1
|
Zhang Y, Liu X, Li Z, Wang X, Tang C. Development of 9H-purine scaffold as novel CDK2 inhibitors: Design, synthesis, and biological evaluation. Bioorg Med Chem Lett 2025; 122:130166. [PMID: 40057135 DOI: 10.1016/j.bmcl.2025.130166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025]
Abstract
Cyclin-dependent kinase 2 (CDK2), a crucial regulator in multiple oncogenic signaling pathways, has emerged as a promising target for the development of innovative anticancer therapies and overcoming resistance to CDK4/6 inhibitors. In this study, three series of compounds were designed and synthesized, using the CDK2 inhibitor fadraciclib (CYC065) as the lead compound, with 9H-purine as the core structure. The design incorporated reported structure-activity relationship data and utilized computer-aided drug design techniques. Compounds in series 1 explored the binding mode between the ATP ribose binding site in CDK2 and C2 substituents, while compounds in series 2 and 3 validated the feasibility of modifying the specific binding region with different substituents and investigated the effects of filling the CDK2 hydrophobic pocket at the N9 position with alkyl substituents. Three compounds, 1f, 2e, and 3a, demonstrated remarkable activity against CDK2-cyclin E2. Notably, 3a exhibited the most potent effect, with a CDK2-cyclin E2 IC50 value of 6.0 ± 0.1 nM, an MV4-11 IC50 value of 489.2 ± 0.2 nM, and excellent selectivity for CDK2. This study evaluated the impact of substitutions at the 2, 6, and 9 positions of the purine ring on the activity of CDK2 small molecule inhibitors. The findings offer a theoretical foundation for future research, broadening the structural diversity and scope of CDK2 inhibitor studies.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xiya Liu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ziming Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Xia Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chunlei Tang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Kashyap D, Kaur T, Dutta PS, Sinha SK. A general, robust framework for determining the key species that forewarns sudden transitions in biological circuits. Phys Chem Chem Phys 2025; 27:10884-10895. [PMID: 40357906 DOI: 10.1039/d4cp04863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The Cdc2-cyclin B/Wee1 kinase system exhibits bistability between alternative steady states, which emerges due to the mutual inhibition between Cdc2-cyclin B and Wee1 kinases. Alternative steady states are the M phase-like state and G2 arrest state, which have implications in cell cycle progression at the G2 phase in eukaryotic cells. A slight alteration in the feedback strength can drive sudden transitions between these contrasting alternative states upon crossing a critical threshold or a tipping point. The phenomenon of critical slowing down (CSD) has been widely used to identify the proximity to a tipping point. However, determining the key variable or species that best signals CSD is a challenging task and holds significance in complex biochemical processes. Here, we determine the key variable or observation direction (OD) from the direction of CSD to best detect an upcoming transition in the Cdc2-cyclin B/Wee1 model system. We find that with increasing feedback strength, the Cdc2-cyclin B is the OD, as it produces a stronger signal than that of Wee1. With decreasing feedback strength, both Cdc2-cyclin B and Wee1 produce similar signals and can be used as the OD. Furthermore, the noise-sensitive direction highlights the effect of stochasticity in Cdc2-cyclin B and Wee1 for increasing and decreasing feedback strength, respectively. We also perform sensitivity analyses that reveal the robustness of the OD. Finally, we compare the efficacy of OD with principal component analysis while detecting a tipping point, and also validate its general applicability to epithelial-mesenchymal transition for cancer progression.
Collapse
Affiliation(s)
- Dinesh Kashyap
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Taranjot Kaur
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Partha Sharathi Dutta
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| | - Sudipta Kumar Sinha
- Theoretical and Computational Biophysical Chemistry Group, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India.
| |
Collapse
|
3
|
Wang Y, Li Y, Zhang Y, Li Y, Zhao L, Tong L, Zhu X, Wang J, Dong Y. Paris saponin VII restrains PD-L1 mediated immune evasion through the AKT1 and STAT3 signaling pathways. Chem Biol Interact 2025; 417:111562. [PMID: 40389195 DOI: 10.1016/j.cbi.2025.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/24/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
Glioblastoma (GBM) represents a highly aggressive and fatal type of brain cancer. Paris saponin VII (PS VII) is noteworthy for its potential anti-tumor properties, yet the anti-tumor effect and underlying mechanism of PS VII on GBM remain unclear. This study demonstrated that PS VII inhibited the proliferation and migration rates of GBM cells. PS VII induced cell cycle arrest at the G2/M phase, which was linked to significant reductions in the expression of CDK1, Cyclin D1 and CDK2. Furthermore, PS VII triggered cells apoptosis in a dose-dependent manner by up-regulating the expression of Bax while down-regulating that of Bcl-2, leading to the activation of Caspase-3 and PARP. Further investigation revealed that PS VII effectively suppressed the expression of PD-L1, a key factor in the development of tumors. Additionally, PS VII decreased PD-L1 expression by modulating the activities of AKT1 and STAT3 signaling pathways. In tumor/T cells co-culture system, PS VII restored the activation of T cells by inhibiting PD-L1 expression. Notably, PS VII inhibited GBM cells proliferation, migration by reducing PD-L1. In vivo study showed that PS VII reduced the volume and size of tumors, and achieved better therapeutic effects at higher concentrations. These results revealed PS VII's previously unrecognized anti-tumor effects on GBM, suggesting its potential as a therapeutic drug for GBM treatment.
Collapse
Affiliation(s)
- Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yanli Li
- Department of Pharmaceutics, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yitong Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Lanxin Tong
- Guangzhou Dublin International College of Life Sciences and Technology, South China Agricultural University, Guangzhou, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China.
| | - Jianyong Wang
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
4
|
Oikonomidi I, Kameswaran V, Pham VC, Zuazo-Gaztelu I, Gutgesell LM, Marsters S, Daniel B, Lill JR, Modrusan Z, Ashkenazi A. Interferon regulatory factor 4 mediates nonenzymatic IRE1 dependency in multiple myeloma cells. PLoS Biol 2025; 23:e3003096. [PMID: 40215234 PMCID: PMC12052183 DOI: 10.1371/journal.pbio.3003096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 05/05/2025] [Accepted: 03/04/2025] [Indexed: 05/07/2025] Open
Abstract
Multiple myeloma (MM) arises through oncogenic transformation of immunoglobulin-secreting plasma cells. MM often co-opts the central endoplasmic reticulum (ER)-stress mitigator, inositol-requiring enzyme 1 (IRE1), to sustain malignant growth. While certain MMs require enzymatic IRE1-dependent activation of the transcription factor XBP1s, others display a nonenzymatic IRE1 dependency that is not yet mechanistically understood. Here we identify interferon regulatory factor 4 (IRF4), which stimulates genes that promote immune-cell proliferation, as a key conduit for IRE1's nonenzymatic control of cell-cycle progression in MM. IRE1 silencing increased inhibitory S114/S270 phosphorylation on IRF4, disrupting IRF4's chromatin-binding and transcriptional activity. IRF4 knockdown recapitulated, whereas IRF4 repletion reversed, the anti-proliferative phenotype of IRE1 silencing. Furthermore, phospho-deficient, but not phospho-mimetic, IRF4 mutants rescued proliferation under IRE1 silencing. Functional studies revealed that IRF4 engages the E2F1 and CDC25A genes and promotes CDK2 activation to drive cell-cycle progression. Our results advance mechanistic understanding of IRE1 and IRF4 in MM.
Collapse
Affiliation(s)
- Ioanna Oikonomidi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Vasumathi Kameswaran
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Victoria C. Pham
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Iratxe Zuazo-Gaztelu
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Lauren M. Gutgesell
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Scot Marsters
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Bence Daniel
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Jennie R. Lill
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, Inc., South San Francisco, California, United States of America
| | - Avi Ashkenazi
- Department of Research Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
5
|
Li Y, Lin Y, Chen Z, Ji W, Liu H. Deficiency of ATF2 retards senescence induced by replication stress and pamidronate in mouse jaw bone marrow stem cells. Cell Signal 2025; 127:111579. [PMID: 39733927 DOI: 10.1016/j.cellsig.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
The aging process is associated with a loss of bone mass and an accumulation of senescent cells, which is under epigenetic control. Morphological and molecular analysis revealed a notable reduction in bone mass and alveolar crest height in aged mice, accompanied by increased levels of senescent mouse jaw bone marrow stem cells (mJBMSCs). To investigate whether specific transcription factors are involved, assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed on mJBMSCs isolated from 2-, 4-, 8-, and 20-month-old mice. In 20-month-old mJBMSCs, increased chromatin accessibility was observed alongside elevated expression of activating transcription factor 2 (ATF2) in both cells and alveolar bone. Silencing Atf2 in mJBMSCs failed to reverse physiological aging, but delayed replication stress and pamidronate (PAM) induced senescence. The analysis of ATAC-seq and RNA sequencing indicated that the differentially expressed genes upregulated by PAM but downregulated by ATF2 deficiency were related to some key biological processes, including negative regulation of cell proliferation, inflammatory response, adipogenesis, and cellular senescence. The dual-luciferase assay was conducted to demonstrate that ATF2 enhances Cdkn2a transcription by binding to its promoter region. Our findings suggest significant chromatin alterations in aged mJBMSCs, positioning ATF2 as a potential target for combating externally induced senescence.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Huan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Sun J, Liu J, Xue M, Zhao T, Song J, Zhang W, Chang Y, Zhan Y. Dynamic molecular responses of the sea urchin Strongylocentrotus intermedius to pathogen infection: Insights from a serial comparative transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110176. [PMID: 39914794 DOI: 10.1016/j.fsi.2025.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
To explore the dynamic molecular responses to pathogen infection in sea urchins, the sea urchin Strongylocentrotus intermedius were infected by a causative pathogen strain of sea urchin black peristomial membrane disease. Specimens were collected at 0, 6, 12, 24, 48, 72, and 96 h post-infection (hpi), and comparative transcriptome analysis were performed. The results showed that 1) a total of 771, 1437, 3477, 8417, 1566, and 2171 differentially expressed genes (DEGs) were identified at 6, 12, 24, 48, 72, and 96 hpi compared with the 0 hpi (as the control), respectively. 2) The number of upregulated DEGs was higher than that of downregulated DEGs at each time point after infection. The largest number of DEGs was obtained at 48 hpi. 3) Among identified DEGs, percent cellular process, binding, and metabolic process related DEGs account for 57.9 %, 49.9 %, and 45.5 %, respectively. Main Rho-GTPase family members (RhoA, Rac1, and Cdc42) exhibited a general upregulated expression trend during the examined infection process, the same as Caspase family members (Casp3, Casp6 and Casp7). 4) Cell cycle and apoptosis pathways are the most affected pathways, the DEG enrichment level of which remained in the top 30 (cell cycle pathways) and top 50 (apoptosis pathways) throughout the whole examined infection process. To sum up, all findings from this study will not only deepen our understanding of the dynamic molecular expression mechanisms of sea urchins in response to pathogen infection, but also provide new clues for elutriating the profound mechanisms of serial gene expression in innate immunity.
