1
|
Kanesada G, Tsunedomi R, Nakagami Y, Matsui H, Shindo Y, Tomochika S, Akita H, Ioka T, Takahashi H, Nagano H. The C11orf24 Gene as a Useful Biomarker for Predicting Severe Neutropenia in Modified FOLFIRINOX for Pancreatic Cancer. Cancer Sci 2025. [PMID: 40285634 DOI: 10.1111/cas.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal tumor with a poor prognosis. FOLFIRINOX improves the prognosis of patients with PC; however, despite UGT1A1 screening, adverse events, such as severe neutropenia, occur frequently. This study aimed to identify the novel biomarkers of severe neutropenia in patients treated with modified FOLFIRINOX (mFFX) for PC. In this study, patients with PC treated with mFFX (n = 71) and gemcitabine plus nab-paclitaxel (GnP) (n = 92) and patients with colorectal cancer treated with FOLFOXIRI (n = 50) were included. Genome-wide screening using whole-exome sequencing was performed during the screening phase. Validation analysis was performed using polymerase chain reaction genotyping, the Cochran-Armitage trend test, and multivariate analysis. The diagnostic performance of combined risk factors for severe neutropenia was examined using logistic regression with leave-one-out cross-validation. Three gene polymorphisms were selected from the screening phase and subjected to the validation phase. In the validation phase, a single nucleotide polymorphism in C11orf24 (c.448C>T, rs901827) was significantly correlated with ≥ Grade 3 neutropenia in mFFX and FOLFOXIRI but not in GnP. Multivariate analysis showed C11orf24 and baseline neutrophil count as independent risk factors for ≥ Grade 3 neutropenia. The diagnostic performance of the neutropenia prediction model showed areas under the curve of 0.754 (sensitivity = 0.605, specificity = 0.848) and 0.856 (sensitivity = 0.800, specificity = 0.893) for ≥ Grade 3 and 4 neutropenia, respectively. The C11orf24 gene and baseline neutrophil count may be useful biomarkers for predicting severe neutropenia following irinotecan-containing triplet chemotherapy.
Collapse
Affiliation(s)
- Gen Kanesada
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Health Data Science Laboratory, Faculty of Data Science, Shimonoseki City University, Shimonoseki, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hirofumi Akita
- Department of Digestive Surgery, Osaka International Cancer Institute, Osaka, Osaka, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Ube, Yamaguchi, Japan
| |
Collapse
|
2
|
Hysong MR, Shuey MM, Huffman JE, Auer P, Reiner A, Raffield LM. Characterization of the phenotypic consequences of the Duffy-null genotype. Blood Adv 2025; 9:1452-1462. [PMID: 39825822 PMCID: PMC11960523 DOI: 10.1182/bloodadvances.2024014399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025] Open
Abstract
ABSTRACT A wealth of research focused on African American populations has connected rs2814778-CC ("Duffy-null") to decreased neutrophil (neutropenia) and leukocyte counts (leukopenia). Although it has been proposed that this variant is benign, prior studies have shown that the misinterpretation of Duffy-null-associated neutropenia and leukopenia can lead to unnecessary bone marrow biopsies, inequities in cytotoxic and chemotherapeutic treatment courses, underenrollment in clinical trials, and other disparities. To investigate the phenotypic correlates of Duffy-null status, we conducted a phenome-wide association study across >1400 clinical conditions in All of Us, the Vanderbilt University Medical Center's Biobank, and the Million Veteran Program. This reveals that Duffy-null status is only reproducibly associated with changes in white blood cell count and not with any disease outcomes. Moreover, we find that Duffy-null-associated neutropenia is on average less severe than other neutropenia cases in All of Us. We also show that this genotype is present in considerable frequencies in All of Us populations that are genetically similar to African (68%) and Middle Eastern (14%) 1000 Genomes/Human Genome Diversity Project reference populations as well as those who identify with >1 race (12%), as Pacific Islander (7%), and as Hispanic (5%). Furthermore, we find that race is not an accurate predictor of Duffy-null status or associated benign neutropenia. Our research suggests that broad genetic screening of rs2814778 across all populations could provide a more robust and accurate understanding of white blood cell count and mitigate resulting health disparities.
Collapse
Affiliation(s)
- Micah R. Hysong
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Megan M. Shuey
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center, Veterans Affairs Boston Healthcare System, Boston, MA
- Palo Alto Veterans Institute for Research, Palo Alto Health Care System, Palo Alto, CA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Paul Auer
- Division of Biostatistics, Data Science Institute, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander Reiner
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Laura M. Raffield
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
3
|
Orchard P, Blackwell TW, Kachuri L, Castaldi PJ, Cho MH, Christenson SA, Durda P, Gabriel S, Hersh CP, Huntsman S, Hwang S, Joehanes R, Johnson M, Li X, Lin H, Liu CT, Liu Y, Mak ACY, Manichaikul AW, Paik D, Saferali A, Smith JD, Taylor KD, Tracy RP, Wang J, Wang M, Weinstock JS, Weiss J, Wheeler HE, Zhou Y, Zoellner S, Wu JC, Mestroni L, Graw S, Taylor MRG, Ortega VE, Johnson CW, Gan W, Abecasis G, Nickerson DA, Gupta N, Ardlie K, Woodruff PG, Zheng Y, Bowler RP, Meyers DA, Reiner A, Kooperberg C, Ziv E, Ramachandran VS, Larson MG, Cupples LA, Burchard EG, Silverman EK, Rich SS, Heard-Costa N, Tang H, Rotter JI, Smith AV, Levy D, Aguet F, Scott L, Raffield LM, Parker SCJ. Cross-cohort analysis of expression and splicing quantitative trait loci in TOPMed. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.19.25322561. [PMID: 40034763 PMCID: PMC11875316 DOI: 10.1101/2025.02.19.25322561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Most genetic variants associated with complex traits and diseases occur in non-coding genomic regions and are hypothesized to regulate gene expression. To understand the genetics underlying gene expression variability, we characterize 14,324 ancestrally diverse RNA-sequencing samples from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and integrate whole genome sequencing data to perform cis and trans expression and splicing quantitative trait locus (cis-/trans-e/sQTL) analyses in six tissues and cell types, most notably whole blood (N=6,454) and lung (N=1,291). We show this dataset enables greater detection of secondary cis-e/sQTL signals than was achieved in previous studies, and that secondary cis-eQTL and primary trans-eQTL signal discovery is not saturated even though eGene discovery is. Most TOPMed trans-eQTL signals colocalize with cis-e/sQTL signals, suggesting many trans signals are mediated by cis signals. We fine-map European UK BioBank GWAS signals from 164 traits and colocalize the resulting 34,107 fine-mapped GWAS signals with TOPMed e/sQTL signals, finding that of 10,611 GWAS signals with a colocalization, 7,096 GWAS signals colocalize with at least one secondary e/sQTL signal. These results demonstrate that larger e/sQTL analyses will continue to uncover secondary e/sQTL signals, and that these new signals will benefit GWAS interpretation.
Collapse
Affiliation(s)
- Peter Orchard
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Thomas W Blackwell
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Seungyong Hwang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health and Boston University, Framingham, MA, USA
| | - Mari Johnson
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Xingnan Li
- Division of Data Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sanai, New York, NY, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sanai, New York, NY, USA
| | - Honghuang Lin
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health and Boston University, Framingham, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School, University of Massachusetts, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Yongmei Liu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David Paik
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Smith
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Laboratory for Clinical Biochemistry Research, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jiongming Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mingqiang Wang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joshua S Weinstock
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Weiss
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
| | - Heather E Wheeler
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Ying Zhou
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sebastian Zoellner
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Luisa Mestroni
- Department of Medicine, Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon Graw
- Department of Medicine, Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew R G Taylor
- Department of Medicine, Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victor E Ortega
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Craig W Johnson
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Weiniu Gan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Goncalo Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Deborah A Nickerson
- Northwest Genomics Center, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Namrata Gupta
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | | | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Russell P Bowler
- Department of Genomic Sciences and Systems Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Deborah A Meyers
- Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vasan S Ramachandran
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - Martin G Larson
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
| | - L Adrienne Cupples
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Nancy Heard-Costa
- Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Hua Tang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Albert V Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health and Boston University, Framingham, MA, USA
| | - François Aguet
- Illumina Artificial Intelligence Laboratory, Illumina, Foster City, CA, USA
| | - Laura Scott
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Ozahata MC, Guo Y, Gomes I, Malta B, Belisário A, Amorim L, Teles D, Park M, Kelly S, Sabino EC, Page GP, Custer B, Dinardo CL. Genetic variants associated with white blood cell count amongst individuals with sickle cell disease. Br J Haematol 2024; 205:1974-1984. [PMID: 39279196 PMCID: PMC11568933 DOI: 10.1111/bjh.19758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) is a Mendelian disorder characterized by a point mutation in the β-globin gene that leads to sickling of erythrocytes. Several studies have shown that absolute neutrophil count is strongly associated with clinical severity of SCD, suggesting an apparent role of white blood cells (WBC) in SCD pathology. However, the mechanism by which genetic variants lead to WBC count differences in SCD patients remains unclear. METHODS Genome-wide association (GWA) analyses were carried out amongst a cohort of 2409 Brazil SCD participants. Association of WBC count and genetic markers were investigated in homozygous sickle cell anaemia participants and compound heterozygous sickle cell haemoglobin C participants. RESULTS GWA analysis showed that variants in genes TERT, ACKR1, and FAM3C are associated with WBC count variation. The well-studied association between WBC count and Duffy null phenotype (variant in ACKR1) in healthy populations was replicated, reinforcing the influence of the SNP rs2814778 (T>C) in WBC count. CONCLUSION Genetics plays an important role in regulating WBC count in patients with SCD. Our results point to possible mechanisms involved in WBC count variation and as increased WBC count is associated with more severe SCD, these results could suggest potential therapeutic targets for individuals with SCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miriam Park
- Children Institute – University of São Paulo, São Paulo, Brazil
| | - Shannon Kelly
- University of California San Francisco Benioff Children's Hospital Oakland, Oakland, CA, USA
| | | | | | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
| | | |
Collapse
|
5
|
Bernard I, Ransy DG, Brophy J, Kakkar F, Bitnun A, Sauvé L, Samson L, Read S, Soudeyns H, Hawkes MT. Lower Neutrophil Count Without Clinical Consequence Among Children of African Ancestry Living With HIV in Canada. J Acquir Immune Defic Syndr 2024; 97:78-86. [PMID: 39116334 DOI: 10.1097/qai.0000000000003467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/13/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To investigate the association between African ancestry and neutrophil counts among children living with HIV (CLWH). We also examined whether medications, clinical conditions, hospitalization, or HIV virologic control were associated with low neutrophil counts or African ancestry. DESIGN We conducted a secondary analysis of the Early Pediatric Initiation Canada Child Cure Cohort (EPIC4) Study, a multicenter prospective cohort study of CLWH across 8 Canadian pediatric HIV care centers. METHODS We classified CLWH according to African ancestry, defined as "African," "Caribbean," or "Black" maternal race. Longitudinal laboratory data (white blood cells, neutrophils, lymphocytes, viral load, and CD4 count) and clinical data (hospitalizations, AIDS-defining conditions, and treatments) were abstracted from medical records. RESULTS Among 217 CLWH (median age 14, 55% female), 145 were of African ancestry and 72 were of non-African ancestry. African ancestry was associated with lower neutrophil counts, white blood cell counts, and neutrophil-lymphocyte ratios. Neutrophil count <1.5 × 109/L was detected in 60% of CLWH of African ancestry, compared with 31% of CLWH of non-African ancestry (P < 0.0001), representing a 2.0-fold higher relative frequency (95% CI: 1.4-2.9). Neutrophil count was on average 0.74 × 109/L (95% CI: 0.45 to 1.0) lower in CLWH of African ancestry (P < 0.0001). Neither neutrophil count<1.5 × 109/L nor African ancestry was associated with medications, hospitalizations, AIDS-defining conditions, or markers of virologic control (viral load, sustained viral suppression, and lifetime nadir CD4). CONCLUSIONS In CLWH, African ancestry is associated with lower neutrophil counts, without clinical consequences. A flexible evaluation of neutrophil counts in CLWH of African ancestry may avoid unnecessary interventions.
