based dynamics so that we can now answer critical questions in pattern formation at a much larger scale.
Collapse
Affiliation(s)
- Melissa R McGuirl
- Division of Applied Mathematics, Brown University, Providence, RI 02912;
| | - Alexandria Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI 02912
- Data Science Initiative, Brown University, Providence, RI 02912
| |
Collapse
|
32
|
Liang Y, Gerwin J, Meyer A, Kratochwil CF. Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus. Front Cell Dev Biol 2020; 8:62. [PMID: 32117987 PMCID: PMC7026194 DOI: 10.3389/fcell.2020.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The East African adaptive radiations of cichlid fishes are renowned for their diversity in coloration. Yet, the developmental basis of pigment pattern formation remains largely unknown. One of the most common melanic patterns in cichlid fishes are vertical bar patterns. Here we describe the ontogeny of this conspicuous pattern in the Lake Kyoga species Haplochromis latifasciatus. Beginning with the larval stages we tracked the formation of this stereotypic color pattern and discovered that its macroscopic appearance is largely explained by an increase in melanophore density and accumulation of melanin during the first 3 weeks post-fertilization. The embryonal analysis is complemented with cytological quantifications of pigment cells in adult scales and the dermis beneath the scales. In adults, melanic bars are characterized by a two to threefold higher density of melanophores than in the intervening yellow interbars. We found no strong support for differences in other pigment cell types such as xanthophores. Quantitative PCRs for twelve known pigmentation genes showed that expression of melanin synthesis genes tyr and tyrp1a is increased five to sixfold in melanic bars, while xanthophore and iridophore marker genes are not differentially expressed. In summary, we provide novel insights on how vertical bars, one of the most widespread vertebrate color patterns, are formed through dynamic control of melanophore density, melanin synthesis and melanosome dispersal.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
33
|
Eskova A, Frohnhöfer HG, Nüsslein-Volhard C, Irion U. Galanin Signaling in the Brain Regulates Color Pattern Formation in Zebrafish. Curr Biol 2020; 30:298-303.e3. [PMID: 31902721 PMCID: PMC6971688 DOI: 10.1016/j.cub.2019.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/02/2019] [Accepted: 11/11/2019] [Indexed: 12/29/2022]
Abstract
Color patterns are prominent features of many animals and are of high evolutionary relevance. In basal vertebrates, color patterns are composed of specialized pigment cells that arrange in multilayered mosaics in the skin. Zebrafish (Danio rerio), the preeminent model system for vertebrate color pattern formation, allows genetic screens as powerful approaches to identify novel functions in a complex biological system. Adult zebrafish display a series of blue and golden horizontal stripes, composed of black melanophores, silvery or blue iridophores, and yellow xanthophores. This stereotyped pattern is generated by self-organization involving direct cell contacts between all three types of pigment cells mediated by integral membrane proteins [1, 2, 3, 4, 5]. Here, we show that neuropeptide signaling impairs the striped pattern in a global manner. Mutations in the genes coding either for galanin receptor 1A (npm/galr1A) or for its ligand galanin (galn) result in fewer stripes, a pale appearance, and the mixing of cell types, thus resembling mutants with thyroid hypertrophy [6]. Zebrafish chimeras obtained by transplantations of npm/galr1A mutant blastula cells indicate that mutant pigment cells of all three types can contribute to a normal striped pattern in the appropriate host. However, loss of galr1A expression in a specific region of the brain is sufficient to cause the mutant phenotype in an otherwise wild-type fish. Increased thyroid hormone levels in mutant fish suggest that galanin signaling through Galr1A in the pituitary is an upstream regulator of the thyroid hormone pathway, which in turn promotes precise interactions of pigment cells during color pattern formation. Zebrafish stripes are generated by three types of self-organizing pigment cells Galanin signaling through Galr1A impairs zebrafish stripe formation globally Galr1A function in a specific brain region is required for pigment cell interactions Galanin signaling functions to downregulate thyroid hormone levels
Collapse
Affiliation(s)
- Anastasia Eskova
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Hans Georg Frohnhöfer
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | | | - Uwe Irion
- Max-Planck-Institute for Developmental Biology, Department ECNV, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
34
|
Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. eLife 2019; 8:50047. [PMID: 31868592 PMCID: PMC6968919 DOI: 10.7554/elife.50047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.
