1
|
Pierpoint M, Floyd W, Wisdom AJ, Luo L, Ma Y, Dickson BC, Waitkus MS, Kirsch DG. Loss of function of Atrx recapitulates phenotypes of alternative lengthening of telomeres in a primary mouse model of sarcoma. iScience 2025; 28:112357. [PMID: 40292316 PMCID: PMC12033954 DOI: 10.1016/j.isci.2025.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The development of a telomere maintenance mechanism is essential for immortalization in human cancer. While most cancers elongate their telomeres by expression of telomerase, 10-15% of human cancers utilize a pathway known as alternative lengthening of telomeres (ALT). ALT is commonly associated with loss-of-function mutations in ATRX. Here, we developed a genetically engineered primary mouse model of sarcoma in CAST/EiJ mice to investigate the extent to which telomerase deficiency and Atrx-inactivation lead to ALT induction. We observed increases in multiple ALT-associated phenotypic indicators in tumors with loss of function mutations of Atrx. Furthermore, we found that loss of Atrx leads to an increase in telomeric instability and telomere sister chromatid exchange. However, Atrx-deficient tumors did not show productive telomere length maintenance in the absence of telomerase. This primary mouse model of sarcoma could facilitate future investigations into the molecular features of ALT in vivo.
Collapse
Affiliation(s)
- Matthew Pierpoint
- Duke Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Warren Floyd
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amy J. Wisdom
- Harvard Radiation Oncology Program, Boston, MA 02115, USA
| | - Lixia Luo
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Matthew S. Waitkus
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC 27710, USA
| | - David G. Kirsch
- Duke Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
- Duke Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
2
|
Keener R, Chhetri SB, Connelly CJ, Taub MA, Conomos MP, Weinstock J, Ni B, Strober B, Aslibekyan S, Auer PL, Barwick L, Becker LC, Blangero J, Bleecker ER, Brody JA, Cade BE, Celedon JC, Chang YC, Cupples LA, Custer B, Freedman BI, Gladwin MT, Heckbert SR, Hou L, Irvin MR, Isasi CR, Johnsen JM, Kenny EE, Kooperberg C, Minster RL, Naseri T, Viali S, Nekhai S, Pankratz N, Peyser PA, Taylor KD, Telen MJ, Wu B, Yanek LR, Yang IV, Albert C, Arnett DK, Ashley-Koch AE, Barnes KC, Bis JC, Blackwell TW, Boerwinkle E, Burchard EG, Carson AP, Chen Z, Chen YDI, Darbar D, de Andrade M, Ellinor PT, Fornage M, Gelb BD, Gilliland FD, He J, Islam T, Kaab S, Kardia SLR, Kelly S, Konkle BA, Kumar R, Loos RJF, Martinez FD, McGarvey ST, Meyers DA, Mitchell BD, Montgomery CG, North KE, Palmer ND, Peralta JM, Raby BA, Redline S, Rich SS, Roden D, Rotter JI, Ruczinski I, Schwartz D, Sciurba F, Shoemaker MB, Silverman EK, Sinner MF, Smith NL, Smith AV, Tiwari HK, Vasan RS, Weiss ST, Williams LK, Zhang Y, Ziv E, Raffield LM, Reiner AP, Arvanitis M, Greider CW, Mathias RA, Battle A. Validation of human telomere length multi-ancestry meta-analysis association signals identifies POP5 and KBTBD6 as human telomere length regulation genes. Nat Commun 2024; 15:4417. [PMID: 38789417 PMCID: PMC11126610 DOI: 10.1038/s41467-024-48394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genome-wide association studies (GWAS) have become well-powered to detect loci associated with telomere length. However, no prior work has validated genes nominated by GWAS to examine their role in telomere length regulation. We conducted a multi-ancestry meta-analysis of 211,369 individuals and identified five novel association signals. Enrichment analyses of chromatin state and cell-type heritability suggested that blood/immune cells are the most relevant cell type to examine telomere length association signals. We validated specific GWAS associations by overexpressing KBTBD6 or POP5 and demonstrated that both lengthened telomeres. CRISPR/Cas9 deletion of the predicted causal regions in K562 blood cells reduced expression of these genes, demonstrating that these loci are related to transcriptional regulation of KBTBD6 and POP5. Our results demonstrate the utility of telomere length GWAS in the identification of telomere length regulation mechanisms and validate KBTBD6 and POP5 as genes affecting telomere length regulation.
Collapse
Grants
- P30 AG028747 NIA NIH HHS
- R01 DK107786 NIDDK NIH HHS
- R01AG069120 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U01 AG058589 NIA NIH HHS
- U01 HL072518 NHLBI NIH HHS
- P01 HL162607 NHLBI NIH HHS
- UG1 HL139125 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- R01 HL079915 NHLBI NIH HHS
- R01 HL149836 NHLBI NIH HHS
- K12 GM123914 NIGMS NIH HHS
- R01 HL112064 NHLBI NIH HHS
- R01 ES021801 NIEHS NIH HHS
- R01HL153805 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01AG081244 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 HL139731 NHLBI NIH HHS
- P30 ES007048 NIEHS NIH HHS
- 5K12GM123914 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG081244 NIA NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01 HL087698 NHLBI NIH HHS
- R01 ES016535 NIEHS NIH HHS
- R35CA209974 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R35 CA209974 NCI NIH HHS
- R01 HL076647 NHLBI NIH HHS
- R01HL105756 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL092577 NHLBI NIH HHS
- R01HL68959 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL079915 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL158668 NHLBI NIH HHS
- P01 ES009581 NIEHS NIH HHS
- R01HL87681 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 ES022845 NIEHS NIH HHS
- R01 HL061768 NHLBI NIH HHS
- R01 HL153805 NHLBI NIH HHS
- P50 CA180905 NCI NIH HHS
- R01HL-120393 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- R01 AG058921 NIA NIH HHS
- U01 HL153009 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- R35 HL135818 NHLBI NIH HHS
- I01 BX005295 BLRD VA
- RC2 HL101651 NHLBI NIH HHS
- P01 ES011627 NIEHS NIH HHS
- R01 AG069120 NIA NIH HHS
- R35GM139580 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- HHSN268201800001C NHLBI NIH HHS
- UM1 AI160040 NIAID NIH HHS
- R01 HL087680 NHLBI NIH HHS
- M01 RR000052 NCRR NIH HHS
- R00 ES027870 NIEHS NIH HHS
- R01 AI132476 NIAID NIH HHS
- U01 HL137162 NHLBI NIH HHS
- R01 AI153239 NIAID NIH HHS
- R01 GM152471 NIGMS NIH HHS
- U01 AG052409 NIA NIH HHS
- R01 ES023262 NIEHS NIH HHS
- R01 HL068959 NHLBI NIH HHS
- R03 ES014046 NIEHS NIH HHS
- R01 DK071891 NIDDK NIH HHS
- R35 GM139580 NIGMS NIH HHS
- U01 AI160018 NIAID NIH HHS
- R01 HL157635 NHLBI NIH HHS
- R01 HL087681 NHLBI NIH HHS
- UG3 HL151865 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Surya B Chhetri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret A Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Joshua Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bohan Ni
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Strober
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Paul L Auer
- Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R Bleecker
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Juan C Celedon
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Barry I Freedman
- Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mark T Gladwin
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jill M Johnsen
- Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ryan L Minster
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Take Naseri
- Naseri & Associates Public Health Consultancy Firm and Family Health Clinic, Apia, Samoa
- International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Satupa'itea Viali
- Oceania University of Medicine, Apia, Samoa
- School of Medicine, National University of Samoa, Apia, Samoa
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington DC, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Baojun Wu
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Departments of Biomedical Informatics, Medicine, and Epidemiology, University of Colorado, Boulder, CO, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA
| | - Donna K Arnett
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | | | - Kathleen C Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Talat Islam
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stefan Kaab
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | - Barbara A Konkle
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rajesh Kumar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando D Martinez
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - Stephen T McGarvey
- Department of Epidemiology & International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Courtney G Montgomery
- Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Susan Redline
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Dan Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David Schwartz
- Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Moritz F Sinner
- Department of Cardiology, University Hospital, LMU Munich, Munich, Germany
| | - Nicholas L Smith
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Yingze Zhang
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Carol W Greider
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- University Professor Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.
