1
|
Bhuiyan T, Arecco N, Mendoza Sanchez PK, Kim J, Schwan C, Weyrauch S, Nizamuddin S, Prunotto A, Tekman M, Biniossek ML, Knapp B, Koidl S, Drepper F, Huesgen PF, Grosse R, Hugel T, Arnold SJ. TAF2 condensation in nuclear speckles links basal transcription factor TFIID to RNA splicing factors. Cell Rep 2025; 44:115616. [PMID: 40287942 DOI: 10.1016/j.celrep.2025.115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/22/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
TFIID is an essential basal transcription factor, crucial for RNA polymerase II (pol II) promoter recognition and transcription initiation. The TFIID complex consists of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs) that contain intrinsically disordered regions (IDRs) with currently unknown functions. Here, we show that a conserved IDR drives TAF2 to nuclear speckle condensates independently of other TFIID subunits. Quantitative mass spectrometry analyses reveal TAF2 proximity to RNA splicing factors including specific interactions of the TAF2 IDR with SRRM2 in nuclear speckles. Deleting the IDR from TAF2 does not majorly impact global gene expression but results in changes of alternative splicing events. Further, genome-wide binding analyses suggest that the TAF2 IDR impedes TAF2 promoter association by guiding TAF2 to nuclear speckles. This study demonstrates that an IDR within the large multiprotein complex TFIID controls nuclear compartmentalization and thus links distinct molecular processes, namely transcription initiation and RNA splicing.
Collapse
Affiliation(s)
- Tanja Bhuiyan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Strasse 66, 79106 Freiburg, Germany.
| | - Niccolò Arecco
- Genome Biology Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Paulina Karen Mendoza Sanchez
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Strasse 66, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Juhyeong Kim
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Sophie Weyrauch
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Alberstrasse 19A, 79104 Freiburg, Germany
| | - Sheikh Nizamuddin
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Strasse 66, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Andrea Prunotto
- Datenintegrationszentrum, Medical Center-University of Freiburg, Faculty of Medicine, Georges-Köhler-Allee 302, 79110 Freiburg, Germany
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| | - Bettina Knapp
- Institute for Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Stefanie Koidl
- Department of Urology, Medical Center-University of Freiburg, Faculty of Medicine, Breisacher Strasse 66, 79106 Freiburg, Germany; German Cancer Consortium (DKTK) Partner Site Freiburg, 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Friedel Drepper
- Institute for Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Pitter F Huesgen
- Institute for Biology II, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Pederson NJ, Diehl KL. DNA stimulates the deacetylase SIRT6 to mono-ADP-ribosylate proteins with histidine repeats. J Biol Chem 2025:108532. [PMID: 40280420 DOI: 10.1016/j.jbc.2025.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/19/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Sirtuins are the NAD+-dependent class III lysine deacylases (KDACs). Members of this family have been linked to longevity and a wide array of different diseases, motivating the pursuit of sirtuin modulator compounds. Sirtuin 6 (SIRT6) is a primarily nuclear KDAC that deacetylates histones to facilitate gene repression. In addition to this canonical post-translational modification (PTM) "eraser" function, SIRT6 can use NAD+ instead to "write" mono-ADP-ribosylation (mARylation) on target proteins. This enzymatic function has been primarily associated with SIRT6's role in the DNA damage response. This modification has been challenging to study because it is not clear under what precise cellular contexts it occurs, only a few substrates are known, and potential interference from other ADP-ribosyltransferases in cells, among other reasons. In this work, we used commercially available ADP-ribosylation detection reagents to investigate the mARylation activity of SIRT6 in a reconstituted system. We observed that SIRT6 is activated in its mARylation activity by binding to dsDNA ends. We further identified a surprising target motif within biochemical substrates of SIRT6, polyhistidine (polyHis) repeat tracts, that are present in several previously identified SIRT6 mARylation substrates. This work provides important context for SIRT6 mARylation activity, in contrast to its KDAC activity, and generates a list of new potential SIRT6 mARylation substrates based on the polyHis motif..
Collapse
|
3
|
Rodríguez-Campuzano AG, Castelán F, Hernández-Kelly LC, Felder-Schmittbuhl MP, Ortega A. Yin Yang 1: Function, Mechanisms, and Glia. Neurochem Res 2025; 50:96. [PMID: 39904836 PMCID: PMC11794380 DOI: 10.1007/s11064-025-04345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Yin Yang 1 is a ubiquitously expressed transcription factor that has been extensively studied given its particular dual transcriptional regulation. Yin Yang 1 is involved in various cellular processes like cell cycle progression, cell differentiation, DNA repair, cell survival and apoptosis among others. Its malfunction or alteration leads to disease and even to malignant transformation. This transcription factor is essential for the proper central nervous system development and function. The activity of Yin Yang 1 depends on its interacting partners, promoter environment and chromatin structure, however, its mechanistic activity is not completely understood. In this review, we briefly discuss the Yin Yang 1 structure, post-translational modifications, interactions, mechanistic functions and its participation in neurodevelopment. We also discuss its expression and critical involvement in the physiology and physiopathology of glial cells, summarizing the contribution of Yin Yang 1 on different aspects of cellular function.
Collapse
Affiliation(s)
- Ada G Rodríguez-Campuzano
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Francisco Castelán
- Departamento de Biología Celular y Fisiología, Unidad Foránea Tlaxcala, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlaxcala, Tlaxcala, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico
| | - Marie-Paule Felder-Schmittbuhl
- Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacantenco, G.A. Madero, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
4
|
Wu W, Fan Z, Fu H, Ma X, Wang D, Liu H, Zhang C, Zheng H, Yang Y, Wu H, Miao X, An R, Gong Y, Tang TS, Guo C. VGLL3 modulates chemosensitivity through promoting DNA double-strand break repair. SCIENCE ADVANCES 2024; 10:eadr2643. [PMID: 39383226 PMCID: PMC11463272 DOI: 10.1126/sciadv.adr2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Transcription cofactor vestigial-like 3 (VGLL3), as a master regulator of female-biased autoimmunity, also functions in tumor development, while the underlying mechanisms remain largely elusive. Here, we report that VGLL3 plays an important role in DNA damage response (DDR). VGLL3 can be recruited to damage sites in a PARylation-dependent manner. VGLL3 depletion impairs the accumulation of RNF8 and RAD51 at sites of DNA damage, leading to reduced homologous recombination efficiency and increased cellular sensitivity to chemotherapeutic drugs. Mechanistically, VGLL3 can prevent CtIP from KLHL15-mediated ubiquitination and degradation through competitive binding with KLHL15 and, meanwhile, stabilize MDC1 by limiting TRIP12-MDC1 but promoting USP7-MDC1 associations for optimal RNF8 signaling initiation. Consistently, VGLL3 depletion delays tumor development and sensitizes the xenografts to etoposide treatment. Overall, our results reveal an unexpected role of VGLL3 in DDR, which is distinct from its transcriptional cofactor function and not conserved among VGLL family members.
Collapse
Affiliation(s)
- Wei Wu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Fan
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Fu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dongzhou Wang
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chuanchao Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeran Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiuxiu Miao
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan An
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Gong
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Caixia Guo
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Du S, Chen X, Han X, Wang Y, Yu D, Li Y, Zhu C, Tong Y, Gao S, Wang J, Wei F, Cai Q. Lactate Induces Tumor Progression via LAR Motif-Dependent Yin-Yang 1 Degradation. Mol Cancer Res 2024; 22:957-972. [PMID: 38888574 DOI: 10.1158/1541-7786.mcr-23-0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The metabolic reprogramming of aerobic glycolysis contributes to tumorigenesis. High plasma lactate is a critical regulator in the development of many human malignancies; however, the underlying molecular mechanisms of cancer progression in response to lactate (LA) remain elusive. Here, we show that the reduction of Yin-Yang 1 (YY1) expression correlated with high LA commonly occurs in various cancer cell types, including B-lymphoma and cervical cancer. Mechanistically, LA induces YY1 nuclear export and degradation via HSP70-mediated autophagy adjacent to mitochondria in a histidine (His)-rich LA-responsive (LAR) motif-dependent manner. The mutation of the LAR motif blocks LA-mediated YY1 cytoplasmic accumulation and in turn enhances cell apoptosis. Furthermore, low expression of YY1 promotes colony formation, invasion, angiogenesis, and growth of cancer cells in response to LA in vitro and in vivo using a murine xenograft model. Taken together, our findings reveal a key LAR element and may serve as therapeutic target for intervening cancer progression. Implications: We have shown that lactate can induce YY1 degradation via its His-rich LAR motif and low expression of YY1 promotes cancer cell progression in response to lactate, leading to better prediction of YY1 targeting therapy.