Collapse
Affiliation(s)
- Isabelle Bernard
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Doris G Ransy
- Unité d'immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
| | - Jason Brophy
- Division of Infectious Diseases, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, Canada
| | - Fatima Kakkar
- Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Montréal, Canada
| | - Ari Bitnun
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Laura Sauvé
- Department of Pediatrics, University of British Columbia, Vancouver, Canada; and
| | - Lindy Samson
- Division of Infectious Diseases, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Stanley Read
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hugo Soudeyns
- Unité d'immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Michael T Hawkes
- Department of Pediatrics, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
6
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Taylor D, Vallianatou K, Gandhi S, Casetta C, Howes O, MacCabe J. Severe neutropenia unrelated to clozapine in patients receiving clozapine. J Psychopharmacol 2024; 38:624-635. [PMID: 39041349 DOI: 10.1177/02698811241262767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
BACKGROUND Clozapine is known to cause agranulocytosis. Mandatory monitoring schemes are aimed at reducing the risk of agranulocytosis and of the consequences of agranulocytosis. All cases of agranulocytosis occurring in people prescribed clozapine are assumed to be caused by clozapine. METHODS In a previous study, we examined a cohort of patients listed on our hospital database as having had clozapine-induced agranulocytosis and applied specific criteria to identify those with confirmed clozapine-related, life-threatening agranulocytosis. In this study, we examine the cases not meeting these specific criteria. RESULTS In the original study, 9 of 23 cases met the criteria for clozapine-induced, life-threatening agranulocytosis. Of the 13 remaining cases for whom data were available, 5 were probably caused by clozapine but were not life-threatening. Three cases were the result of concomitant cancer chemotherapy. Three were anomalous results probably related to measurement error. For the remaining two cases, the cause was not identified. CONCLUSION Not all cases of agranulocytosis occurring in people taking clozapine are caused by clozapine. The widely used threshold criterion-based diagnosis overestimates the risk of agranulocytosis. True clozapine-related agranulocytosis is best identified by pattern-based criteria: rapid fall in neutrophil counts over around 2 weeks to below 0.5 × 109/L for two consecutive days (unless clozapine is stopped very early or granulocyte colony stimulating factor is given) where other possible causes (benign ethnic neutropenia, cancer chemotherapy) can be ruled out.
Collapse
Affiliation(s)
- David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Kalliopi Vallianatou
- Institute of Pharmaceutical Science, King's College London, London, UK
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Shreyans Gandhi
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Cecilia Casetta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Psychosis Unit, South London and Maudsley NHS Foundation Trust, Beckenham, Kent, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - James MacCabe
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Psychosis Unit, South London and Maudsley NHS Foundation Trust, Beckenham, Kent, UK
| |
Collapse
|
8
|
Mosley JD, Shelley JP, Dickson AL, Zanussi J, Daniel LL, Zheng NS, Bastarache L, Wei WQ, Shi M, Jarvik GP, Rosenthal EA, Khan A, Sherafati A, Kullo IJ, Walunas TL, Glessner J, Hakonarson H, Cox NJ, Roden DM, Frangakis SG, Vanderwerff B, Stein CM, Van Driest SL, Borinstein SC, Shu XO, Zawistowski M, Chung CP, Kawai VK. Clinical associations with a polygenic predisposition to benign lower white blood cell counts. Nat Commun 2024; 15:3384. [PMID: 38649760 PMCID: PMC11035609 DOI: 10.1038/s41467-024-47804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is uncharacterized. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio = 0.55 per standard deviation increase in PGSWBC [95%CI, 0.30-0.94], p = 0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n = 1724, hazard ratio [HR] = 0.78 [0.69-0.88], p = 4.0 × 10-5) or immunosuppressant (n = 354, HR = 0.61 [0.38-0.99], p = 0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n = 1,466, HR = 0.62 [0.44-0.87], p = 0.006). Collectively, these findings suggest that there are genetically predisposed individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.
Collapse
Affiliation(s)
- Jonathan D Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - John P Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacy Zanussi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura L Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil S Zheng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P Jarvik
- Department of Genome Sciences, University of Washington Medical Center, Seattle, WA, USA
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - Elisabeth A Rosenthal
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle, WA, USA
| | - Atlas Khan
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Alborz Sherafati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Theresa L Walunas
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan G Frangakis
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brett Vanderwerff
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott C Borinstein
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Zawistowski
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Constantinescu AE, Hughes DA, Bull CJ, Fleming K, Mitchell RE, Zheng J, Kar S, Timpson NJ, Amulic B, Vincent EE. A genome-wide association study of neutrophil count in individuals associated to an African continental ancestry group facilitates studies of malaria pathogenesis. Hum Genomics 2024; 18:26. [PMID: 38491524 PMCID: PMC10941368 DOI: 10.1186/s40246-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND 'Benign ethnic neutropenia' (BEN) is a heritable condition characterized by lower neutrophil counts, predominantly observed in individuals of African ancestry, and the genetic basis of BEN remains a subject of extensive research. In this study, we aimed to dissect the genetic architecture underlying neutrophil count variation through a linear-mixed model genome-wide association study (GWAS) in a population of African ancestry (N = 5976). Malaria caused by P. falciparum imposes a tremendous public health burden on people living in sub-Saharan Africa. Individuals living in malaria endemic regions often have a reduced circulating neutrophil count due to BEN, raising the possibility that reduced neutrophil counts modulate severity of malaria in susceptible populations. As a follow-up, we tested this hypothesis by conducting a Mendelian randomization (MR) analysis of neutrophil counts on severe malaria (MalariaGEN, N = 17,056). RESULTS We carried out a GWAS of neutrophil count in individuals associated to an African continental ancestry group within UK Biobank, identifying 73 loci (r2 = 0.1) and 10 index SNPs (GCTA-COJO loci) associated with neutrophil count, including previously unknown rare loci regulating neutrophil count in a non-European population. BOLT-LMM was reliable when conducted in a non-European population, and additional covariates added to the model did not largely alter the results of the top loci or index SNPs. The two-sample bi-directional MR analysis between neutrophil count and severe malaria showed the greatest evidence for an effect between neutrophil count and severe anaemia, although the confidence intervals crossed the null. CONCLUSION Our GWAS of neutrophil count revealed unique loci present in individuals of African ancestry. We note that a small sample-size reduced our power to identify variants with low allele frequencies and/or low effect sizes in our GWAS. Our work highlights the need for conducting large-scale biobank studies in Africa and for further exploring the link between neutrophils and severe malaria.
Collapse
Affiliation(s)
- Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
| | - David A Hughes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Louisiana State University, Louisiana, USA
| | - Caroline J Bull
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- School of Translational Health Sciences, University of Bristol, Bristol, UK
- Health Data Research UK, London, UK
| | - Kathryn Fleming
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ruth E Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases, National Health Commission, Shanghai, People's Republic of China
- Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Early Cancer Insitute, University of Cambridge, Cambridge, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK.
- School of Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
10
|
Khouj E, Marafi D, Aljamal B, Hajiya A, Elshafie RM, Hashem MO, Abdulwahab F, Jaafar A, Alshidi T, Aboelanine AH, Awaji A, Alkuraya FS. Human 'knockouts' of CSF3 display severe congenital neutropenia. Br J Haematol 2023; 203:477-480. [PMID: 37612131 DOI: 10.1111/bjh.19054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Colony-stimulating factor 3 (CSF3) is a key factor in neutrophil production and function, and recombinant forms have been used clinically for decades to treat congenital and acquired neutropenia. Although biallelic inactivation of its receptor CSF3R is a well-established cause of severe congenital neutropenia (SCN), no corresponding Mendelian disease has been ascribed to date to CSF3. Here, we describe three patients from two families each segregating a different biallelic inactivating variant in CSF3 with SCN. Complete deficiency of CSF3 as a result of nonsense-mediated decay (NMD) could be demonstrated on RT-PCR using skin fibroblasts-derived RNA. The phenotype observed in this cohort mirrors that documented in mouse and zebrafish models of CSF3 deficiency. Our results suggest that CSF3 deficiency in humans causes a novel autosomal recessive form of SCN.
Collapse
Affiliation(s)
- Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dana Marafi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya, Kuwait
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anwar Hajiya
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya, Kuwait
| | - Reem M Elshafie
- Kuwait Medical Genetics Centre, Ministry of Health, Sulaibikhat, Kuwait
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Ali Awaji
- Genetic Center, Prince Mohammed bin Nasser Hospital, Jazan, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Mosley JD, Shelley JP, Dickson AL, Zanussi J, Daniel LL, Zheng NS, Bastarache L, Wei WQ, Shi M, Jarvik GP, Rosenthal EA, Khan A, Sherafati A, Kullo IJ, Walunas TL, Glessner J, Hakonarson H, Cox NJ, Roden DM, Frangakis SG, Vanderwerff B, Stein CM, Van Driest SL, Borinstein SC, Shu XO, Zawistowski M, Chung CP, Kawai VK. Clinical consequences of a polygenic predisposition to benign lower white blood cell counts: Consequences of benign WBC count genetics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.20.23294331. [PMID: 37662324 PMCID: PMC10473820 DOI: 10.1101/2023.08.20.23294331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is undefined. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGSWBC) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio=0.55 per standard deviation increase in PGSWBC [95%CI, 0.30 - 0.94], p=0.04), an increased risk of leukopenia (a low WBC count) when treated with a chemotherapeutic (n=1,724, hazard ratio [HR]=0.78 [0.69 - 0.88], p=4.0×10-5) or immunosuppressant (n=354, HR=0.61 [0.38 - 0.99], p=0.04). A predisposition to benign lower WBC counts was associated with an increased risk of discontinuing azathioprine treatment (n=1,466, HR=0.62 [0.44 - 0.87], p=0.006). Collectively, these findings suggest that a WBC count polygenic score identifies individuals who are susceptible to escalations or alterations in clinical care that may be harmful or of little benefit.
Collapse
Affiliation(s)
- Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P. Shelley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L. Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jacy Zanussi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura L. Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil S. Zheng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gail P. Jarvik
- Department of Genome Sciences, University of Washington Medical Center, Seattle WA, USA
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle WA, USA
| | - Elisabeth A. Rosenthal
- Department of Medicine (Medical Genetics), University of Washington Medical Center, Seattle WA, USA
| | - Atlas Khan
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| | - Alborz Sherafati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN USA
| | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN USA
| | - Theresa L. Walunas
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joe Glessner
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J. Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan G. Frangakis
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brett Vanderwerff
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - C. Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara L. Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott C. Borinstein
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Zawistowski
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Cecilia P. Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K. Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
12
|
Li B, Wang Y, Wang Z, Li X, Kay S, Chupp GL, Zhao H, Gomez JL. Shared genetic architecture of blood eosinophil counts and asthma in UK Biobank. ERJ Open Res 2023; 9:00291-2023. [PMID: 37650091 PMCID: PMC10463033 DOI: 10.1183/23120541.00291-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 09/01/2023] Open
Abstract
Rationale Asthma is a complex, heterogeneous disease strongly associated with type 2 inflammation, and blood eosinophil counts guide therapeutic interventions in moderate and severe asthma. Eosinophils are leukocytes involved in type 2 immune responses. Despite these critical associations between asthma and blood eosinophil counts, the shared genetic architecture of these two traits remains unknown. The objective of the present study was to characterise the genetic architecture of blood eosinophil counts and asthma in the UK Biobank. Methods We performed genome-wide association studies (GWAS) of doctor-diagnosed asthma, blood eosinophil, neutrophil, lymphocyte and monocyte counts in the UK Biobank. Genetic correlation analysis was performed on GWAS results and validated in the Trans-National Asthma Genetic Consortium (TAGC) study of asthma. Results GWAS of doctor-diagnosed asthma and blood eosinophil counts in the UK Biobank identified 585 and 3429 significant variants, respectively. STAT6, a transcription factor involved in interleukin-4 signalling, was a key shared pathway between asthma and blood eosinophil counts. Genetic correlation analysis demonstrated a positive correlation between doctor-diagnosed asthma and blood eosinophil counts (r=0.38±0.10, correlation±se; p=4.7×10-11). As a validation of this association, we found a similar correlation between TAGC and blood eosinophil counts in the UK Biobank (0.37±0.08, correlation±se; p=1.2×10-6). Conclusions These findings define the shared genetic architecture between blood eosinophil counts and asthma risk in subjects of European ancestry and point to a genetic link to the STAT6 signalling pathway in these two traits.