Collapse
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Arvind M Venkatesan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Melissa Guerin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
35
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
36
|
Zhou L, Liang H, Zhou X, Jia J, Ye C, Hu Q, Xu S, Yu Y, Zou G, Hu G. Genetic Characteristic and RNA-Seq Analysis in Transparent Mutant of Carp-Goldfish Nucleocytoplasmic Hybrid. Genes (Basel) 2019; 10:genes10090704. [PMID: 31547242 PMCID: PMC6771007 DOI: 10.3390/genes10090704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 01/24/2023] Open
Abstract
In teleost, pigment in the skin and scales played important roles in various biological processes. Iridophores, one of the main pigment cells in teleost, could produce silver pigments to reflect light. However, the specific mechanism of the formation of silver pigments is still unclear. In our previous study, some transparent mutant individuals were found in the carp-goldfish nucleocytoplasmic hybrid (CyCa hybrid) population. In the present study, using transparent mutants (TM) and wild type (WT) of the CyCa hybrid as a model, firstly, microscopic observations showed that the silver pigments and melanin were both lost in the scales of transparent mutants compared to that in wild types. Secondly, genetic study demonstrated that the transparent trait in the CyCa hybrid was recessively inherent, and controlled by an allele in line with Mendelism. Thirdly, RNA-Seq analysis showed that differential expression genes (DEGs) between wild type and transparent mutants were mainly enriched in the metabolism of guanine, such as hydrolase, guanyl nucleotide binding, guanyl ribonucleotide binding, and GTPase activity. Among the DEGs, purine nucleoside phosphorylase 4a (pnp4a) and endothelin receptor B (ednrb) were more highly expressed in the wild type compared to the transparent mutant (p < 0.05). Finally, miRNA-Seq analysis showed that miRNA-146a and miR-153b were both more highly expressed in the transparent mutant compared to that in wild type (p < 0.05). Interaction analysis between miRNAs and mRNAs indicated that miRNA-146a was associated with six DEGs (MGAT5B, MFAP4, GP2, htt, Sema6b, Obscn) that might be involved in silver pigmentation.
Collapse
Affiliation(s)
- Lingling Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongwei Liang
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Xiaoyun Zhou
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jingyi Jia
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cheng Ye
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiongyao Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shaohua Xu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongning Yu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guiwei Zou
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China.
| | - Guangfu Hu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Lewis VM, Saunders LM, Larson TA, Bain EJ, Sturiale SL, Gur D, Chowdhury S, Flynn JD, Allen MC, Deheyn DD, Lee JC, Simon JA, Lippincott-Schwartz J, Raible DW, Parichy DM. Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores. Proc Natl Acad Sci U S A 2019; 116:11806-11811. [PMID: 31138706 PMCID: PMC6575160 DOI: 10.1073/pnas.1901021116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells-leucophores-one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow-orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type-specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.