Collapse
Affiliation(s)
- Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiaoting Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Xiao Han
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Dan Yu
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ying Li
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yin Tong
- Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shujun Gao
- Center of Diagnosis and Treatment for Cervical and Uterine Cavity Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Shanghai, China
| | - Junwen Wang
- Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
6
|
Calinsky R, Levy Y. A pH-Dependent Coarse-Grained Model for Disordered Proteins: Histidine Interactions Modulate Conformational Ensembles. J Phys Chem Lett 2024; 15:9419-9430. [PMID: 39248414 PMCID: PMC11417990 DOI: 10.1021/acs.jpclett.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Histidine (His) presents a unique challenge for modeling disordered protein conformations, as it is versatile and occurs in both the neutral (His0) and positively charged (His+) states. These His charge states, which are enabled by its imidazole side chain, influence the electrostatic and short-range interactions of His residues, which potentially engage in cation-π, π-π, and charge-charge interactions. Existing coarse-grained (CG) models often simplify His representation by assigning it an average charge, thereby neglecting these potential short-range interactions. To address this gap, we developed a model for intrinsically disordered proteins (IDPs) that accounts for the properties of histidine (H). The resulting IDPH model is a 21-amino acid CG model incorporating both His charge states. We show that interactions involving previously neglected His0 are critical for accurate modeling at high pH, where they significantly influence the compaction of His-rich IDPs such as Histatin-5 and CPEB4. These interactions contribute to structural stabilizations primarily via His0-His0 and His0-Arg interactions, which are overlooked in models focusing solely on the charged His+ state.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and
Structural Biology, Weizmann Institute of
Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Calinsky R, Levy Y. Histidine in Proteins: pH-Dependent Interplay between π-π, Cation-π, and CH-π Interactions. J Chem Theory Comput 2024; 20:6930-6945. [PMID: 39037905 PMCID: PMC11325542 DOI: 10.1021/acs.jctc.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Histidine (His) stands out as the most versatile natural amino acid due to its side chain's facile propensity to protonate at physiological pH, leading to a transition from aromatic to cationic characteristics and thereby enabling diverse biomolecular interactions. In this study, our objective was to quantify the energetics and geometries of pairwise interactions involving His at varying pH levels. Through quantum chemical calculations, we discovered that His exhibits robust participation in both π-π and cation-π interactions, underscoring its ability to adopt a π or cationic nature, akin to other common residues. Of particular note, we found that the affinity of protonated His for aromatic residues (via cation-π interactions) is greater than the affinity of neutral His for either cationic residues (also via cation-π interactions) or aromatic residues (via π-π interactions). Furthermore, His frequently engages in CH-π interactions, and notably, depending on its protonation state, we found that some instances of hydrogen bonding by His exhibit greater stability than is typical for interamino acid hydrogen bonds. The strength of the pH-dependent pairwise energies of His with aromatic residues is supported by the abundance of pairwise interactions with His of low and high predicted pKa values. Overall, our findings illustrate the contribution of His interactions to protein stability and its potential involvement in conformational changes despite its relatively low abundance in proteins.
Collapse
Affiliation(s)
- Rivka Calinsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Pederson NJ, Diehl KL. DNA stimulates SIRT6 to mono-ADP-ribosylate proteins within histidine repeats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606047. [PMID: 39211154 PMCID: PMC11361027 DOI: 10.1101/2024.07.31.606047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sirtuins are the NAD + -dependent class III lysine deacylases (KDACs). Members of this family have been linked to longevity and a wide array of different diseases, motivating the pursuit of sirtuin modulator compounds. Sirtuin 6 (SIRT6) is a primarily nuclear KDAC that deacetylates histones to facilitate gene repression. In addition to this canonical post-translational modification (PTM) "eraser" function, SIRT6 can use NAD + instead to "write" mono-ADP-ribosylation (mARylation) on target proteins. This enzymatic function has been primarily associated with SIRT6's role in the DNA damage response. This modification has been challenging to study because it is not clear under what precise cellular contexts it occurs, only a few substrates are known, and potential interference from other ADP-ribosyltransferases in cells, among other reasons. In this work, we used commercially available ADP-ribosylation detection reagents to investigate the mARylation activity of SIRT6 in a reconstituted system. We observed that SIRT6 is activated in its mARylation activity by binding to dsDNA ends. We further identified a surprising target motif within biochemical substrates of SIRT6, polyhistidine (polyHis) repeat tracts, that are present in several previously identified SIRT6 mARylation substrates and binding partners. This work provides important context for SIRT6 mARylation activity, in contrast to its KDAC activity, and proposes that SIRT6 is a histidine mARyltransferase enzyme.
Collapse
|
9
|
Teekas L, Sharma S, Vijay N. Terminal regions of a protein are a hotspot for low complexity regions and selection. Open Biol 2024; 14:230439. [PMID: 38862022 DOI: 10.1098/rsob.230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Volatile low complexity regions (LCRs) are a novel source of adaptive variation, functional diversification and evolutionary novelty. An interplay of selection and mutation governs the composition and length of low complexity regions. High %GC and mutations provide length variability because of mechanisms like replication slippage. Owing to the complex dynamics between selection and mutation, we need a better understanding of their coexistence. Our findings underscore that positively selected sites (PSS) and low complexity regions prefer the terminal regions of genes, co-occurring in most Tetrapoda clades. We observed that positively selected sites within a gene have position-specific roles. Central-positively selected site genes primarily participate in defence responses, whereas terminal-positively selected site genes exhibit non-specific functions. Low complexity region-containing genes in the Tetrapoda clade exhibit a significantly higher %GC and lower ω (dN/dS: non-synonymous substitution rate/synonymous substitution rate) compared with genes without low complexity regions. This lower ω implies that despite providing rapid functional diversity, low complexity region-containing genes are subjected to intense purifying selection. Furthermore, we observe that low complexity regions consistently display ubiquitous prevalence at lower purity levels, but exhibit a preference for specific positions within a gene as the purity of the low complexity region stretch increases, implying a composition-dependent evolutionary role. Our findings collectively contribute to the understanding of how genetic diversity and adaptation are shaped by the interplay of selection and low complexity regions in the Tetrapoda clade.
Collapse
Affiliation(s)
- Lokdeep Teekas
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal , Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal , Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal , Bhauri, Madhya Pradesh, India
| |
Collapse
|
10
|
Abraham E, Athapaththu AMGK, Atanasova KR, Chen QY, Corcoran TJ, Piloto J, Wu CW, Ratnayake R, Luesch H, Choe KP. Chemical Genetics in C. elegans Identifies Anticancer Mycotoxins Chaetocin and Chetomin as Potent Inducers of a Nuclear Metal Homeostasis Response. ACS Chem Biol 2024; 19:1180-1193. [PMID: 38652683 PMCID: PMC11102292 DOI: 10.1021/acschembio.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
C. elegans numr-1/2 (nuclear-localized metal-responsive) is an identical gene pair encoding a nuclear protein previously shown to be activated by cadmium and disruption of the integrator RNA metabolism complex. We took a chemical genetic approach to further characterize regulation of this novel metal response by screening 41,716 compounds and extracts for numr-1p::GFP activation. The most potent activator was chaetocin, a fungal 3,6-epidithiodiketopiperazine (ETP) with promising anticancer activity. Chaetocin activates numr-1/2 strongly in the alimentary canal but is distinct from metal exposure, because it represses canonical cadmium-responsive metallothionine genes. Chaetocin has diverse targets in cancer cells including thioredoxin reductase, histone lysine methyltransferase, and acetyltransferase p300/CBP; further work is needed to identify the mechanism in C. elegans as genetic disruption and RNAi screening of homologues did not induce numr-1/2 in the alimentary canal and chaetocin did not affect markers of integrator dysfunction. We demonstrate that disulfides in chaetocin and chetomin, a dimeric ETP analog, are required to induce numr-1/2. ETP monomer gliotoxin, despite possessing a disulfide linkage, had almost no effect on numr-1/2, suggesting a dimer requirement. Chetomin inhibits C. elegans growth at low micromolar levels, and loss of numr-1/2 increases sensitivity; C. elegans and Chaetomiaceae fungi inhabit similar environments raising the possibility that numr-1/2 functions as a defense mechanism. There is no direct orthologue of numr-1/2 in humans, but RNaseq suggests that chaetocin affects expression of cellular processes linked to stress response and metal homeostasis in colorectal cancer cells. Our results reveal interactions between metal response gene regulation and ETPs and identify a potential mechanism of resistance to this versatile class of preclinical compounds.