Collapse
Affiliation(s)
- Jingxian Sun
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Jinming Liu
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Mingyu Xue
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China
| | - Jian Song
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China; College of Life Science, Liaoning Normal University, Dalian, Liaoning, 116029, PR China.
| | - Yaoyao Zhan
- Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
7
|
Gomaa MBM, Abdelhameed KMA, Sobhy SE, Konper HMA, Hassanein ZAE, Saleh AA, Jamal MT, Hafez EE. Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Open Vet J 2025; 15:126-138. [PMID: 40092203 PMCID: PMC11910300 DOI: 10.5455/ovj.2024.v15.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Background Propolis, a resinous substance produced by bees, exhibits significant phytochemical and biological properties, which have been explored for various therapeutic applications. Aim This study investigates the phytochemical composition, antioxidant activity, antibacterial efficacy, and anticancer potential of ethanolic extracts from three propolis samples (P1, P2, and P3). Methods Phytochemical screening was conducted to determine the presence of bioactive compounds, such as ascorbic acid, saponins, and tannins. Antioxidant activity was evaluated using the phosphomolybdate (PMA) and ferric reducing power (FRP) assays. The antibacterial efficacy against Salmonella Typhimurium and Staphylococcus aureus was assessed using the well diffusion method. Cytotoxicity and anticancer effects were investigated using the MTT assay on red blood cells (RBCs) and various carcinoma cell lines (HepG2, MDA, and A549). Gene expression analysis was performed using RT-qPCR to assess the upregulation of immune response genes (P53, Bcl2, Bax, Ca125, and C3). Results Phytochemical screening revealed considerable quantities of ascorbic acid, saponins, and tannins in the propolis samples. The P1 sample exhibited the most substantial antioxidant activity, with FRP values at 62.9 mg/g DM and PMA content at 20.7 mg/g DM. In antibacterial assays, P1 demonstrated the highest inhibitory zones at the maximum concentration (400 mg/ml), outperforming standard antibiotic treatments. In cytotoxicity and anticancer assays, P1 preserved the highest percentage of RBCs from hemolysis and showed marked anticancer activity, with the lowest cell viability observed at 3.9 µg/ml. Gene expression analysis revealed significant upregulation of immune response genes, particularly in MDA and HepG2 cell lines upon P1 treatment. Conclusion This study underscores the potent antioxidant, antibacterial, and anticancer properties of propolis, highlighting its potential as a natural therapeutic agent. The observed activities suggest promising applications for propolis in combating bacterial infections and various cancer types, warranting further exploration into its molecular mechanisms and potential clinical uses.
Collapse
Affiliation(s)
- Marwa B. M. Gomaa
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
- These authors contributed equally to the current work
| | - Khaled M. A. Abdelhameed
- Apicalture Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sherien E. Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| | - Hanan M. A. Konper
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
- These authors contributed equally to the current work
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| |
Collapse
|
8
|
Gomaa MBM, Abdelhameed KMA, Sobhy SE, Konper HMA, Hassanein ZAE, Saleh AA, Jamal MT, Hafez EE. Antioxidant activity, antibacterial behavior, and anticancer impact of Egyptian propolis. Open Vet J 2025; 15:126-138. [PMID: 40092203 PMCID: PMC11910300 DOI: 10.5455/ovj.2025.v15.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/03/2024] [Indexed: 04/11/2025] Open
Abstract
Background Propolis, a resinous substance produced by bees, exhibits significant phytochemical and biological properties, which have been explored for various therapeutic applications. Aim This study investigates the phytochemical composition, antioxidant activity, antibacterial efficacy, and anticancer potential of ethanolic extracts from three propolis samples (P1, P2, and P3). Methods Phytochemical screening was conducted to determine the presence of bioactive compounds, such as ascorbic acid, saponins, and tannins. Antioxidant activity was evaluated using the phosphomolybdate (PMA) and ferric reducing power (FRP) assays. The antibacterial efficacy against Salmonella Typhimurium and Staphylococcus aureus was assessed using the well diffusion method. Cytotoxicity and anticancer effects were investigated using the MTT assay on red blood cells (RBCs) and various carcinoma cell lines (HepG2, MDA, and A549). Gene expression analysis was performed using RT-qPCR to assess the upregulation of immune response genes (P53, Bcl2, Bax, Ca125, and C3). Results Phytochemical screening revealed considerable quantities of ascorbic acid, saponins, and tannins in the propolis samples. The P1 sample exhibited the most substantial antioxidant activity, with FRP values at 62.9 mg/g DM and PMA content at 20.7 mg/g DM. In antibacterial assays, P1 demonstrated the highest inhibitory zones at the maximum concentration (400 mg/ml), outperforming standard antibiotic treatments. In cytotoxicity and anticancer assays, P1 preserved the highest percentage of RBCs from hemolysis and showed marked anticancer activity, with the lowest cell viability observed at 3.9 µg/ml. Gene expression analysis revealed significant upregulation of immune response genes, particularly in MDA and HepG2 cell lines upon P1 treatment. Conclusion This study underscores the potent antioxidant, antibacterial, and anticancer properties of propolis, highlighting its potential as a natural therapeutic agent. The observed activities suggest promising applications for propolis in combating bacterial infections and various cancer types, warranting further exploration into its molecular mechanisms and potential clinical uses.
Collapse
Affiliation(s)
- Marwa B. M. Gomaa
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
- These authors contributed equally to the current work
| | - Khaled M. A. Abdelhameed
- Apicalture Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sherien E. Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| | - Hanan M. A. Konper
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
- These authors contributed equally to the current work
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah, 21589, Saudi Arabia
| | - Elsayed E. Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El.Arab, 21934, Egypt
| |
Collapse
|
9
|
Rivas V, González-Muñoz T, Albitre Á, Lafarga V, Delgado-Arévalo C, Mayor F, Penela P. GRK2-mediated AKT activation controls cell cycle progression and G2 checkpoint in a p53-dependent manner. Cell Death Discov 2024; 10:385. [PMID: 39198399 PMCID: PMC11358448 DOI: 10.1038/s41420-024-02143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Cell cycle checkpoints, activated by stressful events, halt the cell cycle progression, and prevent the transmission of damaged DNA. These checkpoints prompt cell repair but also trigger cell death if damage persists. Decision-making between these responses is multifactorial and context-dependent, with the tumor suppressor p53 playing a central role. In many tumor cells, p53 alterations lead to G1/S checkpoint loss and the weakening of the G2 checkpoint, rendering cell viability dependent on the strength of the latter through mechanisms not fully characterized. Cells with a strong pro-survival drive can evade cell death despite substantial DNA lesions. Deciphering the integration of survival pathways with p53-dependent and -independent mechanisms governing the G2/M transition is crucial for understanding G2 arrest functionality and predicting tumor cell response to chemotherapy. The serine/threonine kinase GRK2 emerges as a signaling node in cell cycle modulation. In cycling cells, but not in G2 checkpoint-arrested cells, GRK2 protein levels decline during G2/M transition through a process triggered by CDK2-dependent phosphorylation of GRK2 at the S670 residue and Mdm2 ubiquitination. We report now that this downmodulation in G2 prevents the unscheduled activation of the PI3K/AKT pathway, allowing cells to progress into mitosis. Conversely, higher GRK2 levels lead to tyrosine phosphorylation by the kinase c-Abl, promoting the direct association of GRK2 with the p85 regulatory subunit of PI3K and AKT activation in a GRK2 catalytic-independent manner. Hyperactivation of AKT is conditioned by p53's scaffolding function, triggering FOXO3a phosphorylation, impaired Cyclin B1 accumulation, and CDK1 activation, causing a G2/M transition delay. Upon G2 checkpoint activation, GRK2 potentiates early arrest independently of p53 through AKT activation. However, its ability to overcome the G2 checkpoint in viable conditions depends on p53. Our results suggest that integrating the GRK2/PI3K/AKT axis with non-canonical functions of p53 might confer a survival advantage to tumor cells.
Collapse
Affiliation(s)
- Verónica Rivas
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Teresa González-Muñoz
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Ángela Albitre
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Vanesa Lafarga
- Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Delgado-Arévalo
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain
| | - Petronila Penela
- Departamento de Biología Molecular, IUBM-UAM and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), Madrid, Spain.
| |
Collapse
|
10
|
Frejat FOA, Zhao B, Furaijit N, Wang L, Abou-Zied HA, Fathy HM, Mohamed FAM, Youssif BGM, Wu C. New pyrrolidine-carboxamide derivatives as dual antiproliferative EGFR/CDK2 inhibitors. Chem Biol Drug Des 2024; 103:e14422. [PMID: 38230772 DOI: 10.1111/cbdd.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Cancer is one of the leading causes of mortality worldwide, making it a public health concern. A novel series of pyrrolidine-carboxamide derivatives 7a-q were developed and examined in a cell viability assay utilizing a human mammary gland epithelial cell line (MCF-10A), where all the compounds exhibited no cytotoxic effects and more than 85% cell viability at a concentration of 50 μM. Antiproliferative activity was evaluated in vitro against four panels of cancer cell lines A-549, MCF-7, Panc-1, and HT-29. Compounds 7e, 7g, 7k, 7n, and 7o were the most active as antiproliferative agents capable of triggering apoptosis. Compound 7g was the most potent of all the derivatives, with a mean IC50 of 0.90 μM compared to IC50 of 1.10 μM for doxorubicin. Compound 7g inhibited A-549 (epithelial cancer cell line), MCF-7 (breast cancer cell line), and HT-29 (colon cancer cell line) more efficiently than doxorubicin. EGFR inhibitory assay results of 7e, 7g, 7k, 7n, and 7o demonstrated that the tested compounds inhibited EGFR with IC50 values ranging from 87 to 107 nM in comparison with the reference drug erlotinib (IC50 = 80 nM). 7e, 7g, 7k, 7n, and 7o inhibited CDK2 efficiently in comparison to the reference dinaciclib (IC50 = 20 nM), with IC50 values ranging from 15 to 31 nM. The results of inhibitory activity assay against different CDK isoforms revealed that the tested compounds had preferential inhibitory activity against the CDK2 isoform.
Collapse
Affiliation(s)
- Frias Obaid Arhema Frejat
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
| | - Bingbing Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | | | - Lihong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Hazem M Fathy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fatma A M Mohamed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, Saudi Arabia
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, PR China
- Zhengzhou Key laboratory of new veterinary Drug preparation innovation, Zhengzhou, PR China
- Henan Qunbo Pharmaceutical Research Institute Co. LTD., Zhengzhou, PR China
| |
Collapse
|
11
|
Ezzat MAF, Elmasry GF, El-Mageed MMAA, Fouad MA, Abdel-Aziz HA, Elewa SI. Design, synthesis, and biological evaluation of furan-bearing pyrazolo[3,4-b]pyridines as novel inhibitors of CDK2 and P53-MDM2 protein-protein interaction. Drug Dev Res 2023; 84:1183-1203. [PMID: 37191966 DOI: 10.1002/ddr.22079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023]
Abstract
The novel series of furan-bearing pyrazolo[3,4-b]pyridines were designed as cyclin-dependent kinase 2 (CDK2) inhibitors and as p53-murine double minute 2 (MDM2) inhibitors. The newly synthesized compounds were screened for their antiproliferative activity toward hepatocellular carcinoma (HepG2) and breast cancer (MCF7) cell lines. The most active compounds on both cell lines were additionally evaluated for their in vitro CDK2 inhibitory activity. Compounds 7b and 12f displayed enhanced activity (half-maximal inhibitory concentration [IC50 ] = 0.46 and 0.27 µM, respectively) in comparison to the standard roscovitine (IC50 = 1.41 ± 0.03 µM), in addition to, cell cycle arrest at S phase and G1/S transition phase in MCF7 cells treated with both compounds, respectively. Moreover, the most active spiro-oxindole derivative against MCF7 cell line, 16a, exhibited enhanced inhibitory activity against p53-MDM2 interaction in vitro (IC50 = 3.09 ± 0.12 µM) compared to nutlin, and increased the levels of both p53 and p21 by nearly fourfold in comparison to the negative control. Molecular docking studies demonstrated the plausible interaction patterns of the most potent derivatives 17b and 12f in the CDK2 binding pocket and the spiro-oxindole 16a with p53-MDM2 complex, respectively. Consequently, the new chemotypes 7b, 12f, and 16a can be presented as promising antitumor hits for further studies and optimization.