Collapse
Affiliation(s)
- Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Lauren M Saunders
- Department of Biology, University of Virginia, Charlottesville, VA 22903
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195
| | - Tracy A Larson
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | - Emily J Bain
- Department of Biology, University of Virginia, Charlottesville, VA 22903
| | | | - Dvir Gur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sarwat Chowdhury
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jessica D Flynn
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael C Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093
| | - Jennifer C Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - David W Raible
- Department of Biology, University of Washington, Seattle, WA 98195
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, VA 22903;
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
38
|
Cal L, Suarez-Bregua P, Comesaña P, Owen J, Braasch I, Kelsh R, Cerdá-Reverter JM, Rotllant J. Countershading in zebrafish results from an Asip1 controlled dorsoventral gradient of pigment cell differentiation. Sci Rep 2019; 9:3449. [PMID: 30837630 PMCID: PMC6401153 DOI: 10.1038/s41598-019-40251-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/12/2019] [Indexed: 11/29/2022] Open
Abstract
Dorso-ventral (DV) countershading is a highly-conserved pigmentary adaptation in vertebrates. In mammals, spatially regulated expression of agouti-signaling protein (ASIP) generates the difference in shading by driving a switch between the production of chemically-distinct melanins in melanocytes in dorsal and ventral regions. In contrast, fish countershading seemed to result from a patterned DV distribution of differently-coloured cell-types (chromatophores). Despite the cellular differences in the basis for counter-shading, previous observations suggested that Agouti signaling likely played a role in this patterning process in fish. To test the hypotheses that Agouti regulated counter-shading in fish, and that this depended upon spatial regulation of the numbers of each chromatophore type, we engineered asip1 homozygous knockout mutant zebrafish. We show that loss-of-function asip1 mutants lose DV countershading, and that this results from changed numbers of multiple pigment cell-types in the skin and on scales. Our findings identify asip1 as key in the establishment of DV countershading in fish, but show that the cellular mechanism for translating a conserved signaling gradient into a conserved pigmentary phenotype has been radically altered in the course of evolution.
Collapse
Affiliation(s)
- Laura Cal
- Deparment of Biotechnology and Aquaculture. Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, 36208, Spain
| | - Paula Suarez-Bregua
- Deparment of Biotechnology and Aquaculture. Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, 36208, Spain
| | - Pilar Comesaña
- Deparment of Biotechnology and Aquaculture. Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, 36208, Spain
| | - Jennifer Owen
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | - Josep Rotllant
- Deparment of Biotechnology and Aquaculture. Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, 36208, Spain.
| |
Collapse
|
39
|
Camargo-Sosa K, Colanesi S, Müller J, Schulte-Merker S, Stemple D, Patton EE, Kelsh RN. Endothelin receptor Aa regulates proliferation and differentiation of Erb-dependent pigment progenitors in zebrafish. PLoS Genet 2019; 15:e1007941. [PMID: 30811380 PMCID: PMC6392274 DOI: 10.1371/journal.pgen.1007941] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/07/2019] [Indexed: 11/18/2022] Open
Abstract
Skin pigment patterns are important, being under strong selection for multiple roles including camouflage and UV protection. Pigment cells underlying these patterns form from adult pigment stem cells (APSCs). In zebrafish, APSCs derive from embryonic neural crest cells, but sit dormant until activated to produce pigment cells during metamorphosis. The APSCs are set-aside in an ErbB signaling dependent manner, but the mechanism maintaining quiescence until metamorphosis remains unknown. Mutants for a pigment pattern gene, parade, exhibit ectopic pigment cells localised to the ventral trunk, but also supernumerary cells restricted to the Ventral Stripe. Contrary to expectations, these melanocytes and iridophores are discrete cells, but closely apposed. We show that parade encodes Endothelin receptor Aa, expressed in the blood vessels, most prominently in the medial blood vessels, consistent with the ventral trunk phenotype. We provide evidence that neuronal fates are not affected in parade mutants, arguing against transdifferentiation of sympathetic neurons to pigment cells. We show that inhibition of BMP signaling prevents specification of sympathetic neurons, indicating conservation of this molecular mechanism with chick and mouse. However, inhibition of sympathetic neuron differentiation does not enhance the parade phenotype. Instead, we pinpoint ventral trunk-restricted proliferation of neural crest cells as an early feature of the parade phenotype. Importantly, using a chemical genetic screen for rescue of the ectopic pigment cell phenotype of parade mutants (whilst leaving the embryonic pattern untouched), we identify ErbB inhibitors as a key hit. The time-window of sensitivity to these inhibitors mirrors precisely the window defined previously as crucial for the setting aside of APSCs in the embryo, strongly implicating adult pigment stem cells as the source of the ectopic pigment cells. We propose that a novel population of APSCs exists in association with medial blood vessels, and that their quiescence is dependent upon Endothelin-dependent factors expressed by the blood vessels.
