1
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024; 227:iyae071. [PMID: 38797871 PMCID: PMC11228842 DOI: 10.1093/genetics/iyae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and proinflammatory responses. Studies performed in tissue culture cells have implicated linker of nucleoskeleton and cytoskeleton (LINC) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In Caenorhabditis elegans larvae, six pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here, we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin-binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function; this and structural predictions suggest that FLN-2 does not function as a filamin. The immunoglobulin-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Blake TCA, Fox HM, Urbančič V, Ravishankar R, Wolowczyk A, Allgeyer ES, Mason J, Danuser G, Gallop JL. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions. J Cell Sci 2024; 137:jcs261057. [PMID: 38323924 PMCID: PMC11006392 DOI: 10.1242/jcs.261057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Filopodia are narrow actin-rich protrusions with important roles in neuronal development where membrane-binding adaptor proteins, such as I-BAR- and F-BAR-domain-containing proteins, have emerged as upstream regulators that link membrane interactions to actin regulators such as formins and proteins of the Ena/VASP family. Both the adaptors and their binding partners are part of diverse and redundant protein networks that can functionally compensate for each other. To explore the significance of the F-BAR domain-containing neuronal membrane adaptor TOCA-1 (also known as FNBP1L) in filopodia we performed a quantitative analysis of TOCA-1 and filopodial dynamics in Xenopus retinal ganglion cells, where Ena/VASP proteins have a native role in filopodial extension. Increasing the density of TOCA-1 enhances Ena/VASP protein binding in vitro, and an accumulation of TOCA-1, as well as its coincidence with Ena, correlates with filopodial protrusion in vivo. Two-colour single-molecule localisation microscopy of TOCA-1 and Ena supports their nanoscale association. TOCA-1 clusters promote filopodial protrusion and this depends on a functional TOCA-1 SH3 domain and activation of Cdc42, which we perturbed using the small-molecule inhibitor CASIN. We propose that TOCA-1 clusters act independently of membrane curvature to recruit and promote Ena activity for filopodial protrusion.
Collapse
Affiliation(s)
- Thomas C. A. Blake
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Helen M. Fox
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Vasja Urbančič
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Roshan Ravishankar
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Wolowczyk
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Edward S. Allgeyer
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Julia Mason
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L. Gallop
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
4
|
Ho J, Guerrero LA, Libuda DE, Luxton GWG, Starr DA. Actin and CDC-42 contribute to nuclear migration through constricted spaces in C. elegans. Development 2023; 150:dev202115. [PMID: 37756590 PMCID: PMC10617605 DOI: 10.1242/dev.202115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Successful nuclear migration through constricted spaces between cells or in the extracellular matrix relies on the ability of the nucleus to deform. Little is known about how this takes place in vivo. We have studied confined nuclear migration in Caenorhabditis elegans larval P cells, which is mediated by the LINC complex to pull nuclei towards the minus ends of microtubules. Null mutations of the LINC component unc-84 lead to a temperature-dependent phenotype, suggesting a parallel pathway for P-cell nuclear migration. A forward genetic screen for enhancers of unc-84 identified cgef-1 (CDC-42 guanine nucleotide exchange factor). Knockdown of CDC-42 in the absence of the LINC complex led to a P-cell nuclear migration defect. Expression of constitutively active CDC-42 partially rescued nuclear migration in cgef-1; unc-84 double mutants, suggesting that CDC-42 functions downstream of CGEF-1. The Arp2/3 complex and non-muscle myosin II (NMY-2) were also found to function parallel to the LINC pathway. In our model, CGEF-1 activates CDC-42, which induces actin polymerization through the Arp2/3 complex to deform the nucleus during nuclear migration, and NMY-2 helps to push the nucleus through confined spaces.
Collapse
Affiliation(s)
- Jamie Ho
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Leslie A. Guerrero
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Diana E. Libuda
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
5
|
Ma L, Kuhn J, Chang YT, Elnatan D, Luxton GWG, Starr DA. FLN-2 functions in parallel to LINC complexes and Cdc42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552041. [PMID: 37577634 PMCID: PMC10418278 DOI: 10.1101/2023.08.04.552041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear migration through narrow constrictions is important for development, metastasis, and pro-inflammatory responses. Studies performed in tissue culture cells have implicated LINC (linker of nucleoskeleton and cytoskeleton) complexes, microtubule motors, the actin cytoskeleton, and nuclear envelope repair machinery as important mediators of nuclear movements through constricted spaces. However, little is understood about how these mechanisms operate to move nuclei in vivo. In C. elegans larvae, 6 pairs of hypodermal P cells migrate from lateral to ventral positions through a constricted space between the body wall muscles and the cuticle. P-cell nuclear migration is mediated in part by LINC complexes using a microtubule-based pathway and by an independent CDC-42/actin-based pathway. However, when both LINC complex and actin-based pathways are knocked out, many nuclei still migrate, suggesting the existence of additional pathways. Here we show that FLN-2 functions in a third pathway to mediate P-cell nuclear migration. The predicted N-terminal actin binding domain in FLN-2 that is found in canonical filamins is dispensable for FLN-2 function, this and structural predictions suggest that FLN-2 is not a divergent filamin. The immunoglobulin (Ig)-like repeats 4-8 of FLN-2 were necessary for P-cell nuclear migration. Furthermore, in the absence of the LINC complex component unc-84, fln-2 mutants had an increase in P-cell nuclear rupture. We conclude that FLN-2 functions to maintain the integrity of the nuclear envelope in parallel with the LINC complex and CDC-42/actin-based pathways to move P-cell nuclei through constricted spaces.
Collapse
Affiliation(s)
- Linda Ma
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Jonathan Kuhn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
7
|
Zang Y, Chaudhari K, Bashaw GJ. New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 2021; 142:147-196. [PMID: 33706917 DOI: 10.1016/bs.ctdb.2020.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the nervous system develops, newly differentiated neurons need to extend their axons toward their synaptic targets to form functional neural circuits. During this highly dynamic process of axon pathfinding, guidance receptors expressed at the tips of motile axons interact with soluble guidance cues or membrane tethered molecules present in the environment to be either attracted toward or repelled away from the source of these cues. As competing cues are often present at the same location and during the same developmental period, guidance receptors need to be both spatially and temporally regulated in order for the navigating axons to make appropriate guidance decisions. This regulation is exerted by a diverse array of molecular mechanisms that have come into focus over the past several decades and these mechanisms ensure that the correct complement of surface receptors is present on the growth cone, a fan-shaped expansion at the tip of the axon. This dynamic, highly motile structure is defined by a lamellipodial network lining the periphery of the growth cone interspersed with finger-like filopodial projections that serve to explore the surrounding environment. Once axon guidance receptors are deployed at the right place and time at the growth cone surface, they respond to their respective ligands by initiating a complex set of signaling events that serve to rearrange the growth cone membrane and the actin and microtubule cytoskeleton to affect axon growth and guidance. In this review, we highlight recent advances that shed light on the rich complexity of mechanisms that regulate axon guidance receptor distribution, activation and downstream signaling.