Collapse
Affiliation(s)
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Giza, Egypt
| | - Safaa I Elewa
- Organic Chemistry Department, Faculty of Women's for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Alshaye NA. Synthesis and in vitro anticancer activity of some 2-oxindoline derivatives as potential CDK2 inhibitors. J Biomol Struct Dyn 2023; 41:15009-15022. [PMID: 36927308 DOI: 10.1080/07391102.2023.2187222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
Novel series of 2-oxindoline hydrazones 6a-h, 3-hydroxy-2-oxoindolines 9a-d and 2-oxoindolin-3-ylidenes 10a-d were prepared and assessed for their anticancer activity towards breast cancer cell line (MCF7). Compounds 6c, 6d, 6g, 9d, 10a and 10b (IC50 = 14.0 ± 0.7, 15.6 ± 0.7, 13.8 ± 0.7, 4.9 ± 0.2, 6.0 ± 0.3 and 10.8 ± 0.5 µM, respectively) showed the highest growth inhibition activity against MCF7 when compared to staurosporine (IC50 = 14.5 ± 0.7 µM). Cell cycle analysis exposed arrest at G1 phase for compounds 6c, 10 and 10b, at S phase for compounds 6d and 9d, and at G1/S phase for compound 6g. Apoptotic effect of compounds 6c, 6d, 6g, 9d, 10a and 10b was confirmed via their early and late apoptotic effects. A safety profile was revealed for compounds 6c, 6d, 6g, 9d, 10a and 10b on MCF10A treated normal cell. Also, compounds 6c and 10b displayed a promising CDK2 inhibition activity (IC50 = 0.22 ± 0.01, 0.25 ± 0.01 µM, respectively). Also, docking study revealed comparable interactions with the native ligand (5-bromoindirubin). ADMET computational studies forecast the promising pharmacokinetic profile of the targeted compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Lin F, Zhang G, Yang X, Wang M, Wang R, Wan M, Wang J, Wu B, Yan T, Jia Y. A network pharmacology approach and experimental validation to investigate the anticancer mechanism and potential active targets of ethanol extract of Wei-Tong-Xin against colorectal cancer through induction of apoptosis via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115933. [PMID: 36403742 DOI: 10.1016/j.jep.2022.115933] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Wei-Tong-Xin (WTX), derives from the Chinese herbal decoction (CHD) of Wan-Ying-Yuan in ancient China, has been shown to be effective therapeutic herbal decoction for treating gastrointestinal diseases. Present studies have demonstrated that WTX had potential to alleviate the symptoms of gastrointestinal inflammation, gastric ulcer and improve gastric motility. AIM OF THE STUDY The study primarily focused on exploring the therapeutic effect and possible pharmacological mechanism of WTX on colorectal cancer (CRC) based on network pharmacology, in vitro and in vivo experiments. MATERIALS AND METHODS Firstly, colorectal cancer and WTX associated with targets were searched from GeneCards database and TCM Systems Pharmacology Database and Analysis Platform (TCMSP) respectively. The protein-protein interaction (PPI) network also was constructed to screening key targets. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to predict the underlying biological function and mechanism involving in the anti-colorectal cancer effect of WTX. Next, CCK-8, colony formation and transwell assays were performed to verify the influence of proliferation and metastasizing ability of HCT116 cells after treated with WTX. Cell cycle, apoptosis and reactive oxygen species (ROS) were analysis by flow cytometry. Hoechst 33258 staining was conducted to observe nuclear morphology changes. Protein expression of apoptosis and PI3K/AKT signaling as well as mRNA expression of ferroptosis and apoptosis were determined by Western Blotting and RT-qPCR. The effects of WTX and LY294002 combination on the PI3K/Akt/mTOR signaling pathway were measured by Western Blotting. Finally, the xenograft tumor mouse model was established by subcutaneous injection of CT26 cells to measure tumors volume and weight. Hematoxylin and eosin (HE) staining and immunohistochemical analysis were used to observe the pathological changes and the protein expression in tumor tissues. RESULTS There were 286 potential treatment targets from 130 bioactive compounds in WTX, 1349 CRC-related targets were identified. Eleven core targets (TP53, AKT1, STAT3, JUN, TNF, HSP90AA1, IL-6, MAPK3, CASP3, EGFR, MYC) were found by PPI network analysis constructed of 142 common targets. The results of KEGG enrichment displayed PI3K/AKT signaling pathway as core pathway. After the treatment of WTX, the inhibitory of viability, metastases and cell cycle arrest at G2/M phase were observed in HCT116 cells. Moreover, WTX induced an increase in the expression of apoptosis proteins (Bak, cytochrome c, cleaved caspase-9/caspase-9 and cleaved caspase-3/caspase-3) and the levels of ROS and MDA, a decrease in the expression of PI3K/AKT signaling related proteins (PI3K, p-PI3K, p-AKT/AKT and p-mTOR/mTOR) and the level of SOD. WTX treatment significantly reduced the tumor weight, increased cleaved caspase-3 positive area and decreased that of ki67 in xenograft mouse model. CONCLUSION Through a network pharmacology approach and in vitro experiments, we predicted and verified the effect of WTX on colorectal cancer cells mainly depended on the regulation of intrinsic apoptosis via PI3K/AKT signaling pathway, and further animal experiments proved that WTX has a good anti-colon cancer effect in vivo.
Collapse
Affiliation(s)
- Fei Lin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Guanglin Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Xihan Yang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Mengshi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Ruixuan Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Meiqi Wan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Jinyu Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, 110016, China.
| |
Collapse
|
14
|
He R, Song Z, Bai Y, He S, Huang J, Wang Y, Zhou F, Huang W, Guo J, Wang Z, Tu ZC, Ren X, Zhang Z, Xu J, Ding K. Discovery of AXL Degraders with Improved Potencies in Triple-Negative Breast Cancer (TNBC) Cells. J Med Chem 2023; 66:1873-1891. [PMID: 36695404 DOI: 10.1021/acs.jmedchem.2c01682] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AXL kinase is heavily involved in tumorigenesis, metastasis, and drug resistance of many cancers, and several AXL inhibitors are in clinical investigations. Recent studies demonstrated that the N-terminal distal region of AXL plays more important roles in cell invasiveness than its C-terminal kinase domain. Therefore, degradation of AXL may present a novel superior therapeutic approach than the kinase inhibitor therapy. Herein, we report the discovery of a series of new AXL PROTAC degraders. One representative compound 6n potently depletes AXL with a DC50 value of 5 nM in MDA-MB-231 TNBC cells. It also demonstrates significantly improved potencies against the AXL signaling activation, cell proliferation, migration and invasion of TNBC cells comparing with the corresponding kinase inhibitor. Moreover, the compound exhibits promising therapeutic potential both in patient-derived organoids and a xenograft mouse model of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Zhiqiang Song
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Bai
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Jing Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Weixue Huang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Zhen Wang
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng-Chao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China
| | - Jian Xu
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., 38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 855 Xingye Avenue, Panyu District, Guangzhou 510632, China.,State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
15
|
Liu S, Ma X, Wang Z, Lin F, Li M, Li Y, Yang L, Rushdi HE, Riaz H, Gao T, Yang L, Fu T, Deng T. MAEL gene contributes to bovine testicular development through the m5C-mediated splicing. iScience 2023; 26:105941. [PMID: 36711243 PMCID: PMC9876746 DOI: 10.1016/j.isci.2023.105941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Knowledge of RNA molecules regulating testicular development and spermatogenesis in bulls is essential for elite bull selection and an ideal breeding program. Herein, we performed direct RNA sequencing (DRS) to explore the functional characterization of RNA molecules produced in the testicles of 9 healthy Simmental bulls at three testicular development stages (prepuberty, puberty, and postpuberty). We identified 5,043 differentially expressed genes associated with testicular weight. These genes exhibited more alternative splicing at sexual maturity, particularly alternative 3' (A3) and 5' (A5) splice sites usage and exon skipping (SE). The expression of hub genes in testicular developmental stages was also affected by both m6A and m5C RNA modifications. We found m5C-mediated splicing events significantly (p < 0.05) increased MAEL gene expression at the isoform level, likely promoting spermatogenesis. Our findings highlight the complexity of RNA processing and expression as well as the regulation of transcripts involved in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Zichen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yali Li
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Liu Yang
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Hossam E. Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Punjab, Pakistan
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Liguo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Corresponding author
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China,Corresponding author
| |
Collapse
|
16
|
Zhang L, Ye B, Lin Y, Li YD, Wang JQ, Chen Z, Ping FF, Chen ZS. Ribociclib Inhibits P-gp-Mediated Multidrug Resistance in Human Epidermoid Carcinoma Cells. Front Pharmacol 2022; 13:867128. [PMID: 35450042 PMCID: PMC9016416 DOI: 10.3389/fphar.2022.867128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
The efficacy of cancer chemotherapy can be attenuated or abrogated by multidrug resistance (MDR) in cancer cells. In this study, we determined the effect of the CDK4/6 inhibitor, ribociclib (or LEE011), on P-glycoprotein (P-gp)-mediated MDR in the human epidermoid carcinoma MDR cell line, KB-C2, which is widely used for studying P-gp-mediated MDR in cancers. The incubation of KB-C2 cells with ribociclib (3–9 µM) increased the efficacy of colchicine, a substrate for P-gp. The cell expression of P-gp was down-regulated at both translation and transcription levels. Furthermore, ribociclib produced a 3.5-fold increase in the basal activity of P-gp ATPase, and the concentration required to increase basal activity by 50% (EC50) was 0.04 μM. Docking studies indicated that ribociclib interacted with the drug-substrate binding site of P-gp. The short-term and long-term intracellular accumulation of doxorubicin greatly increased in the KB-C2 cells co-cultured with ribociclib, indicating ribociclib inhibited the drug efflux activity of P-gp. The results of our study indicate that LEE011 may be a potential agent for combined therapy of the cancers with P-gp mediated MDR.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biwei Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunfeng Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Feng-Feng Ping
- Department of Reproductive Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
17
|
Cheng X, Li D, Qi T, Sun J, Zhou T, Zheng WV. Objective to identify and verify the regulatory mechanism of DTNBP1 as a prognostic marker for hepatocellular carcinoma. Sci Rep 2022; 12:211. [PMID: 34997064 PMCID: PMC8742032 DOI: 10.1038/s41598-021-04055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 11/09/2022] Open
Abstract
Although the overall survival of hepatocellular carcinoma (HCC) patients has been significantly improved, prognostic clinical evaluation remains a substantial problem owing to the heterogeneity and complexity of tumor. A reliable and accurate predictive biomarker may assist physicians in better monitoring of patient treatment outcomes and follow the overall survival of patients. Accumulating evidence has revealed that DTNBP1 plays functional roles in cancer prognosis. Therefore, the expression and function of DTNBP1in HCC was systematically investigated in our study. The expression and prognostic value of DTNBP1 were investigated using the data from Cancer Genome Atlas (TCGA) database, Gene Expression Omnibus (GEO) cohorts and clinical samples. A series of cellular function assays were performed to elucidate the effect of DTNBP1 on cellular proliferation, apoptosis and metastasis. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment and Protein–protein interaction (PPI) network construction were performed to screen the genes with highest interaction scores with DTNBP1. Finally, the underlying mechanism was also analyzed using Gene Set Enrichment Analysis (GSEA) and confirmed using RT-qPCR and western blotting. DTNBP1 was upregulated in many types of cancers, especially in HCC. The DTNBP1 expression levels is associated with clinicopathologic variables and patient survival status. The differential expression of DTNBP1 could be used to determine the risk stratification of patients with HCC. DTNBP1 deficiency inhibited cell proliferation and metastasis, but promoted cell apoptosis. Mechanistically, DTNBP1 regulated the cell cycle progression through affecting the expression of cell cycle-related genes such as CDC25A, CCNE1, CDK2, CDC20, CDC25B, CCNB1, and CDK1. DTNBP1, which regulates the cell cycle progression, may be used as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Tiangyang Qi
- Ascentawits Pharmaceuticals, Ltd., Biomedical Innovation Industrial Park, No. 14 Jinhui Road, Jinsha Community, Kengzi Street, Pingshan District, Shenzhen, Guangdong, People's Republic of China
| | - Jia Sun
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.,ShenZhen Beike Biotechnology Research Institute, Shenzhen, 518057, People's Republic of China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
18
|
Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs). Bioorg Chem 2021; 116:105347. [PMID: 34555628 DOI: 10.1016/j.bioorg.2021.105347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
New diphenyl-1H-pyrazoles were synthesized and screened for CDK2 inhibition where 8d, 9b, 9c, and 9e exhibited promising activity (IC50 = 51.21, 41.36, 29.31, and 40.54 nM respectively) compared to R-Roscovitine (IC50 = 43.25 nM). Furthermore, preliminary anti-proliferative activity screening of some selected compounds on 60 cancer cell lines was performed at the (NCI/USA). Compounds 8a-c displayed promising growth inhibitory activity (mean %GI; 73.74, 94.32 and 74.19, respectively). Additionally, they were further selected by the NCI for five-dose assay, exhibiting pronounced activity against almost the full panel (GI50 ranges; 0.181-5.19, 1.07-4.12 and 1.07-4.82 µM, respectively) and (Full panel GI50 (MG-MID); 2.838, 2.306 and 2.770 µM, respectively). Screening the synthesized compounds 8a-c for inhibition of CDK isoforms revealed that compound 8a exhibited nearly equal inhibition to all the tested CDK isoforms, while compound 8b inhibits CDK4/D1 preferentially than the other isoforms and compound 8c inhibits CDK1, CDK2 and CDK4 more than CDK7. Flow cytometry cell cycle assay of 8a-c on Non-small cell lung carcinoma (NSCL HOP-92) cell line revealed S phase arrest by 8a and G1/S phase arrest by 8b and 8c. Apoptotic induction in HOP-92 cell line was also observed upon treatment with compounds 8a-c. Docking to CDK2 ATP binding site revealed similar interactions as the co-crystallized ligand R-Roscovitine (PDB code; 3ddq). These findings present compounds 8a-c as promising anti-proliferative agents.