Collapse
Affiliation(s)
- Karen Camargo-Sosa
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sarah Colanesi
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | - Jeanette Müller
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Derek Stemple
- Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom
| |
Collapse
|
40
|
Salis P, Lorin T, Lewis V, Rey C, Marcionetti A, Escande ML, Roux N, Besseau L, Salamin N, Sémon M, Parichy D, Volff JN, Laudet V. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res 2019; 32:391-402. [PMID: 30633441 DOI: 10.1111/pcmr.12766] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
Actinopterygian fishes harbor at least eight distinct pigment cell types, leading to a fascinating diversity of colors. Among this diversity, the cellular origin of the white color appears to be linked to several pigment cell types such as iridophores or leucophores. We used the clownfish Amphiprion ocellaris, which has a color pattern consisting of white bars over a darker body, to characterize the pigment cells that underlie the white hue. We observe by electron microscopy that cells in white bars are similar to iridophores. In addition, the transcriptomic signature of clownfish white bars exhibits similarities with that of zebrafish iridophores. We further show by pharmacological treatments that these cells are necessary for the white color. Among the top differentially expressed genes in white skin, we identified several genes (fhl2a, fhl2b, saiyan, gpnmb, and apoD1a) and show that three of them are expressed in iridophores. Finally, we show by CRISPR/Cas9 mutagenesis that these genes are critical for iridophore development in zebrafish. Our analyses provide clues to the genomic underpinning of color diversity and allow identification of new iridophore genes in fish.
Collapse
Affiliation(s)
- Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Thibault Lorin
- IGFL, ENS de Lyon, UMR 5242 CNRS, Université Claude Bernard Lyon I, Lyon Cedex 07, France
| | - Victor Lewis
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Carine Rey
- ENS de Lyon, CNRS UMR 5239, INSERM U1210, LBMC, Université Claude Bernard, Lyon, France.,LBBE, CNRS, Université Lyon 1, Villeurbanne, France
| | - Anna Marcionetti
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marie-Line Escande
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marie Sémon
- ENS de Lyon, CNRS UMR 5239, INSERM U1210, LBMC, Université Claude Bernard, Lyon, France
| | - David Parichy
- Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Jean-Nicolas Volff
- IGFL, ENS de Lyon, UMR 5242 CNRS, Université Claude Bernard Lyon I, Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
41
|
Vieceli FM, Bronner ME. Leukocyte receptor tyrosine kinase interacts with secreted midkine to promote survival of migrating neural crest cells. Development 2018; 145:dev.164046. [PMID: 30228102 DOI: 10.1242/dev.164046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Neural crest cells migrate long distances throughout the embryo and rely on extracellular signals that attract, repel and/or stimulate survival to ensure proper contribution to target derivatives. Here, we show that leukocyte receptor tyrosine kinase (LTK), an ALK-type receptor tyrosine kinase, is expressed by neural crest cells during early migratory stages in chicken embryos. Loss of LTK in the cranial neural crest impairs migration and results in increased levels of apoptosis. Conversely, midkine, previously proposed as a ligand for ALK, is secreted by the non-neural ectoderm during early neural crest migratory stages and internalized by neural crest cells in vivo Similar to loss of LTK, loss of midkine reduces survival of the migratory neural crest. Moreover, we show by proximity ligation and co-immunoprecipitation assays that midkine binds to LTK. Taken together, these results suggest that LTK in neural crest cells interacts with midkine emanating from the non-neural ectoderm to promote cell survival, revealing a new signaling pathway that is essential for neural crest development.