Collapse
Affiliation(s)
- Yixin Zang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Wang J, Zhuang X, Greene KS, Si H, Antonyak MA, Druso JE, Wilson KF, Cerione RA, Feng Q, Wang H. Cdc42 functions as a regulatory node for tumour-derived microvesicle biogenesis. J Extracell Vesicles 2021; 10:e12051. [PMID: 33473262 PMCID: PMC7804048 DOI: 10.1002/jev2.12051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tumour-derived microvesicles (MVs) serve as critical mediators of cell-to-cell communication in the tumour microenvironment. So far, the underlying mechanisms of MV biogenesis, especially how key tumorigenesis signals such as abnormal EGF signalling regulates MV release, remain unclear. Here, we set out to establish reliable readouts for MV biogenesis and then explore the molecular mechanisms that regulate MV generation. We found that Rho family small G protein Cdc42 is a convergent node of multiple regulatory signals that occur in MV biogenesis. The binding of activated GTP-bound Cdc42 and its downstream effector, Ras GTPase-activating-like protein 1 (IQGAP1), is required for MV shedding. Activated Cdc42 maintains sustained EGF signalling by inhibiting the internalization of cell surface receptors, including EGFR and the VEGF oligomer, VEGF90K, and then facilitates MV release. Subsequently, we further demonstrated that blocking these signalling pathways using the corresponding mutants effectively reduced MV shedding and significantly inhibited MV-promoted in vivo tumour angiogenesis. These findings reveal a complex regulation of MV shedding by tumour cells, shedding light on the regulatory mechanism of MV biogenesis, and potentially contributing to strategies that target MVs in cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Xiangjin Zhuang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Kai Su Greene
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Ha Si
- National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China.,Affiliated Hospital of Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
| | - Marc A Antonyak
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Joseph E Druso
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Kristin F Wilson
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Richard A Cerione
- Department of Molecular Medicine Cornell University Ithaca New York USA.,Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Qiyu Feng
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Hongyang Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| |
Collapse
|
9
|
Raduwan H, Sasidharan S, Burgos LC, Wallace AG, Soto MC. RhoGAP RGA-8 supports morphogenesis in C. elegans by polarizing epithelia. Biol Open 2020; 9:bio056911. [PMID: 33243762 PMCID: PMC7710025 DOI: 10.1242/bio.056911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
CDC-42 regulation of non-muscle myosin/NMY-2 is required for polarity maintenance in the one-cell embryo of Caenorhabditis elegans CDC-42 and NMY-2 regulate polarity throughout embryogenesis, but their contribution to later events of morphogenesis are less understood. We have shown that epidermal enclosure requires the GTPase CED-10/Rac1 and WAVE/Scar complex, its effector, to promote protrusions that drive enclosure through the branch actin regulator Arp2/3. Our analysis here of RGA-8, a homolog of SH3BP1/Rich1/ARHGAP17/Nadrin, with BAR and RhoGAP motifs, suggests it regulates CDC-42, so that actin and myosin/NMY-2 promote ventral enclosure during embryonic morphogenesis. Genetic and molecular data suggest RGA-8 regulates CDC-42, and phenocopies the CDC-42 pathway regulators WASP-1/WSP-1 and the F-BAR proteins TOCA-1 and TOCA-2. Live imaging shows RGA-8 and WSP-1 enrich myosin and regulate F-actin in migrating epidermal cells during ventral enclosure. Loss of RGA-8 alters membrane recruitment of active CDC-42. We propose TOCA proteins and RGA-8 use BAR domains to localize and regenerate CDC-42 activity, thus regulating F-actin levels, through the branched actin regulator WSP-1, and myosin enrichment. RhoGAP RGA-8 thus polarizes epithelia, to promote cell migrations and cell shape changes of embryonic morphogenesis.
Collapse
Affiliation(s)
- Hamidah Raduwan
- Department of Pathology and Laboratory Medicine, Rutgers - RWJMS, Piscataway, NJ 08854, USA
- Cell and Developmental Biology Graduate Program, School of Graduate Studies, Rutgers - RWJMS, Piscataway, NJ 08854, USA
| | - Shashikala Sasidharan
- Department of Pathology and Laboratory Medicine, Rutgers - RWJMS, Piscataway, NJ 08854, USA
| | - Luigy Cordova Burgos
- Department of Pathology and Laboratory Medicine, Rutgers - RWJMS, Piscataway, NJ 08854, USA
| | - Andre G Wallace
- Department of Biological Sciences, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - RWJMS, Piscataway, NJ 08854, USA
- Cell and Developmental Biology Graduate Program, School of Graduate Studies, Rutgers - RWJMS, Piscataway, NJ 08854, USA
| |
Collapse
|
10
|
Starr DA. A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout Caenorhabditis elegans development. Exp Biol Med (Maywood) 2019; 244:1323-1332. [PMID: 31495194 PMCID: PMC6880151 DOI: 10.1177/1535370219871965] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nuclear migration and anchorage, together referred to as nuclear positioning, are central to many cellular and developmental events. Nuclear positioning is mediated by a conserved network of nuclear envelope proteins that interacts with force generators in the cytoskeleton. At the heart of this network are li nker of n ucleoskeleton and c ytoskeleton (LINC) complexes made of S ad1 and UN C-84 (SUN) proteins at the inner nuclear membrane and K larsicht, A NC-1, and S yne homology (KASH) proteins in the outer nuclear membrane. LINC complexes span the nuclear envelope, maintain nuclear envelope architecture, designate the surface of nuclei distinctly from the contiguous endoplasmic reticulum, and were instrumental in the early evolution of eukaryotes. LINC complexes interact with lamins in the nucleus and with various cytoplasmic KASH effectors from the surface of nuclei. These effectors regulate the cytoskeleton, leading to a variety of cellular outputs including pronuclear migration, nuclear migration through constricted spaces, nuclear anchorage, centrosome attachment to nuclei, meiotic chromosome movements, and DNA damage repair. How LINC complexes are regulated and how they function are reviewed here. The focus is on recent studies elucidating the best-understood network of LINC complexes, those used throughout Caenorhabditis elegans development.
Collapse
Affiliation(s)
- Daniel A Starr
- Department of Molecular and Cellular Biology,
University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 2018; 46:565-576. [DOI: 10.1042/bst20170355] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our understanding of the molecular steps mediating local actin polymerization during the formation of endocytic carriers. Clathrin-mediated endocytosis is the least reliant on local actin polymerization, as it is only engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are, respectively, dependent and independent on actin polymerization. Conversely, clathrin-independent endocytosis forming both nanometer [CLIC (clathrin-independent carriers)/GEEC (glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments), caveolae, FEME (fast endophilin-mediated endocytosis) and IL-2β (interleukin-2β) uptake] and micrometer carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or Rac1/WAVE complexes, which, in turn, engage the Arp2/3 complex, thereby mediating local actin polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling during endocytic pit formation remain unclear.