- Data Science and AI Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Robinson LG, Kalmbach K, Sumerfield O, Nomani W, Wang F, Liu L, Keefe DL. Telomere dynamics and reproduction. Fertil Steril 2024; 121:4-11. [PMID: 37993053 DOI: 10.1016/j.fertnstert.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
The oocyte, a long-lived, postmitotic cell, is the locus of reproductive aging in women. Female germ cells replicate only during fetal life and age throughout reproductive life. Mechanisms of oocyte aging include the accumulation of oxidative damage, mitochondrial dysfunction, and disruption of proteins, including cohesion. Nobel Laureate Bob Edwards also discovered a "production line" during oogonial replication in the mouse, wherein the last oocytes to ovulate in the adult-derived from the last oogonia to exit mitotic replication in the fetus. On the basis of this, we proposed a two-hit "telomere theory of reproductive aging" to integrate the myriad features of oocyte aging. The first hit was that oocytes remaining in older women traversed more cell cycles during fetal oogenesis. The second hit was that oocytes accumulated more environmental and endogenous oxidative damage throughout the life of the woman. Telomeres (Ts) could mediate both of these aspects of oocyte aging. Telomeres provide a "mitotic clock," with T attrition an inevitable consequence of cell division because of the end replication problem. Telomere's guanine-rich sequence renders them especially sensitive to oxidative damage, even in postmitotic cells. Telomerase, the reverse transcriptase that restores Ts, is better at maintaining than elongating T. Moreover, telomerase remains inactive during much of oogenesis and early development. Oocytes are left with short Ts, on the brink of viability. In support of this theory, mice with induced T attrition and women with naturally occurring telomeropathy suffer diminished ovarian reserve, abnormal embryo development, and infertility. In contrast, sperm are produced throughout the life of the male by a telomerase-active progenitor, spermatogonia, resulting in the longest Ts in the body. In mice, cleavage-stage embryos elongate Ts via "alternative lengthening of telomeres," a recombination-based mechanism rarely encountered outside of telomerase-deficient cancers. Many questions about Ts and reproduction are raised by these findings: does the "normal" T attrition observed in human oocytes contribute to their extraordinarily high rate of meiotic nondisjunction? Does recombination-based T elongation render embryos susceptible to mitotic nondisjunction (and mosaicism)? Can some features of Ts serve as markers of oocyte quality?
Collapse
Affiliation(s)
- LeRoy G Robinson
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York; Department of Biology, San Francisco State University, San Francisco, California
| | - Keri Kalmbach
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Olivia Sumerfield
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Wafa Nomani
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York
| | - Lin Liu
- College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University Langone Fertility Center, New York University School of Medicine, NYU Langone Health, New York, New York.
| |
Collapse
|
4
|
Chun-on P, Hinchie AM, Beale HC, Gil Silva AA, Rush E, Sander C, Connelly CJ, Seynnaeve BK, Kirkwood JM, Vaske OM, Greider CW, Alder JK. TPP1 promoter mutations cooperate with TERT promoter mutations to lengthen telomeres in melanoma. Science 2022; 378:664-668. [PMID: 36356143 PMCID: PMC10590476 DOI: 10.1126/science.abq0607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Overcoming replicative senescence is an essential step during oncogenesis, and the reactivation of TERT through promoter mutations is a common mechanism. TERT promoter mutations are acquired in about 75% of melanomas but are not sufficient to maintain telomeres, suggesting that additional mutations are required. We identified a cluster of variants in the promoter of ACD encoding the shelterin component TPP1. ACD promoter variants are present in about 5% of cutaneous melanoma and co-occur with TERT promoter mutations. The two most common somatic variants create or modify binding sites for E-twenty-six (ETS) transcription factors, similar to mutations in the TERT promoter. The variants increase the expression of TPP1 and function together with TERT to synergistically lengthen telomeres. Our findings suggest that TPP1 promoter variants collaborate with TERT activation to enhance telomere maintenance and immortalization in melanoma.
Collapse
Affiliation(s)
- Pattra Chun-on
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh; Pittsburgh, PA, USA
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy; Bangkok, Thailand
| | - Angela M. Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| | - Holly C. Beale
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
| | - Agustin A. Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| | - Elizabeth Rush
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Cindy Sander
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Carla J. Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Brittani K.N. Seynnaeve
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Olena M. Vaske
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
| | - Carol W. Greider
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Jonathan K. Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| |
Collapse
|
5
|
Mu J, Zhou Z, Sang Q, Wang L. The physiological and pathological mechanisms of early embryonic development. FUNDAMENTAL RESEARCH 2022; 2:859-872. [PMID: 38933386 PMCID: PMC11197659 DOI: 10.1016/j.fmre.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022] Open
Abstract
Early embryonic development is a complex process. The zygote undergoes several rounds of division to form a blastocyst, and during this process, the zygote undergoes the maternal-to-zygotic transition to gain control of embryonic development and makes two cell fate decisions to differentiate into an embryonic and two extra-embryonic lineages. With the use of new molecular biotechnologies and animal models, we can now further study the molecular mechanisms of early embryonic development and the pathological causes of early embryonic arrest. Here, we first summarize the known molecular regulatory mechanisms of early embryonic development in mice. Then we discuss the pathological factors leading to the early embryonic arrest. We hope that this review will give researchers a relatively complete view of the physiology and pathology of early embryonic development.
Collapse
Affiliation(s)
- Jian Mu
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200032, China
| | - Qing Sang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- The State Key Laboratory of Genetic Engineering, Institute of Pediatrics, Children's Hospital of Fudan University, The Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Sir4 Deficiency Reverses Cell Senescence by Sub-Telomere Recombination. Cells 2021; 10:cells10040778. [PMID: 33915984 PMCID: PMC8066019 DOI: 10.3390/cells10040778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Telomere shortening results in cellular senescence and the regulatory mechanisms remain unclear. Here, we report that the sub-telomere regions facilitate telomere lengthening by homologous recombination, thereby attenuating senescence in yeast Saccharomyces cerevisiae. The telomere protein complex Sir3/4 represses, whereas Rif1 promotes, the sub-telomere Y' element recombination. Genetic disruption of SIR4 increases Y' element abundance and rescues telomere-shortening-induced senescence in a Rad51-dependent manner, indicating a sub-telomere regulatory switch in regulating organismal senescence by DNA recombination. Inhibition of the sub-telomere recombination requires Sir4 binding to perinuclear protein Mps3 for telomere perinuclear localization and transcriptional repression of the telomeric repeat-containing RNA TERRA. Furthermore, Sir4 repression of Y' element recombination is negatively regulated by Rif1 that mediates senescence-evasion induced by Sir4 deficiency. Thus, our results demonstrate a dual opposing control mechanism of sub-telomeric Y' element recombination by Sir3/4 and Rif1 in the regulation of telomere shortening and cell senescence.
Collapse
|
7
|
Dratwa M, Wysoczanska B, Turlej E, Anisiewicz A, Maciejewska M, Wietrzyk J, Bogunia-Kubik K. Heterogeneity of telomerase reverse transcriptase mutation and expression, telomerase activity and telomere length across human cancer cell lines cultured in vitro. Exp Cell Res 2020; 396:112298. [PMID: 32971118 DOI: 10.1016/j.yexcr.2020.112298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022]
Abstract
Promoter region of the telomerase reverse transcriptase gene (TERTp) constitutes a regulatory element capable to affect TERT expression (TE), telomerase activity (TA) and telomere length (TL). TERTp mutation status, TL, TA and TE were assessed in 27 in vitro cultured human cell lines, including 11 solid tumour, 13 haematological and 3 normal cell lines. C228T and C250T TERTp mutations were detected in 5 solid tumour and none of haematological cell lines (p = 0.0100). As compared to other solid tumour cell lines, those with the presence of somatic mutations were characterized by: shorter TL, lower TA and TE. Furthermore, cell lines carrying TERTp mutations showed a linear correlation between TE and TA (R = 0.9708, p = 0.0021). Moreover, haematological cell lines exhibited higher TE compared to solid tumour cell lines (p = 0.0007). TL and TA were correlated in both solid tumour (R = 0.4875, p = 0.0169) and haematological (R = 0.4719, p = 0.0095) cell lines. Our results based on the in vitro model suggest that oncogenic processes may differ between solid tumours and haematological malignancies with regard to their TERT gene regulation mechanisms.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Artur Anisiewicz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Maciejewska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
8
|
Kamal S, Junaid M, Ejaz A, Bibi I, Akash MSH, Rehman K. The secrets of telomerase: Retrospective analysis and future prospects. Life Sci 2020; 257:118115. [PMID: 32698073 DOI: 10.1016/j.lfs.2020.118115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Telomerase plays a significant role to maintain and regulate the telomere length, cellular immortality and senescence by the addition of guanine-rich repetitive sequences. Chronic inflammation or oxidative stress-induced infection downregulates TERT gene modifying telomerase activity thus contributing to the early steps of gastric carcinogenesis process. Furthermore, telomere-telomerase system performs fundamental role in the pathogenesis and progression of diabetes mellitus as well as in its vascular intricacy. The cessation of cell proliferation in cultured cells by inhibiting the telomerase activity of transformed cells renders the rationale for culling of telomerase as a target therapy for the treatment of metabolic disorders and various types of cancers. In this article, we have briefly described the role of immune system and malignant cells in the expression of telomerase with critical analysis on the gaps and potential for future studies. The key findings regarding the secrets of the telomerase summarized in this article will help in future treatment modalities for the prevention of various types of cancers and metabolic disorders notably diabetes mellitus.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Muhammad Junaid
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Arslan Ejaz
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, Islamia University, Bahawalpur, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
9
|
Cherdyntseva V, Gagos S. Chromosome extremities under the microscopy lens: molecular cytogenetics in telomere research. Curr Opin Genet Dev 2020; 60:69-76. [PMID: 32193147 DOI: 10.1016/j.gde.2020.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
At the crossroads of DNA damage repair and genomic instability, telomere research significantly expands our knowledge on fundamental mechanisms involved in cancer initiation and progression, pledging novel tools for targeted and universal onco-therapies. Molecular cytogenetics through the application of a battery of fluorescent hybridization technologies plays an important role toward understanding telomere homeostasis. Herein, we review distinct molecular cytogenetic phenotypes associated with telomere repair, functionality, and elongation. We discuss the underlying mechanisms responsible for their formation or repair, focusing on Break-induced-Replication (BIR)-mediated conservative telomeric neo-synthesis, recently shown to drive the enigmatic Alternative Lengthening of Telomeres in neoplasia.