Collapse
Affiliation(s)
- Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- These authors contributed equally to this work
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- These authors contributed equally to this work
| | - Zixiao Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xinyue Li
- School of Data Science, City University of Hong Kong, Hong Kong SAR, China
| | - Shannon Kay
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University, New Haven, CT, USA
- Center for Precision Pulmonary Medicine (P2MED), Yale University, New Haven, CT, USA
| | - Geoffrey L. Chupp
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- These authors share senior authorship
| | - Jose L. Gomez
- Pulmonary, Critical Care and Sleep Medicine Section, Yale University, New Haven, CT, USA
- Center for Precision Pulmonary Medicine (P2MED), Yale University, New Haven, CT, USA
- These authors share senior authorship
| |
Collapse
|
13
|
Liu W, Deng W, Chen M, Dong Z, Zhu B, Yu Z, Tang D, Sauler M, Lin C, Wain LV, Cho MH, Kaminski N, Zhao H. A statistical framework to identify cell types whose genetically regulated proportions are associated with complex diseases. PLoS Genet 2023; 19:e1010825. [PMID: 37523391 PMCID: PMC10414598 DOI: 10.1371/journal.pgen.1010825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 06/12/2023] [Indexed: 08/02/2023] Open
Abstract
Finding disease-relevant tissues and cell types can facilitate the identification and investigation of functional genes and variants. In particular, cell type proportions can serve as potential disease predictive biomarkers. In this manuscript, we introduce a novel statistical framework, cell-type Wide Association Study (cWAS), that integrates genetic data with transcriptomics data to identify cell types whose genetically regulated proportions (GRPs) are disease/trait-associated. On simulated and real GWAS data, cWAS showed good statistical power with newly identified significant GRP associations in disease-associated tissues. More specifically, GRPs of endothelial and myofibroblasts in lung tissue were associated with Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease, respectively. For breast cancer, the GRP of blood CD8+ T cells was negatively associated with breast cancer (BC) risk as well as survival. Overall, cWAS is a powerful tool to reveal cell types associated with complex diseases mediated by GRPs.
Collapse
Affiliation(s)
- Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Wenxuan Deng
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Ming Chen
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Zihan Dong
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Biqing Zhu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Zhaolong Yu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Daiwei Tang
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Chen Lin
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
14
|
Qiao J, Wu Y, Zhang S, Xu Y, Zhang J, Zeng P, Wang T. Evaluating significance of European-associated index SNPs in the East Asian population for 31 complex phenotypes. BMC Genomics 2023; 24:324. [PMID: 37312035 DOI: 10.1186/s12864-023-09425-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified many single-nucleotide polymorphisms (SNPs) associated with complex phenotypes in the European (EUR) population; however, the extent to which EUR-associated SNPs can be generalized to other populations such as East Asian (EAS) is not clear. RESULTS By leveraging summary statistics of 31 phenotypes in the EUR and EAS populations, we first evaluated the difference in heritability between the two populations and calculated the trans-ethnic genetic correlation. We observed the heritability estimates of some phenotypes varied substantially across populations and 53.3% of trans-ethnic genetic correlations were significantly smaller than one. Next, we examined whether EUR-associated SNPs of these phenotypes could be identified in EAS using the trans-ethnic false discovery rate method while accounting for winner's curse for SNP effect in EUR and difference of sample sizes in EAS. We found on average 54.5% of EUR-associated SNPs were also significant in EAS. Furthermore, we discovered non-significant SNPs had higher effect heterogeneity, and significant SNPs showed more consistent linkage disequilibrium and allele frequency patterns between the two populations. We also demonstrated non-significant SNPs were more likely to undergo natural selection. CONCLUSIONS Our study revealed the extent to which EUR-associated SNPs could be significant in the EAS population and offered deep insights into the similarity and diversity of genetic architectures underlying phenotypes in distinct ancestral groups.
Collapse
Affiliation(s)
- Jiahao Qiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuxuan Wu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuo Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yue Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jinhui Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
15
|
Bagheri M, Chung CP, Dickson AL, Van Driest SL, Borinstein SC, Mosley JD. White blood cell ranges and frequency of neutropenia by Duffy genotype status. Blood Adv 2023; 7:406-409. [PMID: 35895516 PMCID: PMC9979714 DOI: 10.1182/bloodadvances.2022007680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/02/2023] Open
Affiliation(s)
- Minoo Bagheri
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Cecilia P. Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alyson L. Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sara L. Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Scott C. Borinstein
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
16
|
Sinkala M, Elsheikh SSM, Mbiyavanga M, Cullinan J, Mulder NJ. A genome-wide association study identifies distinct variants associated with pulmonary function among European and African ancestries from the UK Biobank. Commun Biol 2023; 6:49. [PMID: 36641522 PMCID: PMC9840173 DOI: 10.1038/s42003-023-04443-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Pulmonary function is an indicator of well-being, and pulmonary pathologies are the third major cause of death worldwide. We analysed the UK Biobank genome-wide association summary statistics of pulmonary function for Europeans and individuals of recent African descent to identify variants associated with the trait in the two ancestries. Here, we show 627 variants in Europeans and 3 in Africans associated with three pulmonary function parameters. In addition to the 110 variants in Europeans previously reported to be associated with phenotypes related to pulmonary function, we identify 279 novel loci, including an ISX intergenic variant rs369476290 on chromosome 22 in Africans. Remarkably, we find no shared variants among Africans and Europeans. Furthermore, enrichment analyses of variants separately for each ancestry background reveal significant enrichment for terms related to pulmonary phenotypes in Europeans but not Africans. Further analysis of studies of pulmonary phenotypes reveals that individuals of European background are disproportionally overrepresented in datasets compared to Africans, with the gap widening over the past five years. Our findings extend our understanding of the different variants that modify the pulmonary function in Africans and Europeans, a promising finding for future GWASs and medical studies.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mamana Mbiyavanga
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Joshua Cullinan
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
17
|
Elgart M, Goodman MO, Isasi C, Chen H, Morrison AC, de Vries PS, Xu H, Manichaikul AW, Guo X, Franceschini N, Psaty BM, Rich SS, Rotter JI, Lloyd-Jones DM, Fornage M, Correa A, Heard-Costa NL, Vasan RS, Hernandez R, Kaplan RC, Redline S, Sofer T. Correlations between complex human phenotypes vary by genetic background, gender, and environment. Cell Rep Med 2022; 3:100844. [PMID: 36513073 PMCID: PMC9797952 DOI: 10.1016/j.xcrm.2022.100844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/11/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
We develop a closed-form Haseman-Elston estimator for genetic and environmental correlation coefficients between complex phenotypes, which we term HEc, that is as precise as GCTA yet ∼20× faster. We estimate genetic and environmental correlations between over 7,000 phenotype pairs in subgroups from the Trans-Omics in Precision Medicine (TOPMed) program. We demonstrate substantial differences in both heritabilities and genetic correlations for multiple phenotypes and phenotype pairs between individuals of self-reported Black, Hispanic/Latino, and White backgrounds. We similarly observe differences in many of the genetic and environmental correlations between genders. To estimate the contribution of genetics to the observed phenotypic correlation, we introduce "fractional genetic correlation" as the fraction of phenotypic correlation explained by genetics. Finally, we quantify the enrichment of correlations between phenotypic domains, each of which is comprised of multiple phenotypes. Altogether, we demonstrate that the observed correlations between complex human phenotypes depend on the genetic background of the individuals, their gender, and their environment.
Collapse
Affiliation(s)
- Michael Elgart
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Matthew O Goodman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carmen Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA; Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Adolfo Correa
- Department of Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nancy L Heard-Costa
- Boston University and National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Ramachandran S Vasan
- Boston University and National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA; Preventive Medicine & Epidemiology, and Cardiovascular Medicine, Medicine, Boston University School of Medicine, and Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Ryan Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Pan GQ, Yang CC, Shang XL, Dong ZR, Li T. The causal relationship between white blood cell counts and hepatocellular carcinoma: a Mendelian randomization study. Eur J Med Res 2022; 27:278. [PMID: 36471350 PMCID: PMC9724280 DOI: 10.1186/s40001-022-00900-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most of hepatocellular carcinoma (HCC) arises on the background of chronic inflammation. The presence of infiltrating inflammatory cells is associated with tumour initiation, progression and clinical response to treatment. The influence of white blood cell (WBC) subtype counts on HCC progression remains unclear. METHODS In this study, we performed a Mendelian randomization (MR) study with the validation of two datasets. The summary data for WBC counts were extracted from a recent large GWAS of individuals of European ancestry. The GWAS data related to HCC were obtained from the UK Biobank (UKB). Univariable and multivariable MR analyses were used to identify risk factors genetically associated with HCC risks. RESULTS In the discovery dataset, multivariable MR analysis revealed that sum basophil neutrophil counts had an independent causal effect on the occurrence of HCC, with the sum basophil neutrophil counts as follows: (OR = 0.437, P = 0.003, CI 0.252-0.757). Similarly, in the validation dataset, total basophil neutrophil counts were also been identified as an independent risk factor for HCC. The sum basophil neutrophil counts were as follows: (OR = 0.574, P = 0.021, CI 0.358-0.920). CONCLUSION In the European population, genetically predicted lower total basophil neutrophil counts might be an independent risk factor for HCC.
Collapse
Affiliation(s)
- Guo-Qiang Pan
- Department of General Surgery, Qilu Hospital, Shandong University, China, Jinan
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, China, Jinan
| | - Xiao-Ling Shang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, China, Jinan.
| | - Tao Li
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
19
|
Neutropenia: diagnosis and management. World J Pediatr 2022; 18:771-777. [PMID: 35962272 DOI: 10.1007/s12519-022-00593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 10/15/2022]
|
20
|
Forté S, Sobczyk O, Poublanc J, Duffin J, Hare GMT, Fisher JA, Mikulis D, Kuo KHM. Sickle cell cerebrovascular reactivity to a CO2 stimulus: Too little, too slow. Front Physiol 2022; 13:886807. [PMID: 36060689 PMCID: PMC9437621 DOI: 10.3389/fphys.2022.886807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Despite increased cerebral blood flow (CBF), cerebral infarcts occur in patients with sickle cell disease (SCD). This suggests increased CBF does not meet metabolic demand possibly due to compromised cerebral vasodilatory response. Hypothesis: In adult SCD patients, cerebrovascular reactivity (CVR) and speed of vasodilatory response (tau) to a standardized vasodilatory stimulus, are reduced compared to normal subjects. Methods: Functional brain imaging performed as part of routine care in adult SCD patients without known large vessel cerebral vasculopathy was reviewed retrospectively. CVR was calculated as the change in CBF measured as the blood-oxygenation-level-dependent (BOLD)-magnetic resonance imaging signal, in response to a standard vasoactive stimulus of carbon dioxide (CO2). The tau corresponding to the best fit between the convolved end-tidal partial pressures of CO2 and BOLD signal was defined as the speed of vascular response. CVR and tau were normalized using a previously generated atlas of 42 healthy controls. Results: Fifteen patients were included. CVR was reduced in grey and white matter (mean Z-score for CVR −0.5 [−1.8 to 0.3] and −0.6 [−2.3 to 0.7], respectively). Tau Z-scores were lengthened in grey and white matter (+0.9 [−0.5 to 3.3] and +0.8 [−0.7 to 2.7], respectively). Hematocrit was the only significant independent predictor of CVR on multivariable regression. Conclusion: Both measures of cerebrovascular health (CVR and tau) in SCD patients were attenuated compared to normal controls. These findings show that CVR represents a promising tool to assess disease state, stroke risk, and therapeutic efficacy of treatments in SCD and merits further investigation.
Collapse
Affiliation(s)
- Stéphanie Forté
- Division of Medical Oncology and Hematology, Departement of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - James Duffin
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Gregory M. T. Hare
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, St. Michael’s Hospital, Toronto, ON, Canada
| | - Joseph Arnold Fisher
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- *Correspondence: Kevin H. M. Kuo,
| |
Collapse
|
21
|
Oliveira RD, Mousel MR, Gonzalez MV, Durfee CJ, Davenport KM, Murdoch BM, Taylor JB, Neibergs HL, White SN. A high-density genome-wide association with absolute blood monocyte count in domestic sheep identifies novel loci. PLoS One 2022; 17:e0266748. [PMID: 35522671 PMCID: PMC9075649 DOI: 10.1371/journal.pone.0266748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.