Collapse
|
12
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
13
|
Ghosh S, Vetrone SA, Sternberg PW. Non-neuronal cell outgrowth in C. elegans. WORM 2017; 6:e1405212. [PMID: 29238627 DOI: 10.1080/21624054.2017.1405212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Cell outgrowth is a hallmark of some non-migratory developing cells during morphogenesis. Understanding the mechanisms that control cell outgrowth not only increases our knowledge of tissue and organ development, but can also shed light on disease pathologies that exhibit outgrowth-like behavior. C. elegans is a highly useful model for the analysis of genes and the function of their respective proteins. In addition, C. elegans also has several cells and tissues that undergo outgrowth during development. Here we discuss the outgrowth mechanisms of nine different C. elegans cells and tissues. We specifically focus on how these cells and tissues grow outward and the interactions they make with their environment. Through our own identification, and a meta-analysis, we also identify gene families involved in multiple cell outgrowth processes, which defined potential C. elegans core components of cell outgrowth, as well as identify a potential stepwise cell behavioral cascade used by cells undergoing outgrowth.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
14
|
Sasidharan S, Borinskaya S, Patel F, Bernadskaya Y, Mandalapu S, Agapito M, Soto MC. WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Dev Biol 2017; 434:133-148. [PMID: 29223862 DOI: 10.1016/j.ydbio.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Actin is an integral component of epithelial apical junctions, yet the interactions of branched actin regulators with apical junction components are still not clear. Biochemical data have shown that α-catenin inhibits Arp2/3-dependent branched actin. These results suggested that branched actin is only needed at earliest stages of apical junction development. We use live imaging in developing C. elegans embryos to test models for how WAVE-induced branched actin collaborates with other apical junction proteins during the essential process of junction formation and maturation. We uncover both early and late essential roles for WAVE in apical junction formation. Early, as the C. elegans intestinal epithelium becomes polarized, we find that WAVE components become enriched concurrently with the Cadherin components and before the DLG-1 apical accumulation. Live imaging of F-actin accumulation in polarizing intestine supports that the Cadherin complex components and branched actin regulators work together for apical actin enrichment. Later in junction development, the apical accumulation of WAVE and Cadherin components is shown to be interdependent: Cadherin complex loss alters WAVE accumulation, and WAVE complex loss increases Cadherin accumulation. To determine why Cadherin levels rise when WVE-1 is depleted, we use FRAP to analyze Cadherin dynamics and find that loss of WAVE as well as of the trafficking protein EHD-1/RME-1 increases Cadherin dynamics. EM studies in adults depleted of branched actin regulators support that WVE-1 maintains established junctions, presumably through its trafficking effect on Cadherin. Thus we propose a developmental model for junction formation where branched actin regulators are tightly interconnected with Cadherin junctions through their previously unappreciated role in Cadherin transport.
Collapse
Affiliation(s)
- Shashikala Sasidharan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sofya Borinskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Falshruti Patel
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yelena Bernadskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sailaja Mandalapu
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria Agapito
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Yang Y, Xiong D, Pipathsouk A, Weiner OD, Wu M. Clathrin Assembly Defines the Onset and Geometry of Cortical Patterning. Dev Cell 2017; 43:507-521.e4. [PMID: 29161594 PMCID: PMC5826602 DOI: 10.1016/j.devcel.2017.10.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 09/16/2017] [Accepted: 10/25/2017] [Indexed: 01/20/2023]
Abstract
Assembly of the endocytic machinery is a constitutively active process that is important for the organization of the plasma membrane, signal transduction, and membrane trafficking. Existing research has focused on the stochastic nature of endocytosis. Here, we report the emergence of the collective dynamics of endocytic proteins as periodic traveling waves on the cell surface. Coordinated clathrin assembly provides the earliest spatial cue for cortical waves and sets the direction of propagation. Surprisingly, the onset of clathrin waves, but not individual endocytic events, requires feedback from downstream factors, including FBP17, Cdc42, and N-WASP. In addition to the localized endocytic assembly at the plasma membrane, intracellular clathrin and phosphatidylinositol-3,4-bisphosphate predict the excitability of the plasma membrane and modulate the geometry of traveling waves. Collectively, our data demonstrate the multiplicity of clathrin functions in cortical pattern formation and provide important insights regarding the nucleation and propagation of single-cell patterns.
Collapse
Affiliation(s)
- Yang Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ding Xiong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Anne Pipathsouk
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Orion D Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-9001, USA
| | - Min Wu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
16
|
Yang Q, Roiz D, Mereu L, Daube M, Hajnal A. The Invading Anchor Cell Induces Lateral Membrane Constriction during Vulval Lumen Morphogenesis in C. elegans. Dev Cell 2017; 42:271-285.e3. [PMID: 28787593 DOI: 10.1016/j.devcel.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 05/15/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022]
Abstract
During epithelial tube morphogenesis, linear arrays of cells are converted into tubular structures through actomyosin-generated intracellular forces that induce tissue invagination and lumen formation. We have investigated lumen morphogenesis in the C. elegans vulva. The first discernible event initiating lumen formation is the apical constriction of the two innermost primary cells (VulF). The VulF cells thereafter constrict their lateral membranes along the apicobasal axis to extend the lumen dorsally. Lateral, but not apical, VulF constriction requires the prior invasion of the anchor cell (AC). The invading AC extends actin-rich protrusions toward VulF, resulting in the formation of a direct AC-VulF interface. The recruitment of the F-BAR-domain protein TOCA-1 to the AC-VulF interface induces the accumulation of force-generating actomyosin, causing a switch from apical to lateral membrane constriction and the dorsal extension of the lumen. Invasive cells may induce shape changes in adjacent cells to penetrate their target tissues.
Collapse
Affiliation(s)
- Qiutan Yang
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Daniel Roiz
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Louisa Mereu
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Zurich PhD Program in Molecular Life Sciences, Uni ETH Zürich, 8057 Zurich, Switzerland
| | - Michael Daube
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
18
|
Erasmus JC, Bruche S, Pizarro L, Maimari N, Pogglioli T, Tomlinson C, Lees J, Zalivina I, Wheeler A, Alberts A, Russo A, Braga VMM. Defining functional interactions during biogenesis of epithelial junctions. Nat Commun 2016; 7:13542. [PMID: 27922008 PMCID: PMC5150262 DOI: 10.1038/ncomms13542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. Formation and reinforcement of E-cadherin-mediated adhesion depends on intracellular trafficking and interactions with the actin cytoskeleton, but how these are coordinated is not known. Here the authors conduct a focused phenotypic screen to identify new pathways regulating cell–cell junction homeostasis.
Collapse
Affiliation(s)
- J C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - S Bruche
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - L Pizarro
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.,Computing Department, Imperial College London, London SW7 2AZ, UK
| | - N Maimari
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.,Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - T Pogglioli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - C Tomlinson
- Department of Surgery &Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - J Lees
- Department Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - I Zalivina
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - A Wheeler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - A Alberts
- Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - A Russo
- Computing Department, Imperial College London, London SW7 2AZ, UK
| | - V M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Bone CR, Chang YT, Cain NE, Murphy SP, Starr DA. Nuclei migrate through constricted spaces using microtubule motors and actin networks in C. elegans hypodermal cells. Development 2016; 143:4193-4202. [PMID: 27697906 DOI: 10.1242/dev.141192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 12/22/2022]
Abstract
Cellular migrations through constricted spaces are a crucial aspect of many developmental and disease processes including hematopoiesis, inflammation and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model in which nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space that is about 5% their width. This constriction is blocked by fibrous organelles, structures that pass through P cells to connect the muscles to cuticle. Fibrous organelles are removed just prior to nuclear migration, when nuclei and lamins undergo extreme morphological changes to squeeze through the space. Both actin and microtubule networks are organized to mediate nuclear migration. The LINC complex, consisting of the SUN protein UNC-84 and the KASH protein UNC-83, recruits dynein and kinesin-1 to the nuclear surface. Both motors function in P-cell nuclear migration, but dynein, functioning through UNC-83, plays a more central role as nuclei migrate towards minus ends of polarized microtubule networks. Thus, the nucleoskeleton and cytoskeleton are coordinated to move nuclei through constricted spaces.