Collapse
Affiliation(s)
- Elijah Abraham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Kalina R. Atanasova
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Qi-Yin Chen
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Taylor J. Corcoran
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Juan Piloto
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S&N 5B4 Canada
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Keith P. Choe
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JCA. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. Nucleic Acids Res 2024; 52:4702-4722. [PMID: 38572746 PMCID: PMC11077067 DOI: 10.1093/nar/gkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Marchese D, Guislain F, Pringels T, Bridoux L, Rezsohazy R. A poly-histidine motif of HOXA1 is involved in regulatory interactions with cysteine-rich proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194993. [PMID: 37952572 DOI: 10.1016/j.bbagrm.2023.194993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/05/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Homopolymeric amino acid repeats are found in about 24 % of human proteins and are over-represented in transcriptions factors and kinases. Although relatively rare, homopolymeric histidine repeats (polyH) are more significantly found in proteins involved in the regulation of embryonic development. To gain a better understanding of the role of polyH in these proteins, we used a bioinformatic approach to search for shared features in the interactomes of polyH-containing proteins in human. Our analysis revealed that polyH protein interactomes are enriched in cysteine-rich proteins and in proteins containing (a) cysteine repeat(s). Focusing on HOXA1, a HOX transcription factor displaying one long polyH motif, we identified that the polyH motif is required for the HOXA1 interaction with such cysteine-rich proteins. We observed a correlation between the length of the polyH repeat and the strength of the HOXA1 interaction with one Cys-rich protein, MDFI. We also found that metal ion chelators disrupt the HOXA1-MDFI interaction supporting that such metal ions are required for the interaction. Furthermore, we identified three polyH interactors which down-regulate the transcriptional activity of HOXA1. Taken together, our data point towards the involvement of polyH and cysteines in regulatory interactions between proteins, notably transcription factors like HOXA1.
Collapse
Affiliation(s)
- Damien Marchese
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Florent Guislain
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Place Croix du Sud 5 (L7.07.10), B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
13
|
Wang J, Zhao X, Wang Q, Zheng X, Simayi D, Zhao J, Yang P, Mao Q, Xia H. FAM76B regulates PI3K/Akt/NF-κB-mediated M1 macrophage polarization by influencing the stability of PIK3CD mRNA. Cell Mol Life Sci 2024; 81:107. [PMID: 38421448 PMCID: PMC10904503 DOI: 10.1007/s00018-024-05133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Macrophage polarization is closely related to inflammation development, yet how macrophages are polarized remains unclear. In our study, the number of M1 macrophages was markedly increased in Fam76b knockout U937 cells vs. wild-type U937 cells, and FAM76B expression was decreased in M1 macrophages induced from different sources of macrophages. Moreover, Fam76b knockout enhanced the mRNA and protein levels of M1 macrophage-associated marker genes. These results suggest that FAM76B inhibits M1 macrophage polarization. We then further explored the mechanism by which FAM76B regulates macrophage polarization. We found that FAM76B can regulate PI3K/Akt/NF-κB pathway-mediated M1 macrophage polarization by stabilizing PIK3CD mRNA. Finally, FAM76B was proven to protect against inflammatory bowel disease (IBD) by inhibiting M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vivo. In summary, FAM76B regulates M1 macrophage polarization through the PI3K/Akt/NF-κB pathway in vitro and in vivo, which may inform the development of future therapeutic strategies for IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xinyue Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qizhi Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Dilihumaer Simayi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi Province, People's Republic of China.
| |
Collapse
|
14
|
Fu Z, Xiang Y, Fu Y, Su Z, Tan Y, Yang M, Yan Y, Baghaei Daemi H, Shi Y, Xie S, Sun L, Peng G. DYRK1A is a multifunctional host factor that regulates coronavirus replication in a kinase-independent manner. J Virol 2024; 98:e0123923. [PMID: 38099687 PMCID: PMC10805018 DOI: 10.1128/jvi.01239-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.
Collapse
Affiliation(s)
- Zhen Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yixin Xiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhelin Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hakimeh Baghaei Daemi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Limeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| |
Collapse
|
15
|
Lynch VJ, Wagner GP. Cooption of polyalanine tract into a repressor domain in the mammalian transcription factor HoxA11. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:486-495. [PMID: 34125492 DOI: 10.1002/jez.b.23063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
An enduring problem in biology is explaining how novel functions of genes originated and how those functions diverge between species. Despite detailed studies on the functional evolution of a few proteins, the molecular mechanisms by which protein functions have evolved are almost entirely unknown. Here, we show that a polyalanine tract in the homeodomain transcription factor HoxA11 arose in the stem-lineage of mammals and functions as an autonomous repressor module by physically interacting with the PAH domains of SIN3 proteins. These results suggest that long polyalanine tracts, which are common in transcription factors and often associated with disease, may tend to function as repressor domains and can contribute to the diversification of transcription factor functions despite the deleterious consequences of polyalanine tract expansion.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| | - Gunter P Wagner
- Department of Ecology and Evolutionary Biology and Yale Systems Biology Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Zhu J, Yang J, Wen H, Wang M, Zheng X, Zhao J, Sun X, Yang P, Mao Q, Li Y, Xia H. Expression and functional analysis of fam76b in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109161. [PMID: 37838209 DOI: 10.1016/j.fsi.2023.109161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
FAM76B is nuclear speckle-localized protein with a molecular weight of 39 kDa. The amino sequence of FAM76B protein is highly conserved among species, suggesting that FAM76B has important biological functions. However, the biological function of FAM76B is currently still unclear. To explore the biological function of FAM76B, we firstly used zebrafish as the experimental model to study the distribution and expression level of Fam76b. The results indicated that fam76b is highly expressed in hematopoiesis and immune systems of zebrafish by real-time quantitative PCR, in situ hybridization and Tg(fam76b: eGFP) transgenic zebrafish. Then, the fam76b gene was knocked out by CRISPR/Cas9 in zebrafish and fam76b rescue in fam76b-/- zebrafish was performed using the TOL2 transposable system. fam76b gene knockout zebrafish exhibit reduced thymus, excessive inflammatory response, and increased mortality. FAM76B was further found to be involved in regulating the development of hematopoiesis and immune system, and participate in the process of inflammatory response. Our findings in the study lay the groundwork for elucidating the function of the new molecule Fam76b and provide new insights into the development of zebrafish hematopoietic and immune system.
Collapse
Affiliation(s)
- Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China; School of Basic Medical Sciences, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241002, Anhui, PR China
| | - Jiahang Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - He Wen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Qinwen Mao
- Department of Pathology, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China.
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China.