Collapse
Affiliation(s)
- Ryan D. Oliveira
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michelle R. Mousel
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Michael V. Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Codie J. Durfee
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
| | - Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - J. Bret Taylor
- USDA-ARS Range Sheep Production Efficiency Research, Dubois, Idaho, United States of America
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Liyanage JSS, Estepp JH, Srivastava K, Li Y, Mori M, Kang G. GMEPS: a fast and efficient likelihood approach for genome-wide mediation analysis under extreme phenotype sequencing. Stat Appl Genet Mol Biol 2022; 21:sagmb-2021-0071. [PMID: 35266368 DOI: 10.1515/sagmb-2021-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Due to many advantages such as higher statistical power of detecting the association of genetic variants in human disorders and cost saving, extreme phenotype sequencing (EPS) is a rapidly emerging study design in epidemiological and clinical studies investigating how genetic variations associate with complex phenotypes. However, the investigation of the mediation effect of genetic variants on phenotypes is strictly restrictive under the EPS design because existing methods cannot well accommodate the non-random extreme tails sampling process incurred by the EPS design. In this paper, we propose a likelihood approach for testing the mediation effect of genetic variants through continuous and binary mediators on a continuous phenotype under the EPS design (GMEPS). Besides implementing in EPS design, it can also be utilized as a general mediation analysis procedure. Extensive simulations and two real data applications of a genome-wide association study of benign ethnic neutropenia under EPS design and a candidate-gene study of neurocognitive performance in patients with sickle cell disease under random sampling design demonstrate the superiority of GMEPS under the EPS design over widely used mediation analysis procedures, while demonstrating compatible capabilities under the general random sampling framework.
Collapse
Affiliation(s)
- Janaka S S Liyanage
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Jeremie H Estepp
- Departments of Global Pediatric Medicine and Hematology, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Yun Li
- Department of Biostatistics, Department of Genetics, Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill 27599, NC, USA
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| | - Guolian Kang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis 38105, TN, USA
| |
Collapse
|
23
|
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M. Genetic Influence on Frequencies of Myeloid-Derived Cell Subpopulations in Mouse. Front Immunol 2022; 12:760881. [PMID: 35154069 PMCID: PMC8826059 DOI: 10.3389/fimmu.2021.760881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Differences in frequencies of blood cell subpopulations were reported to influence the course of infections, atopic and autoimmune diseases, and cancer. We have discovered a unique mouse strain B10.O20 containing extremely high frequency of myeloid-derived cells (MDC) in spleen. B10.O20 carries 3.6% of genes of the strain O20 on the C57BL/10 genetic background. It contains much higher frequency of CD11b+Gr1+ cells in spleen than both its parents. B10.O20 carries O20-derived segments on chromosomes 1, 15, 17, and 18. Their linkage with frequencies of blood cell subpopulations in spleen was tested in F2 hybrids between B10.O20 and C57BL/10. We found 3 novel loci controlling MDC frequencies: Mydc1, 2, and 3 on chromosomes 1, 15, and 17, respectively, and a locus controlling relative spleen weight (Rsw1) that co-localizes with Mydc3 and also influences proportion of white and red pulp in spleen. Mydc1 controls numbers of CD11b+Gr1+ cells. Interaction of Mydc2 and Mydc3 regulates frequency of CD11b+Gr1+ cells and neutrophils (Gr1+Siglec-F- cells from CD11b+ cells). Interestingly, Mydc3/Rsw1 is orthologous with human segment 6q21 that was shown previously to determine counts of white blood cells. Bioinformatics analysis of genomic sequence of the chromosomal segments bearing these loci revealed polymorphisms between O20 and C57BL/10 that change RNA stability and genes’ functions, and we examined expression of relevant genes. This identified potential candidate genes Smap1, Vps52, Tnxb, and Rab44. Definition of genetic control of MDC can help to personalize therapy of diseases influenced by these cells.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Yahya Sohrabi
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Eliška Javorková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Helena Havelková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Vojtíšková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Aigerim Aidarova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Vladimír Holáň
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Demant
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
24
|
Little A, Hu Y, Sun Q, Jain D, Broome J, Chen MH, Thibord F, McHugh C, Surendran P, Blackwell TW, Brody JA, Bhan A, Chami N, de Vries PS, Ekunwe L, Heard-Costa N, Hobbs BD, Manichaikul A, Moon JY, Preuss MH, Ryan K, Wang Z, Wheeler M, Yanek LR, Abecasis GR, Almasy L, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Choquet H, Correa A, Curran JE, Faraday N, Fornage M, Glahn DC, Hou L, Jorgenson E, Kooperberg C, Lewis JP, Lloyd-Jones DM, Loos RJF, Min YI, Mitchell BD, Morrison AC, Nickerson DA, North KE, O'Connell JR, Pankratz N, Psaty BM, Vasan RS, Rich SS, Rotter JI, Smith AV, Smith NL, Tang H, Tracy RP, Conomos MP, Laurie CA, Mathias RA, Li Y, Auer PL, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Thornton T, Reiner AP, Johnson AD, Raffield LM. Whole genome sequence analysis of platelet traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) initiative. Hum Mol Genet 2022; 31:347-361. [PMID: 34553764 PMCID: PMC8825339 DOI: 10.1093/hmg/ddab252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry populations. We here utilize whole genome sequencing (WGS) from NHLBI's Trans-Omics for Precision Medicine initiative (TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9 with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764, p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals, even for well-studied traits like platelet traits.
Collapse
Affiliation(s)
- Amarise Little
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Florian Thibord
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Caitlin McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
| | | | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Paul S de Vries
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ani Manichaikul
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
- Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA 98101, USA
- Department of Veterans Affairs Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA 98108, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01702, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Insights into the genetic architecture of haematological traits from deep phenotyping and whole-genome sequencing for two Mediterranean isolated populations. Sci Rep 2022; 12:1131. [PMID: 35064169 PMCID: PMC8782863 DOI: 10.1038/s41598-021-04436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Haematological traits are linked to cardiovascular, metabolic, infectious and immune disorders, as well as cancer. Here, we examine the role of genetic variation in shaping haematological traits in two isolated Mediterranean populations. Using whole-genome sequencing data at 22× depth for 1457 individuals from Crete (MANOLIS) and 1617 from the Pomak villages in Greece, we carry out a genome-wide association scan for haematological traits using linear mixed models. We discover novel associations (p < 5 × 10–9) of five rare non-coding variants with alleles conferring effects of 1.44–2.63 units of standard deviation on red and white blood cell count, platelet and red cell distribution width. Moreover, 10.0% of individuals in the Pomak population and 6.8% in MANOLIS carry a pathogenic mutation in the Haemoglobin Subunit Beta (HBB) gene. The mutational spectrum is highly diverse (10 different mutations). The most frequent mutation in MANOLIS is the common Mediterranean variant IVS-I-110 (G>A) (rs35004220). In the Pomak population, c.364C>A (“HbO-Arab”, rs33946267) is most frequent (4.4% allele frequency). We demonstrate effects on haematological and other traits, including bilirubin, cholesterol, and, in MANOLIS, height and gestation age. We find less severe effects on red blood cell traits for HbS, HbO, and IVS-I-6 (T>C) compared to other b+ mutations. Overall, we uncover allelic diversity of HBB in Greek isolated populations and find an important role for additional rare variants outside of HBB.
Collapse
|
26
|
Soremekun O, Soremekun C, Machipisa T, Soliman M, Nashiru O, Chikowore T, Fatumo S. Genome-Wide Association and Mendelian Randomization Analysis Reveal the Causal Relationship Between White Blood Cell Subtypes and Asthma in Africans. Front Genet 2021; 12:749415. [PMID: 34925446 PMCID: PMC8674726 DOI: 10.3389/fgene.2021.749415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background: White blood cell (WBC) traits and their subtypes such as basophil count (Bas), eosinophil count (Eos), lymphocyte count (Lym), monocyte count (Mon), and neutrophil counts (Neu) are known to be associated with diseases such as stroke, peripheral arterial disease, and coronary heart disease. Methods: We meta-analyze summary statistics from genome-wide association studies in 17,802 participants from the African Partnership for Chronic Disease Research (APCDR) and African ancestry individuals from the Blood Cell Consortium (BCX2) using GWAMA. We further carried out a Bayesian fine mapping to identify causal variants driving the association with WBC subtypes. To access the causal relationship between WBC subtypes and asthma, we conducted a two-sample Mendelian randomization (MR) analysis using summary statistics of the Consortium on Asthma among African Ancestry Populations (CAAPA: n cases = 7,009, n control = 7,645) as our outcome phenotype. Results: Our metanalysis identified 269 loci at a genome-wide significant value of (p = 5 × 10-9) in a composite of the WBC subtypes while the Bayesian fine-mapping analysis identified genetic variants that are more causal than the sentinel single-nucleotide polymorphism (SNP). We found for the first time five novel genes (LOC126987/MTCO3P14, LINC01525, GAPDHP32/HSD3BP3, FLG-AS1/HMGN3P1, and TRK-CTT13-1/MGST3) not previously reported to be associated with any WBC subtype. Our MR analysis showed that Mon (IVW estimate = 0.38, CI: 0.221, 0.539, p < 0.001), Neu (IVW estimate = 0.189, CI: 0.133, 0.245, p < 0.001), and WBCc (IVW estimate = 0.185, CI: 0.108, 0.262, p < 0.001) are associated with increased risk of asthma. However, there was no evidence of causal relationship between Lym and asthma risk. Conclusion: This study provides insight into the relationship between some WBC subtypes and asthma and potential route in the treatment of asthma and may further inform a new therapeutic approach.
Collapse
Affiliation(s)
- Opeyemi Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda
| | - Chisom Soremekun
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Tafadzwa Machipisa
- Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
- The Department of Pathology and Molecular Medicine, Population Health Research Institute (PHRI), Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mahmoud Soliman
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Oyekanmi Nashiru
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | - Tinashe Chikowore
- Faculty of Health Sciences, Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, MRC/UVRI and LSHTM, Entebbe, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
Wu X, Wang C, Li H, Meng H, Jie J, Fu M, Bai Y, Li G, Wei W, Feng Y, Li M, Guan X, He M, Zhang X, Guo H. Circulating white blood cells and lung function impairment: the observational studies and Mendelian randomization analysis. Ann Med 2021; 53:1118-1128. [PMID: 34259107 PMCID: PMC8280897 DOI: 10.1080/07853890.2021.1948603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Circulating white blood cell (WBC) counts have been related to lung function impairment, but causal relationship was not established. We aimed to evaluate independent effects and causal relationships of WBC subtypes with lung function. METHODS The 19,159 participants from NHANES 2011-2012 (n = 3570), coke-oven workers (COW, n = 1762) and Dongfeng-Tongji (DFTJ, n = 13,827) cohorts were included in the observational studies. The associations between circulating counts of WBC subtypes and prebronchodilator lung function were evaluated by linear regression models and LASSO regression was used to select effective WBC subtypes. Summary statistics for WBC-associated SNPs were extracted from literature, and Mendelian randomization (MR) analysis with inverse-variance weighted (IVW) method was applied to estimate the causal effects of total WBC and subtypes on lung function among 4012 subjects from COW (n = 1126) and DFTJ cohorts (n = 2886). RESULTS Total WBC counts were negatively associated with lung function among three populations and their pooled analysis indicated that per 1 × 109 cells/L increase in total WBC was associated with 36.13 (95% CI: 30.35, 41.91) mL and 25.23 (95% CI: 19.97, 30.50) mL decrease in FVC and FEV1, respectively. Independent associations with lung function were found for neutrophils, monocytes, eosinophils and basophils (all p < .05), except lymphocytes. Besides, IVW MR analysis showed that genetically predicted total WBC and neutrophil counts were associated with reduced FVC (p = .017 and .021, respectively) and FEV1 (p = .048 and .043, respectively). CONCLUSIONS WBC subtypes were independently associated with lower lung function except lymphocytes. Our findings suggest that circulating neutrophils may be causal factors in lung function impairment.KEY MESSAGESWhite blood cell (WBC) subtypes were negatively associated with lung function level except lymphocytes in the observational studies.Associations of WBC subtypes with lung function may be modified by sex and smoking.Mendelian randomization analysis shows that neutrophils may be causal factors in lung function impairment.