Collapse
Affiliation(s)
- Veronica Cherdyntseva
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece.
| |
Collapse
|
10
|
Lovejoy CA, Takai K, Huh MS, Picketts DJ, de Lange T. ATRX affects the repair of telomeric DSBs by promoting cohesion and a DAXX-dependent activity. PLoS Biol 2020; 18:e3000594. [PMID: 31895940 PMCID: PMC6959610 DOI: 10.1371/journal.pbio.3000594] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX), a DAXX (death domain-associated protein) interacting protein, is often lost in cells using the alternative lengthening of telomeres (ALT) pathway, but it is not known how ATRX loss leads to ALT. We report that ATRX deletion from mouse cells altered the repair of telomeric double-strand breaks (DSBs) and induced ALT-like phenotypes, including ALT-associated promyelocytic leukemia (PML) bodies (APBs), telomere sister chromatid exchanges (T-SCEs), and extrachromosomal telomeric signals (ECTSs). Mechanistically, we show that ATRX affects telomeric DSB repair by promoting cohesion of sister telomeres and that loss of ATRX in ALT cells results in diminished telomere cohesion. In addition, we document a role for DAXX in the repair of telomeric DSBs. Removal of telomeric cohesion in combination with DAXX deficiency recapitulates all telomeric DSB repair phenotypes associated with ATRX loss. The data reveal that ATRX has an effect on telomeric DSB repair and that this role involves both telomere cohesion and a DAXX-dependent pathway.
Collapse
Affiliation(s)
- Courtney A. Lovejoy
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Kaori Takai
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
| | - Michael S. Huh
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Udroiu I, Sgura A. Alternative Lengthening of Telomeres and Chromatin Status. Genes (Basel) 2019; 11:genes11010045. [PMID: 31905921 PMCID: PMC7016797 DOI: 10.3390/genes11010045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Telomere length is maintained by either telomerase, a reverse transcriptase, or alternative lengthening of telomeres (ALT), a mechanism that utilizes homologous recombination (HR) proteins. Since access to DNA for HR enzymes is regulated by the chromatin status, it is expected that telomere elongation is linked to epigenetic modifications. The aim of this review is to elucidate the epigenetic features of ALT-positive cells. In order to do this, it is first necessary to understand the telomeric chromatin peculiarities. So far, the epigenetic nature of telomeres is still controversial: some authors describe them as heterochromatic, while for others, they are euchromatic. Similarly, ALT activity should be characterized by the loss (according to most researchers) or formation (as claimed by a minority) of heterochromatin in telomeres. Besides reviewing the main works in this field and the most recent findings, some hypotheses involving the role of telomere non-canonical sequences and the possible spatial heterogeneity of telomeres are given.
Collapse
|
12
|
X-rays Activate Telomeric Homologous Recombination Mediated Repair in Primary Cells. Cells 2019; 8:cells8070708. [PMID: 31336873 PMCID: PMC6678842 DOI: 10.3390/cells8070708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/27/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer cells need to acquire telomere maintenance mechanisms in order to counteract progressive telomere shortening due to multiple rounds of replication. Most human tumors maintain their telomeres expressing telomerase whereas the remaining 15%–20% utilize the alternative lengthening of telomeres (ALT) pathway. Previous studies have demonstrated that ionizing radiations (IR) are able to modulate telomere lengths and to transiently induce some of the ALT-pathway hallmarks in normal primary fibroblasts. In the present study, we investigated the telomere length modulation kinetics, telomeric DNA damage induction, and the principal hallmarks of ALT over a period of 13 days in X-ray-exposed primary cells. Our results show that X-ray-treated cells primarily display telomere shortening and telomeric damage caused by persistent IR-induced oxidative stress. After initial telomere erosion, we observed a telomere elongation that was associated to the transient activation of a homologous recombination (HR) based mechanism, sharing several features with the ALT pathway observed in cancer cells. Data indicate that telomeric damage activates telomeric HR-mediated repair in primary cells. The characterization of HR-mediated telomere repair in normal cells may contribute to the understanding of the ALT pathway and to the identification of novel strategies in the treatment of ALT-positive cancers.
Collapse
|
13
|
Sayed ME, Cheng A, Yadav GP, Ludlow AT, Shay JW, Wright WE, Jiang QX. Catalysis-dependent inactivation of human telomerase and its reactivation by intracellular telomerase-activating factors (iTAFs). J Biol Chem 2019; 294:11579-11596. [PMID: 31186347 DOI: 10.1074/jbc.ra118.007234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Human telomerase maintains genome stability by adding telomeric repeats to the ends of linear chromosomes. Although previous studies have revealed profound insights into telomerase functions, the low cellular abundance of functional telomerase and the difficulties in quantifying its activity leave its thermodynamic and kinetic properties only partially characterized. Employing a stable cell line overexpressing both the human telomerase RNA component and the N-terminally biotinylated human telomerase reverse transcriptase and using a newly developed method to count individual extension products, we demonstrate here that human telomerase holoenzymes contain fast- and slow-acting catalytic sites. Surprisingly, both active sites became inactive after two consecutive rounds of catalysis, named single-run catalysis. The fast active sites turned off ∼40-fold quicker than the slow ones and exhibited higher affinities to DNA substrates. In a dimeric enzyme, the two active sites work in tandem, with the faster site functioning before the slower one, and in the monomeric enzyme, the active sites also perform single-run catalysis. Interestingly, inactive enzymes could be reactivated by intracellular telomerase-activating factors (iTAFs) from multiple cell types. We conclude that the single-run catalysis and the iTAF-triggered reactivation serve as an unprecedented control circuit for dynamic regulation of telomerase. They endow native telomerase holoenzymes with the ability to match their total number of active sites to the number of telomeres they extend. We propose that the exquisite kinetic control of telomerase activity may play important roles in both cell division and cell aging.
Collapse
Affiliation(s)
- Mohammed E Sayed
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Ao Cheng
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gaya P Yadav
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Andrew T Ludlow
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,School of Kinesiology Integrative Molecular Genetics Lab, University of Michigan, Ann Arbor, Michigan 48109
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Woodring E Wright
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390 .,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
14
|
Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet 2019; 63:103638. [PMID: 30862510 DOI: 10.1016/j.ejmg.2019.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Genomic instability is widespread during early embryo development. Aneuploidy, mosaicism, and copy number variants (CNVs) commonly appear in human preimplantation embryos. Both age-dependent meiotic aneuploidy and age-independent mitotic aneuploidy and CNVs occur In human embryos. Telomere attrition, which contributes to genomic instability in somatic cells, also may promote genomic instability in preimplantation embryos. Telomere dynamics during gametogenesis are strikingly dimorphic between females and males. Sperm telomeres lengthen with advancing paternal age, while oocyte telomeres are among the shortest in the body. Spermatogonia express telomerase activity throughout the life of the male, while oocytes and cleavage stage embryos express low or un-measureable levels of telomerase activity. Telomere attrition in oocytes contributes to meiotic dysfunction, including spindle dysmorphologies, reduced synapsis and chiasmata, as well as delayed, arrested and fragmented embryos. Cleavage stage embryos, with such inefficient telomere reconstitution, likely undergo NHEJ, which produces anaphase lag, chromosome bridges, micronuclei, and genomic instability, including mosaicism and CNVs. Cleavage stage embryos reconstitute the short telomeres inherited from their mothers by Alternative Lengthening of Telomeres (ALT), a DNA recombination based method involving RAD 50, MRE 11, Werner and Bloom proteins, as well as telomere sister chromatid exchange. ALT robustly reconstitutes telomeres, but also predisposes to genomic instability.
Collapse
Affiliation(s)
- David L Keefe
- Department of Ob/Gyn, NYU Langone Medical Center, 550 First Avenue, NBV 9N1A, New York, 10012, New York, USA.
| |
Collapse
|
15
|
Romaniuk A, Paszel-Jaworska A, Totoń E, Lisiak N, Hołysz H, Królak A, Grodecka-Gazdecka S, Rubiś B. The non-canonical functions of telomerase: to turn off or not to turn off. Mol Biol Rep 2018; 46:1401-1411. [PMID: 30448892 DOI: 10.1007/s11033-018-4496-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Telomerase is perceived as an immortality enzyme that enables passing the Hayflick limit. Its main function is telomere restoration but only in a limited group of cells, including cancer cells. Since it is found in a vast majority of cancer cells, it became a natural target for cancer therapy. However, it has much more functions than just altering the metabolism of telomeres-it also reveals numerous so-called non-canonical functions. Thus, a question arises whether it is always beneficial to turn it off when planning a cancer strategy and considering potential side effects? The purpose of this review is to discuss some of the recent discoveries about telomere-independent functions of telomerase in the context of cancer therapy and potential side effects.