Collapse
|
19
|
MicroRNA-200b Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting p27 and KLF9. Animals (Basel) 2021; 11:ani11082417. [PMID: 34438874 PMCID: PMC8388755 DOI: 10.3390/ani11082417] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The miR-200b has been shown to play an important role in preadipocyte proliferation and differentiation. Herein, we explored the role of miR-200b in ovine adipocyte development, using Oil Red O staining, cell viability analysis, EdU and RT-qPCR. The results showed that miR-200b facilitated proliferation and suppressed the differentiation of preadipocytes. The dual fluorescent reporter vector experiments showed that miR-200b directly targeted p27 and KLF9. Meanwhile, we demonstrated that p27 significantly inhibited the proliferation, while KLF9 significantly promoted the differentiation of preadipocytes. Abstract MicroRNAs (miRNAs) are crucial regulatory molecules in lipid deposition and metabolism. However, the effect of miR-200b on the regulation of proliferation and adipogenesis of ovine preadipocytes is unknown in the sheep (Ovis aries). In this study, the expression profiles of miR-200b were investigated in the seven tissues of Tibetan ewes and differentiated preadipocytes. The effect of miR-200b, as well as its target genes p27 and KLF9, on the proliferation of ovine preadipocytes and adipogenesis was also investigated, using cell viability analysis, EdU staining, Oil Red O staining and reverse transcription-quantitative PCR (RT-qRCR). The miR-200b was expressed in all the tissues investigated, and it was highly expressed in lung, liver, subcutaneous adipose and spleen tissues. The expression of miR-200b continuously decreased when the differentiation of ovine preadipocytes initiated. The miR-200b mimic dramatically accelerated the proliferation but inhibited differentiation of ovine preadipocytes. The miR-200b inhibitor resulted in an opposite effect on the proliferation and differentiation of ovine preadipocytes. The dual luciferase reporter assay results showed that miR-200b mimic significantly decreased the luciferase activity of p27 and KLF9 in HEK293 cells transfected with wild-type dual luciferase reporter vectors. This suggests that p27 and KLF9 are the target genes of miR-200b. In over-expressed-p27 preadipocytes, the number of EdU-labeled preadipocytes and the expression levels of proliferation marker genes CDK2, CDK4, CCND1 and PCNA significantly decreased. In addition, the transfection of over-expressed-KLF9 vector into adipocytes remarkably increased the accumulation of lipid droplets and the expression levels of differentiation marker genes aP2, PPARγ, LPL and GLUT4. These results suggest that miR-200b accelerated the proliferation but inhibited the adipogenic differentiation of ovine preadipocytes by targeting p27 and KLF9, respectively.
Collapse
|
20
|
Hassan GS, Georgey HH, Mohammed EZ, George RF, Mahmoud WR, Omar FA. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur J Med Chem 2021; 218:113389. [PMID: 33784602 DOI: 10.1016/j.ejmech.2021.113389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022]
Abstract
Novel series of diphenyl-1H-pyrazoles (4a-g) and pyrazolo[3,4-b]pyridines (5a-g and 7a-i) were synthesized and evaluated for their antiproliferative activity against breast cancer cell line (MCF7) and Hepatocellular carcinoma cell line (HepG2). The highest MCF7 growth inhibition activity was attained via compounds 4f and 7e (IC50 = 1.29 and 0.93 μM, respectively), while compounds 5b and 7f were the most active ones against HepG2 (IC50 = 1.57 and 1.33 μM, respectively) compared to doxorubicin (IC50 = 1.88 and 7.30 μM, respectively). Cell cycle analysis showed arrest at S and G2-M phases in MCF7 cells treated with 4f and 7e, and at G2-M and G1/S phases in HepG2 cells treated with 5b and 7f, respectively. Apoptotic effect of compounds 4f, 5b, 7e, and 7f was indicated via their pre-G1 early and late apoptotic effects and augmented levels of caspase-9/MCF7 and caspase-3/HepG2. A worthy safety profile was assessed for compounds 4f and 7e on MCF10A and compounds 5b and 7f on THLE2 treated normal cells. Furthermore, compounds 4f, 5b and 7f displayed a promising selective profile for CDK2 inhibition vs. CDK1, CDK4, and CDK7 isoforms as proved from their selectivity index. Docking in CDK2 ATP binding site, co-crystallized with R-Roscovitine, demonstrated analogous interactions and comparable binding energy with the native ligand. 2D QSAR sighted the possible structural features governing the CDK2 inhibition activity elicited by the studied pyrazolo[3,4-b]pyridines. These findings present compounds 4f, 5b, and 7f as selective CDK2 inhibitors with promising antiproliferative activity against MCF7 and HepG2 cancer cells.
Collapse
Affiliation(s)
- Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department,School of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, 11777, Egypt
| | - Esraa Z Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Farghaly A Omar
- Medicinal Chemistry Department, Faculty of Pharmacy, Assuit University, 71526, Egypt
| |
Collapse
|
21
|
Adverse Cerebral Cardiovascular Events Associated With Checkpoint Kinase 1 Inhibitors: A Systemic Review. J Cardiovasc Pharmacol 2021; 77:549-556. [PMID: 33951693 DOI: 10.1097/fjc.0000000000000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/31/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Checkpoint kinase 1 (CHK1) plays a broad role in regulating the cell cycle process and is involved in the pathogenesis of various malignant tumors. Preclinical and animal studies have shown that CHK1 inhibitors can enhance the cytotoxic effects of radiotherapy and chemotherapy. Currently, CHK1 inhibitors are actively tested in clinical trials. Nonspecific adverse cerebral cardiovascular events were reported after CHK1 inhibitor use; these events need to be monitored and managed carefully during the clinical application of CHK1 inhibitors. To get a better understanding of these, noteworthy adverse cardiovascular events, we systemically searched the PubMed, Cochrane databases, and clinicaltrials.gov, for relevant clinical trials and case reports. A total of 19 studies were identified and included in this review. Among the reported cerebral cardiovascular events, the most common is incident abnormal blood pressure fluctuations (n = 35), followed by incident QTcF prolongation (n = 15), arrhythmia (n = 13, 3 atrial fibrillation and 10 bradycardia), thromboembolic events (n = 9, 6 pulmonary embolisms, 2 stroke, and 1 cerebrovascular event), cardiac troponin T elevation (n = 2), and ischemic chest pain (n = 2). Besides, the estimated incidence for overall cardiovascular events based on the available data is 0.292 (95% confidence interval: 0.096-0.488). CHK1 inhibitors administered in tumor patients on top of conventional therapies can not only enhance the antitumor effects, but also induce adverse cerebral cardiovascular events. It is, therefore, of importance to carefully monitor and manage the CHK1 inhibitor-induced adverse effects on the cerebral cardiovascular system while applying CHK1 inhibitors to tumor patients.
Collapse
|
22
|
Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorg Chem 2021; 108:104615. [PMID: 33484942 DOI: 10.1016/j.bioorg.2020.104615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
One current approach in the treatment of cancer is the inhibition of cyclin dependent kinase (CDK) enzymes with small molecules. CDK are a class of enzymes, which catalyze the transfer of the terminal phosphate of a molecule of ATP to a protein that acts as a substrate. Among CDK enzymes, CDK2 has been implicated in a variety of cancers, supporting its potential as a novel target for cancer therapy across many tumor types. Here the discovery and development of arylidene-hydrazinyl-thiazole as a potentially CDK2 inhibitors is described, including details of the design and successful synthesis of the series analogs (27a-r) using one-pot approach under eco-friendly ultrasound and microwave conditions. Most of the newly synthesized compounds showed good growth inhibition when assayed for their in-vitro anti-proliferative activity against three cancer cell lines (HepG2, MCF-7 and HCT-116) compared to the reference drug roscovitine, with little toxicity on the normal fibroblast cell lines (WI-38). Furthermore, the compounds exhibiting the highest anti-proliferative activities were tested against a panel of kinase enzymes. These derivatives displayed an outstanding CDK2 inhibitory potential with varying degree of inhibition in the range of IC50 0.35-1.49 μM when compared with the standard inhibitor roscovitine having an IC50 value 0.71 μM. The most promising CDK2 inhibitor (27f) was selected for further studies to determine its effect on the cell cycle progression and apoptosis in HepG2 cell line. The results indicated that this compound implied inhibition in the G2/M phase of the cell cycle, and it is a good apoptotic agent. Finally, Molecular docking study was performed to identify the structural elements which involved in the inhibitory activity with the prospective target, CDK2, and to rationalize the structure-activity relationship (SAR).