| |
Collapse
|
17
|
Mier P, Andrade-Navarro MA. The nucleotide landscape of polyXY regions. Comput Struct Biotechnol J 2023; 21:5408-5412. [PMID: 38022702 PMCID: PMC10652141 DOI: 10.1016/j.csbj.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
PolyXY regions are compositionally biased regions composed of two different amino acids. They are classified according to the arrangement of the two amino acid types 'X' and 'Y' into direpeats (composed of alternating amino acids, e.g. 'XYXYXY'), joined (composed of two consecutive stretches of each amino acid, e.g. 'XXXYYY') and shuffled (other arrangements, e.g., 'XYXXYY'). They have been characterized at the amino acid level in all domains of life, and are described as often found within intrinsically disordered regions. Since DNA replication slippage has been proposed as a driver of repeat variation, and given that some polyXY have a repetitive nature, we hypothesized that characterizing the nucleotide coding of various types of polyXY could give hints about their origin and evolution. To test this, we obtained all polyXY regions in the human transcriptome, categorized them, and studied their coding nucleotide sequences. We observed that polyXY exacerbates the codon biases, and that the similarity between the X and Y codons is higher than in the background proteome. Our results support a general mechanism of emergence and evolution of polyXY from single-codon polyX. PolyXY are revealed as hotspots for replication slippage, particularly those composed of repeats: joined and direpeat polyXY. Inter-conversion to shuffled polyXY disrupts nucleotide repeats and restricts further evolution by replication slippage, a mechanism that we previously observed in polyX. Our results shed light on polyXY composition and should simplify the determination of their functions.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
18
|
Donald H, Blane A, Buthelezi S, Naicker P, Stoychev S, Majakwara J, Fanucchi S. Assessing the dynamics and macromolecular interactions of the intrinsically disordered protein YY1. Biosci Rep 2023; 43:BSR20231295. [PMID: 37815922 PMCID: PMC10611921 DOI: 10.1042/bsr20231295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023] Open
Abstract
YY1 is a ubiquitously expressed, intrinsically disordered transcription factor involved in neural development. The oligomeric state of YY1 varies depending on the environment. These structural changes may alter its DNA binding ability and hence its transcriptional activity. Just as YY1's oligomeric state can impact its role in transcription, so does its interaction with other proteins such as FOXP2. The aim of this work is to study the structure and dynamics of YY1 so as to determine the influence of oligomerisation and associations with FOXP2 on its DNA binding mechanism. The results confirm that YY1 is primarily a disordered protein, but it does consist of certain specific structured regions. We observed that YY1 quaternary structure is a heterogenous mixture of oligomers, the overall size of which is dependent on ionic strength. Both YY1 oligomerisation and its dynamic behaviour are further subject to changes upon DNA binding, whereby increases in DNA concentration result in a decrease in the size of YY1 oligomers. YY1 and the FOXP2 forkhead domain were found to interact with each other both in isolation and in the presence of YY1-specific DNA. The heterogeneous, dynamic multimerisation of YY1 identified in this work is, therefore likely to be important for its ability to make heterologous associations with other proteins such as FOXP2. The interactions that YY1 makes with itself, FOXP2 and DNA form part of an intricate mechanism of transcriptional regulation by YY1, which is vital for appropriate neural development.
Collapse
Affiliation(s)
- Heather Donald
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Ashleigh Blane
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sindisiwe Buthelezi
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Previn Naicker
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Stoyan Stoychev
- CSIR Biosciences, CSIR, Meiring Naude Road, Brummeria, 0001 Pretoria, Gauteng, South Africa
| | - Jacob Majakwara
- School of Statistics and Actuarial Science, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Unit, School of molecular and Cell Biology, University of the Witwatersrand, Jan Smuts Ave, Braamfontein, 2050 Johannesburg, Gauteng, South Africa
| |
Collapse
|
19
|
Neville N, Lehotsky K, Yang Z, Klupt KA, Denoncourt A, Downey M, Jia Z. Modification of histidine repeat proteins by inorganic polyphosphate. Cell Rep 2023; 42:113082. [PMID: 37660293 DOI: 10.1016/j.celrep.2023.113082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that is present in nearly all organisms studied to date. A remarkable function of polyP involves its attachment to lysine residues via non-enzymatic post-translational modification (PTM), which is presumed to be covalent. Here, we show that proteins containing tracts of consecutive histidine residues exhibit a similar modification by polyP, which confers an electrophoretic mobility shift on NuPAGE gels. Our screen uncovers 30 human and yeast histidine repeat proteins that undergo histidine polyphosphate modification (HPM). This polyP modification is histidine dependent and non-covalent in nature, although remarkably it withstands harsh denaturing conditions-a hallmark of covalent PTMs. Importantly, we show that HPM disrupts phase separation and the phosphorylation activity of the human protein kinase DYRK1A, and inhibits the activity of the transcription factor MafB, highlighting HPM as a potential protein regulatory mechanism.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Zhiyun Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
20
|
Wang D, Zheng X, Chai L, Zhao J, Zhu J, Li Y, Yang P, Mao Q, Xia H. FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation of hnRNPA2B1. eLife 2023; 12:e85659. [PMID: 37643469 PMCID: PMC10446823 DOI: 10.7554/elife.85659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
FAM76B has been reported to be a nuclear speckle-localized protein with unknown function. In this study, FAM76B was first demonstrated to inhibit the NF-κB-mediated inflammatory pathway by affecting the translocation of hnRNPA2B1 in vitro. We further showed that FAM76B suppressed inflammation in vivo using a traumatic brain injury (TBI) mouse model. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested that FAM76B mediated neuroinflammation via influencing the translocation of hnRNPA2B1 in vivo during TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF-κB-mediated inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for studying the mechanism of inflammation regulation.
Collapse
Affiliation(s)
- Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
- Translational Medicine Center, Northwest Women’s and Children’s HospitalXi'anChina
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Lihong Chai
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Yanqing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| | - Qinwen Mao
- Department of Pathology, University of UtahSalt LakeUnited States
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal UniversityXi'anChina
| |
Collapse
|
21
|
Healey RD, Couillaud L, Hoh F, Mouhand A, Fouillen A, Couvineau P, Granier S, Leyrat C. Structure, dynamics and transferability of the metal-dependent polyhistidine tetramerization motif TetrHis for single-chain Fv antibodies. Commun Chem 2023; 6:160. [PMID: 37507458 PMCID: PMC10382482 DOI: 10.1038/s42004-023-00962-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The polyhistidine (6XHis) motif is one of the most ubiquitous protein purification tags. The 6XHis motif enables the binding of tagged proteins to various metals, which can be advantageously used for purification with immobilized metal affinity chromatography. Despite its popularity, protein structures encompassing metal-bound 6XHis are rare. Here, we obtained a 2.5 Å resolution crystal structure of a single chain Fv antibody (scFv) bearing a C-terminal sortase motif, 6XHis and TwinStrep tags (LPETGHHHHHHWSHPQFEK[G3S]3WSHPQFEK). The structure, obtained in the presence of cobalt, reveals a unique tetramerization motif (TetrHis) stabilized by 8 Co2+ ions. The TetrHis motif contains four 6 residues-long β-strands, and each metal center coordinates 3 to 5 residues, including all 6XHis histidines. By combining dynamic light scattering, small angle x-ray scattering and molecular dynamics simulations, We investigated the influence of Co2+ on the conformational dynamics of scFv 2A2, observing an open/close equilibrium of the monomer and the formation of cobalt-stabilized tetramers. By using a similar scFv design, we demonstrate the transferability of the tetramerization property. This novel metal-dependent tetramerization motif might be used as a fiducial marker for cryoelectron microscopy of scFv complexes, or even provide a starting point for designing metal-loaded biomaterials.
Collapse
Affiliation(s)
- Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Sosei-Heptares, Steinmetz Building, Granta Park, Cambridge, CB21 6DG, UK
| | - Louise Couillaud
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - François Hoh
- Centre de Biologie Structurale, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Assia Mouhand
- Centre de Biologie Structurale, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Pierre Couvineau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Cédric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
22
|
Simpson-Lavy K, Kupiec M. Glucose Inhibits Yeast AMPK (Snf1) by Three Independent Mechanisms. BIOLOGY 2023; 12:1007. [PMID: 37508436 PMCID: PMC10376661 DOI: 10.3390/biology12071007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Snf1, the fungal homologue of mammalian AMP-dependent kinase (AMPK), is a key protein kinase coordinating the response of cells to a shortage of glucose. In fungi, the response is to activate respiratory gene expression and metabolism. The major regulation of Snf1 activity has been extensively investigated: In the absence of glucose, it becomes activated by phosphorylation of its threonine at position 210. This modification can be erased by phosphatases when glucose is restored. In the past decade, two additional independent mechanisms of Snf1 regulation have been elucidated. In response to glucose (or, surprisingly, also to DNA damage), Snf1 is SUMOylated by Mms21 at lysine 549. This inactivates Snf1 and leads to Snf1 degradation. More recently, glucose-induced proton export has been found to result in Snf1 inhibition via a polyhistidine tract (13 consecutive histidine residues) at the N-terminus of the Snf1 protein. Interestingly, the polyhistidine tract plays also a central role in the response to iron scarcity. This review will present some of the glucose-sensing mechanisms of S. cerevisiae, how they interact, and how their interplay results in Snf1 inhibition by three different, and independent, mechanisms.