Collapse
Affiliation(s)
- Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiali Jie
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Mikhaylova AV, McHugh CP, Polfus LM, Raffield LM, Boorgula MP, Blackwell TW, Brody JA, Broome J, Chami N, Chen MH, Conomos MP, Cox C, Curran JE, Daya M, Ekunwe L, Glahn DC, Heard-Costa N, Highland HM, Hobbs BD, Ilboudo Y, Jain D, Lange LA, Miller-Fleming TW, Min N, Moon JY, Preuss MH, Rosen J, Ryan K, Smith AV, Sun Q, Surendran P, de Vries PS, Walter K, Wang Z, Wheeler M, Yanek LR, Zhong X, Abecasis GR, Almasy L, Barnes KC, Beaty TH, Becker LC, Blangero J, Boerwinkle E, Butterworth AS, Chavan S, Cho MH, Choquet H, Correa A, Cox N, DeMeo DL, Faraday N, Fornage M, Gerszten RE, Hou L, Johnson AD, Jorgenson E, Kaplan R, Kooperberg C, Kundu K, Laurie CA, Lettre G, Lewis JP, Li B, Li Y, Lloyd-Jones DM, Loos RJF, Manichaikul A, Meyers DA, Mitchell BD, Morrison AC, Ngo D, Nickerson DA, Nongmaithem S, North KE, O'Connell JR, Ortega VE, Pankratz N, Perry JA, Psaty BM, Rich SS, Soranzo N, Rotter JI, Silverman EK, Smith NL, Tang H, Tracy RP, Thornton TA, Vasan RS, Zein J, Mathias RA, Reiner AP, Auer PL. Whole-genome sequencing in diverse subjects identifies genetic correlates of leukocyte traits: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:1836-1851. [PMID: 34582791 PMCID: PMC8546043 DOI: 10.1016/j.ajhg.2021.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many common and rare variants associated with hematologic traits have been discovered through imputation on large-scale reference panels. However, the majority of genome-wide association studies (GWASs) have been conducted in Europeans, and determining causal variants has proved challenging. We performed a GWAS of total leukocyte, neutrophil, lymphocyte, monocyte, eosinophil, and basophil counts generated from 109,563,748 variants in the autosomes and the X chromosome in the Trans-Omics for Precision Medicine (TOPMed) program, which included data from 61,802 individuals of diverse ancestry. We discovered and replicated 7 leukocyte trait associations, including (1) the association between a chromosome X, pseudo-autosomal region (PAR), noncoding variant located between cytokine receptor genes (CSF2RA and CLRF2) and lower eosinophil count; and (2) associations between single variants found predominantly among African Americans at the S1PR3 (9q22.1) and HBB (11p15.4) loci and monocyte and lymphocyte counts, respectively. We further provide evidence indicating that the newly discovered eosinophil-lowering chromosome X PAR variant might be associated with reduced susceptibility to common allergic diseases such as atopic dermatitis and asthma. Additionally, we found a burden of very rare FLT3 (13q12.2) variants associated with monocyte counts. Together, these results emphasize the utility of whole-genome sequencing in diverse samples in identifying associations missed by European-ancestry-driven GWASs.
Collapse
MESH Headings
- Asthma/epidemiology
- Asthma/genetics
- Asthma/metabolism
- Asthma/pathology
- Biomarkers/metabolism
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/metabolism
- Dermatitis, Atopic/pathology
- Genetic Predisposition to Disease
- Genome, Human
- Genome-Wide Association Study
- Humans
- Leukocytes/pathology
- National Heart, Lung, and Blood Institute (U.S.)
- Phenotype
- Polymorphism, Single Nucleotide
- Prognosis
- Proteome/analysis
- Proteome/metabolism
- Pulmonary Disease, Chronic Obstructive/epidemiology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Quantitative Trait Loci
- United Kingdom/epidemiology
- United States/epidemiology
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Anna V Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Linda M Polfus
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Corey Cox
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Michelle Daya
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA 02155, USA
| | - Nancy Heard-Costa
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yann Ilboudo
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tyne W Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Jonathon Rosen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Albert V Smith
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Klaudia Walter
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xue Zhong
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Sameer Chavan
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Nancy Cox
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Lifang Hou
- Institute for Public Health and Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Guillaume Lettre
- Montréal Heart Institute, Montréal, Québec H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, Québec H1T 1C8, Canada
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA; Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60661, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Debby Ngo
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Suraj Nongmaithem
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Nicole Soranzo
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; Department of Haematology, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge CB1 8RN, UK
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Department of Health Service, University of Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Department of Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT 05446, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA; Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander P Reiner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
29
|
Park S, Kang S. Association between Polygenetic Risk Scores of Low Immunity and Interactions between These Scores and Moderate Fat Intake in a Large Cohort. Nutrients 2021; 13:2849. [PMID: 34445011 PMCID: PMC8402209 DOI: 10.3390/nu13082849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
White blood cell (WBC) counts represent overall immunity. However, a few studies have been conducted to explore the genetic impacts of immunity and their interaction with lifestyles. We aimed to identify genetic variants associated with a low-WBC risk and document interactions between polygenetic risk scores (PRS), lifestyle factors, and nutrient intakes that influence low-WBC risk in a large hospital-based cohort. Single nucleotide polymorphisms (SNPs) were selected by genome-wide association study of participants with a low-WBC count (<4 × 109/L, n = 4176; low-WBC group) or with a normal WBC count (≥4 × 109/L, n = 36,551; control group). The best model for gene-gene interactions was selected by generalized multifactor dimensionality reduction. PRS was generated by summing selected SNP risk alleles of the best genetic model. Adjusted odds ratio (ORs) of the low-WBC group were 1.467 (1.219-1.765) for cancer incidence risk and 0.458 (0.385-0.545) for metabolic syndrome risk. Vitamin D intake, plant-based diet, and regular exercise were positively related to the low-WBC group, but smoking and alcohol intake showed an inverse association. The 7 SNPs included in the best genetic model were PSMD3_rs9898547, LCT_rs80157389, HLA-DRB1_rs532162239 and rs3097649, HLA-C rs2308575, CDKN1A_rs3176337 and THRA_rs7502539. PRS with 7 SNP model were positively associated with the low-WBC risk by 2.123-fold (1.741 to 2.589). PRS interacted with fat intake and regular exercise but not with other nutrient intakes or lifestyles. The proportion with the low WBC in the participants with high-PRS was lower among those with moderate-fat intake and regular exercise than those with low-fat intake and no exercise. In conclusion, adults with high-PRS had a higher risk of a low WBC count, and they needed to be advised to have moderate fat intake (20-25 energy percent) and regular exercise.
Collapse
Affiliation(s)
- Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea
| | - Suna Kang
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
| |
Collapse
|
30
|
Marcotte EL, Domingues AM, Sample JM, Richardson MR, Spector LG. Racial and ethnic disparities in pediatric cancer incidence among children and young adults in the United States by single year of age. Cancer 2021; 127:3651-3663. [PMID: 34151418 DOI: 10.1002/cncr.33678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Incidence rates of pediatric cancers in the United States are typically reported in 5-year age groups, obscuring variation by single year of age. Additionally, racial and ethnic variation in incidence is typically presented in broad categories rather than by narrow age ranges. METHODS The Surveillance, Epidemiology, and End Results (SEER) 18 data (2000-2017) were examined to calculate frequencies and age-adjusted incidence rates among individuals aged birth to 39 years. Incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) were estimated as the measure of association for rate comparisons by race and Hispanic origin overall and by single year of age. RESULTS Several histologic types showed substantial variation in race/ethnicity-specific and overall rates by single year of age. Overall, Black children and young adults experienced substantially decreased incidence of acute lymphoid leukemia (IRR, 0.52; 95% CI, 0.49-0.55) compared to Whites, and this decreased incidence was strongest at ages 1 through 7 years and 16 through 20 years. Hispanic individuals experienced decreased overall incidence of Hodgkin lymphoma (IRR, 0.50; 95% CI, 0.48-0.52) and astrocytoma (IRR, 0.54; 95% CI, 0.52-0.56) and increased risk of acute lymphoblastic leukemia (IRR, 1.46; 95% CI, 1.42-1.51) compared to non-Hispanic Whites, and the increased risk was strongest at ages 10 through 23 years. Substantial decreased risk across many tumor types was also observed for Asian/Pacific Islanders and American Indian/Alaska Natives. CONCLUSIONS Examination of incidence rates for pediatric cancers by narrow age groups may provide insights regarding etiological differences in subgroups. Additionally, variation in age-specific incidence rates by race and ethnicity may enable hypothesis generation on drivers of disparities observed.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Allison M Domingues
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jeannette M Sample
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michaela R Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
31
|
Hu Y, Bien SA, Nishimura KK, Haessler J, Hodonsky CJ, Baldassari AR, Highland HM, Wang Z, Preuss M, Sitlani CM, Wojcik GL, Tao R, Graff M, Huckins LM, Sun Q, Chen MH, Mousas A, Auer PL, Lettre G, Tang W, Qi L, Thyagarajan B, Buyske S, Fornage M, Hindorff LA, Li Y, Lin D, Reiner AP, North KE, Loos RJF, Raffield LM, Peters U, Avery CL, Kooperberg C. Multi-ethnic genome-wide association analyses of white blood cell and platelet traits in the Population Architecture using Genomics and Epidemiology (PAGE) study. BMC Genomics 2021; 22:432. [PMID: 34107879 PMCID: PMC8191001 DOI: 10.1186/s12864-021-07745-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circulating white blood cell and platelet traits are clinically linked to various disease outcomes and differ across individuals and ancestry groups. Genetic factors play an important role in determining these traits and many loci have been identified. However, most of these findings were identified in populations of European ancestry (EA), with African Americans (AA), Hispanics/Latinos (HL), and other races/ethnicities being severely underrepresented. RESULTS We performed ancestry-combined and ancestry-specific genome-wide association studies (GWAS) for white blood cell and platelet traits in the ancestrally diverse Population Architecture using Genomics and Epidemiology (PAGE) Study, including 16,201 AA, 21,347 HL, and 27,236 EA participants. We identified six novel findings at suggestive significance (P < 5E-8), which need confirmation, and independent signals at six previously established regions at genome-wide significance (P < 2E-9). We confirmed multiple previously reported genome-wide significant variants in the single variant association analysis and multiple genes using PrediXcan. Evaluation of loci reported from a Euro-centric GWAS indicated attenuation of effect estimates in AA and HL compared to EA populations. CONCLUSIONS Our results highlighted the potential to identify ancestry-specific and ancestry-agnostic variants in participants with diverse backgrounds and advocate for continued efforts in improving inclusion of racially/ethnically diverse populations in genetic association studies for complex traits.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine K Nishimura
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chani J Hodonsky
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoine R Baldassari
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M Highland
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- The Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Quan Sun
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming-Huei Chen
- The Framingham Heart Study, National Heart, Lung and Blood Institute, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA, USA
| | - Abdou Mousas
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Paul L Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Weihong Tang
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Lihong Qi
- School of Medicine, University of California Davis, Davis, CA, USA
| | | | - Steve Buyske
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, NJ, USA
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, the University of Texas Health Science Center, Houston, TX, USA
| | - Lucia A Hindorff
- Division of Genomic Medicine, NIH National Human Genome Research Institute, Bethesda, MD, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danyu Lin
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Raffield
- Department of Genetics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
32
|
Hu Y, Stilp AM, McHugh CP, Rao S, Jain D, Zheng X, Lane J, Méric de Bellefon S, Raffield LM, Chen MH, Yanek LR, Wheeler M, Yao Y, Ren C, Broome J, Moon JY, de Vries PS, Hobbs BD, Sun Q, Surendran P, Brody JA, Blackwell TW, Choquet H, Ryan K, Duggirala R, Heard-Costa N, Wang Z, Chami N, Preuss MH, Min N, Ekunwe L, Lange LA, Cushman M, Faraday N, Curran JE, Almasy L, Kundu K, Smith AV, Gabriel S, Rotter JI, Fornage M, Lloyd-Jones DM, Vasan RS, Smith NL, North KE, Boerwinkle E, Becker LC, Lewis JP, Abecasis GR, Hou L, O'Connell JR, Morrison AC, Beaty TH, Kaplan R, Correa A, Blangero J, Jorgenson E, Psaty BM, Kooperberg C, Walton RT, Kleinstiver BP, Tang H, Loos RJF, Soranzo N, Butterworth AS, Nickerson D, Rich SS, Mitchell BD, Johnson AD, Auer PL, Li Y, Mathias RA, Lettre G, Pankratz N, Laurie CC, Laurie CA, Bauer DE, Conomos MP, Reiner AP. Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. Am J Hum Genet 2021; 108:874-893. [PMID: 33887194 DOI: 10.1016/j.ajhg.2021.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing (WGS), a powerful tool for detecting novel coding and non-coding disease-causing variants, has largely been applied to clinical diagnosis of inherited disorders. Here we leveraged WGS data in up to 62,653 ethnically diverse participants from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and assessed statistical association of variants with seven red blood cell (RBC) quantitative traits. We discovered 14 single variant-RBC trait associations at 12 genomic loci, which have not been reported previously. Several of the RBC trait-variant associations (RPN1, ELL2, MIDN, HBB, HBA1, PIEZO1, and G6PD) were replicated in independent GWAS datasets imputed to the TOPMed reference panel. Most of these discovered variants are rare/low frequency, and several are observed disproportionately among non-European Ancestry (African, Hispanic/Latino, or East Asian) populations. We identified a 3 bp indel p.Lys2169del (g.88717175_88717177TCT[4]) (common only in the Ashkenazi Jewish population) of PIEZO1, a gene responsible for the Mendelian red cell disorder hereditary xerocytosis (MIM: 194380), associated with higher mean corpuscular hemoglobin concentration (MCHC). In stepwise conditional analysis and in gene-based rare variant aggregated association analysis, we identified several of the variants in HBB, HBA1, TMPRSS6, and G6PD that represent the carrier state for known coding, promoter, or splice site loss-of-function variants that cause inherited RBC disorders. Finally, we applied base and nuclease editing to demonstrate that the sentinel variant rs112097551 (nearest gene RPN1) acts through a cis-regulatory element that exerts long-range control of the gene RUVBL1 which is essential for hematopoiesis. Together, these results demonstrate the utility of WGS in ethnically diverse population-based samples and gene editing for expanding knowledge of the genetic architecture of quantitative hematologic traits and suggest a continuum between complex trait and Mendelian red cell disorders.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Caitlin P McHugh
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Shuquan Rao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ming-Huei Chen
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Yao Yao
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Chunyan Ren
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jai Broome
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Jee-Young Moon
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Thomas W Blackwell
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Nancy Heard-Costa
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathalie Chami
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nancy Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lynette Ekunwe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Laura Almasy
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia and Department of Genetics University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kousik Kundu
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK
| | - Albert V Smith
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Myriam Fornage
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA 98105, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Goncalo R Abecasis
- TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109, USA
| | - Lifang Hou
- Northwestern University, Chicago, IL 60208, USA
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terri H Beaty
- School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94601, USA
| | - Bruce M Psaty
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98105, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98105, USA
| | - Russell T Walton
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Department of Human Genetics, Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0PT, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge CB1 8RN, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge CB1 8RN, UK
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Johnson
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA 01701, USA
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53205, USA
| | - Yun Li
- Departments of Biostatistics, Genetics, Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MA 21205, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada; Faculté de Médecine, Université de Montréal, Montréal, QC H1T 1C8, Canada
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
33
|
Abstract
The term "benign ethnic neutropenia" describes the phenotype of having an absolute neutrophil count (ANC) <1500 cells/μL with no increased risk of infection. It is most commonly seen in those of African ancestry. In addition, ANC reference ranges from countries in Africa emphasize that ANC levels <1500 cells/μL are common and harmless. The lower ANC levels are driven by the Duffy null [Fy(a-b-)] phenotype, which is protective against malaria and seen in 80% to 100% of those of sub-Saharan African ancestry and <1% of those of European descent. Benign ethnic neutropenia is clinically insignificant, but the average ANC values differ from what are typically seen in those of European descent. Thus, the predominantly White American medical system has described this as a condition. This labeling implicitly indicates that common phenotypes in non-White populations are abnormal or wrong. We believe that it is important to examine and rectify practices in hematology that contribute to systemic racism.
