1
|
Xiao X, Kong L, Xie Z, Liu H, Cai L, Zhao S, Zhou J, Liu S, Wu J, Wu Y, Wu P, James AA, Chen XG. miR-2940-1 is involved in the circadian regulation of oviposition in Aedes albopictus. INSECT SCIENCE 2025; 32:69-79. [PMID: 38556782 PMCID: PMC11439969 DOI: 10.1111/1744-7917.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijun Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiming Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peilin Wu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California, Irvine CA 92697-4025, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine CA 92697-3900, USA
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022; 32:1895-1908.e5. [PMID: 35303417 PMCID: PMC9090989 DOI: 10.1016/j.cub.2022.02.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
A precise balance between sleep and wakefulness is essential to sustain a good quality of life and optimal brain function. GABA is known to play a key and conserved role in sleep control, and GABAergic tone should, therefore, be tightly controlled in sleep circuits. Here, we examined the role of the astrocytic GABA transporter (GAT) in sleep regulation using Drosophila melanogaster. We found that a hypomorphic gat mutation (gat33-1) increased sleep amount, decreased sleep latency, and increased sleep consolidation at night. Interestingly, sleep defects were suppressed when gat33-1 was combined with a mutation disrupting wide-awake (wake), a gene that regulates the cell-surface levels of the GABAA receptor resistance to dieldrin (RDL) in the wake-promoting large ventral lateral neurons (l-LNvs). Moreover, RNAi knockdown of rdl and its modulators dnlg4 and wake in these circadian neurons also suppressed gat33-1 sleep phenotypes. Brain immunohistochemistry showed that GAT-expressing astrocytes were located near RDL-positive l-LNv cell bodies and dendritic processes. We concluded that astrocytic GAT decreases GABAergic tone and RDL activation in arousal-promoting LNvs, thus determining proper sleep amount and quality in Drosophila.
Collapse
Affiliation(s)
- Ratna Chaturvedi
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tobias Stork
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Coll-Tané M, Gong NN, Belfer SJ, van Renssen LV, Kurtz-Nelson EC, Szuperak M, Eidhof I, van Reijmersdal B, Terwindt I, Durkin J, Verheij MMM, Kim CN, Hudac CM, Nowakowski TJ, Bernier RA, Pillen S, Earl RK, Eichler EE, Kleefstra T, Kayser MS, Schenck A. The CHD8/CHD7/Kismet family links blood-brain barrier glia and serotonin to ASD-associated sleep defects. SCIENCE ADVANCES 2021; 7:eabe2626. [PMID: 34088660 PMCID: PMC8177706 DOI: 10.1126/sciadv.abe2626] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/19/2021] [Indexed: 05/11/2023]
Abstract
Sleep disturbances in autism and neurodevelopmental disorders are common and adversely affect patient's quality of life, yet the underlying mechanisms are understudied. We found that individuals with mutations in CHD8, among the highest-confidence autism risk genes, or CHD7 suffer from disturbed sleep maintenance. These defects are recapitulated in Drosophila mutants affecting kismet, the sole CHD8/CHD7 ortholog. We show that Kismet is required in glia for early developmental and adult sleep architecture. This role localizes to subperineurial glia constituting the blood-brain barrier. We demonstrate that Kismet-related sleep disturbances are caused by high serotonin during development, paralleling a well-established but genetically unsolved autism endophenotype. Despite their developmental origin, Kismet's sleep architecture defects can be reversed in adulthood by a behavioral regime resembling human sleep restriction therapy. Our findings provide fundamental insights into glial regulation of sleep and propose a causal mechanistic link between the CHD8/CHD7/Kismet family, developmental hyperserotonemia, and autism-associated sleep disturbances.
Collapse
Affiliation(s)
- Mireia Coll-Tané
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| | - Naihua N Gong
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel J Belfer
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lara V van Renssen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | | | - Milan Szuperak
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Isabel Terwindt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Jaclyn Durkin
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, Netherlands
| | - Chang N Kim
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Caitlin M Hudac
- Center for Youth Development and Intervention and Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tomasz J Nowakowski
- Departments of Anatomy and Psychiatry, University of California, San Francisco, CA 94143 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Sigrid Pillen
- Center for Sleep Medicine, Kempenhaeghe, Heeze, Netherlands
| | - Rachel K Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98185, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands
| | - Matthew S Kayser
- Departments of Psychiatry and Neuroscience, Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, 6525 GA, Nijmegen, Netherlands.
| |
Collapse
|
4
|
George R, Stanewsky R. Peripheral Sensory Organs Contribute to Temperature Synchronization of the Circadian Clock in Drosophila melanogaster. Front Physiol 2021; 12:622545. [PMID: 33603678 PMCID: PMC7884628 DOI: 10.3389/fphys.2021.622545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks are cell-autonomous endogenous oscillators, generated and maintained by self-sustained 24-h rhythms of clock gene expression. In the fruit fly Drosophila melanogaster, these daily rhythms of gene expression regulate the activity of approximately 150 clock neurons in the fly brain, which are responsible for driving the daily rest/activity cycles of these insects. Despite their endogenous character, circadian clocks communicate with the environment in order to synchronize their self-sustained molecular oscillations and neuronal activity rhythms (internal time) with the daily changes of light and temperature dictated by the Earth's rotation around its axis (external time). Light and temperature changes are reliable time cues (Zeitgeber) used by many organisms to synchronize their circadian clock to the external time. In Drosophila, both light and temperature fluctuations robustly synchronize the circadian clock in the absence of the other Zeitgeber. The complex mechanisms for synchronization to the daily light-dark cycles are understood with impressive detail. In contrast, our knowledge about how the daily temperature fluctuations synchronize the fly clock is rather limited. Whereas light synchronization relies on peripheral and clock-cell autonomous photoreceptors, temperature input to the clock appears to rely mainly on sensory cells located in the peripheral nervous system of the fly. Recent studies suggest that sensory structures located in body and head appendages are able to detect temperature fluctuations and to signal this information to the brain clock. This review will summarize these studies and their implications about the mechanisms underlying temperature synchronization.
Collapse
Affiliation(s)
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
5
|
Molecular Regulation of Circadian Chromatin. J Mol Biol 2020; 432:3466-3482. [PMID: 31954735 DOI: 10.1016/j.jmb.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.