Collapse
Affiliation(s)
- Courtney R Bone
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Yu-Tai Chang
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Natalie E Cain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shaun P Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Watson JR, Nietlispach D, Owen D, Mott HR. (1)H, (13)C and (15)N resonance assignments of the Cdc42-binding domain of TOCA1. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:407-411. [PMID: 26988723 PMCID: PMC5039218 DOI: 10.1007/s12104-016-9677-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
TOCA1 is a downstream effector protein of the small GTPase, Cdc42. It is a multi-domain protein that includes a membrane binding F-BAR domain, a homology region 1 (HR1) domain, which binds selectively to active Cdc42 and an SH3 domain. TOCA1 is involved in the regulation of actin dynamics in processes such as endocytosis, filopodia formation, neurite elongation, cell motility and invasion. Structural insight into the interaction between TOCA1 and Cdc42 will contribute to our understanding of the role of TOCA1 in actin dynamics. The (1)H, (15)N and (13)C NMR backbone and sidechain resonance assignment of the HR1 domain (12 kDa) presented here provides the foundation for structural studies of the domain and its interactions.
Collapse
Affiliation(s)
- Joanna R Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Darerca Owen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Helen R Mott
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
21
|
Watson JR, Owen D, Mott HR. Cdc42 in actin dynamics: An ordered pathway governed by complex equilibria and directional effector handover. Small GTPases 2016; 8:237-244. [PMID: 27715449 DOI: 10.1080/21541248.2016.1215657] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The small GTPase, Cdc42, is a key regulator of actin dynamics, functioning to connect multiple signals to actin polymerization through effector proteins of the Wiskott-Aldrich syndrome protein (WASP) and Transducer of Cdc42-dependent actin assembly (TOCA) families. WASP family members serve to couple Cdc42 with the actin nucleator, the Arp2/3 complex, via direct interactions. The regulation of these proteins in the context of actin dynamics has been extensively studied. Studies on the TOCA family, however, are more limited and relatively little is known about their roles and regulation. In this commentary we highlight new structural and biophysical insight into the involvement of TOCA proteins in the pathway of Cdc42-dependent actin dynamics. We discuss the biological implications of the low affinity interactions between the TOCA family and Cdc42, as well as probing the sequential binding of TOCA1 and the WASP homolog, N-WASP, to Cdc42. We place our current research in the context of the wealth of biophysical, structural and functional data from earlier studies pertaining to the Cdc42/N-WASP/Arp2/3 pathway of actin polymerization. Finally, we describe the molecular basis for a sequential G protein-effector handover from TOCA1 to N-WASP.
Collapse
Affiliation(s)
- Joanna R Watson
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Darerca Owen
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| | - Helen R Mott
- a Department of Biochemistry , University of Cambridge , Cambridge , UK
| |
Collapse
|
22
|
Watson JR, Fox HM, Nietlispach D, Gallop JL, Owen D, Mott HR. Investigation of the Interaction between Cdc42 and Its Effector TOCA1: HANDOVER OF Cdc42 TO THE ACTIN REGULATOR N-WASP IS FACILITATED BY DIFFERENTIAL BINDING AFFINITIES. J Biol Chem 2016; 291:13875-90. [PMID: 27129201 PMCID: PMC4919469 DOI: 10.1074/jbc.m116.724294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/23/2022] Open
Abstract
Transducer of Cdc42-dependent actin assembly protein 1 (TOCA1) is an effector of the Rho family small G protein Cdc42. It contains a membrane-deforming F-BAR domain as well as a Src homology 3 (SH3) domain and a G protein-binding homology region 1 (HR1) domain. TOCA1 binding to Cdc42 leads to actin rearrangements, which are thought to be involved in processes such as endocytosis, filopodia formation, and cell migration. We have solved the structure of the HR1 domain of TOCA1, providing the first structural data for this protein. We have found that the TOCA1 HR1, like the closely related CIP4 HR1, has interesting structural features that are not observed in other HR1 domains. We have also investigated the binding of the TOCA HR1 domain to Cdc42 and the potential ternary complex between Cdc42 and the G protein-binding regions of TOCA1 and a member of the Wiskott-Aldrich syndrome protein family, N-WASP. TOCA1 binds Cdc42 with micromolar affinity, in contrast to the nanomolar affinity of the N-WASP G protein-binding region for Cdc42. NMR experiments show that the Cdc42-binding domain from N-WASP is able to displace TOCA1 HR1 from Cdc42, whereas the N-WASP domain but not the TOCA1 HR1 domain inhibits actin polymerization. This suggests that TOCA1 binding to Cdc42 is an early step in the Cdc42-dependent pathways that govern actin dynamics, and the differential binding affinities of the effectors facilitate a handover from TOCA1 to N-WASP, which can then drive recruitment of the actin-modifying machinery.
Collapse
Affiliation(s)
- Joanna R Watson
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Helen M Fox
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and the Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Daniel Nietlispach
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Jennifer L Gallop
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and the Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Darerca Owen
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| | - Helen R Mott
- From the Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA and
| |
Collapse
|
23
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
24
|
Ouellette MH, Martin E, Lacoste-Caron G, Hamiche K, Jenna S. Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans. J Mol Cell Biol 2015; 8:313-27. [PMID: 26578656 DOI: 10.1093/jmcb/mjv062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022] Open
Abstract
Collective epithelial cell migration requires the maintenance of cell-cell junctions while enabling the generation of actin-rich protrusions at the leading edge of migrating cells. Ventral enclosure of Caenorhabditis elegans embryos depends on the collective migration of anterior-positioned leading hypodermal cells towards the ventral midline where they form new junctions with their contralateral neighbours. In this study, we characterized the zygotic function of RGA-7/SPV-1, a CDC-42/Cdc42 and RHO-1/RhoA-specific Rho GTPase-activating protein, which controls the formation of actin-rich protrusions at the leading edge of leading hypodermal cells and the formation of new junctions between contralateral cells. We show that RGA-7 controls these processes in an antagonistic manner with the CDC-42's effector WSP-1/N-WASP and the CDC-42-binding proteins TOCA-1/2/TOCA1. RGA-7 is recruited to spatially distinct locations at junctions between adjacent leading cells, where it promotes the accumulation of clusters of activated CDC-42. It also inhibits the spreading of these clusters towards the leading edge of the junctions and regulates their accumulation and distribution at new junctions formed between contralateral leading cells. Our study suggests that RGA-7 controls collective migration and junction formation between epithelial cells by spatially restricting active CDC-42 within cell-cell junctions.