Collapse
|
34
|
Wu P, Ye H, Cai X, Li C, Li S, Chen M, Wang M, Heidari AA, Chen M, Li J, Chen H, Huang X, Wang L. An Effective Machine Learning Approach for Identifying Non-Severe and Severe Coronavirus Disease 2019 Patients in a Rural Chinese Population: The Wenzhou Retrospective Study. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:45486-45503. [PMID: 34786313 PMCID: PMC8545214 DOI: 10.1109/access.2021.3067311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 06/13/2023]
Abstract
This paper has proposed an effective intelligent prediction model that can well discriminate and specify the severity of Coronavirus Disease 2019 (COVID-19) infection in clinical diagnosis and provide a criterion for clinicians to weigh scientific and rational medical decision-making. With indicators as the age and gender of the patients and 26 blood routine indexes, a severity prediction framework for COVID-19 is proposed based on machine learning techniques. The framework consists mainly of a random forest and a support vector machine (SVM) model optimized by a slime mould algorithm (SMA). When the random forest was used to identify the key factors, SMA was employed to train an optimal SVM model. Based on the COVID-19 data, comparative experiments were conducted between RF-SMA-SVM and several well-known machine learning algorithms performed. The results indicate that the proposed RF-SMA-SVM not only achieves better classification performance and higher stability on four metrics, but also screens out the main factors that distinguish severe COVID-19 patients from non-severe ones. Therefore, there is a conclusion that the RF-SMA-SVM model can provide an effective auxiliary diagnosis scheme for the clinical diagnosis of COVID-19 infection.
Collapse
Affiliation(s)
- Peiliang Wu
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Hua Ye
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Xueding Cai
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Chengye Li
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Shimin Li
- College of Computer Science and Artificial IntelligenceWenzhou UniversityWenzhou325035China
| | - Mengxiang Chen
- Department of Information TechnologyWenzhou Vocational College of Science and TechnologyWenzhou325006China
| | - Mingjing Wang
- College of Computer Science and Artificial IntelligenceWenzhou UniversityWenzhou325035China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehran1417466191Iran
- Department of Computer ScienceSchool of ComputingNational University of SingaporeSingapore117417
| | - Mayun Chen
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jifa Li
- Department of Pulmonary and Critical Care MedicineAffiliated Yueqing Hospital, Wenzhou Medical UniversityYueqing325600China
| | - Huiling Chen
- College of Computer Science and Artificial IntelligenceWenzhou UniversityWenzhou325035China
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Liangxing Wang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
35
|
Makhlouf MM, Radwan ER, Khorshed OM, Fathi LM, Elmasry MM. CXC Chemokine Receptor Type 5 Gene Polymorphisms in a Cohort of Egyptian Patients with Diffuse Large B-Cell Lymphoma. Pathobiology 2020; 88:211-217. [PMID: 33378752 DOI: 10.1159/000510456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The chemokine receptor CXCR5 is selectively expressed on B cells; it is involved in lymphocyte homing and the development of normal lymphoid tissue. Its principle ligand is CXCL13 or B lymphocyte chemoattractant. Three polymorphisms in the CXCR5 gene, rs148351692 C/G, rs6421571 C/T, and rs78440425 G/A, have been identified. OBJECTIVE To assess the genetic polymorphisms of CXCR5 and evaluate their possible contribution to the susceptibility and response to therapy of diffuse large B-cell lymphoma (DLBCL). PATIENTS AND METHODS Fifty DLBCL (not otherwise specified) patients and 50 control subjects were included in this study. CXCR5 genotypes were determined by PCR-RFLP. RESULTS Our study revealed that the CXCR5 rs148351692 C/G and rs6421571 C/T gene polymorphisms are associated with an increased risk of developing DLBCL (OR 28.57 [95% CI 8.96-96.56] and 3.45 [1.67-11.83] respectively), while CXCR5 rs78440425 G/A showed no association with the risk of lymphoma. Moreover, the double and triple combined gene polymorphisms are associated with an increased risk of developing DLBCL of approximately 120-fold and 105-fold, respectively. CXCR5 gene polymorphisms had no significant impact on disease outcome or response to therapy. CONCLUSIONS CXCR5 gene polymorphisms could be considered a potential risk factor for the development of DLBCL.
Collapse
Affiliation(s)
- Manal Mohamed Makhlouf
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt,
| | - Eman Roshdy Radwan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola Mohamed Khorshed
- Department of Clinical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lamees Mohamed Fathi
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal Mohamed Elmasry
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Legge SE, Christensen RH, Petersen L, Pardiñas AF, Bracher-Smith M, Knapper S, Bybjerg-Grauholm J, Baekvad-Hansen M, Hougaard DM, Werge T, Nordentoft M, Mortensen PB, Owen MJ, O’Donovan MC, Benros ME, Walters JTR. The Duffy-null genotype and risk of infection. Hum Mol Genet 2020; 29:3341-3349. [PMID: 32959868 PMCID: PMC7906776 DOI: 10.1093/hmg/ddaa208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022] Open
Abstract
Many medical treatments, from oncology to psychiatry, can lower white blood cell counts and thus access to these treatments can be restricted to individuals with normal levels of white blood cells, principally in order to minimize risk of serious infection. This adversely affects individuals of African or Middle Eastern ancestries who have on average a reduced number of circulating white blood cells, because of the Duffy-null (CC) genotype at rs2814778 in the ACKR1 gene. Here, we investigate whether the Duffy-null genotype is associated with the risk of infection using the UK Biobank sample and the iPSYCH Danish case-cohort study, two population-based samples from different countries and age ranges. We found that a high proportion of those with the Duffy-null genotype (21%) had a neutrophil count below the threshold often used as a cut-off for access to relevant treatments, compared with 1% of those with the TC/TT genotype. In addition we found that despite its strong association with lower average neutrophil counts, the Duffy-null genotype was not associated with an increased risk of infection, viral or bacterial. These results have widespread implications for the clinical treatment of individuals of African ancestry and indicate that neutrophil thresholds to access treatments could be lowered in individuals with the Duffy-null genotype without an increased risk of infection.
Collapse
Affiliation(s)
- Sophie E Legge
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Rune H Christensen
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen 2605, Denmark
| | - Liselotte Petersen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, 8210, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, 8210, Denmark
- The Lundbeck Foundation for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus 8210, Denmark
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Matthew Bracher-Smith
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Steven Knapper
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jonas Bybjerg-Grauholm
- Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Marie Baekvad-Hansen
- Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen 2300, Denmark
| | - David M Hougaard
- Centre for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen 2300, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde 4000, Denmark
| | - Merete Nordentoft
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen 2605, Denmark
- The Lundbeck Foundation for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus 8210, Denmark
| | - Preben Bo Mortensen
- National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, 8210, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, 8210, Denmark
- The Lundbeck Foundation for Integrative Psychiatric Research (iPSYCH), Aarhus University, Aarhus 8210, Denmark
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michael C O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michael E Benros
- Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen 2605, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
37
|
Anandi P, Dickson AL, Feng Q, Wei WQ, Dupont WD, Plummer D, Liu G, Octaria R, Barker KA, Kawai VK, Birdwell K, Cox NJ, Hung A, Stein CM, Chung CP. Combining clinical and candidate gene data into a risk score for azathioprine-associated leukopenia in routine clinical practice. THE PHARMACOGENOMICS JOURNAL 2020; 20:736-745. [PMID: 32054992 PMCID: PMC7426242 DOI: 10.1038/s41397-020-0163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Leukopenia is a serious, frequent side effect associated with azathioprine use. Currently, we use thiopurine methyltransferase (TPMT) testing to predict leukopenia in patients taking azathioprine. We hypothesized that a risk score incorporating additional clinical and genetic variables would improve the prediction of azathioprine-associated leukopenia. In the discovery phase, we developed four risk score models: (1) age, sex, and TPMT metabolizer status; (2) model 1 plus additional clinical variables; (3) sixty candidate single nucleotide polymorphisms; and (4) model 2 plus model 3. The area under the receiver-operating-characteristic curve (AUC) of the risk scores was 0.59 (95% CI: 0.54-0.64), 0.75 (0.71-0.80), 0.66 (0.61-0.71), and 0.78 (0.74-0.82) for models 1, 2, 3, and 4, respectively. During the replication phase, models 2 and 4 (AUC = 0.64, 95% CI: 0.59-0.70 and AUC = 0.63, 95% CI: 0.58-0.69, respectively) were significant in an independent group. Compared with TPMT testing alone, additional genetic and clinical variables improve the prediction of azathioprine-associated leukopenia.