Collapse
|
6
|
de Azevedo RVDM, Hansen C, Chen KF, Rosato E, Kyriacou CP. Disrupted Glutamate Signaling in Drosophila Generates Locomotor Rhythms in Constant Light. Front Physiol 2020; 11:145. [PMID: 32210832 PMCID: PMC7069353 DOI: 10.3389/fphys.2020.00145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/11/2020] [Indexed: 01/23/2023] Open
Abstract
We have used the Cambridge Protein Trap resource (CPTI) to screen for flies whose locomotor rhythms are rhythmic in constant light (LL) as a means of identifying circadian photoreception genes. From the screen of ∼150 CPTI lines, we obtained seven hits, two of which targeted the glutamate pathway, Got1 (Glutamate oxaloacetate transaminase 1) and Gs2 (Glutamine synthetase 2). We focused on these by employing available mutants and observed that variants of these genes also showed high levels of LL rhythmicity compared with controls. It was also clear that the genetic background was important with a strong interaction observed with the common and naturally occurring timeless (tim) polymorphisms, ls-tim and s-tim. The less circadian photosensitive ls-tim allele generated high levels of LL rhythmicity in combination with Got1 or Gs2, even though ls-tim and s-tim alleles do not, by themselves, generate the LL phenotype. The use of dsRNAi for both genes as well as for Gad (Glutamic acid decarboxylase) and the metabotropic glutamate receptor DmGluRA driven by clock gene promoters also revealed high levels of LL rhythmicity compared to controls. It is clear that the glutamate pathway is heavily implicated in circadian photoreception. TIM levels in Got1 and Gs2 mutants cycled and were more abundant than in controls under LL. Got1 but not Gs2 mutants showed diminished phase shifts to 10 min light pulses. Neurogenetic dissection of the LL rhythmic phenotype using the gal4/gal80 UAS bipartite system suggested that the more dorsal CRY-negative clock neurons, DNs and LNds were responsible for the LL phenotype. Immunocytochemistry using the CPTI YFP tagged insertions for the two genes revealed that the DN1s but not the DN2 and DN3s expressed Got1 and Gs2, but expression was also observed in the lateral neurons, the LNds and s-LNvs. Expression of both genes was also found in neuroglia. However, downregulation of glial Gs2 and Got1 using repo-gal4 did not generate high levels of LL rhythmicity, so it is unlikely that this phenotype is mediated by glial expression. Our results suggest a model whereby the DN1s and possibly CRY-negative LNds use glutamate signaling to supress the pacemaker s-LNvs in LL.
Collapse
Affiliation(s)
| | - Celia Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ko-Fan Chen
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Gervais L, van den Beek M, Josserand M, Sallé J, Stefanutti M, Perdigoto CN, Skorski P, Mazouni K, Marshall OJ, Brand AH, Schweisguth F, Bardin AJ. Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4. Dev Cell 2020; 49:556-573.e6. [PMID: 31112698 PMCID: PMC6547167 DOI: 10.1016/j.devcel.2019.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Chromatin remodeling accompanies differentiation, however, its role in self-renewal is less well understood. We report that in Drosophila, the chromatin remodeler Kismet/CHD7/CHD8 limits intestinal stem cell (ISC) number and proliferation without affecting differentiation. Stem-cell-specific whole-genome profiling of Kismet revealed its enrichment at transcriptionally active regions bound by RNA polymerase II and Brahma, its recruitment to the transcription start site of activated genes and developmental enhancers and its depletion from regions bound by Polycomb, Histone H1, and heterochromatin Protein 1. We demonstrate that the Trithorax-related/MLL3/4 chromatin modifier regulates ISC proliferation, colocalizes extensively with Kismet throughout the ISC genome, and co-regulates genes in ISCs, including Cbl, a negative regulator of Epidermal Growth Factor Receptor (EGFR). Loss of kismet or trr leads to elevated levels of EGFR protein and signaling, thereby promoting ISC self-renewal. We propose that Kismet with Trr establishes a chromatin state that limits EGFR proliferative signaling, preventing tumor-like stem cell overgrowths. Chromatin modifiers Kismet and Trr limit intestinal stem cell proliferation Kismet and Trr colocalize at transcriptionally active regions and co-regulate genes EGFR negative regulator Cbl is a target gene of Kismet and Trr Kismet and Trr limit EGFR signaling in ISCs, preventing tumor-like ISC accumulation
Collapse
Affiliation(s)
- Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France.
| | - Marius van den Beek
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Manon Josserand
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Jérémy Sallé
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Carolina N Perdigoto
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Patricia Skorski
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
| | - Khallil Mazouni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris 75015, France; CNRS, URA2578, Rue du Dr Roux, Paris 75015, France
| | - Owen J Marshall
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK; Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street Hobart, Tasmania, 7000, Australia
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Paris 75015, France; CNRS, URA2578, Rue du Dr Roux, Paris 75015, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, Paris, France; Sorbonne Universités, UPMC Univ Paris 6, Paris, France.
| |
Collapse
|
8
|
Foley LE, Ling J, Joshi R, Evantal N, Kadener S, Emery P. Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing. eLife 2019; 8:50063. [PMID: 31702555 PMCID: PMC6890465 DOI: 10.7554/elife.50063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022] Open
Abstract
The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.