Collapse
|
23
|
Evangelisti G, Barra F, Moioli M, Sala P, Stigliani S, Gustavino C, Costantini S, Ferrero S. Prexasertib: an investigational checkpoint kinase inhibitor for the treatment of high-grade serous ovarian cancer. Expert Opin Investig Drugs 2020; 29:779-792. [PMID: 32539469 DOI: 10.1080/13543784.2020.1783238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction Patients with high-grade serous ovarian cancer (HGSOC) have a poor prognosis, and current chemotherapy regimens for treating advanced disease are far from satisfactory. Prexasertib (LY2606368) is a novel checkpoint kinase inhibitor (CHK) under investigation for the treatment of HGSOC. Data from a recent phase II trial showed promising efficacy and safety results for treating wild-type BRCA HGSOC. Areas covered This article reviews the available data on the pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of prexasertib in the treatment of HGSOC. Expert opinion Until now, prexasertib demonstrated clinical activity in phase I and II clinical trial for treating wild-type BRCA HGSOC, whereas its promising efficacy as monotherapy and combined with olaparib in BRCA-mutated HGSOC has been preliminary evidenced only in phase I studies. Compared to other drugs of the same class, prexasertib showed a better tolerability profile, causing moderate hematological toxicity. Further studies are needed to confirm efficacy and safety profiles of prexasertib in combined regimens. New early clinical trials may investigate prexasertib administered with programmed cell death ligand 1 (PD-L1) and PI3 K inhibitors due to the preclinical evidence of a synergic action.
Collapse
Affiliation(s)
- Giulio Evangelisti
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Fabio Barra
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Melita Moioli
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Paolo Sala
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,LILT - Lega Italiana per la Lotta contro i Tumori, Rome, Italy
| | - Sara Stigliani
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Claudio Gustavino
- Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy
| | - Sergio Costantini
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| | - Simone Ferrero
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino , Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child, Health (Dinogmi), University of Genoa , Italy
| |
Collapse
|
24
|
Gatti-Mays ME, Karzai FH, Soltani SN, Zimmer A, Green JE, Lee MJ, Trepel JB, Yuno A, Lipkowitz S, Nair J, McCoy A, Lee JM. A Phase II Single Arm Pilot Study of the CHK1 Inhibitor Prexasertib (LY2606368) in BRCA Wild-Type, Advanced Triple-Negative Breast Cancer. Oncologist 2020; 25:1013-e1824. [PMID: 32510664 DOI: 10.1634/theoncologist.2020-0491] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022] Open
Abstract
LESSONS LEARNED Monotherapy with prexasertib demonstrated modest activity in BRCA wild-type, recurrent triple-negative breast cancer, highlighting the unmet need for combination treatment strategies. Neutropenia, anemia, and thrombocytopenia are common with the use of prexasertib but are manageable with supportive care measures. Prophylactic use of granulocyte colony stimulating factor should be considered to avoid dose reductions or treatment delays. Pharmacodynamic studies showed prexasertib treatment induced DNA damage in peripheral immune cells. BACKGROUND Cell cycle checkpoint kinase 1 (CHK1) is a major G2/M cell cycle regulator in tumors with p53 dysfunction, such as triple-negative breast cancer (TNBC). We hypothesized the second-generation CHK1 inhibitor, prexasertib, would yield clinical activity in sporadic TNBC. METHODS This single arm, phase II trial evaluated prexasertib at 105 mg/m2 IV every 2 weeks in patients with metastatic/recurrent TNBC. The primary endpoint was overall response rate (ORR). RESULTS All nine patients enrolled were germline BRCA wild-type (BRCAwt) and had at least one prior treatment. One partial response (PR) was observed (ORR of 11.1%). Four patients experienced stable disease. The median progression-free survival (PFS) was 86 days (range 17 to 159 days). Grade 3/4 treatment-related adverse events included afebrile neutropenia (n = 8; 88.9%), anemia (n = 3; 33.3%), and thrombocytopenia (n = 1; 11.1%). Pharmacodynamic studies showed prexasertib treatment induced DNA damage in peripheral immune cells and demonstrated a decrease in activated/reinvigorated CD8 T cells; however, the one patient with a PR showed evidence of T-cell recovery. CONCLUSION Prexasertib monotherapy had modest clinical efficacy in BRCAwt TNBC. Further studies of prexasertib in combination with other agents are needed.
Collapse
Affiliation(s)
- Margaret E Gatti-Mays
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sanaz N Soltani
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexandra Zimmer
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey E Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jayakumar Nair
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ann McCoy
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Li T, Gu M, Deng A, Qian C. Increased expression of YTHDF1 and HNRNPA2B1 as potent biomarkers for melanoma: a systematic analysis. Cancer Cell Int 2020; 20:239. [PMID: 32549786 PMCID: PMC7294677 DOI: 10.1186/s12935-020-01309-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background The incidence and mortality of melanoma is increasing around the world. To deeply explain the mechanism insight into it, we conducted a systematic analysis to examine the levels of regulatory genes of the common RNA epigenetic modification-N6-methyladenosine (m6A) in patients with melanoma compared by the healthy. Methods We analyzed the expression of m6A Eraser, Writer, and Reader genes based on publicly available datasets on Oncomine and validated the results with a gene expression omnibus dataset. Hub genes were identified with Cytohubba and the frequency of copy number alterations was analyzed with the cBioPortal tool. Results The results revealed the up-regulation of YTHDF1 and HNRNPA2B1 in melanoma. Combining the two genes improved the efficacy in diagnosing melanoma by about 10% compared to each gene alone. Hub genes identified with four analysis methods were compared and the overlapping genes were selected. These genes were enriched in several gene ontology terms. Genes related to p53-signaling consisted of CDK2, CDK1, RRM2, CCNB1, and CHEK1. All five genes were positively correlated with either YTHDF1 or HNRNPA2B1, suggesting that both genes may affect m6A modification by the five genes, further up-regulating their expression and facilitate their roles in inhibiting p53 to suppress tumorigenesis. We also observed major mutations in YTHDF1 and HNRNPA2B1 that led to their amplification in melanoma. Significant differences were observed in the clinical characteristics of patients with altered and unaltered m6A regulatory genes such as tumor stage and treatment response. Conclusions We, for the first time, identified a combination of m6A regulatory genes to diagnose melanoma. We also analyzed m6A-related genes more comprehensively based on systematic complete data. We found that YTHDF1 and HNRNPA2B1 were altered in melanoma and might influence the development of the disease through signaling pathways such as p53.
Collapse
Affiliation(s)
- Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, The Second Military Medical University, Shanghai, 200433 China
| | - Anmei Deng
- Changhai Hospital, The Second Military Medical University, Shanghai, 200433 China
| | - Cheng Qian
- Department of Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071 China
| |
Collapse
|
26
|
Chang JW, Ding Y, Tahir Ul Qamar M, Shen Y, Gao J, Chen LL. A deep learning model based on sparse auto-encoder for prioritizing cancer-related genes and drug target combinations. Carcinogenesis 2020; 40:624-632. [PMID: 30944926 DOI: 10.1093/carcin/bgz044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/06/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
Prioritization of cancer-related genes from gene expression profiles and proteomic data is vital to improve the targeted therapies research. Although computational approaches have been complementing high-throughput biological experiments on the understanding of human diseases, it still remains a big challenge to accurately discover cancer-related proteins/genes via automatic learning from large-scale protein/gene expression data and protein-protein interaction data. Most of the existing methods are based on network construction combined with gene expression profiles, which ignore the diversity between normal samples and disease cell lines. In this study, we introduced a deep learning model based on a sparse auto-encoder to learn the specific characteristics of protein interactions in cancer cell lines integrated with protein expression data. The model showed learning ability to identify cancer-related proteins/genes from the input of different protein expression profiles by extracting the characteristics of protein interaction information, which could also predict cancer-related protein combinations. Comparing with other reported methods including differential expression and network-based methods, our model got the highest area under the curve value (>0.8) in predicting cancer-related genes. Our study prioritized ~500 high-confidence cancer-related genes; among these genes, 211 already known cancer drug targets were found, which supported the accuracy of our method. The above results indicated that the proposed auto-encoder model could computationally prioritize candidate proteins/genes involved in cancer and improve the targeted therapies research.
Collapse
Affiliation(s)
- Ji-Wei Chang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuduan Ding
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Muhammad Tahir Ul Qamar
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yin Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Junxiang Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Ling-Ling Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
27
|
Innes CL, Hesse JE, Morales AJ, Helmink BA, Schurman SH, Sleckman BP, Paules RS. DNA damage responses in murine Pre-B cells with genetic deficiencies in damage response genes. Cell Cycle 2020; 19:67-83. [PMID: 31757180 PMCID: PMC6927727 DOI: 10.1080/15384101.2019.1693118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/29/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023] Open
Abstract
DNA damage can be generated in multiple ways from genotoxic and physiologic sources. Genotoxic damage is known to disrupt cellular functions and is lethal if not repaired properly. We compare the transcriptional programs activated in response to genotoxic DNA damage induced by ionizing radiation (IR) in abl pre-B cells from mice deficient in DNA damage response (DDR) genes Atm, Mre11, Mdc1, H2ax, 53bp1, and DNA-PKcs. We identified a core IR-specific transcriptional response that occurs in abl pre-B cells from WT mice and compared the response of the other genotypes to the WT response. We also identified genotype specific responses and compared those to each other. The WT response includes many processes involved in lymphocyte development and immune response, as well as responses associated with the molecular mechanisms of cancer, such as TP53 signaling. As expected, there is a range of similarity in transcriptional profiles in comparison to WT cells, with Atm-/- cells being the most different from the core WT DDR and Mre11 hypomorph (Mre11A/A) cells also very dissimilar to WT and other genotypes. For example, NF-kB-related signaling and CD40 signaling are deficient in both Atm-/- and Mre11A/A cells, but present in all other genotypes. In contrast, IR-induced TP53 signaling is seen in the Mre11A/A cells, while these responses are not seen in the Atm-/- cells. By examining the similarities and differences in the signaling pathways in response to IR when specific genes are absent, our results further illustrate the contribution of each gene to the DDR. The microarray gene expression data discussed in this paper have been deposited in NCBI's Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and are accessible under accession number GSE116388.
Collapse
Affiliation(s)
- Cynthia L. Innes
- Environmental Stress and Cancer Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jill E. Hesse
- Environmental Stress and Cancer Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Abigail J. Morales
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beth A. Helmink
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shepherd H. Schurman
- Clinical Research Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Barry P. Sleckman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard S. Paules
- Environmental Stress and Cancer Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
28
|
Akaike Y, Chibazakura T. Aberrant activation of cyclin A-CDK induces G2/M-phase checkpoint in human cells. Cell Cycle 2019; 19:84-96. [PMID: 31760882 DOI: 10.1080/15384101.2019.1693119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclin A-cyclin dependent kinase (CDK) activity is regulated by cyclin A proteolysis and CDK inhibitors (CKIs) during M and G1 phases. Our previous work has shown that constitutive activation of cyclin A-CDK in mouse somatic cells, by ectopic expression of stabilized human cyclin A2 (lacking the destruction box: CycAΔ80) in triple CKI (p21, p27, and p107)-knocked-out mouse embryonic fibroblasts, induces rapid tetraploidization. However, effects of such cyclin A-CDK hyperactivation in human cells have been unknown. Here, we show hyperactivity of cyclin A-CDK induces G2/M-phase arrest in human cell lines with relatively low expression of p21 and p27. Moreover, adenovirus E1A protein promoted CycAΔ80-derived G2/M-phase arrest by increasing the amount of cyclin A and cyclin A-CDK2 complex. This response was suppressed by an addition of ATR or Chk1 inhibitor. The amount of repressive phosphorylation of CDK1 at tyrosine 15 (Y15) was decreased by Chk1 inhibitor treatment. Moreover, we observed that co-expressing CDK1AF mutant, which is resistant to the repressive phosphorylation at threonine 14 and Y15, or cdc25A, which dephosphorylates CDK1 at Y15, suppressed the G2/M-phase arrest by CycAΔ80 with E1A. These results suggest that G2/M-phase arrest in human cells by hyperactivity of cyclin A-CDK2 is caused by repression of CDK1 via the cell cycle checkpoint ATR-Chk1 pathway.