Collapse
Affiliation(s)
- Felipe Monteleone Vieceli
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
42
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
43
|
Evolution of Endothelin signaling and diversification of adult pigment pattern in Danio fishes. PLoS Genet 2018; 14:e1007538. [PMID: 30226839 PMCID: PMC6161917 DOI: 10.1371/journal.pgen.1007538] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Fishes of the genus Danio exhibit diverse pigment patterns that serve as useful models for understanding the genes and cell behaviors underlying the evolution of adult form. Among these species, zebrafish D. rerio exhibit several dark stripes of melanophores with sparse iridophores that alternate with light interstripes of dense iridophores and xanthophores. By contrast, the closely related species D. nigrofasciatus has an attenuated pattern with fewer melanophores, stripes and interstripes. Here we demonstrate species differences in iridophore development that presage the fully formed patterns. Using genetic and transgenic approaches we identify the secreted peptide Endothelin-3 (Edn3)—a known melanogenic factor of tetrapods—as contributing to reduced iridophore proliferation and fewer stripes and interstripes in D. nigrofasciatus. We further show the locus encoding this factor is expressed at lower levels in D. nigrofasciatus owing to cis-regulatory differences between species. Finally, we show that functions of two paralogous loci encoding Edn3 have been partitioned between skin and non-skin iridophores. Our findings reveal genetic and cellular mechanisms contributing to pattern differences between these species and suggest a model for evolutionary changes in Edn3 requirements for pigment patterning and its diversification across vertebrates. Neural crest derived pigment cells generate the spectacular variation in skin pigment patterns among vertebrates. Mammals and birds have just a single skin pigment cell, the melanocyte, whereas ectothermic vertebrates have several pigment cells including melanophores, iridophores and xanthophores, that together organize into a diverse array of patterns. In the teleost zebrafish, Danio rerio, an adult pattern of stripes depends on interactions between pigment cell classes and between pigment cells and their tissue environment. The close relative D. nigrofasciatus has fewer stripes and prior analyses suggested a difference between these species that lies extrinsic to the pigment cells themselves. A candidate for mediating this difference is Endothelin-3 (Edn3), essential for melanocyte development in warm-blooded animals, and required by all three classes of pigment cells in an amphibian. We show that Edn3 specifically promotes iridophore development in Danio, and that differences in Edn3 expression contribute to differences in iridophore complements, and striping, between D. rerio and D. nigrofasciatus. Our study reveals a novel function for Edn3 and provides new insights into how changes in gene expression yield morphogenetic outcomes to effect diversification of adult form.
Collapse
|
44
|
Volkening A, Sandstede B. Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns. Nat Commun 2018; 9:3231. [PMID: 30104716 PMCID: PMC6089994 DOI: 10.1038/s41467-018-05629-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/13/2018] [Indexed: 11/11/2022] Open
Abstract
Zebrafish (Danio rerio) feature black and yellow stripes, while related Danios display different patterns. All these patterns form due to the interactions of pigment cells, which self-organize on the fish skin. Until recently, research focused on two cell types (melanophores and xanthophores), but newer work has uncovered the leading role of a third type, iridophores: by carefully orchestrated transitions in form, iridophores instruct the other cells, but little is known about what drives their form changes. Here we address this question from a mathematical perspective: we develop a model (based on known interactions between the original two cell types) that allows us to assess potential iridophore behavior. We identify a set of mechanisms governing iridophore form that is consistent across a range of empirical data. Our model also suggests that the complex cues iridophores receive may act as a key source of redundancy, enabling both robust patterning and variability within Danio.
Collapse
Affiliation(s)
- Alexandria Volkening
- Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI, 02912, USA.
- Mathematical Biosciences Institute, Ohio State University, 1735 Neil Avenue, Columbus, OH, 43210, USA.