Collapse
Affiliation(s)
- Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Hanna Hołysz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | - Anna Królak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland
| | | | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznań, Poland.
| |
Collapse
|
16
|
De Vitis M, Berardinelli F, Sgura A. Telomere Length Maintenance in Cancer: At the Crossroad between Telomerase and Alternative Lengthening of Telomeres (ALT). Int J Mol Sci 2018; 19:ijms19020606. [PMID: 29463031 PMCID: PMC5855828 DOI: 10.3390/ijms19020606] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic cells undergo continuous telomere shortening as a consequence of multiple rounds of replications. During tumorigenesis, cells have to acquire telomere DNA maintenance mechanisms (TMMs) in order to counteract telomere shortening, to preserve telomeres from DNA damage repair systems and to avoid telomere-mediated senescence and/or apoptosis. For this reason, telomere maintenance is an essential step in cancer progression. Most human tumors maintain their telomeres expressing telomerase, whereas a lower but significant proportion activates the alternative lengthening of telomeres (ALT) pathway. However, evidence about the coexistence of ALT and telomerase has been found both in vivo in the same cancer populations and in vitro in engineered cellular models, making the distinction between telomerase- and ALT-positive tumors elusive. Indeed, after the development of drugs able to target telomerase, the capability for some cancer cells to escape death, switching from telomerase to ALT, was highlighted. Unfortunately, to date, the mechanism underlying the possible switching or the coexistence of telomerase and ALT within the same cell or populations is not completely understood and different factors could be involved. In recent years, different studies have tried to shed light on the complex regulation network that controls the transition between the two TMMs, suggesting a role for embryonic cancer origin, epigenetic modifications, and specific genes activation—both in vivo and in vitro. In this review, we examine recent findings about the cancer-associated differential activation of the two known TMMs and the possible factors implicated in this process. Furthermore, some studies on cancers are also described that did not display any TMM.
Collapse
Affiliation(s)
- Marco De Vitis
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| | | | - Antonella Sgura
- Department of Science, Roma Tre University, 00146 Rome, Italy.
| |
Collapse
|
17
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
18
|
Gunes C, Avila AI, Rudolph KL. Telomeres in cancer. Differentiation 2017; 99:41-50. [PMID: 29291448 DOI: 10.1016/j.diff.2017.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Telomere shortening as a consequence of cell divisions during aging and chronic diseases associates with an increased cancer risk. Experimental data revealed that telomere shortening results in telomere dysfunction, which in turn affects tumorigenesis in two ways. First, telomere dysfunction suppresses tumor progression by the activation of DNA damage checkpoints, which induce cell cycle arrest (senescence) or apoptosis, as well as by inducing metabolic compromise and activation of immune responses directed against senescent cells. Second, telomere dysfunction promotes tumorigenesis by inducing chromosomal instability in tumor initiating cells, by inhibiting proliferative competition of non-transformed cells, and possibly, also by influencing tumor cell plasticity. The tumor promoting effects of telomere dysfunction are context dependent and require the loss of p53-dependent DNA damage checkpoints or other genetic modifiers that attenuate DNA damage responses possibly involving complex interactions of different genes. The activation of telomere stabilizing mechanisms appears as a subsequent step, which is required to enable immortal grotwh of emerging cancer cells. Here, we conceptually discuss our current knowledge and new, unpublished experimental data on telomere dependent influences on tumor initiation and progression.
Collapse
Affiliation(s)
| | - Alush Irene Avila
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - K Lenhard Rudolph
- Research Group on Stem Cell Aging, Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
19
|
Wang S, Pike AM, Lee SS, Strong MA, Connelly CJ, Greider CW. BRD4 inhibitors block telomere elongation. Nucleic Acids Res 2017; 45:8403-8410. [PMID: 28854735 PMCID: PMC5737673 DOI: 10.1093/nar/gkx561] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer cells maintain telomere length equilibrium to avoid senescence and apoptosis induced by short telomeres, which trigger the DNA damage response. Limiting the potential for telomere maintenance in cancer cells has been long been proposed as a therapeutic target. Using an unbiased shRNA screen targeting known kinases, we identified bromodomain-containing protein 4 (BRD4) as a telomere length regulator. Four independent BRD4 inhibitors blocked telomere elongation, in a dose-dependent manner, in mouse cells overexpressing telomerase. Long-term treatment with BRD4 inhibitors caused telomere shortening in both mouse and human cells, suggesting BRD4 plays a role in telomere maintenance in vivo. Telomerase enzymatic activity was not directly affected by BRD4 inhibition. BRD4 is in clinical trials for a number of cancers, but its effects on telomere maintenance have not been previously investigated.
Collapse
Affiliation(s)
- Steven Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra M Pike
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stella S Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carla J Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Mason JM, Randall TA, Capkova Frydrychova R. Telomerase lost? Chromosoma 2016; 125:65-73. [PMID: 26162505 PMCID: PMC6512322 DOI: 10.1007/s00412-015-0528-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 01/22/2023]
Abstract
Telomerase and telomerase-generated telomeric DNA sequences are widespread throughout eukaryotes, yet they are not universal. Neither telomerase nor the simple DNA repeats associated with telomerase have been found in some plant and animal species. Telomerase was likely lost from Diptera before the divergence of Diptera and Siphonaptera, some 260 million years ago. Even so, Diptera is one of the most successful animal orders, making up 11% of known animal species. In addition, many species of Coleoptera and Hemiptera seem to lack canonical telomeric repeats at their chromosome ends. These and other insects that appear to lack canonical terminal repeat sequences account for another 10-15% of animal species. Conversely, the silk moth Bombyx mori maintains canonical telomeric sequences at its chromosome ends but seems to lack a functional telomerase. We speculate that a telomere-specific capping complex that recognizes the telomeric repeats and protects chromosome ends is the determining factor in maintaining canonical telomeric sequences and that telomerase is an early and efficacious mechanism for satisfying the needs of capping complex. There are alternate mechanisms for maintaining chromosome ends that do not depend on telomerase, such as recombination found in some human cancer cells and yeast mutants. These mechanisms may maintain the canonical telomeric repeats or allow the terminal sequence to evolve when specificity of the capping complex for terminal repeat sequences is weak.
Collapse
Affiliation(s)
- James M Mason
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
21
|
Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish. PLoS Genet 2016; 12:e1005798. [PMID: 26789415 PMCID: PMC4720274 DOI: 10.1371/journal.pgen.1005798] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/20/2015] [Indexed: 12/30/2022] Open
Abstract
Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer. Why, and how, organisms age and ultimately die is a key question of modern biology. Telomeres are considered molecular timekeepers determining cellular lifespans. Within an organism, tissue proliferation is expected to dictate the rate at which telomeres shorten. Using zebrafish, an organism with human-like telomeres, we set out to test whether, in natural aging, proliferative tissues age faster than non-proliferative in a telomere-dependent manner. We found that telomeres shorten with age to a level where they trigger telomere associated DNA damage and culminate in tissue dysfunction, independently of high or low tissue proliferation rates. Specifically, short telomeres accumulate in the gut, a highly proliferative tissue, and in the muscle, a low proliferative tissue, working as direct predictors of cellular damage prior to onset of intestinal inflammation and myocyte degeneration. Based on our data, we propose a model where telomere shortening in these key tissues is sufficient to trigger damage in others and precedes the onset of organism age-associated diseases, namely cancer. Thus, tissue-specific telomere length is limiting for local and systemic physiological integrity, leading to tissue degeneration and disease in aging.
Collapse
|
22
|
Lee SS, Bohrson C, Pike AM, Wheelan SJ, Greider CW. ATM Kinase Is Required for Telomere Elongation in Mouse and Human Cells. Cell Rep 2015; 13:1623-32. [PMID: 26586427 PMCID: PMC4663052 DOI: 10.1016/j.celrep.2015.10.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 12/26/2022] Open
Abstract
Short telomeres induce a DNA damage response, senescence, and apoptosis, thus maintaining telomere length equilibrium is essential for cell viability. Telomerase addition of telomere repeats is tightly regulated in cells. To probe pathways that regulate telomere addition, we developed the ADDIT assay to measure new telomere addition at a single telomere in vivo. Sequence analysis showed telomerase-specific addition of repeats onto a new telomere occurred in just 48 hr. Using the ADDIT assay, we found that ATM is required for addition of new repeats onto telomeres in mouse cells. Evaluation of bulk telomeres, in both human and mouse cells, showed that blocking ATM inhibited telomere elongation. Finally, the activation of ATM through the inhibition of PARP1 resulted in increased telomere elongation, supporting the central role of the ATM pathway in regulating telomere addition. Understanding this role of ATM may yield new areas for possible therapeutic intervention in telomere-mediated disease.