Collapse
Affiliation(s)
- Marie-Hélène Ouellette
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Emmanuel Martin
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Germain Lacoste-Caron
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Karim Hamiche
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sarah Jenna
- Department of Chemistry, Pharmaqam, Biomed, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Occluding junctions of invertebrate epithelia. J Comp Physiol B 2015; 186:17-43. [DOI: 10.1007/s00360-015-0937-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/12/2015] [Accepted: 09/22/2015] [Indexed: 01/30/2023]
|
26
|
GreedyPlus: An Algorithm for the Alignment of Interface Interaction Networks. Sci Rep 2015; 5:12074. [PMID: 26165520 PMCID: PMC4499810 DOI: 10.1038/srep12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/15/2015] [Indexed: 11/08/2022] Open
Abstract
The increasing ease and accuracy of protein-protein interaction detection has resulted in the ability to map the interactomes of multiple species. We now have an opportunity to compare species to better understand how interactomes evolve. As DNA and protein sequence alignment algorithms were required for comparative genomics, network alignment algorithms are required for comparative interactomics. A number of network alignment methods have been developed for protein-protein interaction networks, where proteins are represented as vertices linked by edges if they interact. Recently, protein interactions have been mapped at the level of amino acid positions, which can be represented as an interface-interaction network (IIN), where vertices represent binding sites, such as protein domains and short sequence motifs. However, current algorithms are not designed to align these networks and generally fail to do so in practice. We present a greedy algorithm, GreedyPlus, for IIN alignment, combining data from diverse sources, including network, protein and binding site properties, to identify putative orthologous relationships between interfaces in available worm and yeast data. GreedyPlus is fast and simple, allowing for easy customization of behaviour, yet still capable of generating biologically meaningful network alignments.
Collapse
|
27
|
Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM. A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 2015; 26:2769-87. [PMID: 26063734 PMCID: PMC4571337 DOI: 10.1091/mbc.e15-04-0232] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
An alternative splice in TOCA-1 targets it to tight junctions. KO of TOCA-1 results in increased flux and decreased tight junction membrane dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction. Identification of the ZO-1/TOCA-1 complex provides insights into tight junction barrier dependence on the dynamic nature of cell–cell contacts and junctional actin. Assembly and sealing of the tight junction barrier are critically dependent on the perijunctional actin cytoskeleton, yet little is known about physical and functional links between barrier-forming proteins and actin. Here we identify a novel functional complex of the junction scaffolding protein ZO-1 and the F-BAR–domain protein TOCA-1. Using MDCK epithelial cells, we show that an alternative splice of TOCA-1 adds a PDZ-binding motif, which binds ZO-1, targeting TOCA-1 to barrier contacts. This isoform of TOCA-1 recruits the actin nucleation–promoting factor N-WASP to tight junctions. CRISPR-Cas9–mediated knockout of TOCA-1 results in increased paracellular flux and delayed recovery in a calcium switch assay. Knockout of TOCA-1 does not alter FRAP kinetics of GFP ZO-1 or occludin, but longer term (12 h) time-lapse microscopy reveals strikingly decreased tight junction membrane contact dynamics in knockout cells compared with controls. Reexpression of TOCA-1 with, but not without, the PDZ-binding motif rescues both altered flux and membrane contact dynamics. Ultrastructural analysis shows actin accumulation at the adherens junction in TOCA-1–knockout cells but unaltered freeze-fracture fibril morphology. Identification of the ZO-1/TOCA-1 complex provides novel insights into the underappreciated dependence of the barrier on the dynamic nature of cell-to-cell contacts and perijunctional actin.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Amber Jean Tietgens
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Evan Krystofiak
- Laboratory of Cell Structure and Dynamics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892
| | - James M Anderson
- Laboratory of Tight Junction Structure and Function, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
28
|
Bai Z, Grant BD. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc Natl Acad Sci U S A 2015; 112:E1443-52. [PMID: 25775511 PMCID: PMC4378436 DOI: 10.1073/pnas.1418651112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.
Collapse
Affiliation(s)
- Zhiyong Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
29
|
Chander H, Brien CD, Truesdell P, Watt K, Meens J, Schick C, Germain D, Craig AWB. Toca-1 is suppressed by p53 to limit breast cancer cell invasion and tumor metastasis. Breast Cancer Res 2014; 16:3413. [PMID: 25547174 PMCID: PMC4332744 DOI: 10.1186/s13058-014-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 12/11/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction Transducer of Cdc42-dependent actin assembly-1 (Toca-1) recruits actin regulatory proteins to invadopodia, and promotes breast tumor metastasis. Since metastatic breast tumors frequently harbor mutations in the tumor suppressor p53, we tested whether p53 regulates Toca-1 expression. Methods Normal mammary epithelial cells (HBL-100, MCF10A) and breast cancer cell lines expressing wild-type (WT) p53 (DU4475, MTLn3) were treated with camptothecin or Nutlin-3 to stabilize p53 to test effects on Toca-1 mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assays were performed to identify p53 binding site in Toca-1 gene. Stable silencing of p53 and Toca-1 were performed in MTLn3 cells to test effects on invadopodia and cell invasion in vitro, and tumor metastasis in vivo. Results We observed that breast cancer cell lines with mutant p53 have high levels of Toca-1 compared to those with WT p53. Stabilization of WT p53 led to further reduction in Toca-1 mRNA and protein levels in normal breast epithelial cells and breast cancer cells. ChIP assays revealed p53 binding within intron 2 of toca1, and reduced histone acetylation within its promoter region upon p53 upregulation or activation. Stable silencing of WT p53 in MTLn3 cells led to increased extracellular matrix degradation and cell invasion compared to control cells. Interestingly, the combined silencing of p53 and Toca-1 led to a partial rescue of these effects of p53 silencing in vitro and reduced lung metastases in mice. In human breast tumors, Toca-1 levels were high in subtypes with frequent p53 mutations, and high Toca-1 transcript levels correlated with increased risk of relapse. Conclusions Based on these findings, we conclude that loss of p53 tumor suppressor function in breast cancers leads to upregulation of Toca-1, and results in enhanced risk of developing metastatic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0503-x) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
The CDC42-Interacting Protein 4 Controls Epithelial Cell Cohesion and Tumor Dissemination. Dev Cell 2014; 30:553-68. [DOI: 10.1016/j.devcel.2014.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/17/2014] [Accepted: 08/06/2014] [Indexed: 01/14/2023]
|
31
|
Abstract
The endocytic network comprises a vast and intricate system of membrane-delimited cell entry and cargo sorting routes running between biochemically and functionally distinct intracellular compartments. The endocytic network caters to the organization and redistribution of diverse subcellular components, and mediates appropriate shuttling and processing of materials acquired from neighboring cells or the extracellular milieu. Such trafficking logistics, despite their importance, represent only one facet of endocytic function. The endocytic network also plays a key role in organizing, mediating, and regulating cellular signal transduction events. Conversely, cellular signaling processes tightly control the endocytic pathway at different steps. The present article provides a perspective on the intimate relationships that exist between particular endocytic and cellular signaling processes in mammalian cells, within the context of understanding the impact of this nexus on integrated physiology.