Collapse
Affiliation(s)
- Kobi Simpson-Lavy
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
23
|
Strine MS, Cai WL, Wei J, Alfajaro MM, Filler RB, Biering SB, Sarnik S, Chow RD, Patil A, Cervantes KS, Collings CK, DeWeirdt PC, Hanna RE, Schofield K, Hulme C, Konermann S, Doench JG, Hsu PD, Kadoch C, Yan Q, Wilen CB. DYRK1A promotes viral entry of highly pathogenic human coronaviruses in a kinase-independent manner. PLoS Biol 2023; 21:e3002097. [PMID: 37310920 PMCID: PMC10263356 DOI: 10.1371/journal.pbio.3002097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/29/2023] [Indexed: 06/15/2023] Open
Abstract
Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.
Collapse
Affiliation(s)
- Madison S. Strine
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jin Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Renata B. Filler
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sylvia Sarnik
- University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Ryan D. Chow
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ajinkya Patil
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kasey S. Cervantes
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Clayton K. Collings
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Peter C. DeWeirdt
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Ruth E. Hanna
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kevin Schofield
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona, United States of America
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona, United States of America
- Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, United States of America
| | - Silvana Konermann
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Arc Institute, Palo Alto, California, United States of America
| | - John G. Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Patrick D. Hsu
- Arc Institute, Palo Alto, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, United States of America
- Center for Computational Biology, University of California, Berkeley, California, United States of America
| | - Cigall Kadoch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pediatric Oncology, Dana–Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Craig B. Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
24
|
Odelin G, Faucherre A, Marchese D, Pinard A, Jaouadi H, Le Scouarnec S, Chiarelli R, Achouri Y, Faure E, Herbane M, Théron A, Avierinos JF, Jopling C, Collod-Béroud G, Rezsohazy R, Zaffran S. Variations in the poly-histidine repeat motif of HOXA1 contribute to bicuspid aortic valve in mouse and zebrafish. Nat Commun 2023; 14:1543. [PMID: 36941270 PMCID: PMC10027860 DOI: 10.1038/s41467-023-37110-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.
Collapse
Affiliation(s)
- Gaëlle Odelin
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Adèle Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Damien Marchese
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Amélie Pinard
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Hager Jaouadi
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | | | | | - Raphaël Chiarelli
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Younes Achouri
- Transgenesis Platform, de Duve Institute, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emilie Faure
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Marine Herbane
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
| | - Alexis Théron
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Chirurgie Cardiaque, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Jean-François Avierinos
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France
- Service de Cardiologie, AP-HM, Hôpital de la Timone, 13005, Marseille, France
| | - Chris Jopling
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - René Rezsohazy
- Animal Molecular and Cellular Biology group, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Zaffran
- Aix Marseille Univ, INSERM, MMG, U1251, 13005, Marseille, France.
| |
Collapse
|
25
|
Klaus L, de Almeida BP, Vlasova A, Nemčko F, Schleiffer A, Bergauer K, Hofbauer L, Rath M, Stark A. Systematic identification and characterization of repressive domains in Drosophila transcription factors. EMBO J 2023; 42:e112100. [PMID: 36545802 PMCID: PMC9890238 DOI: 10.15252/embj.2022112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.
Collapse
Affiliation(s)
- Loni Klaus
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Bernardo P de Almeida
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Anna Vlasova
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Filip Nemčko
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Institute of Molecular Biotechnology (IMBA)Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Bergauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Lorena Hofbauer
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Martina Rath
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)ViennaAustria
- Medical University of ViennaVienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
26
|
Ilık İA, Aktaş T. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J 2022; 289:7234-7245. [PMID: 34245118 DOI: 10.1111/febs.16117] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Complex, multistep biochemical reactions that routinely take place in our cells require high concentrations of enzymes, substrates, and other structural components to proceed efficiently and typically require chemical environments that can inhibit other reactions in their immediate vicinity. Eukaryotic cells solve these problems by restricting such reactions into diffusion-restricted compartments within the cell called organelles that can be separated from their environment by a lipid membrane, or into membrane-less compartments that form through liquid-liquid phase separation (LLPS). One of the most easily noticeable and the earliest discovered organelle is the nucleus, which harbors the genetic material in cells where transcription by RNA polymerases produces most of the messenger RNAs and a plethora of noncoding RNAs, which in turn are required for translation of mRNAs in the cytoplasm. The interior of the nucleus is not a uniform soup of biomolecules and rather consists of a variety of membrane-less bodies, such as the nucleolus, nuclear speckles (NS), paraspeckles, Cajal bodies, histone locus bodies, and more. In this review, we will focus on NS with an emphasis on recent developments including our own findings about the formation of NS by two large IDR-rich proteins SON and SRRM2.
Collapse
Affiliation(s)
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
27
|
Fischer F, Vorontsov E, Turlin E, Malosse C, Garcia C, Tabb DL, Chamot-Rooke J, Percudani R, Vinella D, De Reuse H. Expansion of nickel binding- and histidine-rich proteins during gastric adaptation of Helicobacter species. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6674772. [PMID: 36002005 DOI: 10.1093/mtomcs/mfac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a Histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OG) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal Histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme-oxygenases. The expansion of Histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel-enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, Université de Strasbourg, Institut de Physiologie et Chimie Biologiques, 4 allée Konrad Roentgen, 67084 Strasbourg, FRANCE
| | - Egor Vorontsov
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE.,Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Box 413, 40530 Gothenburg, SWEDEN
| | - Evelyne Turlin
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Christian Malosse
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Camille Garcia
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - David L Tabb
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Julia Chamot-Rooke
- Institut Pasteur, Department of Structural Biology and Chemistry, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology Unit, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, ITALY
| | - Daniel Vinella
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| | - Hilde De Reuse
- Institut Pasteur, Département de Microbiologie, Unité Pathogenèse de Helicobacter, UMR CNRS 6047, 28 rue du Dr Roux 75724 PARIS Cedex 15 FRANCE
| |
Collapse
|
28
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
29
|
Wesley NA, Skrajna A, Simmons HC, Budziszewski GR, Azzam DN, Cesmat AP, McGinty RK. Time Resolved-Fluorescence Resonance Energy Transfer platform for quantitative nucleosome binding and footprinting. Protein Sci 2022; 31:e4339. [PMID: 35634775 PMCID: PMC9134878 DOI: 10.1002/pro.4339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
Quantitative analysis of chromatin protein-nucleosome interactions is essential to understand regulation of genome-templated processes. However, current methods to measure nucleosome interactions are limited by low throughput, low signal-to-noise, and/or the requirement for specialized instrumentation. Here, we report a Lanthanide Chelate Excite Time-Resolved Fluorescence Resonance Energy Transfer (LANCE TR-FRET) assay to efficiently quantify chromatin protein-nucleosome interactions. The system makes use of commercially available reagents, offers robust signal-to-noise with minimal sample requirements, uses a conventional fluorescence microplate reader, and can be adapted for high-throughput workflows. We determined the nucleosome-binding affinities of several chromatin proteins and complexes, which are consistent with measurements obtained through orthogonal biophysical methods. We also developed a TR-FRET competition assay for high-resolution footprinting of chromatin protein-nucleosome interactions. Finally, we set up a TR-FRET competition assay using the LANA peptide to quantitate nucleosome acidic patch binding. We applied this assay to establish a proof-of-principle for regulation of nucleosome acidic patch binding by methylation of chromatin protein arginine anchors. Overall, our TR-FRET assays allow facile, high-throughput quantification of chromatin interactions and are poised to complement mechanistic chromatin biochemistry, structural biology, and drug discovery programs.