Collapse
Affiliation(s)
- Stella Suyong Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Craig Bohrson
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexandra Mims Pike
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Jo Wheelan
- Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Carol Widney Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Predoctoral Training Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
23
|
Ramamoorthy M, Smith S. Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells. Cancer Cell 2015; 28:357-69. [PMID: 26373281 PMCID: PMC4573400 DOI: 10.1016/j.ccell.2015.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/08/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023]
Abstract
The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving cohesion. The resulting persistent telomere cohesion promotes recombination between sister telomeres, while it suppresses inappropriate recombination between non-sisters. Forced resolution of sister telomere cohesion induces excessive recombination between non-homologs, genomic instability, and impaired cell growth, indicating the ATRX-macroH2A1.1-tankyrase axis as a potential therapeutic target in ALT tumors.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
24
|
Vallabhaneni H, Zhou F, Maul RW, Sarkar J, Yin J, Lei M, Harrington L, Gearhart PJ, Liu Y. Defective repair of uracil causes telomere defects in mouse hematopoietic cells. J Biol Chem 2015; 290:5502-11. [PMID: 25572391 DOI: 10.1074/jbc.m114.607101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uracil in the genome can result from misincorporation of dUTP instead of dTTP during DNA synthesis, and is primarily removed by uracil DNA glycosylase (UNG) during base excision repair. Telomeres contain long arrays of TTAGGG repeats and may be susceptible to uracil misincorporation. Using model telomeric DNA substrates, we showed that the position and number of uracil substitutions of thymine in telomeric DNA decreased recognition by the telomere single-strand binding protein, POT1. In primary mouse hematopoietic cells, uracil was detectable at telomeres, and UNG deficiency further increased uracil loads and led to abnormal telomere lengthening. In UNG-deficient cells, the frequencies of sister chromatid exchange and fragility in telomeres also significantly increased in the absence of telomerase. Thus, accumulation of uracil and/or UNG deficiency interferes with telomere maintenance, thereby underscoring the necessity of UNG-initiated base excision repair for the preservation of telomere integrity.
Collapse
Affiliation(s)
| | - Fang Zhou
- From the Laboratory of Molecular Gerontology
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Jaya Sarkar
- From the Laboratory of Molecular Gerontology
| | - Jinhu Yin
- From the Laboratory of Molecular Gerontology
| | - Ming Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Lea Harrington
- Department of Medicine, Institute for Research in Immunology and Cancer, University of Montréal, Montréal, Québec H3C 3J7, Canada
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, Maryland 21224,
| | - Yie Liu
- From the Laboratory of Molecular Gerontology,
| |
Collapse
|
25
|
Churikov D, Charifi F, Simon MN, Géli V. Rad59-facilitated acquisition of Y' elements by short telomeres delays the onset of senescence. PLoS Genet 2014; 10:e1004736. [PMID: 25375789 PMCID: PMC4222662 DOI: 10.1371/journal.pgen.1004736] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022] Open
Abstract
Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1–3-like tracts present between subtelomeric X and Y′ elements, which is followed by BIR-mediated non-reciprocal translocation of Y′ element and terminal TG1–3 repeats from the donor end onto the shortened telomere. We found that choice of the Y′ donor was not random, since both engineered telomere VII-L and native VI-R acquired Y′ elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y′ translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1–3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y′ translocation events taking place during presenescence are genetically separable from Rad51-dependent Y′ amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y′ translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation. In humans, telomerase is expressed in the germline and stem, but is repressed in somatic cells, which limits replicative lifespan of the latter. To unleash cell proliferation, telomerase is reactivated in most human cancers, but some cancer cells employ alternative lengthening of telomeres (ALT) based on homologous recombination (HR) to escape senescence. Recombination-based telomere maintenance similar to ALT was originally discovered in budding yeast deficient in telomerase activity. Two types of telomere arrangement that depend on two genetically distinct HR pathways (RAD51- and RAD59-dependent) were identified in post-senescent survivors, but the transition to telomere maintenance by HR is poorly understood. Here, we show that one of the earliest steps of short telomere rearrangement in telomerase-negative yeast is directly related to the “short telomere rescue pathway” proposed 20 years ago by Lundblad and Blackburn, which culminates in the acquisition of subtelomeric Y′ element by shortened telomere. We found that this telomere rearrangement depends on Rad52 strand annealing activity stimulated by Rad59, thus it is distinct from Rad51-dependent Y′ amplification process observed in type I survivors. We show that continuous repair of critically short telomeres in telomerase-negative cells delays the onset of senescence and prepares the ground for telomere maintenance by HR.
Collapse
Affiliation(s)
- Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Ferose Charifi
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, LNCC (Equipe labellisée), Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Gurung RL, Lim HK, Venkatesan S, Lee PSW, Hande MP. Targeting DNA-PKcs and telomerase in brain tumour cells. Mol Cancer 2014; 13:232. [PMID: 25307264 PMCID: PMC4213508 DOI: 10.1186/1476-4598-13-232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 10/07/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients suffering from brain tumours such as glioblastoma and medulloblastoma have poor prognosis with a median survival of less than a year. Identifying alternative molecular targets would enable us to develop different therapeutic strategies for better management of these tumours. METHODS Glioblastoma (MO59K and KNS60) and medulloblastoma cells (ONS76) were used in this study. Telomerase inhibitory effects of MST-312, a chemically modified-derivative of epigallocatechin gallate, in the cells were assessed using telomere repeat amplification protocol. Gene expression analysis following MST-312 treatment was done by microarray. Telomere length was measured by telomere restriction fragments analysis. Effects of MST-312 on DNA integrity were evaluated by single cell gel electrophoresis, immunofluorescence assay and cytogenetic analysis. Phosphorylation status of DNA-PKcs was measured with immunoblotting and effects on cell proliferation were monitored with cell titre glow and trypan blue exclusion following dual inhibition. RESULTS MST-312 showed strong binding affinity to DNA and displayed reversible telomerase inhibitory effects in brain tumour cells. In addition to the disruption of telomere length maintenance, MST-312 treatment decreased brain tumour cell viability, induced cell cycle arrest and double strand breaks (DSBs). DNA-PKcs activation was observed in telomerase-inhibited cells presumably as a response to DNA damage. Impaired DNA-PKcs in MO59J cells or in MO59K cells treated with DNA-PKcs inhibitor, NU7026, caused a delay in the repair of DSBs. In contrast, MST-312 did not induce DSBs in telomerase negative osteosarcoma cells (U2OS). Combined inhibition of DNA-PKcs and telomerase resulted in an increase in telomere signal-free chromosomal ends in brain tumour cells as well. Interestingly, continual exposure of brain tumour cells to telomerase inhibitor led to population of cells, which displayed resistance to telomerase inhibition-mediated cell arrest. DNA-PKcs ablation in these cells, however, confers higher cell sensitivity to telomerase inhibition, inducing cell death. CONCLUSIONS Efficient telomerase inhibition was achieved with acute exposure to MST-312 and this resulted in subtle but significant increase in DSBs. Activation of DNA-PKcs might indicate the requirement of NHEJ pathway in the repair telomerase inhibitor induced DNA damage. Therefore, our results suggest a potential strategy in combating brain tumour cells with dual inhibition of telomerase and NHEJ pathway.
Collapse
Affiliation(s)
| | | | | | | | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
27
|
Zhang ZX, Wang Y, Tao ZZ, Chen SM, Xiao BK, Zhou T. Subtelomeric Demethylation Deregulated hTERT Expression, Telomerase Activity, and Telomere Length in Four Nasopharyngeal Carcinoma Cell Lines. Cancer Biother Radiopharm 2014; 29:289-94. [PMID: 25153197 DOI: 10.1089/cbr.2013.1581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zi-Xiong Zhang
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University , Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Calado R, Rao M, Hong JA, Meeker AK, Dumitriu B, Atay S, McCormick PJ, Garfield SH, Wangsa D, Padilla-Nash HM, Burkett S, Zhang M, Kunst TF, Peterson NR, Xi S, Inchauste S, Altorki NK, Casson AG, Beer DG, Harris CC, Ried T, Young NS, Schrump DS. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas. PLoS One 2014; 9:e101010. [PMID: 24983628 PMCID: PMC4077737 DOI: 10.1371/journal.pone.0101010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 06/02/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas. METHODS Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC) patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability. RESULTS Sequencing analysis revealed one deletion involving TERC (TERC del 341-360), and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous); A1062T (4 heterozygous)]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01). Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs) following Zeocin™ exposure, as well as Li Fraumeni fibroblasts in the absence of pharmacologically-induced DNA damage. CONCLUSIONS A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal cancer cells. These findings warrant further analysis of A279T expression in esophageal cancers and premalignant esophageal lesions.