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI, 02912, USA
| |
Collapse
|
45
|
Hozumi S, Shirai M, Wang J, Aoki S, Kikuchi Y. The N-terminal domain of gastrulation brain homeobox 2 (Gbx2) is required for iridophore specification in zebrafish. Biochem Biophys Res Commun 2018; 502:104-109. [PMID: 29787751 DOI: 10.1016/j.bbrc.2018.05.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
Abstract
Although body color pattern formation by pigment cells plays critical roles in animals, pigment cell specification has not yet been fully elucidated. In zebrafish, there are three chromatophores: melanophore, iridophore, and xanthophore, that are derived from neural crest cells (NCCs). A recent study has reported the differentially expressed genes between melanophores and iridophores. Based on transcriptome data, we identified that Gbx2 is required for iridophore specification during development. In support of this, iridophore formation is suppressed by gbx2 knockdown by morpholino antisense oligonucleotide, at 72 h post fertilization (hpf) in zebrafish. Moreover, gbx2 is expressed in sox10-expressing NCCs and guanine crystal plates-containing iridophores during development at 24 and 48 hpf, respectively. In gbx2 knockdown zebrafish embryos, apoptosis of sox10-expressing NCCs was detected at 24 hpf without any effect on the formation of melanophores and xanthophores at 48 hpf. We further observed that the N-terminal domain of Gbx2 is able to rescue the iridophore formation defect caused by gbx2 knockdown. Our study provides insights into the requirement of N-terminal domain of Gbx2 for iridophore specification in zebrafish.
Collapse
Affiliation(s)
- Shunya Hozumi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Masaki Shirai
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Jingxin Wang
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Shun Aoki
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
46
|
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 2018; 14:e1007260. [PMID: 29621239 PMCID: PMC5886393 DOI: 10.1371/journal.pgen.1007260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. How individual cell fates become specified from multipotent progenitors is a fundamental question in developmental and stem cell biology. Body pigment cells derive from a multipotent progenitor, but while in zebrafish there are three types of pigment cells (melanocytes, iridophores and xanthophores), in medaka these progenitors form four (as zebrafish, plus leucophores). Here, we address whether mechanisms generating each cell-type are conserved between the two species. We focus on two key regulatory proteins, Sox5 and Sox10, which we previously showed were involved in pigment cell development in medaka and zebrafish, respectively. We compare experimentally how the two proteins interact in regulating development of each of the pigment cell lineages in these fish. We show that development of all pigment cells, except leucophores, is dependent on Sox10, and that Sox5 modulates Sox10 activity antagonistically in all pigment cells in zebrafish, and melanocytes and iridophores in medaka. Surprisingly, in medaka, Sox5 acts co-operatively with Sox10 to promote xanthophore fate and to repress leucophore fate. Our findings reveal surprising diversity how Sox5 and Sox10 interact to govern pigment cell development in medaka and zebrafish, and suggest that this likely relates to the evolution of the novel leucophore pigment cell type in medaka.
Collapse
Affiliation(s)
- Yusuke Nagao
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroyuki Takada
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motohiro Miyadai
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail: (HH); (RNK)
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail: (HH); (RNK)
| |
Collapse
|
47
|
Janoueix-Lerosey I, Lopez-Delisle L, Delattre O, Rohrer H. The ALK receptor in sympathetic neuron development and neuroblastoma. Cell Tissue Res 2018; 372:325-337. [PMID: 29374774 DOI: 10.1007/s00441-017-2784-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.
Collapse
Affiliation(s)
- Isabelle Janoueix-Lerosey
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France. .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France.