Collapse
Affiliation(s)
- Prathima Anandi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alyson L Dickson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dale Plummer
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ge Liu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rany Octaria
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine A Barker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian K Kawai
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelly Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adriana Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Michael Stein
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia P Chung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Nandakumar SK, Liao X, Sankaran VG. In The Blood: Connecting Variant to Function In Human Hematopoiesis. Trends Genet 2020; 36:563-576. [PMID: 32534791 PMCID: PMC7363574 DOI: 10.1016/j.tig.2020.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Genome-wide association studies (GWAS) have identified thousands of genetic variants associated with a range of human diseases and traits. However, understanding the mechanisms by which these genetic variants have an impact on associated diseases and traits, often referred to as the variant-to-function (V2F) problem, remains a significant hurdle. Solving the V2F challenge requires us to identify causative genetic variants, relevant cell types/states, target genes, and mechanisms by which variants can cause diseases or alter phenotypic traits. We discuss emerging functional approaches that are being applied to tackle the V2F problem for blood cell traits, illuminating how human genetic variation can impact on key mechanisms in hematopoiesis, as well as highlighting future prospects for this nascent field.
Collapse
Affiliation(s)
- Satish K Nandakumar
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Xiaotian Liao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
39
|
Lin SH, Loftfield E, Sampson JN, Zhou W, Yeager M, Freedman ND, Chanock SJ, Machiela MJ. Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci Rep 2020; 10:3655. [PMID: 32108144 PMCID: PMC7046668 DOI: 10.1038/s41598-020-59963-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mosaic loss of Y chromosome (mLOY) is the most frequently detected somatic copy number alteration in leukocytes of men. In this study, we investigate blood cell counts as a potential mechanism linking mLOY to disease risk in 206,353 UK males. Associations between mLOY, detected by genotyping arrays, and blood cell counts were assessed by multivariable linear models adjusted for relevant risk factors. Among the participants, mLOY was detected in 39,809 men. We observed associations between mLOY and reduced erythrocyte count (−0.009 [−0.014, −0.005] × 1012 cells/L, p = 2.75 × 10−5) and elevated thrombocyte count (5.523 [4.862, 6.183] × 109 cells/L, p = 2.32 × 10−60) and leukocyte count (0.218 [0.198, 0.239] × 109 cells/L, p = 9.22 × 10−95), particularly for neutrophil count (0.174 × [0.158, 0.190]109 cells/L, p = 1.24 × 10−99) and monocyte count (0.021 [0.018 to 0.024] × 109 cells/L, p = 6.93 × 10−57), but lymphocyte count was less consistent (0.016 [0.007, 0.025] × 109 cells/L, p = 8.52 × 10−4). Stratified analyses indicate these associations are independent of the effects of aging and smoking. Our findings provide population-based evidence for associations between mLOY and blood cell counts that should stimulate investigation of the underlying biological mechanisms linking mLOY to cancer and chronic disease risk.
Collapse
Affiliation(s)
- Shu-Hong Lin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Josh N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 8717 Grovemont Circle, Gaithersburg, MD, 20877, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, 8717 Grovemont Circle, Gaithersburg, MD, 20877, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 9609 Medical Center Drive MSC 9776, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
40
|
Longchamps RJ, Castellani CA, Yang SY, Newcomb CE, Sumpter JA, Lane J, Grove ML, Guallar E, Pankratz N, Taylor KD, Rotter JI, Boerwinkle E, Arking DE. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS One 2020; 15:e0228166. [PMID: 32004343 PMCID: PMC6994099 DOI: 10.1371/journal.pone.0228166] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has been associated with several aging-related diseases. Although quantitative real-time PCR (qPCR) is the current gold standard method for measuring mtDNA-CN, mtDNA-CN can also be measured from genotyping microarray probe intensities and DNA sequencing read counts. To conduct a comprehensive examination on the performance of these methods, we use known mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus genotype, incident cardiovascular disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as whole genome (WGS) and whole exome sequence (WES) data across 1,085 participants from the Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is significantly more associated with known correlates compared to all other methods (p < 0.001). Additionally, mtDNA-CN measured from WGS is on average more significantly associated with traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the current gold standard of qPCR. We further investigated the role of DNA extraction method on mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more WGS data becomes available from larger initiatives such as TOPMed.
Collapse
Affiliation(s)
- Ryan J. Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Christina A. Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie Y. Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Charles E. Newcomb
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jason A. Sumpter
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Eliseo Guallar
- Department of Epidemiology and the Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Kent D. Taylor
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Jerome I. Rotter
- LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Institute for Translational Genomics and Population Sciences, Torrance, CA, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Dan E. Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
41
|
Pendergrass SA, Buyske S, Jeff JM, Frase A, Dudek S, Bradford Y, Ambite JL, Avery CL, Buzkova P, Deelman E, Fesinmeyer MD, Haiman C, Heiss G, Hindorff LA, Hsu CN, Jackson RD, Lin Y, Le Marchand L, Matise TC, Monroe KR, Moreland L, North KE, Park SL, Reiner A, Wallace R, Wilkens LR, Kooperberg C, Ritchie MD, Crawford DC. A phenome-wide association study (PheWAS) in the Population Architecture using Genomics and Epidemiology (PAGE) study reveals potential pleiotropy in African Americans. PLoS One 2019; 14:e0226771. [PMID: 31891604 PMCID: PMC6938343 DOI: 10.1371/journal.pone.0226771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
We performed a hypothesis-generating phenome-wide association study (PheWAS) to identify and characterize cross-phenotype associations, where one SNP is associated with two or more phenotypes, between thousands of genetic variants assayed on the Metabochip and hundreds of phenotypes in 5,897 African Americans as part of the Population Architecture using Genomics and Epidemiology (PAGE) I study. The PAGE I study was a National Human Genome Research Institute-funded collaboration of four study sites accessing diverse epidemiologic studies genotyped on the Metabochip, a custom genotyping chip that has dense coverage of regions in the genome previously associated with cardio-metabolic traits and outcomes in mostly European-descent populations. Here we focus on identifying novel phenome-genome relationships, where SNPs are associated with more than one phenotype. To do this, we performed a PheWAS, testing each SNP on the Metabochip for an association with up to 273 phenotypes in the participating PAGE I study sites. We identified 133 putative pleiotropic variants, defined as SNPs associated at an empirically derived p-value threshold of p<0.01 in two or more PAGE study sites for two or more phenotype classes. We further annotated these PheWAS-identified variants using publicly available functional data and local genetic ancestry. Amongst our novel findings is SPARC rs4958487, associated with increased glucose levels and hypertension. SPARC has been implicated in the pathogenesis of diabetes and is also known to have a potential role in fibrosis, a common consequence of multiple conditions including hypertension. The SPARC example and others highlight the potential that PheWAS approaches have in improving our understanding of complex disease architecture by identifying novel relationships between genetic variants and an array of common human phenotypes.
Collapse
Affiliation(s)
| | - Steven Buyske
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Janina M. Jeff
- Illumina, Inc., San Diego, California, United States of America
| | - Alex Frase
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott Dudek
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuki Bradford
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose-Luis Ambite
- Information Sciences Institute; University of Southern California, Marina del Rey, California, United States of America
| | - Christy L. Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Petra Buzkova
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Ewa Deelman
- Information Sciences Institute; University of Southern California, Marina del Rey, California, United States of America
| | | | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lucia A. Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chun-Nan Hsu
- Center for Research in Biological Systems, Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | | | - Yi Lin
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Tara C. Matise
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Kristine R. Monroe
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Larry Moreland
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sungshim L. Park
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Robert Wallace
- Departments of Epidemiology and Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lynne R. Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Marylyn D. Ritchie
- Department of Genetics, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dana C. Crawford
- Cleveland Institute for Computational Biology, Cleveland, Ohio, United States of America
- Departments of Population and Quantitative Health Sciences and Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C, Barnes KC, Becker LC, Bien SA, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Buyske S, Cai J, Cho MH, Choi SH, Choquet H, Cupples LA, Cushman M, Daya M, de Vries PS, Ellinor PT, Faraday N, Fornage M, Gabriel S, Ganesh SK, Graff M, Gupta N, He J, Heckbert SR, Hidalgo B, Hodonsky CJ, Irvin MR, Johnson AD, Jorgenson E, Kaplan R, Kardia SLR, Kelly TN, Kooperberg C, Lasky-Su JA, Loos RJF, Lubitz SA, Mathias RA, McHugh CP, Montgomery C, Moon JY, Morrison AC, Palmer ND, Pankratz N, Papanicolaou GJ, Peralta JM, Peyser PA, Rich SS, Rotter JI, Silverman EK, Smith JA, Smith NL, Taylor KD, Thornton TA, Tiwari HK, Tracy RP, Wang T, Weiss ST, Weng LC, Wiggins KL, Wilson JG, Yanek LR, Zöllner S, North KE, Auer PL, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Hematology & Hemostasis Working Group, Raffield LM, Reiner AP, Li Y. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet 2019; 15:e1008500. [PMID: 31869403 PMCID: PMC6953885 DOI: 10.1371/journal.pgen.1008500] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/10/2020] [Accepted: 10/30/2019] [Indexed: 01/10/2023] Open
Abstract
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
Collapse
Affiliation(s)
- Madeline H. Kowalski
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Huijun Qian
- Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ziyi Hou
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan D. Rosen
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amanda L. Tapia
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yue Shan
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Maria Argos
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
| | - Christy Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kathleen C. Barnes
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Eric Boerwinkle
- Human Genome Sequencing Center, University of Texas Health Science Center at Houston; Baylor College of Medicine, Houston, Texas, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Steve Buyske
- Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jianwen Cai
- Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung Hoan Choi
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Mary Cushman
- Departments of Medicine & Pathology, Larner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Michelle Daya
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Paul S. de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nauder Faraday
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Myriam Fornage
- School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Stacey Gabriel
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Santhi K. Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Misa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Namrata Gupta
- Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
| | - Bertha Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chani J. Hodonsky
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew D. Johnson
- Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, United States of America
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruth J. F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Caitlin P. McHugh
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Courtney Montgomery
- Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jee-Young Moon
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - George J. Papanicolaou
- National Heart, Lung, and Blood Institute, Division of Cardiovascular Sciences, PPSP/EB, NIH, Bethesda, Maryland, United States of America
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Timothy A. Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Hemant K. Tiwari
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lu-Chen Weng
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sebastian Zöllner
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | | | | | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Yun Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
43
|
Sangurdekar D, Sun C, McLaughlin H, Ayling-Rouse K, Allaire NE, Penny MA, Bronson PG. Genetic Study of Severe Prolonged Lymphopenia in Multiple Sclerosis Patients Treated With Dimethyl Fumarate. Front Genet 2019; 10:1039. [PMID: 31749835 PMCID: PMC6844186 DOI: 10.3389/fgene.2019.01039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022] Open
Abstract
In delayed-release dimethyl fumarate (DMF)-treated patients, absolute lymphocyte count (ALC) often declines in the first year and stabilizes thereafter; early declines have been associated with development of severe prolonged lymphopenia (SPL). Prolonged moderate or severe lymphopenia is a known risk factor for progressive multifocal leukoencephalopathy (PML); DMF-associated PML is very rare. It is unknown whether genetic predictors of SPL secondary to DMF treatment exist. We aimed to identify genetic predictors of reduced white blood cell (WBC) counts in DMF-treated multiple sclerosis (MS) patients. Genotyping (N = 1,258) and blood transcriptional profiling (N = 1,133) were performed on MS patients from DEFINE/CONFIRM. ALCs were categorized as: SPL, < 500 cells/µL for ≥6 months; moderate prolonged lymphopenia (MPL), < 800 cells/µL for ≥6 months, excluding SPL; mildly reduced lymphocytes, < 910 cells/µL at any point, excluding SPL and MPL; no lymphopenia, ≥910 cells/µL. Genome-wide association, HLA, and cross-sectional gene expression studies were performed. No common variants, HLA alleles, or expression profiles clinically useful for predicting SPL or MPL were identified. There was no overlap between genetic peaks and genetic loci known to be associated with WBC. Gene expression profiles were not associated with lymphopenia status. A classification model including gene expression features was not more predictive of lymphopenia status than standard covariates. There were no genetic predictors of SPL (or MPL) secondary to DMF treatment. Our results support ALC monitoring during DMF treatment as the most effective way to identify patients at risk of SPL.