Collapse
Affiliation(s)
- Yasunori Akaike
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
29
|
Chan ZCK, Leong KH, Kareem HS, Norazit A, Noor SM, Ariffin A. Activation of death receptor, DR5 and mitochondria-mediated apoptosis by a 3,4,5-trimethoxybenzyloxy derivative in wild-type and p53 mutant colorectal cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 393:405-417. [PMID: 31641820 DOI: 10.1007/s00210-019-01730-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
The rationale of designing compounds containing a (3,4,5-trimethoxybenzyloxy) phenyl moiety is largely due to its potential antioxidant and cytotoxic activities. A previous study focused on its antioxidant mechanism, whereas in this study, we investigated the cytotoxicity of a series of 28 analogues and the mechanism of apoptosis of the most cytotoxic compound against wild-type (HCT-116) and p53 mutant (HT-29) colorectal cancer cell lines. The series of analogues comprise of different families, namely hydrazone, oxadiazole, thiosemicarbazides and triazoles. In the initial cytotoxicity screening, N-(3,4,5-trimethoxybenzylidene)-4-(3,4,5-trimethoxybenzyloxy) benzohydrazide, henceforth known as, P5H, was found to be most cytotoxic against human colorectal cancer cell lines (IC50 for HCT-116 = 11.79 μM and HT-29 = 18.52 μM). Additionally, P5H was found to have some degree of selectivity towards cancer cells compared to normal human colon cells (CCD-112 CoN). Subsequent investigation had brought insight on P5H ability to induce apoptosis in both HCT-116 and HT-29 cell lines. Cell cycle analysis showed both cell lines were arrested at the G2/M phase upon treatment. Our study concluded that P5H induced the death receptor, DR5 in HCT-116 and mitochondria-mediated apoptosis pathway in HT-29. Therefore, P5H may be a promising candidate as a chemotherapy agent against colon cancer. Graphical abstract The apoptotic pathways induced in HT-29 and HCT-116 cells upon P5H treatment.
Collapse
Affiliation(s)
- Zachariah Chee Ken Chan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Center for Natural Product and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Huda Salah Kareem
- General Directorate of Curricular, Ministry of Education, Baghdad, 3310, Iraq
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Song B, Zeng Q, Liu Y, Wu B. Effect of methionine deficiency on the apoptosis and cell cycle of kidney in broilers. Res Vet Sci 2019; 135:228-236. [PMID: 31648780 DOI: 10.1016/j.rvsc.2019.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 01/09/2023]
Abstract
Abundant evidence now supports the idea that methionine deficiency has negative effects on chicken healthy especially in the aspect of cell cycle regulation and apoptosis. But, lacking of knowledge is the evaluation on metabolic organs. To test the effect of methionine deficiency on the kidney, we assessed the apoptosis and the cell cycle of kidney induced by methionine deficiency by the methods of TdT-mediated dUTP Nick-End Labeling (TUNEL), flow cytometry (FCM), quantitative real-time PCR (qRT-PCR) and Enzyme-Linked ImmunoSorbent Assay (ELISA) of chickens for 42 days of age. Our results showed that the number of the apoptotic cells was increased (p < .05 or p < .01), while bcl-2 mRNA expression levels were decreased (p < .05 or p < .01) and bax and caspase-3 mRNA expression levels were higher (p < .01) in methionine deficiency group. Furthermore, the cell cycle results showed a time-dependent increase in G2M phase cells and a corresponding decrease in cells at G2M and S stages, the mRNA expression of p53 and p21 was increased (P < .05 or P < .01) and cyclin B and PCNA was significantly lower (P < .05 or P < .01) in the methionine deficiency group than that of the control group. These findings suggested that methionine deficiency could induce renal apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Baolin Song
- College of Life Science, China West Normal University, Shida road 1#, Nanchong, Sichuan, PR China
| | - Qianmei Zeng
- Department of Finance Office, China West Normal University, Shida road 1#, Nanchong, Sichuan, PR China
| | - Yuan Liu
- College of Life Science, China West Normal University, Shida road 1#, Nanchong, Sichuan, PR China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Shida road 1#, Nanchong, Sichuan, PR China; College of Life Science, China West Normal University, Shida road 1#, Nanchong, Sichuan, PR China.
| |
Collapse
|
31
|
Liu Q, Gao J, Zhao C, Guo Y, Wang S, Shen F, Xing X, Luo Y. To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response. DNA Repair (Amst) 2019; 85:102702. [PMID: 31731257 DOI: 10.1016/j.dnarep.2019.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
CDK2 (cyclin-dependent kinase 2), a member of the CDK family, has been shown to play a role in many cellular activities including cell cycle progression, apoptosis and senescence. Recently, accumulating evidence indicates that CDK2 is involved in DNA damage and DNA repair response (DDR). When DNA is damaged by internal or external genotoxic stresses, CDK2 activity is required for proper DNA repair in vivo and in vitro, whereas inactivation of CDK2 by siRNA techniques or by inhibitors could result in DNA damage and stimulate DDR. Hence, CDK2 seems to play dual roles in DNA damage and DDR. On one aspect, it is activated and stimulates DDR to repair DNA damage when DNA damage occurs; on the other hand, its inactivation directly leads to DNA damage and evokes DDR. Here, we describe the roles of CDK2 in DNA damage and DDR, and discuss the potential application of CDK2 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yingying Guo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Shiquan Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Fei Shen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
32
|
Xu C, Zhang W, Zhang X, Zhou D, Qu L, Liu J, Xiao M, Ni R, Jiang F, Ni W, Lu C. Coupling function of cyclin-dependent kinase 2 and Septin2 in the promotion of hepatocellular carcinoma. Cancer Sci 2019; 110:540-549. [PMID: 30444001 PMCID: PMC6361569 DOI: 10.1111/cas.13882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common and aggressive malignant tumor with a poorly defined molecular mechanism. Cyclin-dependent kinase 2 (CDK2) and Septin2 (SEPT2) are 2 known oncogenic molecules but the mechanism of functional interactions remains unclear. Here, we interestingly found that CDK2 and SEPT2 show very similar dynamic expression during the cell cycle. Both CDK2 and SEPT2 show the highest protein levels in the G2/M phase, resulting in CDK2 interacting with SEPT2 and stabilizing SEPT2 in HCC. In a panel of 8 pairs of fresh HCC tissues and corresponding adjacent tissues, both western blot and immunohistochemistry (IHC) assays demonstrate that CDK2 expression is highly correlated with SEPT2. HCC with high expression of both CDK2 and SEPT2 are more likely to relapse. This observation is further demonstrated by a large panel of 100 HCC patients. In this large panel, high expression of both CDK2 and SEPT2 significantly correlates with tumor differentiation and microvascular invasion, which is an independent prognostic factor in HCC patients. In summary, our results reveal a cooperative function between CDK2 and SEPT2. HCC with high expression of CDK2 and SEPT2 might be more aggressive and respond poorly to current therapy.
Collapse
Affiliation(s)
- Chenzhou Xu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
- Medical CollegeNantong UniversityNantongChina
| | - Wei Zhang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
- Medical CollegeNantong UniversityNantongChina
| | - Xuening Zhang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
- Medical CollegeNantong UniversityNantongChina
| | - Danhua Zhou
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
- Medical CollegeNantong UniversityNantongChina
| | - Lishuai Qu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Jinxia Liu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Mingbing Xiao
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Runzhou Ni
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Feng Jiang
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Wenkai Ni
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| | - Cuihua Lu
- Department of GastroenterologyAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
33
|
Chen H, Shan J, Chen D, Wang R, Qi W, Wang H, Ke Y, Liu W, Zeng X. CtIP promotes G2/M arrest in etoposide-treated HCT116 cells in a p53-independent manner. J Cell Physiol 2018; 234:11871-11881. [PMID: 30478995 DOI: 10.1002/jcp.27824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jin Shan
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dandan Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruoxi Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.,Department of Bioscience, Changchun Normal University, Changchun, China
| | - Hailong Wang
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
34
|
Physalin B induces cell cycle arrest and triggers apoptosis in breast cancer cells through modulating p53-dependent apoptotic pathway. Biomed Pharmacother 2018; 101:334-341. [DOI: 10.1016/j.biopha.2018.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
|
35
|
Krasinska L, Fisher D. Non-Cell Cycle Functions of the CDK Network in Ciliogenesis: Recycling the Cell Cycle Oscillator. Bioessays 2018; 40:e1800016. [DOI: 10.1002/bies.201800016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Liliana Krasinska
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| | - Daniel Fisher
- Institut de Génétique Moléculaire de Montpellier (IGMM); University of Montpellier, CNRS 1919 Route de Mende; Montpellier 34293 France
- Equipe Labellisée LIGUE 2018; Ligue Nationale contre le Cancer; 75013 Paris France
| |
Collapse
|
36
|
Hematulin A, Meethang S, Utapom K, Wongkham S, Sagan D. Etoposide radiosensitizes p53-defective cholangiocarcinoma cell lines independent of their G 2 checkpoint efficacies. Oncol Lett 2018. [PMID: 29541168 DOI: 10.3892/ol.2018.7754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Radiotherapy has been accounted as the most comprehensive cancer treatment modality over the past few decades. However, failure of this treatment modality occurs in several malignancies due to the resistance of cancer cells to radiation. It was previously reported by the present authors that defective cell cycle checkpoints could be used as biomarkers for predicting the responsiveness to radiation in individual patients with cholangiocarcinoma (CCA). However, identification of functional defective cell cycle checkpoints from cells from a patient's tissues is cumbersome and not applicable in the clinic. The present study evaluated the radiosensitization potential of etoposide in p53-defective CCA KKU-M055 and KKU-M214 cell lines. Treatment with etoposide enhanced the responsiveness of two p53-defective CCA cell lines to radiation independent of G2 checkpoint function. In addition, etoposide treatment increased radiation-induced cell death without altering the dominant mode of cell death of the two cell lines. These findings indicate that etoposide could be used as a radiation sensitizer for p53-defective tumors, independent of the function of G2 checkpoint.
Collapse
Affiliation(s)
- Arunee Hematulin
- Radiobiology Research Laboratory, Department of Radiation Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutiwan Meethang
- Radiobiology Research Laboratory, Department of Radiation Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Kitsana Utapom
- Radiation Oncology Unit, Department of Radiology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Daniel Sagan
- Independent Researcher, Miesbach, D-83714 Bavaria, Germany
| |
Collapse
|
37
|
Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Oncotarget 2017; 9:5216-5232. [PMID: 29435174 PMCID: PMC5797045 DOI: 10.18632/oncotarget.23749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 - now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ∼3.5-fold and ∼65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average >2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy.
Collapse
Affiliation(s)
- Caroline M Robb
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smit Kour
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Ekta Agarwal
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Carter J Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Yogesh Sonawane
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Beth K Neilsen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Margaret Taylor
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Rhishikesh N Thakare
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sanjib Chowdhury
- Section of Gastroenterology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | - Jing Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael G Brattain
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| |
Collapse
|
38
|
Jayasooriya RGPT, Molagoda IMN, Park C, Jeong JW, Choi YH, Moon DO, Kim MO, Kim GY. Molecular chemotherapeutic potential of butein: A concise review. Food Chem Toxicol 2017; 112:1-10. [PMID: 29258953 DOI: 10.1016/j.fct.2017.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Butein is a biologically active flavonoid isolated from the bark of Rhus verniciflua Stokes, which is known to have therapeutic potential against various cancers. Notably, butein inhibits cancer cell growth by inducing G2/M phase arrest and apoptosis. Butein-induced G2/M phase arrest is associated with increased phosphorylation of ataxia telangiectasia mutated (ATM) and Chk1/2, and consequently, with reduced cdc25C levels. In addition, butein-induced apoptosis is mediated through the activation of caspase-3, which is associated with changes in the expression of Bcl-2 and Bax proteins. Intriguingly, butein sensitizes cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via ERK-mediated Sp1 activation, which promotes the transcription of specific death receptor 5. Butein also inhibits the migration and invasion of human cancer cells by suppressing nuclear factor-κB- and extracellular signal-regulated kinases 1/2-mediated expression of matrix metalloproteinase-9 and vascular endothelial growth factor. Additionally, butein downregulates the expression of human telomerase reverse transcriptase and causes a concomitant decrease in telomerase activity. These findings provide the basis for the pharmaceutical development of butein. The aim of this review is to provide an update on the mechanisms underlying the anticancer activity of butein, with a special focus on its effects on different cellular signaling cascades.