| | - Lucille Lopez-Delisle
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Laboratory of Developmental Genomics, EPFL SV ISREC UPDUB, SV 2843, CH-1015, Lausanne, Switzerland
| | - Olivier Delattre
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France
| | - Hermann Rohrer
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| |
Collapse
|
48
|
ALKALs are in vivo ligands for ALK family receptor tyrosine kinases in the neural crest and derived cells. Proc Natl Acad Sci U S A 2018; 115:E630-E638. [PMID: 29317532 PMCID: PMC5789956 DOI: 10.1073/pnas.1719137115] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is a pediatric tumor arising from the neural crest. Dysregulation of the receptor tyrosine kinase ALK has been linked to neuroblastoma, making it important to understand its function in native conditions. In zebrafish, a related receptor—Ltk—is also expressed in neural crest and regulates development of specific pigment cells—iridophores. Ligands activating human ALK were recently identified as the ALKAL proteins (FAM150, AUG) by biochemical means. Our data show that this ligand–receptor pair functions in vivo in the neural crest of zebrafish to drive development of iridophores. Removal of Ltk or all three zebrafish ALKALs results in larvae completely lacking these cells. Using Drosophila and human cell lines, we show evolutionary conservation of this important interaction. Mutations in anaplastic lymphoma kinase (ALK) are implicated in somatic and familial neuroblastoma, a pediatric tumor of neural crest-derived tissues. Recently, biochemical analyses have identified secreted small ALKAL proteins (FAM150, AUG) as potential ligands for human ALK and the related leukocyte tyrosine kinase (LTK). In the zebrafish Danio rerio, DrLtk, which is similar to human ALK in sequence and domain structure, controls the development of iridophores, neural crest-derived pigment cells. Hence, the zebrafish system allows studying Alk/Ltk and Alkals involvement in neural crest regulation in vivo. Using zebrafish pigment pattern formation, Drosophila eye patterning, and cell culture-based assays, we show that zebrafish Alkals potently activate zebrafish Ltk and human ALK driving downstream signaling events. Overexpression of the three DrAlkals cause ectopic iridophore development, whereas loss-of-function alleles lead to spatially distinct patterns of iridophore loss in zebrafish larvae and adults. alkal loss-of-function triple mutants completely lack iridophores and are larval lethal as is the case for ltk null mutants. Our results provide in vivo evidence of (i) activation of ALK/LTK family receptors by ALKALs and (ii) an involvement of these ligand–receptor complexes in neural crest development.
Collapse
|
49
|
Heffer A, Marquart GD, Aquilina-Beck A, Saleem N, Burgess HA, Dawid IB. Generation and characterization of Kctd15 mutations in zebrafish. PLoS One 2017; 12:e0189162. [PMID: 29216270 PMCID: PMC5720732 DOI: 10.1371/journal.pone.0189162] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates.
Collapse
Affiliation(s)
- Alison Heffer
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Gregory D. Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Allisan Aquilina-Beck
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Nabil Saleem
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Igor B. Dawid
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ahi EP, Sefc KM. Anterior-posterior gene expression differences in three Lake Malawi cichlid fishes with variation in body stripe orientation. PeerJ 2017; 5:e4080. [PMID: 29158996 PMCID: PMC5695249 DOI: 10.7717/peerj.4080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Morphological differentiation among closely related species provides opportunities to study mechanisms shaping natural phenotypic variation. Here, we address variation in the orientation of melanin-colored body stripes in three cichlid species of the tribe Haplochromini. Melanochromis auratus displays a common pattern of dark, straight horizontal body stripes, whereas in Aristochromis christyi and Buccochromis rhoadesii, oblique stripes extend from the anterior dorsal to the posterior mid-lateral trunk. We first validated a stably reference gene, and then, investigated the chromatophore distribution in the skin by assessing the expression levels of the iridophore and melanophore marker genes, ltk and slc24a5, respectively, as well as pmel, a melanophore pigmentation marker gene. We found anterior-posterior differences in the expression levels of the three genes in the oblique-striped species. The higher anterior expression of ltk, indicates increased iridophore density in the anterior region, i.e., uneven horizontal distribution of iridophores, which coincides with the anterior dorsalization of melanophore stripe in these species. The obliqueness of the horizontal body stripes might be a result of distinct migratory or patterning abilities of melanophores in anterior and posterior stripe regions which could be reflected by variation in the expression of genes involved in melanophore patterning. To address this, we investigated anterior-posterior expression levels of a primary set of candidate target genes with known functions in melanophore migration and stripe patterning in the adult zebrafish, and their related gene regulatory network. Among these genes, those with differences in anterior-posterior expression showed only species-specific differential expression, e.g., sdf1a, col14a1a, ifitm5, and agpat3, with the exception of fbxw4/hagoromo (differentially expressed in an oblique-and the straight-striped species). In summary, distinct anterior-posterior gradients in iridophore density found to be more similar characteristic between the two oblique-striped species. Furthermore, the species-specific differential expression of genes involved in stripe patterning might also implicate distinct molecular processes underlying the obliqueness of body stripe in two closely related cichlid species.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| |
Collapse
|