Collapse
Affiliation(s)
- Nathaniel A. Wesley
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Holly C. Simmons
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gabrielle R. Budziszewski
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Dalal N. Azzam
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Andrew P. Cesmat
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Robert K. McGinty
- Department of Biochemistry and Biophysics, UNC School of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
30
|
Garg A, Dabburu GR, Singhal N, Kumar M. Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico. PLoS One 2022; 17:e0265657. [PMID: 35421114 PMCID: PMC9009644 DOI: 10.1371/journal.pone.0265657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mimicry of the host proteins/peptides can elicit host auto-reactive T- or B-cells resulting in autoimmune disease(s). Since intrinsically disordered protein regions (IDPRs) are involved in several host cell signaling and PPI networks, molecular mimicry of the IDPRs can help the pathogens in substituting their own proteins in the host cell-signaling and PPI networks and, ultimately hijacking the host cellular machinery. Thus, the present study was conducted to discern the structural disorder and intrinsically disordered protein regions (IDPRs) like, molecular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs) in the experimentally verified mimicry proteins and peptides (mimitopes) of bacteria, viruses and host. Also, functional characteristics of the mimicry proteins were studied in silico. Our results indicated that 78% of the bacterial host mimicry proteins and 45% of the bacterial host mimitopes were moderately/highly disordered while, 73% of the viral host mimicry proteins and 31% of the viral host mimitopes were moderately/highly disordered. Among the pathogens, 27% of the bacterial mimicry proteins and 13% of the bacterial mimitopes were moderately/highly disordered while, 53% of the viral mimicry proteins and 21% of the viral mimitopes were moderately/highly disordered. Though IDPR were frequent in host, bacterial and viral mimicry proteins, only a few mimitopes overlapped with the IDPRs like, MoRFs, SLiMs and LCRs. This suggests that most of the microbes cannot use molecular mimicry to modulate the host PPIs and hijack the host cell machinery. Functional analyses indicated that most of the pathogens exhibited mimicry with the host proteins involved in ion binding and signaling pathways. This is the first report on the disordered regions and functional aspects of experimentally proven host and microbial mimicry proteins.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| |
Collapse
|
31
|
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders. Cells 2021; 11:cells11010011. [PMID: 35011572 PMCID: PMC8750789 DOI: 10.3390/cells11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.
Collapse
|
32
|
Rivera C, Verbel-Vergara D, Arancibia D, Lappala A, González M, Guzmán F, Merello G, Lee JT, Andrés ME. Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics Chromatin 2021; 14:51. [PMID: 34819154 PMCID: PMC8611983 DOI: 10.1186/s13072-021-00425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear processes such as transcription and RNA maturation can be impacted by subnuclear compartmentalization in condensates and nuclear bodies. Here, we characterize the nature of nuclear granules formed by REST corepressor 2 (RCOR2), a nuclear protein essential for pluripotency maintenance and central nervous system development. Results Using biochemical approaches and high-resolution microscopy, we reveal that RCOR2 is localized in nuclear speckles across multiple cell types, including neurons in the brain. RCOR2 forms complexes with nuclear speckle components such as SON, SRSF7, and SRRM2. When cells are exposed to chemical stress, RCOR2 behaves as a core component of the nuclear speckle and is stabilized by RNA. In turn, nuclear speckle morphology appears to depend on RCOR2. Specifically, RCOR2 knockdown results larger nuclear speckles, whereas overexpressing RCOR2 leads to smaller and rounder nuclear speckles. Conclusion Our study suggests that RCOR2 is a regulatory component of the nuclear speckle bodies, setting this co-repressor protein as a factor that controls nuclear speckles behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00425-4.
Collapse
Affiliation(s)
- Carlos Rivera
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.,Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Verbel-Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Duxan Arancibia
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Fabián Guzmán
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Gianluca Merello
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA. .,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.
| |
Collapse
|
33
|
Mollah MMI, Choi HW, Yeam I, Lee JM, Kim Y. Salicylic Acid, a Plant Hormone, Suppresses Phytophagous Insect Immune Response by Interrupting HMG-Like DSP1. Front Physiol 2021; 12:744272. [PMID: 34671276 PMCID: PMC8521015 DOI: 10.3389/fphys.2021.744272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Salicylic acid is a plant hormone that can mediate various plant physiological processes. Salicylic acid can bind to human high mobility group box 1 (HMGB1) and interrupt its role in mediating immune responses. Dorsal switch protein 1 (DSP1) is an insect homolog of HMGB1. In this study, a DSP1 (Se-DSP1) encoded in Spodoptera exigua, a phytophagous insect, was characterized, and its potential role in immune response was explored. Upon bacterial challenge, Se-DSP1 was localized in the nucleus and released into the hemolymph. The released Se-DSP1 could mediate both cellular and humoral immune responses by activating eicosanoid biosynthesis. Salicylic acid could bind to Se-DSP1 with a high affinity. The immune responses of S. exigua were significantly interrupted by SA feeding. Larvae reared on tomatoes with high endogenous SA levels became more susceptible to entomopathogens. Taken together, these results suggest a tritrophic defensive role of plant SA against phytophagous insects.
Collapse
Affiliation(s)
- Md Mahi Imam Mollah
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
34
|
Cappannini A, Forcelloni S, Giansanti A. Evolutionary pressures and codon bias in low complexity regions of plasmodia. Genetica 2021; 149:217-237. [PMID: 34254217 DOI: 10.1007/s10709-021-00126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 06/30/2021] [Indexed: 11/25/2022]
Abstract
The biological meaning of low complexity regions in the proteins of Plasmodium species is a topic of discussion in evolutionary biology. There is a debate between selectionists and neutralists, who either attribute or do not attribute an effect of low-complexity regions on the fitness of these parasites, respectively. In this work, we comparatively study 22 Plasmodium species to understand whether their low complexity regions undergo a neutral or, rather, a selective and species-dependent evolution. The focus is on the connection between the codon repertoire of the genetic coding sequences and the occurrence of low complexity regions in the corresponding proteins. The first part of the work concerns the correlation between the length of plasmodial proteins and their propensity at embedding low complexity regions. Relative synonymous codon usage, entropy, and other indicators reveal that the incidence of low complexity regions and their codon bias is species-specific and subject to selective evolutionary pressure. We also observed that protein length, a relaxed selective pressure, and a broad repertoire of codons in proteins, are strongly correlated with the occurrence of low complexity regions. Overall, it seems plausible that the codon bias of low-complexity regions contributes to functional innovation and codon bias enhancement of proteins on which Plasmodium species rest as successful evolutionary parasites.
Collapse
Affiliation(s)
- Andrea Cappannini
- Department of Physics, Sapienza, University of Rome, P.le A. Moro 5, 00185, Roma, Italy.
| | - Sergio Forcelloni
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany.,Department of Chemistry, Technical University of Munich, 85748, Garching, Germany
| | - Andrea Giansanti
- Department of Physics, Sapienza, University of Rome, P.le A. Moro 5, 00185, Roma, Italy.,Istituto Nazionale di Fisica Nucleare, INFN, Roma1 section. 00185, Roma, Italy
| |
Collapse
|
35
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
36
|
Chang YC, Oram MK, Bielinsky AK. SUMO-Targeted Ubiquitin Ligases and Their Functions in Maintaining Genome Stability. Int J Mol Sci 2021; 22:ijms22105391. [PMID: 34065507 PMCID: PMC8161396 DOI: 10.3390/ijms22105391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/06/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)-targeted E3 ubiquitin ligases (STUbLs) are specialized enzymes that recognize SUMOylated proteins and attach ubiquitin to them. They therefore connect the cellular SUMOylation and ubiquitination circuits. STUbLs participate in diverse molecular processes that span cell cycle regulated events, including DNA repair, replication, mitosis, and transcription. They operate during unperturbed conditions and in response to challenges, such as genotoxic stress. These E3 ubiquitin ligases modify their target substrates by catalyzing ubiquitin chains that form different linkages, resulting in proteolytic or non-proteolytic outcomes. Often, STUbLs function in compartmentalized environments, such as the nuclear envelope or kinetochore, and actively aid in nuclear relocalization of damaged DNA and stalled replication forks to promote DNA repair or fork restart. Furthermore, STUbLs reside in the same vicinity as SUMO proteases and deubiquitinases (DUBs), providing spatiotemporal control of their targets. In this review, we focus on the molecular mechanisms by which STUbLs help to maintain genome stability across different species.