Collapse
Affiliation(s)
- Pier Paolo Di Fiore
- Department of Experimental Oncology, Istituto Europeo di Oncologia, 20141 Milan, Italy Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Mark von Zastrow
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94158 Department of Cellular & Molecular Pharmacology, University of California San Francisco School of Medicine, San Francisco, California 94158
| |
Collapse
|
32
|
Baxt LA, Goldberg MB. Host and bacterial proteins that repress recruitment of LC3 to Shigella early during infection. PLoS One 2014; 9:e94653. [PMID: 24722587 PMCID: PMC3983221 DOI: 10.1371/journal.pone.0094653] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Shigella spp. are intracytosolic gram-negative pathogens that cause disease by invasion and spread through the colonic mucosa, utilizing host cytoskeletal components to form propulsive actin tails. We have previously identified the host factor Toca-1 as being recruited to intracellular S. flexneri and being required for efficient bacterial actin tail formation. We show that at early times during infection (40 min.), the type three-secreted effector protein IcsB recruits Toca-1 to intracellular bacteria and that recruitment of Toca-1 is associated with repression of recruitment of LC3, as well as with repression of recruitment of the autophagy marker NDP52, around these intracellular bacteria. LC3 is best characterized as a marker of autophagosomes, but also marks phagosomal membranes in the process LC3-associated phagocytosis. IcsB has previously been demonstrated to be required for S. flexneri evasion of autophagy at late times during infection (4-6 hr) by inhibiting binding of the autophagy protein Atg5 to the Shigella surface protein IcsA (VirG). Our results suggest that IcsB and Toca-1 modulation of LC3 recruitment restricts LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants. Together with published results, our findings suggest that IcsB inhibits innate immune responses in two distinct ways, first, by inhibiting LC3-associated phagocytosis and/or LC3 recruitment to vacuolar membrane remnants early during infection, and second, by inhibiting autophagy late during infection.
Collapse
Affiliation(s)
- Leigh A. Baxt
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Van Itallie CM, Aponte A, Tietgens AJ, Gucek M, Fredriksson K, Anderson JM. The N and C termini of ZO-1 are surrounded by distinct proteins and functional protein networks. J Biol Chem 2013; 288:13775-88. [PMID: 23553632 DOI: 10.1074/jbc.m113.466193] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biotin ligase tagging with ZO-1 was applied to identify a more complete tight junction proteome. RESULTS Identical but also different proteins and functional networks were identified near the N and C ends of ZO-1. CONCLUSION The ends of ZO-1 are embedded in different functional subcompartments of the tight junction. SIGNIFICANCE Biotin tagging with ZO-1 expands the tight junction proteome and defines subcompartments of the junction. The proteins and functional protein networks of the tight junction remain incompletely defined. Among the currently known proteins are barrier-forming proteins like occludin and the claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarity proteins. To define a more complete list of proteins and infer their functional implications, we identified the proteins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C terminus, expressing these fusion proteins in Madin-Darby canine kidney epithelial cells, and purifying and identifying the resulting biotinylated proteins by mass spectrometry. Of a predicted proteome of ∼9000, we identified more than 400 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the N- and C-terminal ends. Those proximal to the N terminus were enriched in transmembrane tight junction proteins, and those proximal to the C terminus were enriched in cytoskeletal proteins. We also identified many unexpected but easily rationalized proteins and verified partial colocalization of three of these proteins with ZO-1 as examples. In addition, functional networks of interacting proteins were tagged, such as the basolateral but not apical polarity network. These results provide a rich inventory of proteins and potential novel insights into functions and protein networks that should catalyze further understanding of tight junction biology. Unexpectedly, the technique demonstrates high spatial resolution, which could be generally applied to defining other subcellular protein compartmentalization.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Patel FB, Soto MC. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 2013; 377:319-32. [PMID: 23510716 DOI: 10.1016/j.ydbio.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
Collapse
Affiliation(s)
- Falshruti B Patel
- Department of Pathology and Laboratory Medicine, UMDNJ--Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
35
|
Yan S, Lv Z, Winterhoff M, Wenzl C, Zobel T, Faix J, Bogdan S, Grosshans J. The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 2013; 126:1796-805. [PMID: 23424199 PMCID: PMC3706074 DOI: 10.1242/jcs.118422] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown. We found that the formin Diaphanous (Dia) is required for establishing and maintaining distinct lateral and basal domains during cellularization. In dia mutant embryos lateral marker proteins, such as Discs-large and Armadillo/β-Catenin spread into the basal compartment. Furthermore, high-resolution and live-imaging analysis of dia mutant embryos revealed an increased number of membrane extensions and endocytic activity at the basal domain, indicating a suppressing function of dia on membrane invaginations. Dia function might be based on an antagonistic interaction with the F-BAR protein Cip4/Toca-1, a known activator of the WASP/WAVE-Arp2/3 pathway. Dia and Cip4 physically and functionally interact and overexpression of Cip4 phenocopies dia loss-of-function. In vitro, Cip4 inhibits mainly actin nucleation by Dia. Thus, our data support a model in which linear actin filaments induced by Dia stabilize cortical compartmentalization by antagonizing membrane turnover induced by WASP/WAVE-Arp2/3.
Collapse
Affiliation(s)
- Shuling Yan
- Institut für Biochemie, Universitätsmedizin, Universität Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Calcium oscillations-coupled conversion of actin travelling waves to standing oscillations. Proc Natl Acad Sci U S A 2013; 110:1339-44. [PMID: 23297209 PMCID: PMC3557052 DOI: 10.1073/pnas.1221538110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dynamic spatial patterns of signaling factors or macromolecular assemblies in the form of oscillations or traveling waves have emerged as important themes in cell physiology. Feedback mechanisms underlying these processes and their modulation by signaling events and reciprocal cross-talks remain poorly understood. Here we show that antigen stimulation of mast cells triggers cyclic changes in the concentration of actin regulatory proteins and actin in the cell cortex that can be manifested in either spatial pattern. Recruitment of FBP17 and active Cdc42 at the plasma membrane, leading to actin polymerization, are involved in both events, whereas calcium oscillations, which correlate with global fluctuations of plasma membrane PI(4,5)P(2), are tightly linked to standing oscillations and counteract wave propagation. These findings demonstrate the occurrence of a calcium-independent oscillator that controls the collective dynamics of factors linking the actin cytoskeleton to the plasma membrane. Coupling between this oscillator and the one underlying global plasma membrane PI(4,5)P2 and calcium oscillations spatially regulates actin dynamics, revealing an unexpected pattern-rendering mechanism underlying plastic changes occurring in the cortical region of the cell.
Collapse
|
37
|
Abstract
A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans.
Collapse
|
38
|
toca-1 is in a novel pathway that functions in parallel with a SUN-KASH nuclear envelope bridge to move nuclei in Caenorhabditis elegans. Genetics 2012; 193:187-200. [PMID: 23150597 DOI: 10.1534/genetics.112.146589] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Moving the nucleus to an intracellular location is critical to many fundamental cell and developmental processes, including cell migration, differentiation, fertilization, and establishment of cellular polarity. Bridges of SUN and KASH proteins span the nuclear envelope and mediate many nuclear positioning events, but other pathways function independently through poorly characterized mechanisms. To identify and characterize novel mechanisms of nuclear migration, we conducted a nonbiased forward genetic screen for mutations that enhanced the nuclear migration defect of unc-84, which encodes a SUN protein. In Caenorhabditis elegans larvae, failure of hypodermal P-cell nuclear migration results in uncoordinated and egg-laying-defective animals. The process of P-cell nuclear migration in unc-84 null animals is temperature sensitive; at 25° migration fails in unc-84 mutants, but at 15° the migration occurs normally. We hypothesized that an additional pathway functions in parallel to the unc-84 pathway to move P-cell nuclei at 15°. In support of our hypothesis, forward genetic screens isolated eight emu (enhancer of the nuclear migration defect of unc-84) mutations that disrupt nuclear migration only in a null unc-84 background. The yc20 mutant was determined to carry a mutation in the toca-1 gene. TOCA-1 functions to move P-cell nuclei in a cell-autonomous manner. TOCA-1 is conserved in humans, where it functions to nucleate and organize actin during endocytosis. Therefore, we have uncovered a player in a previously unknown, likely actin-dependent, pathway that functions to move nuclei in parallel to SUN-KASH bridges. The other emu mutations potentially represent other components of this novel pathway.