Collapse
Affiliation(s)
- Rajapaksha Gedara Prasad Tharanga Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Department of Biological Sciences, Faculty of Applied Science, University of Rajarata, Mihintale 50300, Sri Lanka
| | | | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dongeui University, Busan 67340, Republic of Korea
| | - Jin-Woo Jeong
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Dong-Oh Moon
- Department of Biology Education, Daegu University, Jillyang, Gyeongsan, Gyeonsangbuk-do 38453, Republic of Korea
| | - Mun-Ock Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Chungcheongbuk-do 28116, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
39
|
Bacevic K, Noble R, Soffar A, Wael Ammar O, Boszonyik B, Prieto S, Vincent C, Hochberg ME, Krasinska L, Fisher D. Spatial competition constrains resistance to targeted cancer therapy. Nat Commun 2017; 8:1995. [PMID: 29222471 PMCID: PMC5722825 DOI: 10.1038/s41467-017-01516-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/25/2017] [Indexed: 01/08/2023] Open
Abstract
Adaptive therapy (AT) aims to control tumour burden by maintaining therapy-sensitive cells to exploit their competition with resistant cells. This relies on the assumption that resistant cells have impaired cellular fitness. Here, using a model of resistance to a pharmacological cyclin-dependent kinase inhibitor (CDKi), we show that this assumption is valid when competition between cells is spatially structured. We generate CDKi-resistant cancer cells and find that they have reduced proliferative fitness and stably rewired cell cycle control pathways. Low-dose CDKi outperforms high-dose CDKi in controlling tumour burden and resistance in tumour spheroids, but not in monolayer culture. Mathematical modelling indicates that tumour spatial structure amplifies the fitness penalty of resistant cells, and identifies their relative fitness as a critical determinant of the clinical benefit of AT. Our results justify further investigation of AT with kinase inhibitors. Adaptive therapy aims to control tumours by exploiting competition between therapy-sensitive and resistant cells. Here, the authors show that tumour spatial structure is a critical parameter for adaptive therapy as competition for space increases fitness differentials, allowing suppression of resistance with low-dose treatments.
Collapse
Affiliation(s)
- Katarina Bacevic
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France
| | - Robert Noble
- ISEM, University of Montpellier, 34090, Montpellier, France.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ahmed Soffar
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France.,Division of Molecular Biology, Department of Zoology, Faculty of Science Alexandria University, 21526, Alexandria, Egypt
| | | | | | - Susana Prieto
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France
| | | | - Michael E Hochberg
- ISEM, University of Montpellier, 34090, Montpellier, France.,Santa Fe Institute, Santa Fe, NM, 87501, USA
| | | | - Daniel Fisher
- IGMM, CNRS, University of Montpellier, 34090, Montpellier, France.
| |
Collapse
|
40
|
Brill E, Yokoyama T, Nair J, Yu M, Ahn YR, Lee JM. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 2017; 8:111026-111040. [PMID: 29340034 PMCID: PMC5762302 DOI: 10.18632/oncotarget.22195] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022] Open
Abstract
PARP inhibitors (PARPi) have been effective in high-grade serous ovarian cancer (HGSOC), although clinical activity is limited against BRCA wild type HGSOC. The nearly universal loss of normal p53 regulation in HGSOCs causes dysfunction in the G1/S checkpoint, making tumor cells reliant on Chk1-mediated G2/M cell cycle arrest for DNA repair. Therefore, Chk1 is a reasonable target for a combination strategy with PARPi in treating BRCA wild type HGSOC. Here we investigated the combination of prexasertib mesylate monohydrate (LY2606368), a Chk1 and Chk2 inhibitor, and a PARP inhibitor, olaparib, in HGSOC cell lines (OVCAR3, OV90, PEO1 and PEO4) using clinically attainable concentrations. Our findings showed combination treatment synergistically decreased cell viability in all cell lines and induced greater DNA damage and apoptosis than the control and/or monotherapies (p<0.05). Treatment with olaparib in BRCA wild type HGSOC cells caused formation of Rad51 foci, whereas the combination treatment with prexasertib inhibited transnuclear localization of Rad51, a key protein in homologous recombination repair. Overall, our data provide evidence that prexasertib and olaparib combination resulted in synergistic cytotoxic effects against BRCA wild type HGSOC cells through reduced Rad51 foci formation and greater induction of apoptosis. This may be a novel therapeutic strategy for HGSOC.
Collapse
Affiliation(s)
- Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Takuhei Yokoyama
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jayakumar Nair
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Minshu Yu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yeong-Ran Ahn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep 2017; 7:13429. [PMID: 29044141 PMCID: PMC5647392 DOI: 10.1038/s41598-017-12868-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/17/2017] [Indexed: 02/03/2023] Open
Abstract
Although cyclin-dependent kinase 2 (Cdk2) controls the G1/S transition and promotes DNA replication, it is dispensable for cell cycle progression due to redundancy with Cdk1. Yet Cdk2 also has non-redundant functions that can be revealed in certain genetic backgrounds and it was reported to promote the G2/M DNA damage response checkpoint in TP53 (p53)-deficient cancer cells. However, in p53-proficient cells subjected to DNA damage, Cdk2 is inactivated by the CDK inhibitor p21. We therefore investigated whether Cdk2 differentially affects checkpoint responses in p53-proficient and deficient cell lines. We show that, independently of p53 status, Cdk2 stimulates the ATR/Chk1 pathway and is required for an efficient DNA replication checkpoint response. In contrast, Cdk2 is not required for a sustained DNA damage response and G2 arrest. Rather, eliminating Cdk2 delays S/G2 progression after DNA damage and accelerates appearance of early markers of cell cycle exit. Notably, Cdk2 knockdown leads to down-regulation of Cdk6, which we show is a non-redundant pRb kinase whose elimination compromises cell cycle progression. Our data reinforce the notion that Cdk2 is a key p21 target in the DNA damage response whose inactivation promotes exit from the cell cycle in G2.
Collapse
|
42
|
Hassan GS, Abdel Rahman DE, Nissan YM, Abdelmajeed EA, Abdelghany TM. Novel pyrazolopyrimidines: Synthesis, in vitro cytotoxic activity and mechanistic investigation. Eur J Med Chem 2017; 138:565-576. [DOI: 10.1016/j.ejmech.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
43
|
Spetz J, Langen B, Rudqvist N, Parris TZ, Helou K, Nilsson O, Forssell-Aronsson E. Hedgehog inhibitor sonidegib potentiates 177Lu-octreotate therapy of GOT1 human small intestine neuroendocrine tumors in nude mice. BMC Cancer 2017; 17:528. [PMID: 28789624 PMCID: PMC5549301 DOI: 10.1186/s12885-017-3524-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/01/2017] [Indexed: 01/04/2023] Open
Abstract
Background 177Lu-octreotate can be used to treat somatostatin receptor expressing neuroendocrine tumors. It is highly effective in animal models, but clinical studies have so far only demonstrated low cure rates. Hedgehog inhibitors have shown therapeutic effect as monotherapy in neuroendocrine tumor model systems and might be one option to enhance the efficacy of 177Lu-octreotate therapy. The aim of this study was to determine the therapeutic effect of combination therapy using 177Lu-octreotate and the Hedgehog signaling pathway inhibitor sonidegib. Methods GOT1-bearing BALB/c nude mice were treated with either sonidegib (80 mg/kg twice a week via oral gavage), a single injection of 30 MBq 177Lu-octreotate i.v., or a combination of both. Untreated animals served as controls. Tumor size was measured twice-weekly using calipers. The animals were killed 41 d after injection followed by excision of the tumors. Total RNA was extracted from each tumor sample and then subjected to gene expression analysis. Gene expression patterns were compared with those of untreated controls using Nexus Expression 3.0, IPA and Gene Ontology terms. Western blot was carried out on total protein extracted from the tumor samples to analyze activation-states of the Hh and PI3K/AKT/mTOR pathways. Results Sonidegib monotherapy resulted in inhibition of tumor growth, while a significant reduction in mean tumor volume was observed after 177Lu-octreotate monotherapy and combination therapy. Time to progression was prolonged in the combination therapy group compared with 177Lu-octreotate monotherapy. Gene expression analysis revealed a more pronounced response following combination therapy compared with both monotherapies, regarding the number of regulated genes and biological processes. Several cancer-related signaling pathways (i.e. Wnt/β-catenin, PI3K/AKT/mTOR, G-protein coupled receptor, and Notch) were affected by the combination therapy, but not by either monotherapy. Protein expression analysis revealed an activation of the Hh- and PI3K/AKT/mTOR pathways in tumors exposed to 177Lu-octreotate monotherapy and combination therapy. Conclusions A comparative analysis of the different treatment groups showed that combination therapy using sonidegib and 177Lu-octreotate could be beneficial to patients with neuroendocrine tumors. Gene expression analysis revealed a functional interaction between sonidegib and 177Lu-octreotate, i.e. several cancer-related signaling pathways were modulated that were not affected by either monotherapy. Protein expression analysis indicated a possible PI3K/AKT/mTOR-dependent activation of the Hh pathway, independent of SMO. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3524-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden.
| | - Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45, Gothenburg, SE, Sweden
| |
Collapse
|
44
|
Abstract
Histological grade is one of the most commonly used prognostic factors for patients diagnosed with breast cancer. However, conventional grading has proven technically challenging, and up to 60% of the tumors are classified as histological grade 2, which represents a heterogeneous cohort less informative for clinical decision making. In an attempt to study and extend the molecular puzzle of histologically graded breast cancer, we have in this pilot project searched for additional protein biomarkers in a new space of the proteome. To this end, we have for the first time performed protein expression profiling of breast cancer tumor tissue, using recombinant antibody microarrays, targeting mainly immunoregulatory proteins. Thus, we have explored the immune system as a disease-specific sensor (clinical immunoproteomics). Uniquely, the results showed that several biologically relevant proteins reflecting histological grade could be delineated. In more detail, the tentative biomarker panels could be used to i) build a candidate model classifying grade 1 vs. grade 3 tumors, ii) demonstrate the molecular heterogeneity among grade 2 tumors, and iii) potentially re-classify several of the grade 2 tumors to more like grade 1 or grade 3 tumors. This could, in the long-term run, lead to improved prognosis, by which the patients could benefit from improved tailored care.