Collapse
Affiliation(s)
- Lauren E Foley
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Jinli Ling
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Radhika Joshi
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | | | - Sebastian Kadener
- Hebrew University of Jerusalem, Jerusalem, Israel.,Brandeis University, Waltham, United States
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
9
|
Splice variants of DOMINO control Drosophila circadian behavior and pacemaker neuron maintenance. PLoS Genet 2019; 15:e1008474. [PMID: 31658266 PMCID: PMC6837581 DOI: 10.1371/journal.pgen.1008474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/07/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Circadian clocks control daily rhythms in behavior and physiology. In Drosophila, the small ventral lateral neurons (sLNvs) expressing PIGMENT DISPERSING FACTOR (PDF) are the master pacemaker neurons generating locomotor rhythms. Despite the importance of sLNvs and PDF in circadian behavior, little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identify the Drosophila SWI2/SNF2 protein DOMINO (DOM) as a key regulator of circadian behavior. Depletion of DOM in circadian neurons eliminates morning anticipatory activity under light dark cycle and impairs behavioral rhythmicity in constant darkness. Interestingly, the two major splice variants of DOM, DOM-A and DOM-B have distinct circadian functions. DOM-A depletion mainly leads to arrhythmic behavior, while DOM-B knockdown lengthens circadian period without affecting the circadian rhythmicity. Both DOM-A and DOM-B bind to the promoter regions of key pacemaker genes period and timeless, and regulate their protein expression. However, we identify that only DOM-A is required for the maintenance of sLNvs and transcription of pdf. Lastly, constitutive activation of PDF-receptor signaling rescued the arrhythmia and period lengthening of DOM downregulation. Taken together, our findings reveal that two splice variants of DOM play distinct roles in circadian rhythms through regulating abundance of pacemaker proteins and sLNvs maintenance. Circadian rhythms are critical for timing of animal bodily functions. In flies, sLNvs are the master pacemaker neurons regulating locomotor rhythms, which release the neuropeptide PDF. Little is known about factors that control sLNvs maintenance and PDF accumulation. Here, we identified the Drosophila chromatin remodeler DOMINO (DOM) as a new regulator of circadian behavior. Depletion of DOM in circadian neurons impaired behavioral rhythmicity in constant darkness. Interestingly, two splice variants of DOM have distinct functions. DOM-A depletion mainly led to arrhythmia, while DOM-B knockdown lengthened circadian period. Furthermore, we found DOM-A is critical for the maintenance of sLNvs and transcription of pdf. Our findings reveal that DOM splice variants play distinct roles in rhythms through different mechanisms.
Collapse
|
10
|
Raphael KA, Sved JA, Pearce S, Oakeshott JG, Gilchrist AS, Sherwin WB, Frommer M. Differences in gene regulation in a tephritid model of prezygotic reproductive isolation. INSECT MOLECULAR BIOLOGY 2019; 28:689-702. [PMID: 30955213 DOI: 10.1111/imb.12583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The two tephritid fruit fly pests, Bactrocera tryoni and Bactrocera neohumeralis, are unusually well suited to the study of the genetics of reproductive isolating mechanisms. Sequence difference between the species is no greater than between a pair of conspecific Drosophila melanogaster populations. The two species exist in close sympatry, yet do not hybridize in the field, apparently kept separate by a strong premating isolation mechanism involving the time of day at which mating occurs. This spurred us to search for key genes for which time of day expression is regulated differently between the species. Using replicated, quantitative transcriptomes from head tissues of males of the two species, sampled in the day and night, we identified 141 transcripts whose abundance showed a significant interaction between species and time of day, indicating a difference in gene regulation. The brain transcripts showing this interaction were enriched for genes with a neurone function and 90% of these were more abundant at night than day in B. tryoni. Features of the expression patterns suggest that there may be a difference in the regulation of sleep-wake cycles between the species. In particular several genes, which in D. melanogaster are expressed in circadian pacemaker cells, are promising candidates to further explore the genetic differentiation involved in this prezygotic reproductive isolation mechanism.
Collapse
Affiliation(s)
- K A Raphael
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - J A Sved
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - S Pearce
- CSIRO Land & Water Flagship, Canberra, ACT, Australia
| | - J G Oakeshott
- CSIRO Land & Water Flagship, Canberra, ACT, Australia
| | - A S Gilchrist
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - W B Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - M Frommer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
11
|
Neural Network Interactions Modulate CRY-Dependent Photoresponses in Drosophila. J Neurosci 2018; 38:6161-6171. [PMID: 29875268 DOI: 10.1523/jneurosci.2259-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Light is one of the chief environmental cues that reset circadian clocks. In Drosophila, CRYPTOCHROME (CRY) mediates acute photic resetting of circadian clocks by promoting the degradation of TIMELESS in a cell-autonomous manner. Thus, even circadian oscillators in peripheral organs can independently perceive light in Drosophila However, there is substantial evidence for nonautonomous mechanisms of circadian photoreception in the brain. We have previously shown that the morning (M) and evening (E) oscillators are critical light-sensing neurons that cooperate to shift the phase of circadian behavior in response to light input. We show here that light can efficiently phase delay or phase advance circadian locomotor behavior in male Drosophila even when either the M- or the E-oscillators are ablated, suggesting that behavioral phase shifts and their directionality are largely a consequence of the cell-autonomous nature of CRY-dependent photoreception. Our observation that the phase response curves of brain and peripheral oscillators are remarkably similar further supports this idea. Nevertheless, the neural network modulates circadian photoresponses. We show that the M-oscillator neurotransmitter pigment dispersing factor plays a critical role in the coordination between M- and E-oscillators after light exposure, and we uncover a potential role for a subset of dorsal neurons in the control of phase advances. Thus, neural modulation of autonomous light detection might play an important role in the plasticity of circadian behavior.SIGNIFICANCE STATEMENT Input pathways provide circadian rhythms with the flexibility needed to harmonize their phase with environmental cycles. Light is the chief environmental cue that synchronizes circadian clocks. In Drosophila, the photoreceptor CRYPTOCHROME resets circadian clocks cell-autonomously. However, recent studies indicate that, in the brain, interactions between clock neurons are critical to reset circadian locomotor behavior. We present evidence supporting the idea that the ability of flies to advance or delay their rhythmic behavior in response to light input essentially results from cell-autonomous photoreception. However, because of their networked organization, we find that circadian neurons have to cooperate to reset the phase of circadian behavior in response to photic cues. Our work thus helps to reconcile cell-autonomous and non-cell-autonomous models of circadian entrainment.
Collapse
|
12
|
Latcheva NK, Viveiros JM, Waddell EA, Nguyen PTT, Liebl FLW, Marenda DR. Epigenetic crosstalk: Pharmacological inhibition of HDACs can rescue defective synaptic morphology and neurotransmission phenotypes associated with loss of the chromatin reader Kismet. Mol Cell Neurosci 2017; 87:77-85. [PMID: 29249293 DOI: 10.1016/j.mcn.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022] Open
Abstract
We are beginning to appreciate the complex mechanisms by which epigenetic proteins control chromatin dynamics to tightly regulate normal development. However, the interaction between these proteins, particularly in the context of neuronal function, remains poorly understood. Here, we demonstrate that the activity of histone deacetylases (HDACs) opposes that of a chromatin remodeling enzyme at the Drosophila neuromuscular junction (NMJ). Pharmacological inhibition of HDAC function reverses loss of function phenotypes associated with Kismet, a chromodomain helicase DNA-binding (CHD) protein. Inhibition of HDACs suppresses motor deficits, overgrowth of the NMJ, and defective neurotransmission associated with loss of Kismet. We hypothesize that Kismet and HDACs may converge on a similar set of target genes in the nervous system. Our results provide further understanding into the complex interactions between epigenetic protein function in vivo.