Collapse
|
37
|
Pang W, Yi X, Li L, Liu L, Xiang W, Xiao L. Untangle the Multi-Facet Functions of Auts2 as an Entry Point to Understand Neurodevelopmental Disorders. Front Psychiatry 2021; 12:580433. [PMID: 33967843 PMCID: PMC8102784 DOI: 10.3389/fpsyt.2021.580433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders are psychiatric diseases that are usually first diagnosed in infancy, childhood and adolescence. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by core symptoms including impaired social communication, cognitive rigidity and repetitive behavior, accompanied by a wide range of comorbidities such as intellectual disability (ID) and dysmorphisms. While the cause remains largely unknown, genetic, epigenetic, and environmental factors are believed to contribute toward the onset of the disease. Autism Susceptibility Candidate 2 (Auts2) is a gene highly associated with ID and ASD. Therefore, understanding the function of Auts2 gene can provide a unique entry point to untangle the complex neuronal phenotypes of neurodevelpmental disorders. In this review, we discuss the recent discoveries regarding the molecular and cellular functions of Auts2. Auts2 was shown to be a key-regulator of transcriptional network and a mediator of epigenetic regulation in neurodevelopment, the latter potentially providing a link for the neuronal changes of ASD upon environmental risk-factor exposure. In addition, Auts2 could synchronize the balance between excitation and inhibition through regulating the number of excitatory synapses. Cytoplasmic Auts2 could join the fine-tuning of actin dynamics during neuronal migration and neuritogenesis. Furthermore, Auts2 was expressed in developing mouse and human brain regions such as the frontal cortex, dorsal thalamus, and hippocampus, which have been implicated in the impaired cognitive and social function of ASD. Taken together, a comprehensive understanding of Auts2 functions can give deep insights into the cause of the heterogenous manifestation of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Wenbin Pang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ling Li
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Liyan Liu
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Wei Xiang
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Le Xiao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
38
|
Abdrabou A, Wang Z. Regulation of the nuclear speckle localization and function of Rac1. FASEB J 2021; 35:e21235. [PMID: 33417283 DOI: 10.1096/fj.202001694r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 11/11/2022]
Abstract
Despite significant evidence that Rac1 is localized to the nucleus, little is known regarding the function and biological significance of nuclear Rac1. Here, we showed that in response to EGF Rac1 was translocated to nuclear speckles and co-localized with the nuclear speckle marker Serine/arginine-rich splicing factor 2 (SRSF2) in Cos-7 cells. We also showed that the nuclear speckle localization of Rac1 was dependent on its T108 phosphorylation and facilitated by Rac1 polybasic region (PBR) that contains a nuclear localization signal and Rac1 GTPase activity. To gain insight into the function of Rac1 in nuclear speckles, we searched for Rac1 binding proteins in the nucleus. We isolated nuclear fraction of HEK 293 cells and incubated with GST-Rac1 and the phosphomimetic GST-Rac1T108E. We identified 463 proteins that were associated with GST-Rac1T108E, but not with GST-Rac1 by LC-MS/MS. Three notable groups of these proteins are: the heterogeneous nuclear ribonucleoproteins (hnRNPs), small nuclear ribonucleoproteins (snRNPs), and SRSFs, all of which are involved in pre-mRNA splicing and associated with nuclear speckles. We further showed by co-immunoprecipitation that Rac1 interacts with SRSF2, hnRNPA1, and U2A' in response to EGF. The interaction is dependent on T108 phosphorylation and facilitated by Rac1 PBR and GTPase activity. We showed that hnRNPA1 translocated in and out of nucleus in response to EGF in a similar pattern to Rac1. Rac1 only partially colocalized with U2A' that localizes to the actual splicing sites adjacent to nuclear speckle. Finally, we showed that Rac1 regulated EGF-induced pre-mRNA splicing and this is mediated by T108 phosphorylation. We conclude that in response to EGF, T108 phosphorylated Rac1 is targeted to nuclear speckles, interacts with multiple groups of proteins involved in pre-mRNA splicing, and regulates EGF-induced pre-mRNA splicing.
Collapse
Affiliation(s)
- Abdalla Abdrabou
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zhixiang Wang
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
39
|
Verheul TCJ, van Hijfte L, Perenthaler E, Barakat TS. The Why of YY1: Mechanisms of Transcriptional Regulation by Yin Yang 1. Front Cell Dev Biol 2020; 8:592164. [PMID: 33102493 PMCID: PMC7554316 DOI: 10.3389/fcell.2020.592164] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
First described in 1991, Yin Yang 1 (YY1) is a transcription factor that is ubiquitously expressed throughout mammalian cells. It regulates both transcriptional activation and repression, in a seemingly context-dependent manner. YY1 has a well-established role in the development of the central nervous system, where it is involved in neurogenesis and maintenance of homeostasis in the developing brain. In neurodevelopmental and neurodegenerative disease, the crucial role of YY1 in cellular processes in the central nervous system is further underscored. In this mini-review, we discuss the various mechanisms leading to the transcriptional activating and repressing roles of YY1, including its role as a traditional transcription factor, its interactions with cofactors and chromatin modifiers, the role of YY1 in the non-coding genome and 3D chromatin organization and the possible implications of the phase-separation mechanism on YY1 function. We provide examples on how these processes can be involved in normal development and how alterations can lead to various diseases.
Collapse
Affiliation(s)
- Thijs C J Verheul
- Department of Cell Biology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Elena Perenthaler
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Chavali S, Singh AK, Santhanam B, Babu MM. Amino acid homorepeats in proteins. Nat Rev Chem 2020; 4:420-434. [PMID: 37127972 DOI: 10.1038/s41570-020-0204-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Amino acid homorepeats, or homorepeats, are polypeptide segments found in proteins that contain stretches of identical amino acid residues. Although abnormal homorepeat expansions are linked to pathologies such as neurodegenerative diseases, homorepeats are prevalent in eukaryotic proteomes, suggesting that they are important for normal physiology. In this Review, we discuss recent advances in our understanding of the biological functions of homorepeats, which range from facilitating subcellular protein localization to mediating interactions between proteins across diverse cellular pathways. We explore how the functional diversity of homorepeat-containing proteins could be linked to the ability of homorepeats to adopt different structural conformations, an ability influenced by repeat composition, repeat length and the nature of flanking sequences. We conclude by highlighting how an understanding of homorepeats will help us better characterize and develop therapeutics against the human diseases to which they contribute.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India.
| | - Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Balaji Santhanam
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
41
|
A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder. Genes (Basel) 2020; 11:genes11040407. [PMID: 32283633 PMCID: PMC7230257 DOI: 10.3390/genes11040407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022] Open
Abstract
Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence.
Collapse
|
42
|
Pelassa I, Cibelli M, Villeri V, Lilliu E, Vaglietti S, Olocco F, Ghirardi M, Montarolo PG, Corà D, Fiumara F. Compound Dynamics and Combinatorial Patterns of Amino Acid Repeats Encode a System of Evolutionary and Developmental Markers. Genome Biol Evol 2020; 11:3159-3178. [PMID: 31589292 PMCID: PMC6839033 DOI: 10.1093/gbe/evz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/05/2023] Open
Abstract
Homopolymeric amino acid repeats (AARs) like polyalanine (polyA) and polyglutamine (polyQ) in some developmental proteins (DPs) regulate certain aspects of organismal morphology and behavior, suggesting an evolutionary role for AARs as developmental "tuning knobs." It is still unclear, however, whether these are occasional protein-specific phenomena or hints at the existence of a whole AAR-based regulatory system in DPs. Using novel approaches to trace their functional and evolutionary history, we find quantitative evidence supporting a generalized, combinatorial role of AARs in developmental processes with evolutionary implications. We observe nonrandom AAR distributions and combinations in HOX and other DPs, as well as in their interactomes, defining elements of a proteome-wide combinatorial functional code whereby different AARs and their combinations appear preferentially in proteins involved in the development of specific organs/systems. Such functional associations can be either static or display detectable evolutionary dynamics. These findings suggest that progressive changes in AAR occurrence/combination, by altering embryonic development, may have contributed to taxonomic divergence, leaving detectable traces in the evolutionary history of proteomes. Consistent with this hypothesis, we find that the evolutionary trajectories of the 20 AARs in eukaryotic proteomes are highly interrelated and their individual or compound dynamics can sharply mark taxonomic boundaries, or display clock-like trends, carrying overall a strong phylogenetic signal. These findings provide quantitative evidence and an interpretive framework outlining a combinatorial system of AARs whose compound dynamics mark at the same time DP functions and evolutionary transitions.
Collapse
Affiliation(s)
- Ilaria Pelassa
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Marica Cibelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Veronica Villeri
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Elena Lilliu
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Serena Vaglietti
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Federica Olocco
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy
| | - Mirella Ghirardi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Pier Giorgio Montarolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| | - Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara, Italy
| | - Ferdinando Fiumara
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Italy.,National Institute of Neuroscience (INN), Torino, Italy
| |
Collapse
|
43
|
Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Mol Cell 2020; 77:1237-1250.e4. [PMID: 32048997 PMCID: PMC10715173 DOI: 10.1016/j.molcel.2020.01.025] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.