Collapse
|
45
|
Neri L, Lasa M, Elosegui-Artola A, D'Avola D, Carte B, Gazquez C, Alve S, Roca-Cusachs P, Iñarrairaegui M, Herrero J, Prieto J, Sangro B, Aldabe R. NatB-mediated protein N-α-terminal acetylation is a potential therapeutic target in hepatocellular carcinoma. Oncotarget 2017; 8:40967-40981. [PMID: 28498797 PMCID: PMC5522283 DOI: 10.18632/oncotarget.17332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/04/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new targets for systemic therapy of hepatocellular carcinoma (HCC) is an urgent medical need. Recently, we showed that hNatB catalyzes the N-α-terminal acetylation of 15% of the human proteome and that this action is necessary for proper actin cytoskeleton structure and function. In tumors, cytoskeletal changes influence motility, invasion, survival, cell growth and tumor progression, making the cytoskeleton a very attractive antitumor target. Here, we show that hNatB subunits are upregulated in in over 59% HCC tumors compared to non-tumor tissue and that this upregulation is associated with microscopic vascular invasion. We found that hNatB silencing blocks proliferation and tumor formation in HCC cell lines in association with hampered DNA synthesis and impaired progression through the S and the G2/M phases. Growth inhibition is mediated by the degradation of two hNatB substrates, tropomyosin and CDK2, which occurs when these proteins lack N-α-terminal acetylation. In addition, hNatB inhibition disrupts the actin cytoskeleton, focal adhesions and tight/adherens junctions, abrogating two proliferative signaling pathways, Hippo/YAP and ERK1/2. Therefore, inhibition of NatB activity represents an interesting new approach to treating HCC by blocking cell proliferation and disrupting actin cytoskeleton function.
Collapse
Affiliation(s)
- Leire Neri
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Marta Lasa
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | | | - Delia D'Avola
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Carte
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Sara Alve
- Department of Biology, CBMA-Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Mercedes Iñarrairaegui
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jose Herrero
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jesús Prieto
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | - Bruno Sangro
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Aldabe
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
46
|
Lapek JD, Lewinski MK, Wozniak JM, Guatelli J, Gonzalez DJ. Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr. Mol Cell Proteomics 2017; 16:1447-1461. [PMID: 28606917 DOI: 10.1074/mcp.m116.066019] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which human immunodeficiency virus (HIV) circumvents and coopts cellular machinery to replicate and persist in cells are not fully understood. HIV accessory proteins play key roles in the HIV life cycle by altering host pathways that are often dependent on post-translational modifications (PTMs). Thus, the identification of HIV accessory protein host targets and their PTM status is critical to fully understand how HIV invades, avoids detection and replicates to spread infection. To date, a comprehensive characterization of HIV accessory protein host targets and modulation of their PTM status does not exist. The significant gap in knowledge regarding the identity and PTMs of HIV host targets is due, in part, to technological limitations. Here, we applied current mass spectrometry techniques to define mechanisms of viral protein action by identifying host proteins whose abundance is affected by the accessory protein Vpr and the corresponding modulation of down-stream signaling pathways, specifically those regulated by phosphorylation. By utilizing a novel, inducible HIV-1 CD4+ T-cell model system expressing either the wild type or a vpr-negative viral genome, we overcame challenges associated with synchronization and infection-levels present in other models. We report identification and abundance dynamics of over 7000 proteins and 28,000 phospho-peptides. Consistent with Vpr's ability to impair cell-cycle progression, we observed Vpr-mediated modulation of spindle and centromere proteins, as well as Aurora kinase A and cyclin-dependent kinase 4 (CDK4). Unexpectedly, we observed evidence of Vpr-mediated modulation of the activity of serine/arginine-rich protein-specific kinases (SRPKs), suggesting a possible role for Vpr in the regulation of RNA splicing. This study presents a new experimental system and provides a data-resource that lays the foundation for validating host proteins and phosphorylation-pathways affected by HIV-1 and its accessory protein Vpr.
Collapse
Affiliation(s)
- John D Lapek
- From the ‡Department of Pharmacology.,§Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Mary K Lewinski
- §Skaggs School of Pharmacy and Pharmaceutical Sciences.,¶San Diego Veterans Affairs Healthcare System, San Diego, California 92161, and
| | - Jacob M Wozniak
- From the ‡Department of Pharmacology.,§Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - John Guatelli
- ¶San Diego Veterans Affairs Healthcare System, San Diego, California 92161, and.,the ‖Department of Medicine, University of California San Diego, La Jolla, California 92093
| | - David J Gonzalez
- From the ‡Department of Pharmacology, .,§Skaggs School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
47
|
Dozier C, Mazzolini L, Cénac C, Froment C, Burlet-Schiltz O, Besson A, Manenti S. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 2017; 36:3781-3788. [PMID: 28192398 DOI: 10.1038/onc.2016.506] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022]
Abstract
The phosphatase CDC25A is a key regulator of cell cycle progression by dephosphorylating and activating cyclin-CDK complexes. CDC25A is an unstable protein expressed from G1 until mitosis. CDC25A overexpression, which can be caused by stabilization of the protein, accelerates the G1/S and G2/M transitions, leading to genomic instability and promoting tumorigenesis. Thus, controlling CDC25A protein levels by regulating its stability is a critical mechanism for timing cell cycle progression and to maintain genomic integrity. Herein, we show that CDC25A is phosphorylated on Ser40 throughout the cell cycle and that this phosphorylation is established during the progression from G1 to S phase. We demonstrate that CyclinD-CDK4/CDK6 complexes mediate the phosphorylation of CDC25A on Ser40 during G1 and that these complexes directly phosphorylate this residue in vitro. Importantly, we also find that CyclinD1-CDK4 decreases CDC25A stability in a ßTrCP-dependent manner and that Ser40 and Ser88 phosphorylations contribute to this regulation. Thus our results identify cyclinD-CDK4/6 complexes as novel regulators of CDC25A stability during G1 phase, generating a negative feedback loop allowing control of the G1/S transition.
Collapse
Affiliation(s)
- C Dozier
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - L Mazzolini
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| | - C Cénac
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - C Froment
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - O Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, Université Toulouse, Toulouse, France
| | - A Besson
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France
| | - S Manenti
- Cancer Research Center of Toulouse, INSERM UMR1037/Université Toulouse III Paul Sabatier, Toulouse, France.,Equipe labellisée Ligue Contre le Cancer, CNRS ERL5294, Toulouse, France
| |
Collapse
|
48
|
Khazaei S, Abdul Hamid R, Mohd Esa N, Ramachandran V, Aalam GTF, Etemad A, Ismail P. Promotion of HepG2 cell apoptosis by flower of Allium atroviolaceum and the mechanism of action. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:104. [PMID: 28187719 PMCID: PMC5303252 DOI: 10.1186/s12906-017-1594-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Background Liver cancer is a high incidence and fatal disease, the fifth most frequent cancer worldwide that is usually diagnosed at an advanced stage. The number of deaths from liver cancer has not declined even following various therapies. Plant secondary metabolites and their semi-synthetic derivatives play a principal role in anti-cancer drug therapy, since they are effective in the treatment of specific characteristics while also reducing side effects. Allium atroviolaceum, a plant of the genus Allium has been used in folk medicine to protect against several diseases. However, cytotoxicity and the anti-proliferative effect of Allium atroviolaceum remain unclear. This work aims to investigate the anticancer properties of Allium atroviolaceum and the mechanism of action. Methods To evaluate the in vitro cytotoxicity of flower of Allium atroviolaceum, methanol extract at a dose range from 100 to 3.12 μg/ml was assessed against the HepG2 hepatocarcinoma cell line, and also on normal 3T3 cells, by monitoring proliferation using the MTT assay method. A microscopy study was undertaken to observe morphological changes of HepG2 cells after treatment and cell cycle arrest and apoptosis were studied using flow cytometry. The apoptosis mechanism of action was assessed by the level of caspase-3 activity and expression of apoptosis related genes, Bcl-2, Cdk1 and p53. The combination effect of the methanolic extract with doxorubicin was also investigated by determination of a combination index. Results The results demonstrated growth inhibition of cells in both dose- and time-dependent manners, while no cytotoxic effect on normal cell 3T3 was found. The results revealed the occurrence of apoptosis, illustrated by sub-G0 cell cycle arrest, the change in morphological feature and annexin-V and propidium iodide staining, which is correlated with Bcl-2 downregulation and caspase-3 activity, but p53-independent. In addition, a combination of Allium atroviolaceum and doxorubicin led to a significant synergistic effect. Conclusion These findings suggest that Allium atroviolaceum flower extract has potential as a potent cytotoxic agent against HepG2 cell lines, as it has commendable anti-proliferative activities against human hepatocarcinoma and it can be considered as an effective adjuvant therapeutic agent after the clinical trials.
Collapse
|
49
|
Hussmann M, Janke K, Kranz P, Neumann F, Mersch E, Baumann M, Goepelt K, Brockmeier U, Metzen E. Depletion of the thiol oxidoreductase ERp57 in tumor cells inhibits proliferation and increases sensitivity to ionizing radiation and chemotherapeutics. Oncotarget 2016; 6:39247-61. [PMID: 26513173 PMCID: PMC4770770 DOI: 10.18632/oncotarget.5746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
Rapidly growing tumor cells must synthesize proteins at a high rate and therefore depend on an efficient folding and quality control system for nascent secretory proteins in the endoplasmic reticulum (ER). The ER resident thiol oxidoreductase ERp57 plays an important role in disulfide bond formation. Lentiviral, doxycycline-inducible ERp57 knockdown was combined with irradiation and treatment with chemotherapeutic agents. The knockdown of ERp57 significantly enhanced the apoptotic response to anticancer treatment in HCT116 colon cancer cells via a p53-dependent mechanism. Instead of a direct interaction with p53, depletion of ERp57 induced cell death via a selective activation of the PERK branch of the Unfolded Protein Response (UPR). In contrast, apoptosis was reduced in MDA-MB-231 breast cancer cells harboring mutant p53. Nevertheless, we observed a strong reduction of proliferation in response to ERp57 knockdown in both cell lines regardless of the p53 status. Depletion of ERp57 reduced the phosphorylation activity of the mTOR-complex1 (mTORC1) as demonstrated by reduction of p70S6K phosphorylation. Our data demonstrate that ERp57 is a promising target for anticancer therapy due to synergistic p53-dependent induction of apoptosis and p53-independent inhibition of proliferation.
Collapse
Affiliation(s)
- Melanie Hussmann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Janke
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Fabian Neumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Evgenija Mersch
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Melanie Baumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Goepelt
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| |
Collapse
|
50
|
Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit 2016; 22:3383-3393. [PMID: 27662007 PMCID: PMC5040236 DOI: 10.12659/msm.897301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common metabolic disorder in premenopausal woman, characterized by hyperandrogenism, oligoanovulation, and insulin resistance. microRNAs play pivotal roles in regulating key factors of PCOS. However, relevant research remains limited. This study aimed to reveal the role and potential mechanism of miR-483 in PCOS. Material/Methods PCOS patients (n=20) were recruited for detecting miR-483 expression in lesion and normal ovary cortex. Human granulosa-like tumor cell line KGN was used to alter miR-483 expression by cell transfection. Cell viability and proliferation were analyzed by MTT assay and colony formation assay, and cell cycle was detected by flow cytometry. Interaction between miR-483 and IGF1 was verified by luciferase reporter assay. KGN cells were further treated by insulin to investigate the relationship between miR-483 and insulin. Results miR-483 was significantly down-regulated in lesion ovary cortex from PCOS patients (P<0.001). In KGN cells, overexpression of miR-483 inhibited cell viability and proliferation, and induced cell cycle arrest. miR-483 also inhibited CCNB1, CCND1, and CDK2. miR-483 sponge induced the opposite effects. miR-483 directly targeted IGF1 3′UTR, and IGF1 promoted KGN cell proliferation and reversed miR-483-inhibited cell viability. Insulin treatment in KGN cells inhibited miR-483, and promoted IGF1 and cell proliferation. Conclusions These results suggest that miR-483 is a PCOS suppressor inhibiting cell proliferation, possibly via targeting IGF1, and that it is involved in insulin-induced cell proliferation. miR-483 is a potential alternative for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dongmei Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liying Ma
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Tan
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|