Collapse
Affiliation(s)
- Nina K Latcheva
- Department of Biology, Drexel University, Philadelphia, PA, United States; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, United States
| | | | - Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Phuong T T Nguyen
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA, United States; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Dove AE, Cook BL, Irgebay Z, Vecsey CG. Mechanisms of sleep plasticity due to sexual experience in Drosophila melanogaster. Physiol Behav 2017; 180:146-158. [PMID: 28851647 DOI: 10.1016/j.physbeh.2017.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 10/19/2022]
Abstract
Sleep can be altered by an organism's previous experience. For instance, female Drosophila melanogaster experience a post-mating reduction in daytime sleep that is purportedly mediated by sex peptide (SP), one of many seminal fluid proteins (SFPs) transferred from male to female during mating. In the present study, we first characterized this mating effect on sleep more fully, as it had previously only been tested in young flies under 12h light/12h dark conditions. We found that mating reduced sleep equivalently in 3-day-old or 14-day-old females, and could even occur in females who had been mated previously, suggesting that there is not a developmental critical period for the suppression of sleep by mating. In conditions of constant darkness, circadian rhythms were not affected by prior mating. In either constant darkness or constant light, the sleep reduction due to mating was no longer confined to the subjective day but could be observed throughout the 24-hour period. This suggests that the endogenous clock may dictate the timing of when the mating effect on sleep is expressed. We recently reported that genetic elimination of SP only partially blocked the post-mating female siesta sleep reduction, suggesting that the effect was unlikely to be governed solely by SP. We found here that the daytime sleep reduction was also reduced but not eliminated in females mated to mutant males lacking the vast majority of SFPs. This suggested that SFPs other than SP play a minimal role in the mating effect on sleep, and that additional non-SFP signals from the male might be involved. Males lacking sperm were able to induce a normal initial mating effect on female sleep, although the effect declined more rapidly in these females. This result indicated that neither the presence of sperm within the female reproductive tract nor female impregnation are required for the initial mating effect on sleep to occur, although sperm may serve to prolong the effect. Finally, we tested for contributions from other aspects of the mating experience. NorpA and eya2 mutants with disrupted vision showed normal mating effects on sleep. By separating males from females with a mesh, we found that visual and olfactory stimuli from male exposure, in the absence of physical contact, could not replicate the mating effect. Further, in ken/barbie male flies lacking external genitalia, courtship and physical contact without ejaculation were also unable to replicate the mating effect. These findings confirmed that the influence of mating on sleep does in fact require male/female contact including copulation, but may not be mediated exclusively by SP transfer.
Collapse
Affiliation(s)
- Abigail E Dove
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Brianne L Cook
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States
| | - Zhazira Irgebay
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States
| | - Christopher G Vecsey
- Biology Department, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, United States; Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States.
| |
Collapse
|
14
|
Hamada Y, Tokuoka A, Bando T, Ohuchi H, Tomioka K. Enhancer of zeste plays an important role in photoperiodic modulation of locomotor rhythm in the cricket, Gryllus bimaculatus. ZOOLOGICAL LETTERS 2016; 2:5. [PMID: 26998345 PMCID: PMC4799529 DOI: 10.1186/s40851-016-0042-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Insects show daily behavioral rhythms controlled by an endogenous oscillator, the circadian clock. The rhythm synchronizes to daily light-dark cycles (LD) and changes waveform in association with seasonal change in photoperiod. RESULTS To explore the molecular basis of the photoperiod-dependent changes in circadian locomotor rhythm, we investigated the role of a chromatin modifier, Enhancer of zeste (Gb'E(z)), in the cricket, Gryllus bimaculatus. Under a 12 h:12 h LD (LD 12:12), Gb'E(z) was constitutively expressed in the optic lobe, the site of the biological clock; active phase (α) and rest phase (ρ) were approximately 12 h in duration, and α/ρ ratio was approximately 1.0. When transferred to LD 20:4, the α/ρ ratio decreased significantly, and the Gb'E(z) expression level was significantly reduced at 6 h and 10 h after light-on, as was reflected in the reduced level of trimethylation of histone H3 lysine 27. This change was associated with change in clock gene expression profiles. The photoperiod-dependent changes in α/ρ ratio and clock gene expression profiles were prevented by knocking down Gb'E(z) by RNAi. CONCLUSIONS These results suggest that histone modification by Gb'E(z) is involved in photoperiodic modulation of the G. bimaculatus circadian rhythm.
Collapse
Affiliation(s)
- Yoshimasa Hamada
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - Atsushi Tokuoka
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| | - Tetsuya Bando
- />Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558 Japan
| | - Hideyo Ohuchi
- />Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558 Japan
| | - Kenji Tomioka
- />Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530 Japan
| |
Collapse
|
15
|
Fischer R, Helfrich-Förster C, Peschel N. GSK-3 Beta Does Not Stabilize Cryptochrome in the Circadian Clock of Drosophila. PLoS One 2016; 11:e0146571. [PMID: 26741981 PMCID: PMC4704813 DOI: 10.1371/journal.pone.0146571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022] Open
Abstract
Cryptochrome (CRY) is the primary photoreceptor of Drosophila’s circadian clock. It resets the circadian clock by promoting light-induced degradation of the clock protein Timeless (TIM) in the proteasome. Under constant light, the clock stops because TIM is absent, and the flies become arrhythmic. In addition to TIM degradation, light also induces CRY degradation. This depends on the interaction of CRY with several proteins such as the E3 ubiquitin ligases Jetlag (JET) and Ramshackle (BRWD3). However, CRY can seemingly also be stabilized by interaction with the kinase Shaggy (SGG), the GSK-3 beta fly orthologue. Consequently, flies with SGG overexpression in certain dorsal clock neurons are reported to remain rhythmic under constant light. We were interested in the interaction between CRY, Ramshackle and SGG and started to perform protein interaction studies in S2 cells. To our surprise, we were not able to replicate the results, that SGG overexpression does stabilize CRY, neither in S2 cells nor in the relevant clock neurons. SGG rather does the contrary. Furthermore, flies with SGG overexpression in the dorsal clock neurons became arrhythmic as did wild-type flies. Nevertheless, we could reproduce the published interaction of SGG with TIM, since flies with SGG overexpression in the lateral clock neurons shortened their free-running period. We conclude that SGG does not directly interact with CRY but rather with TIM. Furthermore we could demonstrate, that an unspecific antibody explains the observed stabilization effects on CRY.