Collapse
Affiliation(s)
- Yuwei Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Rodrigo Calado
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Mahadev Rao
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Julie A. Hong
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Alan K. Meeker
- Departments of Pathology and Oncology, Johns Hopkins University of Medicine, Baltimore, Maryland, United States of America
| | - Bogdan Dumitriu
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Scott Atay
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Peter J. McCormick
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Susan H. Garfield
- Laboratory of Experimental Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Danny Wangsa
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hesed M. Padilla-Nash
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sandra Burkett
- Comparative Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mary Zhang
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tricia F. Kunst
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nathan R. Peterson
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - Sichuan Xi
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Suzanne Inchauste
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| | - Nasser K. Altorki
- Department of Thoracic Surgery, Weill Cornell Medical Center, New York, New York, United States of America
| | - Alan G. Casson
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David G. Beer
- Section of Thoracic Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Curtis C. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Section of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Neal S. Young
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States of America
| | - David S. Schrump
- Thoracic Surgery Section, Thoracic and GI Oncology Branch; National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Recombinogenic telomeres in diploid Sorex granarius (Soricidae, Eulipotyphla) fibroblast cells. Mol Cell Biol 2014; 34:2786-99. [PMID: 24842907 DOI: 10.1128/mcb.01697-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism.
Collapse
|
30
|
Popuri V, Hsu J, Khadka P, Horvath K, Liu Y, Croteau DL, Bohr VA. Human RECQL1 participates in telomere maintenance. Nucleic Acids Res 2014; 42:5671-88. [PMID: 24623817 PMCID: PMC4027191 DOI: 10.1093/nar/gku200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A variety of human tumors employ alternative and recombination-mediated lengthening for telomere maintenance (ALT). Human RecQ helicases, such as BLM and WRN, can efficiently unwind alternate/secondary structures during telomere replication and/or recombination. Here, we report a novel role for RECQL1, the most abundant human RecQ helicase but functionally least studied, in telomere maintenance. RECQL1 associates with telomeres in ALT cells and actively resolves telomeric D-loops and Holliday junction substrates. RECQL1 physically and functionally interacts with telomere repeat-binding factor 2 that in turn regulates its helicase activity on telomeric substrates. The telomeric single-stranded binding protein, protection of telomeres 1 efficiently stimulates RECQL1 on telomeric substrates containing thymine glycol, a replicative blocking lesion. Loss of RECQL1 results in dysfunctional telomeres, telomere loss and telomere shortening, elevation of telomere sister-chromatid exchanges and increased aphidicolin-induced telomere fragility, indicating a role for RECQL1 in telomere maintenance. Further, our results indicate that RECQL1 may participate in the same pathway as WRN, probably in telomere replication.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Joseph Hsu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Prabhat Khadka
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Kent Horvath
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
31
|
Morrish TA, Bekbolysnov D, Velliquette D, Morgan M, Ross B, Wang Y, Chaney B, McQuigg J, Fager N, Maine IP. Multiple Mechanisms Contribute To Telomere Maintenance. JOURNAL OF CANCER BIOLOGY & RESEARCH 2013; 1:1012. [PMID: 25285314 PMCID: PMC4181876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The unlimited growth potential of tumors depends on telomere maintenance and typically depends on telomerase, an RNA-dependent DNA polymerase, which reverse transcribes the telomerase RNA template, synthesizing telomere repeats at the ends of chromosomes. Studies in various model organisms genetically deleted for telomerase indicate that several recombination-based mechanisms also contribute to telomere maintenance. Understanding the molecular basis of these mechanisms is critical since some human tumors form without telomerase, yet the sequence is maintained at the telomeres. Recombination-based mechanisms also likely contribute at some frequency to telomere maintenance in tumors expressing telomerase. Preventing telomere maintenance is predicted to impact tumor growth, yet inhibiting telomerase may select for the recombination-based mechanisms. Telomere recombination mechanisms likely involve altered or unregulated pathways of DNA repair. The use of some DNA damaging agents may encourage the use of these unregulated pathways of DNA repair to be utilized and may allow some tumors to generate resistance to these agents depending on which repair pathways are altered in the tumors. This review will discuss the various telomere recombination mechanisms and will provide rationale regarding the possibility that L1 retrotransposition may contribute to telomere maintenance in tumors lacking telomerase.
Collapse
Affiliation(s)
- Tammy A. Morrish
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Dulat Bekbolysnov
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
- Graduate Program in Microbiology and Immunology, University of Toledo, Toledo, OH 43614 USA
| | - David Velliquette
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Michelle Morgan
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Bryan Ross
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Yongheng Wang
- Department of Biological Sciences, University of Toledo, OH 43614, USA
| | - Benjamin Chaney
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Jessica McQuigg
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Nathan Fager
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - Ira P. Maine
- Department of Biochemistry and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
32
|
Dynamic length changes of telomeres and their nuclear organization in chronic myeloid leukemia. Cancers (Basel) 2013; 5:1086-102. [PMID: 24202335 PMCID: PMC3795380 DOI: 10.3390/cancers5031086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/08/2013] [Accepted: 08/16/2013] [Indexed: 01/11/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the t(9;22) translocation. As in most cancers, short telomeres are one of the features of CML cells, and telomere shortening accentuates as the disease progresses from the chronic phase to the blastic phase. Although most individual telomeres are short, some of them are lengthened, and long individual telomeres occur non-randomly and might be associated with clonal selection. Telomerase is the main mechanism used to maintain telomere lengths, and its activity increases when CML evolves toward advanced stages. ALT might be another mechanism employed by CML cells to sustain the homeostasis of their telomere lengths and this mechanism seems predominant at the early stage of leukemogenesis. Also, telomerase and ALT might jointly act to maintain telomere lengths at the chronic phase, and as CML progresses, telomerase becomes the major mechanism. Finally, CML cells display an altered nuclear organization of their telomeres which is characterized by the presence of high number of telomeric aggregates, a feature of genomic instability, and differential positioning of telomeres. CML represents a good model to study mechanisms responsible for dynamic changes of individual telomere lengths and the remodeling of telomeric nuclear organization throughout cancer progression.
Collapse
|
33
|
Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet 2013; 29:513-20. [PMID: 23876621 DOI: 10.1016/j.tig.2013.06.007] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/07/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
Abstract
Although cancer and aging have been studied as independent diseases, mounting evidence suggests that cancer is an aging-associated disease and that cancer and aging share many molecular pathways. In particular, recent studies validated telomerase activation as a potential therapeutic target for age-related diseases; in addition, abnormal telomerase expression and telomerase mutations have been associated with many different types of human tumor. Here, we revisit the connection between telomerase and cancer and aging in light of recent findings supporting a role for telomerase not only in telomere elongation, but also in metabolic fitness and Wnt activation. Understanding the physiological impact of telomerase regulation is fundamental given the therapeutic strategies that are being developed that involve telomerase modulation.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | | |
Collapse
|
34
|
Dlaska M, Schöffski P, Bechter OE. Inter-telomeric recombination is present in telomerase-positive human cells. Cell Cycle 2013; 12:2084-99. [PMID: 23759591 DOI: 10.4161/cc.25136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.
Collapse
Affiliation(s)
- Margit Dlaska
- Department for Internal Medicine I, University Hospital Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
35
|
Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth. Oncogene 2013; 33:1495-505. [PMID: 23604115 PMCID: PMC3940666 DOI: 10.1038/onc.2013.103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
Homologous recombination (HR), a mechanism to accurately repair DNA in normal cells, is deregulated in cancer. Elevated/deregulated HR is implicated in genomic instability and telomere maintenance, which are critical lifelines of cancer cells. We have previously shown that HR activity is elevated and significantly contributes to genomic instability in BAC. The purpose of this study was to evaluate therapeutic potential of HR inhibition, alone and in combination with telomerase inhibition, in BAC. We demonstrate that telomerase inhibition in BAC cells increases HR activity, RAD51 expression, and association of RAD51 to telomeres. Suppression of HR leads to shorter telomeres as well as markedly reduced genomic instability in BAC cells over time. Combination of HR suppression (whether transgenic or chemical) with telomerase inhibition, causes a significant increase in telomere attrition and apoptotic death in all BAC cell lines tested, relative to either treatment alone. A subset of treated cells also stain positive for β-galactosidase, indicating senescence. The combined treatment is also associated with decline in S-phase and a strong G2/M arrest, indicating massive telomere attrition. In a subcutaneous tumor model, the combined treatment resulted in the smallest tumors, which were even smaller (P=0.001) than those resulted from either treatment alone. Even the tumors removed from these mice had significantly reduced telomeres and evidence of apoptosis. We therefore conclude that although telomeres are elongated by telomerase, elevated RAD51/HR assist in their maintenance/stabilization in BAC cells. Telomerase inhibitor prevents telomere elongation but induces RAD51/HR, which contribute to telomere maintenance/stabilization and prevention of apoptosis, reducing the efficacy of treatment. Combining HR inhibition with telomerase, makes telomeres more vulnerable to degradation and significantly increases/expedites their attrition, leading to apoptosis. We therefore demonstrate that a therapy, targeting HR and telomerase, has potential to prevent both the tumor growth and genomic evolution in BAC.