Collapse
|
39
|
McShea MA, Schmidt KL, Dubuke ML, Baldiga CE, Sullender ME, Reis AL, Zhang S, O'Toole SM, Jeffers MC, Warden RM, Kenney AH, Gosselin J, Kuhlwein M, Hashmi SK, Stringham EG, Ryder EF. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans. Dev Biol 2012; 373:1-13. [PMID: 23022657 DOI: 10.1016/j.ydbio.2012.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
Abstract
Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information from surface guidance cues to the actin polymerization machinery, and thus to promote polarized outgrowth of axons. In C. elegans, mutations in the MRL family member gene mig-10 result in animals that have defects in axon guidance, neuronal migration, and the outgrowth of the processes or 'canals' of the excretory cell, which is required for osmoregulation in the worm. In addition, mig-10 mutant animals have recently been shown to have defects in clustering of vesicles at the synapse. To determine additional molecular partners of MIG-10, we conducted a yeast two-hybrid screen using isoform MIG-10A as bait and isolated Abelson-interactor protein-1 (ABI-1). ABI-1, a downstream target of Abl non-receptor tyrosine kinase, is a member of the WAVE regulatory complex (WRC) involved in the initiation of actin polymerization. Further analysis using a co-immunoprecipitation system confirmed the interaction of MIG-10 and ABI-1 and showed that it requires the SH3 domain of ABI-1. Single mutants for mig-10 and abi-1 displayed similar phenotypes of incomplete migration of the ALM neurons and truncated outgrowth of the excretory cell canals, suggesting that the ABI-1/MIG-10 interaction is relevant in vivo. Cell autonomous expression of MIG-10 isoforms rescued both the neuronal migration and the canal outgrowth defects, showing that MIG-10 functions autonomously in the ALM neurons and the excretory cell. These results suggest that MIG-10 and ABI-1 interact physically to promote cell migration and process outgrowth in vivo. In the excretory canal, ABI-1 is thought to act downstream of UNC-53/NAV2, linking this large scaffolding protein to actin polymerization during excretory canal outgrowth. abi-1(RNAi) enhanced the excretory canal truncation observed in mig-10 mutants, while double mutant analysis between unc-53 and mig-10 showed no increased truncation of the posterior canal beyond that observed in mig-10 mutants. Morphological analysis of mig-10 and unc-53 mutants showed that these genes regulate canal diameter as well as its length, suggesting that defective lumen formation may be linked to the ability of the excretory canal to grow out longitudinally. Taken together, our results suggest that MIG-10, UNC-53, and ABI-1 act sequentially to mediate excretory cell process outgrowth.
Collapse
Affiliation(s)
- Molly A McShea
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chander H, Truesdell P, Meens J, Craig AWB. Transducer of Cdc42-dependent actin assembly promotes breast cancer invasion and metastasis. Oncogene 2012; 32:3080-90. [DOI: 10.1038/onc.2012.317] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Loveless T, Hardin J. Cadherin complexity: recent insights into cadherin superfamily function in C. elegans. Curr Opin Cell Biol 2012; 24:695-701. [PMID: 22819515 DOI: 10.1016/j.ceb.2012.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
Cadherin superfamily proteins mediate cell-cell adhesion during development. The C. elegans embryo is a powerful system for analyzing how cadherins function in highly stereotyped morphogenetic events. In the embryo, the classical cadherin HMR-1 acts along with the Rac pathway and SAX-7/L1CAM during gastrulation. As adherens junctions mature, PAR complex proteins differentially regulate cadherin complex localization, and SRGP-1/Slit/Robo GAP aids adhesion by promoting membrane bending. Once adherens junctions form, actin is linked to the cell surface via HMP-1/α-catenin, whose actin binding activity is regulated in novel ways. FMI-1/Flamingo and CDH-4/Fat-like regulate axonal morphology of both pioneer and follower neurons. C. elegans thus continues to be useful for uncovering precise functions for cadherin superfamily proteins and their associates in a simple metazoan.
Collapse
Affiliation(s)
- Timothy Loveless
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Abstract
Caenorhabditis elegans provides a simplified, in vivo model system in which to study adherens junctions (AJs) and their role in morphogenesis. The core AJ components-HMR-1/E-cadherin, HMP-2/β-catenin and HMP-1/α-catenin-were initially identified through genetic screens for mutants with body axis elongation defects. In early embryos, AJ proteins are found at sites of contact between blastomeres, and in epithelial cells AJ proteins localize to the multifaceted apical junction (CeAJ)-a single structure that combines the adhesive and barrier functions of vertebrate adherens and tight junctions. The apically localized polarity proteins PAR-3 and PAR-6 mediate formation and maturation of junctions, while the basolaterally localized regulator LET-413/Scribble ensures that junctions remain apically positioned. AJs promote robust adhesion between epithelial cells and provide mechanical resistance for the physical strains of morphogenesis. However, in contrast to vertebrates, C. elegans AJ proteins are not essential for general cell adhesion or for epithelial cell polarization. A combination of conserved and novel proteins localizes to the CeAJ and works together with AJ proteins to mediate adhesion.
Collapse
|
43
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
44
|
Ahmed S, Bu W, Lee RTC, Maurer-Stroh S, Goh WI. F-BAR domain proteins: Families and function. Commun Integr Biol 2011; 3:116-21. [PMID: 20585502 DOI: 10.4161/cib.3.2.10808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
The F-BAR domain is emerging as an important player in membrane remodeling pathways. F-BAR domain proteins couple membrane remodeling with actin dynamics associated with endocytic pathways and filopodium formation. Here, we provide a comprehensive analysis of F-BAR domain proteins in terms of their evolutionary relationships and protein function. F-BAR domain containing proteins can be categorized into five subfamilies based on their phylogeny which is consistent with the additional protein domains they possess, for example, RhoGAP domains, Cdc42 binding sites, SH3 domains and tyrosine kinase domains. We derive a protein-protein interaction network suggesting that dynamin1/2, N-WASP, Huntingtin, intersectin and Cdc42 are central nodes influencing F-BAR domain protein function.
Collapse
|
45
|
Fricke R, Gohl C, Bogdan S. The F-BAR protein family Actin' on the membrane. Commun Integr Biol 2011; 3:89-94. [PMID: 20585497 DOI: 10.4161/cib.3.2.10521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022] Open
Abstract
A tight spatio-temporal coordination of the machineries controlling actin dynamics and membrane remodelling is crucial for a huge variety of cellular processes that shape cells into a multicellular organism. Dynamic membrane remodelling is achieved by a functional relationship between proteins that control plasma membrane curvature, membrane fission and nucleation of new actin filaments. The BAR/F-BAR-domain-containing proteins are prime candidates to couple plasma membrane curvature and actin dynamics in different morphogenetic processes. Here, we discuss recent findings on the membrane-shaping proteins of the F-BAR domain subfamily and how they regulate morphogenetic processes in vivo.