Collapse
Affiliation(s)
- Robin Fischer
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Nicolai Peschel
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Adewoye AB, Kyriacou CP, Tauber E. Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila. BMC Genomics 2015; 16:570. [PMID: 26231660 PMCID: PMC4521455 DOI: 10.1186/s12864-015-1787-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/20/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The environmental light-dark cycle is the dominant cue that maintains 24-h biological rhythms in multicellular organisms. In Drosophila, light entrainment is mediated by the photosensitive protein CRYPTOCHROME, but the role and extent of transcription regulation in light resetting of the dipteran clock is yet unknown. Given the broad transcriptional changes in response to light previously identified in mammals, we have sought to analyse light-induced global transcriptional changes in the fly's head by using Affymetrix microarrays. Flies were subjected to a 30-min light pulse during the early night (3 h after lights-off), a stimulus which causes a substantial phase delay of the circadian rhythm. We then analysed changes in gene expression 1 h after the light stimulus. RESULTS We identified 200 genes whose transcripts were significantly altered in response to the light pulse at a false discovery rate cut-off of 10%. Analysis of these genes and their biological functions suggests the involvement of at least six biological processes in light-induced delay phase shifts of rhythmic activities. These processes include signalling, ion channel transport, receptor activity, synaptic organisation, signal transduction, and chromatin remodelling. Using RNAi, the expression of 22 genes was downregulated in the clock neurons, leading to significant effects on circadian output. For example, while continuous light normally causes arrhythmicity in wild-type flies, the knockdown of Kr-h1, Nipped-A, Thor, nrv1, Nf1, CG11155 (ionotropic glutamate receptor), and Fmr1 resulted in flies that were rhythmic, suggesting a disruption in the light input pathway to the clock. CONCLUSIONS Our analysis provides a first insight into the early responsive genes that are activated by light and their contribution to light resetting of the Drosophila clock. The analysis suggests multiple domains and pathways that might be associated with light entrainment, including a mechanism that was represented by a light-activated set of chromatin remodelling genes.
Collapse
Affiliation(s)
- Adeolu B Adewoye
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Charalambos P Kyriacou
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Eran Tauber
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
17
|
Kwok RS, Li YH, Lei AJ, Edery I, Chiu JC. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila. PLoS Genet 2015; 11:e1005307. [PMID: 26132408 PMCID: PMC4488936 DOI: 10.1371/journal.pgen.1005307] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. The circadian clock is an endogenous timing system that enables organisms to anticipate daily changes in their external environment and temporally coordinate key biological functions that are important to their survival. Central to Drosophila clockwork is a key transcription factor CLOCK (CLK). CLK activates expression of target genes only during specific parts of the day, thereby orchestrating rhythmic expression of hundreds of clock-controlled genes, which consequently manifest into daily rhythms in physiology and behavior. In this study, we demonstrated that the Brahma (Brm) chromatin-remodeling protein interacts with CLK and fine-tune the levels of CLK-dependent transcription to maintain the robustness of the circadian clock. Specifically, we uncovered two distinct but collaborative functions of Brm. Brm possesses a non-catalytic function that negatively regulates the binding of CLK to target genes and limits transcriptional output, likely by recruiting repressive protein complexes. Catalytically, Brm functions by condensing the chromatin at CLK target genes, specifically when transcription is active. This serves to precisely control the level of repressive factors likely recruited by Brm as well as other transcriptional regulators. By disentangling these two roles of Brm, our study uncovered a multi-layered mechanism in which a chromatin remodeler regulates the circadian clock.
Collapse
Affiliation(s)
- Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Ying H. Li
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Anna J. Lei
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
| | - Isaac Edery
- Center for Advanced Biotechnology and Medicine, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Ghosh R, Vegesna S, Safi R, Bao H, Zhang B, Marenda DR, Liebl FLW. Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction. PLoS One 2014; 9:e113494. [PMID: 25412171 PMCID: PMC4239079 DOI: 10.1371/journal.pone.0113494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022] Open
Abstract
The Drosophila neuromuscular junction (NMJ) is a glutamatergic synapse that is structurally and functionally similar to mammalian glutamatergic synapses. These synapses can, as a result of changes in activity, alter the strength of their connections via processes that require chromatin remodeling and changes in gene expression. The chromodomain helicase DNA binding (CHD) protein, Kismet (Kis), is expressed in both motor neuron nuclei and postsynaptic muscle nuclei of the Drosophila larvae. Here, we show that Kis is important for motor neuron synaptic morphology, the localization and clustering of postsynaptic glutamate receptors, larval motor behavior, and synaptic transmission. Our data suggest that Kis is part of the machinery that modulates the development and function of the NMJ. Kis is the homolog to human CHD7, which is mutated in CHARGE syndrome. Thus, our data suggest novel avenues of investigation for synaptic defects associated with CHARGE syndrome.