Collapse
|
36
|
Miller J, Dakic A, Chen R, Palechor-Ceron N, Dai Y, Kallakury B, Schlegel R, Liu X. HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog 2013; 9:e1003284. [PMID: 23592995 PMCID: PMC3617164 DOI: 10.1371/journal.ppat.1003284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 02/15/2013] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that wild-type human telomerase reverse transcriptase (hTERT) protein can functionally replace the human papillomavirus type 16 (HPV-16) E6 protein, which cooperates with the viral E7 protein in the immortalization of primary keratinocytes. In the current study, we made the surprising finding that catalytically inactive hTERT (hTERT-D868A), elongation-defective hTERT (hTERT-HA), and telomere recruitment-defective hTERT (hTERT N+T) also cooperate with E7 in mediating bypass of the senescence blockade and effecting cell immortalization. This suggests that hTERT has activities independent of its telomere maintenance functions that mediate transit across this restriction point. Since hTERT has been shown to have a role in gene activation, we performed microarray studies and discovered that E6, hTERT and mutant hTERT proteins altered the expression of highly overlapping sets of cellular genes. Most important, the E6 and hTERT proteins induced mRNA and protein levels of Bmi1, the core subunit of the Polycomb Group (PcG) complex 1. We show further that Bmi1 substitutes for E6 or hTERT in cell immortalization. Finally, tissue array studies demonstrated that expression of Bmi1 increased with the severity of cervical dysplasia, suggesting a potential role in the progression of cervical cancer. Together, these data demonstrate that hTERT has extra-telomeric activities that facilitate cell immortalization and that its induction of Bmi1 is one potential mechanism for mediating this activity. The human papillomaviruses (HPVs) are critical elements in the etiology of cervical cancer, as well as several other human cancers. The E6 protein, in combination with the E7 protein of these viruses, immortalizes epithelial cells and increases the expression of the hTERT protein. In the current study we show that the enzymatic activity of hTERT is not required for cooperating in cell immortalization. We further demonstrate that hTERT proteins increase the expression of the Bmi1 protein, which is also capable of cooperating in cell immortalization. We anticipate that these findings will stimulate new studies of telomerase in HPV biology, cancer etiology, and stem cell reprogramming.
Collapse
Affiliation(s)
- Jonathan Miller
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Aleksandra Dakic
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Renxiang Chen
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Nancy Palechor-Ceron
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Yuhai Dai
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (RS); (XL)
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail: (RS); (XL)
| |
Collapse
|
37
|
Samassekou O, Malina A, Hébert J, Yan J. Presence of alternative lengthening of telomeres associated circular extrachromosome telomere repeats in primary leukemia cells of chronic myeloid leukemia. J Hematol Oncol 2013; 6:26. [PMID: 23547895 PMCID: PMC3623713 DOI: 10.1186/1756-8722-6-26] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/23/2013] [Indexed: 11/12/2022] Open
Abstract
Background The predominant mechanism by which human tumors maintain telomere length is via telomerase. In ~10% of tumor samples, however, telomere length is conserved, despite no detectable telomerase activity, in part through activation of the alternative lengthening of telomeres (ALT) pathway. Methods We studied the circular extra-chromosomal telomeric repeat (ECTR), an ALT hallmark, and telomerase activity in 24 chronic myeloid leukemia (CML) patients in chronic phase (CP). Results We identified the presence of ECTR in primary leukemia cells from some of these samples, which indicates the possible involvement of an ALT mechanism. Moreover, we found that some samples exhibited both circular ECTR and telomerase activities, suggesting that both mechanisms can contribute to the onset of CML. Conclusion We propose that ALT or the combined activities of ALT and telomerase might be required for the early stages of leukemogenesis. These findings shed new light into the oncogenic pathways responsible for the maintenance of telomere length in leukemia, which will ultimately determine the effectiveness of anti-telomerase-based treatment protocols.
Collapse
Affiliation(s)
- Oumar Samassekou
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | |
Collapse
|
38
|
Neumann AA, Watson CM, Noble JR, Pickett HA, Tam PPL, Reddel RR. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev 2013; 27:18-23. [PMID: 23307865 DOI: 10.1101/gad.205062.112] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Some cancers use alternative lengthening of telomeres (ALT), a mechanism whereby new telomeric DNA is synthesized from a DNA template. To determine whether normal mammalian tissues have ALT activity, we generated a mouse strain containing a DNA tag in a single telomere. We found that the tagged telomere was copied by other telomeres in somatic tissues but not the germline. The tagged telomere was also copied by other telomeres when introgressed into CAST/EiJ mice, which have telomeres more similar in length to those of humans. We conclude that ALT activity occurs in normal mouse somatic tissues.
Collapse
Affiliation(s)
- Axel A Neumann
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Neumann AA, Watson CM, Noble JR, Pickett HA, Tam PPL, Reddel RR. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev 2013. [PMID: 23307865 DOI: 10.1101/gad.205062.112.freely] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Some cancers use alternative lengthening of telomeres (ALT), a mechanism whereby new telomeric DNA is synthesized from a DNA template. To determine whether normal mammalian tissues have ALT activity, we generated a mouse strain containing a DNA tag in a single telomere. We found that the tagged telomere was copied by other telomeres in somatic tissues but not the germline. The tagged telomere was also copied by other telomeres when introgressed into CAST/EiJ mice, which have telomeres more similar in length to those of humans. We conclude that ALT activity occurs in normal mouse somatic tissues.
Collapse
Affiliation(s)
- Axel A Neumann
- Cancer Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Joksic I, Vujic D, Guc-Scekic M, Leskovac A, Petrovic S, Ojani M, Trujillo JP, Surralles J, Zivkovic M, Stankovic A, Slijepcevic P, Joksic G. Dysfunctional telomeres in primary cells from Fanconi anemia FANCD2 patients. Genome Integr 2012; 3:6. [PMID: 22980747 PMCID: PMC3511208 DOI: 10.1186/2041-9414-3-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/09/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Fanconi anemia (FA) is characterized by sensitivity to DNA cross-linking agents, mild cellular, and marked clinical radio sensitivity. In this study we investigated telomeric abnormalities of non-immortalized primary cells (lymphocytes and fibroblasts) derived from FA patients of the FA-D2 complementation group, which provides a more accurate physiological assessment than is possible with transformed cells or animal models. RESULTS We analyzed telomere length, telomere dysfunction-induced foci (TIFs), sister chromatid exchanges (SCE), telomere sister chromatid exchanges (T-SCE), apoptosis and expression of shelterin components TRF1 and TRF2. FANCD2 lymphocytes exhibited multiple types of telomeric abnormalities, including premature telomere shortening, increase in telomeric recombination and aberrant telomeric structures ranging from fragile to long-string extended telomeres. The baseline incidence of SCE in FANCD2 lymphocytes was reduced when compared to control, but in response to diepoxybutane (DEB) the 2-fold higher rate of SCE was observed. In contrast, control lymphocytes showed decreased SCE incidence in response to DEB treatment. FANCD2 fibroblasts revealed a high percentage of TIFs, decreased expression of TRF1 and invariable expression of TRF2. The percentage of TIFs inversely correlated with telomere length, emphasizing that telomere shortening is the major reason for the loss of telomere capping function. Upon irradiation, a significant decrease of TIFs was observed at all recovery times. Surprisingly, a considerable percentage of TIF positive cells disappeared at the same time when incidence of γ-H2AX foci was maximal. Both FANCD2 leucocytes and fibroblasts appeared to die spontaneously at higher rate than control. This trend was more evident upon irradiation; the percentage of leucocytes underwent apoptosis was 2.59- fold higher than that in control, while fibroblasts exhibited a 2- h delay before entering apoptosis. CONCLUSION The results of our study showed that primary cells originating from FA-D2 patients display shorten telomeres, elevated incidence of T-SCEs and high frequency of TIFs. Disappearance of TIFs in early response to irradiation represent distinctive feature of FANCD2 cells that should be examined further.
Collapse
Affiliation(s)
- Ivana Joksic
- Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Cheng C, Shtessel L, Brady MM, Ahmed S. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc Natl Acad Sci U S A 2012. [PMID: 22547822 DOI: 10.1073/pnas.lll9191109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome fusions, suggesting that critical telomere shortening occurred before or concomitant with ALT. ALT required the 9-1-1 DNA damage response complex and its clamp loader, HPR-17. Deficiency for the POT-2 telomere binding protein promoted ALT in telomerase mutants, overcame the requirement for the 9-1-1 complex in ALT, and promoted ALT with normal telomere lengths. We propose that telomerase-deficient human tumors with normal telomere lengths could represent a mode of ALT that is facilitated by telomere capping protein dysfunction.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
43
|
Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc Natl Acad Sci U S A 2012; 109:7805-10. [PMID: 22547822 DOI: 10.1073/pnas.1119191109] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Canonical telomere repeats at chromosome termini can be maintained by a telomerase-independent pathway termed alternative lengthening of telomeres (ALT). Human cancers that survive via ALT can exhibit long and heterogeneous telomeres, although many telomerase-negative tumors possess telomeres of normal length. Here, we report that Caenorhabditis elegans telomerase mutants that survived via ALT possessed either long or normal telomere lengths. Most ALT strains displayed end-to-end chromosome fusions, suggesting that critical telomere shortening occurred before or concomitant with ALT. ALT required the 9-1-1 DNA damage response complex and its clamp loader, HPR-17. Deficiency for the POT-2 telomere binding protein promoted ALT in telomerase mutants, overcame the requirement for the 9-1-1 complex in ALT, and promoted ALT with normal telomere lengths. We propose that telomerase-deficient human tumors with normal telomere lengths could represent a mode of ALT that is facilitated by telomere capping protein dysfunction.