Collapse
Affiliation(s)
- Robert Fricke
- Institut für Neurobiologie; Wilhelms-University; Münster; Münster, Germany
| | | | | |
Collapse
|
46
|
Bernadskaya YY, Patel FB, Hsu HT, Soto MC. Arp2/3 promotes junction formation and maintenance in the Caenorhabditis elegans intestine by regulating membrane association of apical proteins. Mol Biol Cell 2011; 22:2886-99. [PMID: 21697505 PMCID: PMC3154884 DOI: 10.1091/mbc.e10-10-0862] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that Arp2/3, which promotes nucleation of branched actin, is needed for epithelial junction initiation but is less important as junctions mature. We focus here on how Arp2/3 contributes to the Caenorhabditis elegans intestinal epithelium and find important roles for Arp2/3 in the maturation and maintenance of junctions in embryos and adults. Electron microscope studies show that embryos depleted of Arp2/3 form apical actin-rich microvilli and electron-dense apical junctions. However, whereas apical/basal polarity initiates, apical maturation is defective, including decreased apical F-actin enrichment, aberrant lumen morphology, and reduced accumulation of some apical junctional proteins, including DLG-1. Depletion of Arp2/3 in adult animals leads to similar intestinal defects. The DLG-1/AJM-1 apical junction proteins, and the ezrin-radixin-moesin homologue ERM-1, a protein that connects F-actin to membranes, are required along with Arp2/3 for apical F-actin enrichment in embryos, whereas cadherin junction proteins are not. Arp2/3 affects the subcellular distribution of DLG-1 and ERM-1. Loss of Arp2/3 shifts both ERM-1 and DLG-1 from pellet fractions to supernatant fractions, suggesting a role for Arp2/3 in the distribution of membrane-associated proteins. Thus, Arp2/3 is required as junctions mature to maintain apical proteins associated with the correct membranes.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
47
|
Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. ACTA ACUST UNITED AC 2011; 192:907-17. [PMID: 21422226 PMCID: PMC3063136 DOI: 10.1083/jcb.201009141] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The epithelial cadherin (E-cadherin)–catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell’s apical–basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling.
Collapse
Affiliation(s)
- Buzz Baum
- University College London, London WC1E 6BT, England, UK
| | | |
Collapse
|
48
|
Hu J, Mukhopadhyay A, Craig AWB. Transducer of Cdc42-dependent actin assembly promotes epidermal growth factor-induced cell motility and invasiveness. J Biol Chem 2010; 286:2261-72. [PMID: 21062739 DOI: 10.1074/jbc.m110.157974] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Toca-1 (transducer of Cdc42-dependent actin assembly) interacts with the Cdc42·N-WASP and Abi1·Rac·WAVE F-actin branching pathways that function in lamellipodia formation and cell motility. However, the potential role of Toca-1 in these processes has not been reported. Here, we show that epidermal growth factor (EGF) induces Toca-1 localization to lamellipodia, where it co-localizes with F-actin and Arp2/3 complex in A431 epidermoid carcinoma cells. EGF also induces tyrosine phosphorylation of Toca-1 and interactions with N-WASP and Abi1. Stable knockdown of Toca-1 expression by RNA interference has no effect on cell growth, EGF receptor expression, or internalization. However, Toca-1 knockdown cells display defects in EGF-induced filopodia and lamellipodial protrusions compared with control cells. Further analyses reveal a role for Toca-1 in localization of Arp2/3 and Abi1 to lamellipodia. Toca-1 knockdown cells also display a significant defect in EGF-induced motility and invasiveness. Taken together, these results implicate Toca-1 in coordinating actin assembly within filopodia and lamellipodia to promote EGF-induced cell migration and invasion.
Collapse
Affiliation(s)
- Jinghui Hu
- Department of Biochemistry and the Cancer Biology and Genetics Division, Queen's University Cancer Research Institute, Queen's University Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
49
|
Pichot CS, Arvanitis C, Hartig SM, Jensen SA, Bechill J, Marzouk S, Yu J, Frost JA, Corey SJ. Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 2010; 70:8347-56. [PMID: 20940394 DOI: 10.1158/0008-5472.can-09-4149] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison with weakly or noninvasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was epidermal growth factor responsive, and CIP4 silencing by small interfering RNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion.
Collapse
Affiliation(s)
- Christina S Pichot
- Integrative Biology and Pharmacology, University of Texas Health Science Center, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu M, Huang B, Graham M, Raimondi A, Heuser JE, Zhuang X, De Camilli P. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat Cell Biol 2010; 12:902-8. [PMID: 20729836 PMCID: PMC3338250 DOI: 10.1038/ncb2094] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 07/29/2010] [Indexed: 12/30/2022]
Abstract
Cell-free reconstitution of membrane traffic reactions and the morphological characterization of membrane intermediates that accumulate under these conditions have helped to elucidate the physical and molecular mechanisms involved in membrane transport. To gain a better understanding of endocytosis, we have reconstituted vesicle budding and fission from isolated plasma membrane sheets and imaged these events. Electron and fluorescence microscopy, including subdiffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), revealed F-BAR (FBP17) domain coated tubules nucleated by clathrin-coated buds when fission was blocked by GTPgammaS. Triggering fission by replacing GTPgammaS with GTP led not only to separation of clathrin-coated buds, but also to vesicle formation by fragmentation of the tubules. These results suggest a functional link between FBP17-dependent membrane tubulation and clathrin-dependent budding. They also show that clathrin spatially directs plasma membrane invaginations that lead to the generation of endocytic vesicles larger than those enclosed by the coat.
Collapse
MESH Headings
- Actins/antagonists & inhibitors
- Acyltransferases/metabolism
- Adenosine Triphosphate/pharmacology
- Animals
- Antibodies/immunology
- Antibodies/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cattle
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/physiology
- Cell Membrane/ultrastructure
- Cell Membrane Structures/drug effects
- Cell Membrane Structures/physiology
- Cell Membrane Structures/ultrastructure
- Cell-Free System/drug effects
- Cell-Free System/physiology
- Clathrin/immunology
- Clathrin/metabolism
- Coated Pits, Cell-Membrane/drug effects
- Coated Pits, Cell-Membrane/physiology
- Coated Pits, Cell-Membrane/ultrastructure
- Cytosol/metabolism
- Dynamins/metabolism
- Endocytosis/drug effects
- Endocytosis/physiology
- Fatty Acid-Binding Proteins
- Fibroblasts
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Guanosine Triphosphate/pharmacology
- Humans
- Imaging, Three-Dimensional/methods
- Mice
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Models, Biological
- Potoroidae
- Rats
- Receptors, Transferrin/metabolism
- Thiazolidines/pharmacology
Collapse
Affiliation(s)
- Min Wu
- Howard Hughes Medical Institute; Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Bo Huang
- Howard Hughes Medical Institute; Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA
| | - Morven Graham
- Department of Cell Biology, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrea Raimondi
- Howard Hughes Medical Institute; Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - John E. Heuser
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute; Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA
- Department of Physics, Harvard University, Cambridge MA 02138, USA
| | - Pietro De Camilli
- Howard Hughes Medical Institute; Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neurobiology, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|