Collapse
Affiliation(s)
- Rupa Ghosh
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Srikar Vegesna
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Ramia Safi
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
| | - Hong Bao
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniel R. Marenda
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (FLWL); (DRM)
| | - Faith L. W. Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois, United States of America
- * E-mail: (FLWL); (DRM)
| |
Collapse
|
19
|
Vrailas-Mortimer AD, Ryan SM, Avey MJ, Mortimer NT, Dowse H, Sanyal S. p38 MAP kinase regulates circadian rhythms in Drosophila. J Biol Rhythms 2014; 29:411-26. [PMID: 25403440 DOI: 10.1177/0748730414555183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The large repertoire of circadian rhythms in diverse organisms depends on oscillating central clock genes, input pathways for entrainment, and output pathways for controlling rhythmic behaviors. Stress-activated p38 MAP Kinases (p38K), although sparsely investigated in this context, show circadian rhythmicity in mammalian brains and are considered part of the circadian output machinery in Neurospora. We find that Drosophila p38Kb is expressed in clock neurons, and mutants in p38Kb either are arrhythmic or have a longer free-running periodicity, especially as they age. Paradoxically, similar phenotypes are observed through either transgenic inhibition or activation of p38Kb in clock neurons, suggesting a requirement for optimal p38Kb function for normal free-running circadian rhythms. We also find that p38Kb genetically interacts with multiple downstream targets to regulate circadian locomotor rhythms. More specifically, p38Kb interacts with the period gene to regulate period length and the strength of rhythmicity. In addition, we show that p38Kb suppresses the arrhythmic behavior associated with inhibition of a second p38Kb target, the transcription factor Mef2. Finally, we find that manipulating p38K signaling in free-running conditions alters the expression of another downstream target, MNK/Lk6, which has been shown to cycle with the clock and to play a role in regulating circadian rhythms. These data suggest that p38Kb may affect circadian locomotor rhythms through the regulation of multiple downstream pathways.
Collapse
Affiliation(s)
- Alysia D Vrailas-Mortimer
- Cell Biology Department, Emory University School of Medicine, Atlanta, Georgia Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Sarah M Ryan
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Matthew J Avey
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Nathan T Mortimer
- Department of Biological Sciences, University of Denver, Denver, Colorado
| | - Harold Dowse
- School of Biology and Ecology and Department of Mathematics and Statistics, University of Maine, Orono, Maine
| | - Subhabrata Sanyal
- Cell Biology Department, Emory University School of Medicine, Atlanta, Georgia Department of Neurology Research, BiogenIdec, Cambridge, Massachusetts
| |
Collapse
|
20
|
Zhang Y, Emery P. GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron 2013; 78:152-65. [PMID: 23583112 DOI: 10.1016/j.neuron.2013.01.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 12/19/2022]
Abstract
The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level--which is limiting in circadian neurons--influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling and thus profoundly impacts the circadian neural network and its response to environmental inputs.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
21
|
Zhang Y, Ling J, Yuan C, Dubruille R, Emery P. A role for Drosophila ATX2 in activation of PER translation and circadian behavior. Science 2013; 340:879-82. [PMID: 23687048 PMCID: PMC4078874 DOI: 10.1126/science.1234746] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A negative transcriptional feedback loop generates circadian rhythms in Drosophila. PERIOD (PER) is a critical state-variable in this mechanism, and its abundance is tightly regulated. We found that the Drosophila homolog of ATAXIN-2 (ATX2)--an RNA-binding protein implicated in human neurodegenerative diseases--was required for circadian locomotor behavior. ATX2 was necessary for PER accumulation in circadian pacemaker neurons and thus determined period length of circadian behavior. ATX2 was required for the function of TWENTY-FOUR (TYF), a crucial activator of PER translation. ATX2 formed a complex with TYF and promoted its interaction with polyadenylate-binding protein (PABP). Our work uncovers a role for ATX2 in circadian timing and reveals that this protein functions as an activator of PER translation in circadian neurons.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jinli Ling
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Chunyan Yuan
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Raphaëlle Dubruille
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Patrick Emery
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
22
|
Kauranen H, Menegazzi P, Costa R, Helfrich-Förster C, Kankainen A, Hoikkala A. Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana. J Biol Rhythms 2013; 27:377-87. [PMID: 23010660 DOI: 10.1177/0748730412455916] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The circadian clock plays an important role in adaptation in time and space by synchronizing changes in physiological, developmental, and behavioral traits of organisms with daily and seasonal changes in their environment. We have studied some features of the circadian activity and clock organization in a northern Drosophila species, Drosophila montana, at both the phenotypic and the neuronal levels. In the first part of the study, we monitored the entrained and free-running locomotor activity rhythms of females in different light-dark and temperature regimes. These studies showed that D. montana flies completely lack the morning activity component typical to more southern Drosophila species in an entrained environment and that they are able to maintain their free-running locomotor activity rhythm better in constant light than in constant darkness. In the second part of the study, we traced the expression of the PDF neuropeptide and the CRY protein in the neurons of the brain in D. montana adults and found differences in the number and location of PDF- and CRY-expressing neurons compared with those described in Drosophila melanogaster. These differences could account, at least in part, for the lack of morning activity and the reduced circadian rhythmicity of D. montana flies in constant darkness, both of which are likely to be adaptive features during the long and dark winters occurring in nature.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
KAYAK-α modulates circadian transcriptional feedback loops in Drosophila pacemaker neurons. J Neurosci 2013; 32:16959-70. [PMID: 23175847 DOI: 10.1523/jneurosci.1888-12.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Circadian rhythms are generated by well-conserved interlocked transcriptional feedback loops in animals. In Drosophila, the dimeric transcription factor CLOCK/CYCLE (CLK/CYC) promotes period (per), timeless (tim), vrille (vri), and PAR-domain protein 1 (Pdp1) transcription. PER and TIM negatively feed back on CLK/CYC transcriptional activity, whereas VRI and PDP1 negatively and positively regulate Clk transcription, respectively. Here, we show that the α isoform of the Drosophila FOS homolog KAYAK (KAY) is required for normal circadian behavior. KAY-α downregulation in circadian pacemaker neurons increases period length by 1.5 h. This behavioral phenotype is correlated with decreased expression of several circadian proteins. The strongest effects are on CLK and the neuropeptide PIGMENT DISPERSING FACTOR, which are both under VRI and PDP1 control. Consistently, KAY-α can bind to VRI and inhibit its interaction with the Clk promoter. Interestingly, KAY-α can also repress CLK activity. Hence, in flies with low KAY-α levels, CLK derepression would partially compensate for increased VRI repression, thus attenuating the consequences of KAY-α downregulation on CLK targets. We propose that the double role of KAY-α in the two transcriptional loops controlling Drosophila circadian behavior brings precision and stability to their oscillations.