Collapse
|
44
|
Min J, Choi ES, Hwang K, Kim J, Sampath S, Venkitaraman AR, Lee H. The breast cancer susceptibility gene BRCA2 is required for the maintenance of telomere homeostasis. J Biol Chem 2012; 287:5091-101. [PMID: 22187435 PMCID: PMC3281639 DOI: 10.1074/jbc.m111.278994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 12/19/2011] [Indexed: 11/06/2022] Open
Abstract
Inactivating mutations in the breast cancer susceptibility gene BRCA2 cause gross chromosomal rearrangements. Chromosome structural instability in the absence of BRCA2 is thought to result from defective homology-directed DNA repair. Here, we show that BRCA2 links the fidelity of telomere maintenance with genetic integrity. Absence of BRCA2 resulted in signs of dysfunctional telomeres, such as telomere shortening, erosions, and end fusions in proliferating mouse fibroblasts. BRCA2 localized to the telomeres in S phase in an ATR-dependent manner, and its absence resulted in the accumulation of common fragile sites, particularly at the G-rich lagging strand, and increased the telomere sister chromatid exchange in unchallenged cells. The incidence of common fragile sites and telomere sister chromatid exchange increased markedly after treatment with replication inhibitors. Congruently, telomere-induced foci were frequently observed in the absence of Brca2, denoting activation of the DNA damage response and abnormal chromosome end joining. These telomere end fusions constituted a significant portion of chromosome aberrations in Brca2-deficient cells. Our results suggest that BRCA2 is required for telomere homeostasis and may be particularly important for the replication of G-rich telomeric lagging strands.
Collapse
Affiliation(s)
- Jaewon Min
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Eun Shik Choi
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Kwangwoo Hwang
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Jimi Kim
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| | - Srihari Sampath
- the Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ashok R. Venkitaraman
- the Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Hyunsook Lee
- From the Department of Biological Sciences and the Institute of Molecular Biology and Genetics, Seoul National University, 599 Gwanak-Ro, Gwanak-Gu, Seoul 151-742, Korea and
| |
Collapse
|
45
|
Wang F, Yin Y, Ye X, Liu K, Zhu H, Wang L, Chiourea M, Okuka M, Ji G, Dan J, Zuo B, Li M, Zhang Q, Liu N, Chen L, Pan X, Gagos S, Keefe DL, Liu L. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Res 2011; 22:757-68. [PMID: 22184006 DOI: 10.1038/cr.2011.201] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs). Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive. We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage, and suggest that these differences likely result from multiple potential factors, including the telomerase machinery, telomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors. Using a genetic model of telomerase-deficient (Terc(-/-) and Terc(+/-)) cells for derivation and passages of iPSCs, we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs. Further, telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required, but not sufficient. Together, several aspects of telomere biology may account for the variable telomere dynamics in iPSCs. Notably, the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells. These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Fang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
O'Hare TH, Delany ME. Molecular and cellular evidence for the alternative lengthening of telomeres (ALT) mechanism in chicken. Cytogenet Genome Res 2011; 135:65-78. [PMID: 21822009 DOI: 10.1159/000330125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2011] [Indexed: 01/23/2023] Open
Abstract
Telomere maintenance is an important genetic mechanism controlling cellular proliferation. Normally, telomeres are maintained by telomerase which is downregulated upon cellular differentiation in most somatic cell lineages. Telomerase activity is upregulated in immortalized cells and cancers to support an infinite lifespan and uncontrolled cell growth; however, some immortalized and transformed cells lack telomerase activity. Telomerase-negative tumors and immortalized cells utilize an alternative mechanism for maintaining telomeres termed alternative lengthening of telomeres (ALT). This research explored evidence for the ALT pathway in chicken cell lines by studying nontransformed immortalized cell lines (DF-1 and OU2) and comparing them to a normal (mortal) cell line and a transformed cell line (DT40). The research consisted of molecular and cellular analyses including profiling of telomeric DNA (array sizing and total content), telomerase activity, and expression of genes involved in the telomerase, recombination, and ALT pathways. In addition, an immunofluorescence analysis for an ALT marker, i.e. ALT-associated promyelocytic leukemia bodies (APBs), was conducted. Evidence for ALT was observed in the telomerase-negative immortalized cell lines. Additionally, the APB marker was also found in the other cell systems. The attributes of the chicken provide an additional vertebrate model for investigation of the ALT pathway.
Collapse
Affiliation(s)
- T H O'Hare
- Department of Animal Science, University of California, Davis, USA
| | | |
Collapse
|
47
|
Recombination can either help maintain very short telomeres or generate longer telomeres in yeast cells with weak telomerase activity. EUKARYOTIC CELL 2011; 10:1131-42. [PMID: 21666075 DOI: 10.1128/ec.05079-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.
Collapse
|
48
|
Jauhar PP. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology. THE NUCLEUS 2010. [DOI: 10.1007/s13237-010-0010-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
49
|
Abstract
Telomeric recombination has been observed in telomerase-negative alternative lengthening of telomeres in human cancer cells and following telomerase inhibition or gene deletion. This study shows that telomeric recombination mechanisms can also be activated by dysfunctional telomeres without telomerase inhibition in telomerase-positive cells. Telomere maintenance is essential for cellular immortality, and most cancer cells maintain their telomeres through the enzyme telomerase. Telomeres and telomerase represent promising anticancer targets. However, 15% of cancer cells maintain their telomeres through alternative recombination-based mechanisms, and previous analyses showed that recombination-based telomere maintenance can be activated after telomerase inhibition. We determined whether telomeric recombination can also be promoted by telomere dysfunction. We report for the first time that telomeric recombination can be induced in human telomerase-positive cancer cells with dysfunctional telomeres.
Collapse
Affiliation(s)
- Marie Eve Brault
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
50
|
Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA 2010; 304:1358-64. [PMID: 20858879 PMCID: PMC3721502 DOI: 10.1001/jama.2010.1376] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Critically short telomeres produce apoptosis, cell senescence, and chromosomal instability in tissue culture and animal models. Variations in telomere length have been reported in severe aplastic anemia but their clinical significance is unknown. OBJECTIVE To investigate the relationship between telomere length and clinical outcomes in severe aplastic anemia. DESIGN, SETTING, AND PATIENTS Single institution analysis of 183 patients with severe aplastic anemia who were treated in sequential prospective protocols at the National Institutes of Health from 2000 to 2008. The pretreatment leukocyte age-adjusted telomere length of patients with severe aplastic anemia consecutively enrolled in immunosuppression protocols with antithymocyte globulin plus cyclosporine for correlation with clinical outcomes were analyzed. MAIN OUTCOME MEASURES Hematologic response, relapse, clonal evolution, and survival. RESULTS There was no relationship between hematologic response and telomere length with response rates of 56.5% of 46 patients in the first, 54.3% of 46 in the second, 60% of 45 in the third, and 56.5% of 46 in the fourth quartiles. Multivariate analysis demonstrated that telomere length was associated with relapse, clonal evolution, and mortality. Evaluated as a continuous variable, telomere length inversely correlated with the probability of hematologic relapse (hazard ratio [HR], 0.16; 95% confidence interval [CI], 0.03-0.69; P = .01). The probability of clonal evolution was higher in patients in the first quartile (24.5%; 95% CI, 8.7%-37.5%) than in quartiles 2 through 4 (8.4%; 95% CI, 3.2%-13.3%; P = .009), and evolution to monosomy 7 or complex cytogenetics was more common in the first quartile (18.8%; 95% CI, 3.5%-31.6%) [corrected] than in quartiles 2 through 4 (4.5%; 95% CI, 0.5%-8.2%; P = .002) [corrected]. Survival between these 2 groups differed, with 66% (95% CI, 52.9%-82.5%) surviving 6 years in the first quartile compared with 83.8% (95% CI, 77.3%-90.9%) in quartiles 2 through 4 (P = .008). CONCLUSION In a cohort of patients with severe aplastic anemia receiving immunosuppressive therapy, telomere length was unrelated to response but was associated with risk of relapse, clonal evolution, and overall survival.
Collapse
Affiliation(s)
- Phillip Scheinberg
- Hematology Branch, National Heart, Lung, and Blood Institute, 10 Center Dr, Bldg 10 CRC, Room 3-5140, MSC 1202, Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | |
Collapse
|