Collapse
Affiliation(s)
- Dipen Sangurdekar
- Translational Genome Sciences, Translational Biology, Biogen, Cambridge, MA, United States
| | - Chao Sun
- Translational Genome Sciences, Translational Biology, Biogen, Cambridge, MA, United States
| | - Helen McLaughlin
- Human Target Validation Core, Translational Biology, Biogen, Cambridge, MA, United States
| | | | - Normand E Allaire
- Translational Genome Sciences, Translational Biology, Biogen, Cambridge, MA, United States
| | - Michelle A Penny
- Translational Genome Sciences, Translational Biology, Biogen, Cambridge, MA, United States
| | - Paola G Bronson
- Human Target Validation Core, Translational Biology, Biogen, Cambridge, MA, United States
| |
Collapse
|
44
|
Gatineau-Sailliant S, Glisovic S, Gagné V, Laverdière C, Leclerc JM, Silverman L, Sinnett D, Krajinovic M, Pastore Y. Impact of DARC, GSDMA and CXCL2 polymorphisms on induction toxicity in children with acute lymphoblastic leukemia: A complementary study. Leuk Res 2019; 86:106228. [DOI: 10.1016/j.leukres.2019.106228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
45
|
Knackstedt SL, Georgiadou A, Apel F, Abu-Abed U, Moxon CA, Cunnington AJ, Raupach B, Cunningham D, Langhorne J, Krüger R, Barrera V, Harding SP, Berg A, Patel S, Otterdal K, Mordmüller B, Schwarzer E, Brinkmann V, Zychlinsky A, Amulic B. Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Sci Immunol 2019; 4:eaaw0336. [PMID: 31628160 PMCID: PMC6892640 DOI: 10.1126/sciimmunol.aaw0336] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/04/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Neutrophils are essential innate immune cells that extrude chromatin in the form of neutrophil extracellular traps (NETs) when they die. This form of cell death has potent immunostimulatory activity. We show that heme-induced NETs are essential for malaria pathogenesis. Using patient samples and a mouse model, we define two mechanisms of NET-mediated inflammation of the vasculature: activation of emergency granulopoiesis via granulocyte colony-stimulating factor production and induction of the endothelial cytoadhesion receptor intercellular adhesion molecule-1. Soluble NET components facilitate parasite sequestration and mediate tissue destruction. We demonstrate that neutrophils have a key role in malaria immunopathology and propose inhibition of NETs as a treatment strategy in vascular infections.
Collapse
Affiliation(s)
- Sebastian Lorenz Knackstedt
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Falko Apel
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Abu-Abed
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | | | - Bärbel Raupach
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Jean Langhorne
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Pneumology, Immunology and Intensive Care, Berlin, Germany
| | - Valentina Barrera
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Aase Berg
- Stavanger University Hospital, Stavanger, Norway
| | - Sam Patel
- Maputo Central Hospital, Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Universität Tübingen, Institut für Tropenmedizin, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy
| | - Volker Brinkmann
- Max Planck Institute for Infection Biology, Microscopy Core Facility, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Borko Amulic
- Max Planck Institute for Infection Biology, Department of Cellular Microbiology, Charitéplatz 1, 10117 Berlin, Germany.
- University of Bristol, School of Cellular and Molecular Medicine, Bristol BS8 1TD, UK
| |
Collapse
|
46
|
Vandiedonck C. Genetic association of molecular traits: A help to identify causative variants in complex diseases. Clin Genet 2019; 93:520-532. [PMID: 29194587 DOI: 10.1111/cge.13187] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
In the past 15 years, major progresses have been made in the understanding of the genetic basis of regulation of gene expression. These new insights have revolutionized our approach to resolve the genetic variation underlying complex diseases. Gene transcript levels were the first expression phenotypes that were studied. They are heritable and therefore amenable to genome-wide association studies. The genetic variants that modulate them are called expression quantitative trait loci. Their study has been extended to other molecular quantitative trait loci (molQTLs) that regulate gene expression at the various levels, from chromatin state to cellular responses. Altogether, these studies have generated a wealth of basic information on the genome-wide patterns of gene expression and their inter-individual variation. Most importantly, molQTLs have become an invaluable asset in the genetic study of complex diseases. Although the identification of the disease-causing variants on the basis of their overlap with molQTLs requires caution, molQTLs can help to prioritize the relevant candidate gene(s) in the disease-associated regions and bring a functional interpretation of the associated variants, therefore, bridging the gap between genotypes and clinical phenotypes.
Collapse
Affiliation(s)
- C Vandiedonck
- Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
47
|
López-Cortegano E, Caballero A. Inferring the Nature of Missing Heritability in Human Traits Using Data from the GWAS Catalog. Genetics 2019; 212:891-904. [PMID: 31123044 PMCID: PMC6614893 DOI: 10.1534/genetics.119.302077] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Thousands of genes responsible for many diseases and other common traits in humans have been detected by Genome Wide Association Studies (GWAS) in the last decade. However, candidate causal variants found so far usually explain only a small fraction of the heritability estimated by family data. The most common explanation for this observation is that the missing heritability corresponds to variants, either rare or common, with very small effect, which pass undetected due to a lack of statistical power. We carried out a meta-analysis using data from the NHGRI-EBI GWAS Catalog in order to explore the observed distribution of locus effects for a set of 42 complex traits and to quantify their contribution to narrow-sense heritability. With the data at hand, we were able to predict the expected distribution of locus effects for 16 traits and diseases, their expected contribution to heritability, and the missing number of loci yet to be discovered to fully explain the familial heritability estimates. Our results indicate that, for 6 out of the 16 traits, the additive contribution of a great number of loci is unable to explain the familial (broad-sense) heritability, suggesting that the gap between GWAS and familial estimates of heritability may not ever be closed for these traits. In contrast, for the other 10 traits, the additive contribution of hundreds or thousands of loci yet to be found could potentially explain the familial heritability estimates, if this were the case. Computer simulations are used to illustrate the possible contribution from nonadditive genetic effects to the gap between GWAS and familial estimates of heritability.
Collapse
Affiliation(s)
| | - Armando Caballero
- Departamento de Bioquímica, Genética e Inmunología, Universidade de Vigo, 36310, Spain
| |
Collapse
|
48
|
Atallah-Yunes SA, Ready A, Newburger PE. Benign ethnic neutropenia. Blood Rev 2019; 37:100586. [PMID: 31255364 DOI: 10.1016/j.blre.2019.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 01/30/2023]
Abstract
Benign ethnic neutropenia (BEN) is one of the most common causes of chronic neutropenia seen in individuals of African, Middle Eastern and West Indian descent, affecting many individuals worldwide. Despite its prevalence, many physicians are not familiar with this benign condition, resulting in unnecessary evaluation and testing for neutropenia in otherwise healthy individuals. Clinically, patients with BEN are at no increased risk of infection despite their neutropenia. Implications of this condition are highlighted in those patients receiving therapies that have a known side effect of neutropenia, most commonly chemotherapy agents. Studies have suggested that disparities in survival among those patients receiving chemotherapy between patients of European decent and African decent may be attributed to measured neutropenia in these populations, questioning whether BEN could be an influential factor. This review encompasses all aspects of benign ethnic neutropenia, providing information about this condition and helping to guide clinical decision-making as to when an aggressive work up and referral are indicated and when it is appropriate to monitor. Additionally, we review the role of genetic studies in identifying the genes related to BEN, summarize the theories that offer the most accepted mechanisms behind the condition, and address the importance of pursuing larger studies to assess the implication of BEN in oncology patients as well as patients taking neutropenia-causing medications.
Collapse
Affiliation(s)
- Suheil Albert Atallah-Yunes
- Department of Medicine, University of Massachusetts Medical School, Baystate Medical Center, Springfield, MA 01103, USA.
| | - Audrey Ready
- Department of Medicine, University of Massachusetts Medical School, Baystate Medical Center, Springfield, MA 01103, USA
| | - Peter E Newburger
- Departments of Pediatrics and Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Klinkenberg EF, Huis In't Veld EMJ, de Wit PD, van Dongen A, Daams JG, de Kort WLAM, Fransen MP. Blood donation barriers and facilitators of Sub-Saharan African migrants and minorities in Western high-income countries: a systematic review of the literature. Transfus Med 2019; 29 Suppl 1:28-41. [PMID: 29493019 PMCID: PMC7379919 DOI: 10.1111/tme.12517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The present study aimed to gain more insight into, and summarise, blood donation determinants among migrants or minorities of Sub-Saharan heritage by systematically reviewing the current literature. BACKGROUND Sub-Saharan Africans are under-represented in the blood donor population in Western high-income countries. This causes a lack of specific blood types for transfusions and prevention of alloimmunisation among Sub-Saharan African patients. METHODS/MATERIALS Medline, EMBASE, PsycINFO and BIOSIS were searched for relevant empirical studies that focused on barriers and facilitators of blood donation among Sub-Saharan Africans in Western countries until 22 June 2017. Of the 679 articles screened by title and abstract, 152 were subsequently screened by full text. Paired reviewers independently assessed the studies based on predefined eligibility and quality criteria. RESULTS Of the 31 included studies, 24 used quantitative and 7 used qualitative research methods. Target cohorts varied from Black African Americans and refugees from Sub-Sahara Africa to specific Sub-Saharan migrant groups such as Comorians or Ethiopians. Main recurring barriers for Sub-Saharan Africans were haemoglobin deferral, fear of needles and pain, social exclusion, lack of awareness, negative attitudes and accessibility problems. Important recurring facilitators for Sub-Saharan Africans were altruism, free health checks and specific recruitment and awareness-raising campaigns. CONCLUSION The findings of this review can be used as a starting point to develop recruitment and retention strategies for Sub-Saharan African persons. Further research is needed to gain more insight in the role of these determinants in specific contexts as socioeconomic features, personal histories and host country regulations may differ per country.
Collapse
Affiliation(s)
- E. F. Klinkenberg
- Department of Donor StudiesSanquin ResearchAmsterdamThe Netherlands
- Department of Public HealthAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - E. M. J. Huis In't Veld
- Department of Donor StudiesSanquin ResearchAmsterdamThe Netherlands
- Department of Medical and Clinical PsychologyTilburg UniversityTilburgThe Netherlands
| | - P. D. de Wit
- Department of Donor StudiesSanquin ResearchAmsterdamThe Netherlands
- Department of Public HealthAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - A. van Dongen
- School of Psychology, University of New South WalesSydneyAustralia
| | - J. G. Daams
- Medical LibraryAcademic Medical Center, Univeristy of AmsterdamAmsterdamThe Netherlands
| | - W. L. A. M. de Kort
- Department of Donor StudiesSanquin ResearchAmsterdamThe Netherlands
- Department of Public HealthAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - M. P. Fransen
- Department of Public HealthAcademic Medical Center, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
50
|
Lakhotia R, Aggarwal A, Link ME, Rodgers GP, Hsieh MM. Natural history of benign ethnic neutropenia in individuals of African ancestry. Blood Cells Mol Dis 2019; 77:12-16. [PMID: 30909074 DOI: 10.1016/j.bcmd.2019.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Benign ethnic neutropenia (BEN), defined by neutrophil count <1.5 k/μL in the absence of other causes, is an asymptomatic condition more commonly observed in individuals of African ancestry. However, the natural history of this condition has been less well described. METHODS Individuals with BEN were retrospectively identified by chart review or referral to hematology clinics. They were then invited to enroll in a prospective natural history study. Retrospective and prospective clinical and laboratory data were combined for descriptive analyses. FINDINGS 46 participants, younger and older adults from 2 institutions, had BEN. Hypertension was reported in 30%, musculoskeletal disorders in 15%, and upper respiratory infection in 33% of these adults. Their leukopenia resulted from isolated neutropenia, ranging from 1000 and 1500 cells/μL. The severity of infections was mild and the frequency was similar to other healthy individuals in the ambulatory clinic. INTERPRETATION In this group of BEN participants, their leukopenia was stable over time, and they had low rates of infections or common medical disorders, confirming the benign nature of this condition. The presence of BEN in children, younger adults, and older adults suggest a hereditary pattern for BEN.
Collapse
Affiliation(s)
- Rahul Lakhotia
- Hematology Branch, NHLBI, NIH, United States of America.
| | - Anita Aggarwal
- Department of Hematology and Oncology, Veterans Administration Hospital, Washington DC, United States of America.
| | - Mary E Link
- Molecular and Clinical Hematology Branch, NHLBI, NIH, United States of America.
| | - Griffin P Rodgers
- Molecular and Clinical Hematology Branch, NHLBI, NIH, United States of America.
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, NHLBI, NIH, United States of America.
| |
Collapse
|