Collapse
|
24
|
Gentile C, Sehadova H, Simoni A, Chen C, Stanewsky R. Cryptochrome antagonizes synchronization of Drosophila's circadian clock to temperature cycles. Curr Biol 2013; 23:185-95. [PMID: 23333312 DOI: 10.1016/j.cub.2012.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 09/03/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND In nature, both daily light:dark cycles and temperature fluctuations are used by organisms to synchronize their endogenous time with the daily cycles of light and temperature. Proper synchronization is important for the overall fitness and wellbeing of animals and humans, and although we know a lot about light synchronization, this is not the case for temperature inputs to the circadian clock. In Drosophila, light and temperature cues can act as synchronization signals (Zeitgeber), but it is not known how they are integrated. RESULTS We investigated whether different groups of the Drosophila clock neurons that regulate behavioral rhythmicity contribute to temperature synchronization at different absolute temperatures. Using spatially restricted expression of the clock gene period, we show that dorsally located clock neurons mainly mediate synchronization to higher (20°C:29°C) and ventral clock neurons to lower (16°C:25°C) temperature cycles. Molecularly, the blue-light photoreceptor CRYPTOCHROME (CRY) dampens temperature-induced PERIOD (PER)-LUCIFERASE oscillations in dorsal clock neurons. Consistent with this finding, we show that in the absence of CRY very limited expression of PER in a few dorsal clock neurons is able to mediate behavioral temperature synchronization to high and low temperature cycles independent of light. CONCLUSIONS We show that different subsets of clock neurons operate at high and low temperatures to mediate clock synchronization to temperature cycles, suggesting that temperature entrainment is not restricted to measuring the amplitude of such cycles. CRY dampens temperature input to the clock and thereby contributes to the integration of different Zeitgebers.
Collapse
Affiliation(s)
- Carla Gentile
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
25
|
Raduwan H, Isola AL, Belden WJ. Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. J Biol Chem 2013; 288:8380-8390. [PMID: 23319591 PMCID: PMC3605655 DOI: 10.1074/jbc.m112.359935] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The circadian oscillator controls time-of-day gene expression by a network of interconnected feedback loops and is reset by light. The requisite for chromatin regulation in eukaryotic transcription necessitates temporal regulation of histone-modifying and chromatin-remodeling enzymes for proper clock function. CHD1 is known to bind H3K4me3 in mammalian cells, and Neurospora CHD1 is required for proper regulation of the frequency (frq) gene. Based on this, we examined a strain lacking SET1 to determine the role of H3K4 methylation in clock- and light-mediated frq regulation. Expression of frq was altered in strains lacking set1 under both circadian- and light-regulated gene expression. There is a delay in the phasing of H3K4me3 relative to the peak in frq expression. White Collar 2 (WC-2) association with the frq promoter persists longer in Δset1, suggesting a more permissible chromatin state. Surprisingly, SET1 is required for DNA methylation in the frq promoter, indicating a dependence on H3K4me for DNA methylation. The data support a model where SET1 is needed for proper regulation by modulating chromatin at frq.
Collapse
Affiliation(s)
- Hamidah Raduwan
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - Allison L Isola
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| | - William J Belden
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901.
| |
Collapse
|
26
|
Paik D, Jang YG, Lee YE, Lee YN, Yamamoto R, Gee HY, Yoo S, Bae E, Min KJ, Tatar M, Park JJ. Misexpression screen delineates novel genes controlling Drosophila lifespan. Mech Ageing Dev 2012; 133:234-45. [PMID: 22366109 DOI: 10.1016/j.mad.2012.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/01/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
In an initial preliminary screen we identified factors associated with controlling Drosophila aging by examining longevity in adults where EP elements induced over-expression or antisense-RNA at genes adjacent to each insertion. Here, we study 45 EP lines that initially showed at least 10% longer mean lifespan than controls. These 45 lines and a daughterless (da)-Gal4 stock were isogenized into a CS10 wild-type background. Sixteen EP lines corresponding to 15 genes significantly extended lifespan when their target genes were driven by da-Gal4. In each case, the target genes were seen to be over-expressed. Independently derived UAS-gene transgenic stocks were available or made for two candidates: ImpL2 which is ecdysone-inducible gene L2, and CG33138, 1,4-alpha-glucan branching enzyme. With both, adult lifespan was increased upon over-expression via the GeneSwitch inducible Gal4 driver system. Several genes in this set of 15 correspond to previously discovered longevity assurance systems such as insulin/IGF-1 signaling, gene silencing, and autophagy; others suggest new potential mechanisms for the control of aging including mRNA synthesis and maturation, intracellular vesicle trafficking, and neuroendocrine regulation.
Collapse
Affiliation(s)
- Donggi Paik
- Department of Physiology, College of Medicine, Korea University, 126-1 Anam-Dong 5 Ga, Seongbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hamasaka Y, Watari Y, Arai T, Numata H, Shiga S. Comparison of the effect of constant light on the circadian rhythm of white-eye mutant and wild-type blow flyProtophormia terraenovae. BIOL RHYTHM RES 2011. [DOI: 10.1080/09291016.2010.511132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Belden WJ, Lewis ZA, Selker EU, Loros JJ, Dunlap JC. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 2011; 7:e1002166. [PMID: 21811413 PMCID: PMC3140994 DOI: 10.1371/journal.pgen.1002166] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/18/2011] [Indexed: 12/21/2022] Open
Abstract
Circadian-regulated gene expression is predominantly controlled by a transcriptional negative feedback loop, and it is evident that chromatin modifications and chromatin remodeling are integral to this process in eukaryotes. We previously determined that multiple ATP-dependent chromatin-remodeling enzymes function at frequency (frq). In this report, we demonstrate that the Neurospora homologue of chd1 is required for normal remodeling of chromatin at frq and is required for normal frq expression and sustained rhythmicity. Surprisingly, our studies of CHD1 also revealed that DNA sequences within the frq promoter are methylated, and deletion of chd1 results in expansion of this methylated domain. DNA methylation of the frq locus is altered in strains bearing mutations in a variety of circadian clock genes, including frq, frh, wc-1, and the gene encoding the frq antisense transcript (qrf). Furthermore, frq methylation depends on the DNA methyltransferase, DIM-2. Phenotypic characterization of Δdim-2 strains revealed an approximate WT period length and a phase advance of approximately 2 hours, indicating that methylation plays only an ancillary role in clock-regulated gene expression. This suggests that DNA methylation, like the antisense transcript, is necessary to establish proper clock phasing but does not control overt rhythmicity. These data demonstrate that the epigenetic state of clock genes is dependent on normal regulation of clock components.