Collapse
Affiliation(s)
- Jamie A Greig
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Tu Anh Nguyen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Michelle Lee
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore
| | - Alex S Holehouse
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ammon E Posey
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, The National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
44
|
Sarvagalla S, Kolapalli SP, Vallabhapurapu S. The Two Sides of YY1 in Cancer: A Friend and a Foe. Front Oncol 2019; 9:1230. [PMID: 31824839 PMCID: PMC6879672 DOI: 10.3389/fonc.2019.01230] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1), a dual function transcription factor, is known to regulate transcriptional activation and repression of many genes associated with multiple cellular processes including cellular differentiation, DNA repair, autophagy, cell survival vs. apoptosis, and cell division. Owing to its role in processes that upon deregulation are linked to malignant transformation, YY1 has been implicated as a major driver of many cancers. While a large body of evidence supports the role of YY1 as a tumor promoter, recent reports indicated that YY1 also functions as a tumor suppressor. The mechanism by which YY1 brings out opposing outcome in tumor growth vs. suppression is not completely clear and some of the recent reports have provided significant insight into this. Likewise, the mechanism by which YY1 functions both as a transcriptional activator and repressor is not completely clear. It is likely that the proteins with which YY1 interacts might determine its function as an activator or repressor of transcription as well as its role as a tumor suppressor or promoter. Hence, a collection of YY1-protein interactions in the context of different cancers would help us gain an insight into how YY1 promotes or suppresses cancers. This review focuses on the YY1 interacting partners and its target genes in different cancer models. Finally, we discuss the possibility of therapeutically targeting the YY1 in cancers where it functions as a tumor promoter.
Collapse
Affiliation(s)
| | | | - Sivakumar Vallabhapurapu
- Division of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, India
| |
Collapse
|
45
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, Old WM. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep 2019; 9:6539. [PMID: 31024071 PMCID: PMC6483993 DOI: 10.1038/s41598-019-42990-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments. Despite recent large-scale protein-protein interaction profiling efforts, DYRK1A interactions specific to different subcellular compartments remain largely unknown, impeding progress toward understanding emerging roles for this kinase. Here, we used immunoaffinity purification and quantitative mass spectrometry to identify nuclear interaction partners of endogenous DYRK1A. This interactome was enriched in DNA damage repair factors, transcriptional elongation factors and E3 ubiquitin ligases. We validated an interaction with RNF169, a factor that promotes homology directed repair upon DNA damage, and found that DYRK1A expression and kinase activity are required for maintenance of 53BP1 expression and subsequent recruitment to DNA damage loci. Further, DYRK1A knock out conferred resistance to ionizing radiation in colony formation assays, suggesting that DYRK1A expression decreases cell survival efficiency in response to DNA damage and points to a tumor suppressive role for this kinase.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Zachary C Poss
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Pagratis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Helen Simpson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
46
|
Shakyawar DK, Muralikrishna B, Radha V. C3G dynamically associates with nuclear speckles and regulates mRNA splicing. Mol Biol Cell 2019; 29:1111-1124. [PMID: 29496966 PMCID: PMC5921577 DOI: 10.1091/mbc.e17-07-0442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first example of a Ras family GTPase and its exchange factor C3G localizing to nuclear speckles and regulating mRNA splicing is presented. C3G (Crk SH3 domain binding guanine nucleotide releasing factor) (Rap guanine nucleotide exchange factor 1), essential for mammalian embryonic development, is ubiquitously expressed and undergoes regulated nucleocytoplasmic exchange. Here we show that C3G localizes to SC35-positive nuclear speckles and regulates splicing activity. Reversible association of C3G with speckles was seen on inhibition of transcription and splicing. C3G shows partial colocalization with SC35 and is recruited to a chromatin and RNase-sensitive fraction of speckles. Its presence in speckles is dependent on intact cellular actin cytoskeleton and is lost on expression of the kinase Clk1. Rap1, a substrate of C3G, is also present in nuclear speckles, and inactivation of Rap signaling by expression of GFP-Rap1GAP alters speckle morphology and number. Enhanced association of C3G with speckles is seen on glycogen synthase kinase 3 beta inhibition or differentiation of C2C12 cells to myotubes. CRISPR/Cas9-mediated knockdown of C3G resulted in altered splicing activity of an artificial gene as well as endogenous CD44. C3G knockout clones of C2C12 as well as MDA-MB-231 cells showed reduced protein levels of several splicing factors compared with control cells. Our results identify C3G and Rap1 as novel components of nuclear speckles and a role for C3G in regulating cellular RNA splicing activity.
Collapse
Affiliation(s)
| | | | - Vegesna Radha
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
47
|
Qiu J, Wang W, Hu S, Wang Y, Sun W, Hu J, Gan X, Wang J. Molecular cloning, characterization and expression analysis of C/EBP α, β and δ in adipose-related tissues and adipocyte of duck ( Anas platyrhynchos ). Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:29-43. [DOI: 10.1016/j.cbpb.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
|
48
|
Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 2018; 558:318-323. [PMID: 29849146 PMCID: PMC6475116 DOI: 10.1038/s41586-018-0174-3] [Citation(s) in RCA: 403] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Hyperphosphorylation of the C-terminal domain (CTD) of the RPB1 subunit of human RNA polymerase (Pol) II is essential for transcriptional elongation and mRNA processing1-3. The CTD contains 52 heptapeptide repeats of the consensus sequence YSPTSPS. The highly repetitive nature and abundant possible phosphorylation sites of the CTD exert special constraints on the kinases that catalyse its hyperphosphorylation. Positive transcription elongation factor b (P-TEFb)-which consists of CDK9 and cyclin T1-is known to hyperphosphorylate the CTD and negative elongation factors to stimulate Pol II elongation1,4,5. The sequence determinant on P-TEFb that facilitates this action is currently unknown. Here we identify a histidine-rich domain in cyclin T1 that promotes the hyperphosphorylation of the CTD and stimulation of transcription by CDK9. The histidine-rich domain markedly enhances the binding of P-TEFb to the CTD and functional engagement with target genes in cells. In addition to cyclin T1, at least one other kinase-DYRK1A 6 -also uses a histidine-rich domain to target and hyperphosphorylate the CTD. As a low-complexity domain, the histidine-rich domain also promotes the formation of phase-separated liquid droplets in vitro, and the localization of P-TEFb to nuclear speckles that display dynamic liquid properties and are sensitive to the disruption of weak hydrophobic interactions. The CTD-which in isolation does not phase separate, despite being a low-complexity domain-is trapped within the cyclin T1 droplets, and this process is enhanced upon pre-phosphorylation by CDK7 of transcription initiation factor TFIIH1-3. By using multivalent interactions to create a phase-separated functional compartment, the histidine-rich domain in kinases targets the CTD into this environment to ensure hyperphosphorylation and efficient elongation of Pol II.
Collapse
Affiliation(s)
- Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dan Yu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sourav Ganguly
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rongdiao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Alec Heckert
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
49
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
50
|
Dang T, Duan WY, Yu B, Tong DL, Cheng C, Zhang YF, Wu W, Ye K, Zhang WX, Wu M, Wu BB, An Y, Qiu ZL, Wu BL. Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol Psychiatry 2018; 23:747-758. [PMID: 28167836 PMCID: PMC5822466 DOI: 10.1038/mp.2016.253] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
Autism is a prevailing neurodevelopmental disorder with a large genetic/genomic component. Recently, the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) gene was implicated as a risk factor for autism spectrum disorder (ASD). We identified five DYRK1A variants in ASD patients and found that the dose of DYRK1A protein has a crucial role in various aspects of postnatal neural development. Dyrk1a loss of function and gain of function led to defects in dendritic growth, dendritic spine development and radial migration during cortical development. Importantly, two autism-associated truncations, R205X and E239X, were shown to be Dyrk1a loss-of-function mutants. Studies of the truncated Dyrk1a mutants may provide new insights into the role of Dyrk1a in brain development, as well as the role of Dyrk1a loss of function in the pathophysiology of autism.
Collapse
Affiliation(s)
- T Dang
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - W Y Duan
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B Yu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D L Tong
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - C Cheng
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y F Zhang
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - W Wu
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - K Ye
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - W X Zhang
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - M Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - B B Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Y An
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Exome Sequencing Collaboration at Boston Children’s Hospital and Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Z L Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - B L Wu
- Children’s Hospital of Fudan University and Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
- Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|