Collapse
Affiliation(s)
- William J. Belden
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Zachary A. Lewis
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eric U. Selker
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chen KF, Peschel N, Zavodska R, Sehadova H, Stanewsky R. QUASIMODO, a Novel GPI-anchored zona pellucida protein involved in light input to the Drosophila circadian clock. Curr Biol 2011; 21:719-29. [PMID: 21530261 DOI: 10.1016/j.cub.2011.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 02/28/2011] [Accepted: 03/19/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND Circadian clocks are synchronized to the solar day via visual and specialized photoreceptors. In Drosophila, CRYPTOCHROME (CRY) is a major photoreceptor that mediates resetting of the circadian clock via light-dependent degradation of the clock protein TIMELESS (TIM). However, in the absence of CRY, this TIM-mediated resetting still occurs in some pacemaker neurons, resulting in synchronized behavioral rhythms when flies are exposed to light-dark cycles. Even in the additional absence of visual photoreception, partial molecular and behavioral light synchronization persists. Therefore, other important clock-related photoreceptive and synchronization mechanisms must exist. RESULTS We identified a novel clock-controlled gene (quasimodo) that encodes a light-responsive and membrane-anchored Zona Pellucida domain protein that supports light-dependent TIM degradation. Whereas wild-type flies become arrhythmic in constant light (LL), quasimodo mutants elicit rhythmic expression of clock proteins and behavior in LL. QUASIMODO (QSM) can function independently of CRY and is predominantly expressed within CRY-negative clock neurons. Interestingly, downregulation of qsm in the clock circuit restores LL clock protein rhythms in qsm-negative neurons, indicating that qsm-mediated light input is not entirely cell autonomous and can be accessed by the clock circuit. CONCLUSIONS Our findings indicate that QSM constitutes part of a novel and CRY-independent light input to the circadian clock. Like CRY, this pathway targets the clock protein TIM. QSM's light-responsive character in conjunction with the predicted localization at the outer neuronal membrane suggests that its function is linked to a yet unidentified membrane-bound photoreceptor.
Collapse
Affiliation(s)
- Ko Fan Chen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
30
|
Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, Paro R. Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 2010; 21:216-26. [PMID: 21177970 DOI: 10.1101/gr.114348.110] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) of proteins are required for stable and heritable maintenance of repressed and active gene expression states. Their antagonistic function on gene control, repression for PcG and activity for TrxG, is mediated by binding to chromatin and subsequent epigenetic modification of target loci. Despite our broad knowledge about composition and enzymatic activities of the protein complexes involved, our understanding still lacks important mechanistic detail and a comprehensive view on target genes. In this study we use an extensive data set of ChIP-seq, RNA-seq, and genome-wide detection of transcription start sites (TSSs) to identify and analyze thousands of binding sites for the PcG proteins and Trithorax from a Drosophila S2 cell line. In addition of finding a preference for stalled promoter regions of annotated genes, we uncover many intergenic PcG binding sites coinciding with nonannotated TSSs. Interestingly, this set includes previously unknown promoters for primary transcripts of microRNA genes, thereby expanding the scope of Polycomb control to noncoding RNAs essential for development, apoptosis, and growth.
Collapse
Affiliation(s)
- Daniel Enderle
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Yoshii T, Hermann C, Helfrich-Förster C. Cryptochrome-Positive and -Negative Clock Neurons in Drosophila Entrain Differentially to Light and Temperature. J Biol Rhythms 2010; 25:387-98. [DOI: 10.1177/0748730410381962] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The blue-light photoreceptive protein Cryptochrome (CRY) plays an important role in the light synchronization of the Drosophila circadian clock. Previously, we found that among the approximately 150 clock neurons, many but not all neurons express CRY. We speculated that the CRY-positive pacemaker neurons may be especially important for light entrainment, whereas the CRY-negative neurons may be important for other environmental cues, for example, temperature. To investigate this hypothesis, we tested the entrainability of the clock neurons to out-of-phase light and temperature cycles. When light-dark or light-dim light cycles were shifted by 12 h with respect to temperature cycles, behavioral rhythms of wild-type flies were re-entrained by the light cycles. In this condition, we found that TIMELESS (TIM) level was strongly influenced by the temperature cycles in many CRY-negative clock neurons, suggesting that the CRY-negative neurons have higher sensitivity to temperature. Under the same conditions, cry-null mutants entrained to the temperature cycles or very slowly re-entrained to light-dark cycles. Our results suggest that there are 2 types of clock neurons having differential sensitivities to light and temperature, and CRY is a key component for the preferential entrainment to light.
Collapse
Affiliation(s)
- Taishi Yoshii
- Institute of Zoology, University of Regensburg, Regensburg, Germany, Biozentrum, University of Würzburg, Würzburg, Germany,
| | | | - Charlotte Helfrich-Förster
- Institute of Zoology, University of Regensburg, Regensburg, Germany, Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
32
|
Chiu JC, Low KH, Pike DH, Yildirim E, Edery I. Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. J Vis Exp 2010:2157. [PMID: 20972399 PMCID: PMC3229366 DOI: 10.3791/2157] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties.
Collapse
Affiliation(s)
- Joanna C Chiu
- Center for Advanced Biotechnology and Medicine, Rutgers University, USA
| | | | | | | | | |
Collapse
|
33
|
Melicharek DJ, Ramirez LC, Singh S, Thompson R, Marenda DR. Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet 2010; 19:4253-64. [PMID: 20716578 DOI: 10.1093/hmg/ddq348] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CHARGE syndrome (CS, OMIM #214800) is a rare, autosomal dominant disorder, two-thirds of which are caused by haplo-insufficiency in the Chd7 gene. Here, we show that the Drosophila homolog of Chd7, kismet, is required for proper axonal pruning, guidance and extension in the developing fly's central nervous system. In addition to defects in neuroanatomy, flies with reduced kismet expression show defects in memory and motor function, phenotypes consistent with symptoms observed in CS patients. We suggest that the analysis of this disease model can complement and expand upon the existing studies for this disease, allowing a better understanding of the role of kismet in neural developmental, and Chd7 in CS pathogenesis.
Collapse
|