1
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short- and long-term enhancer regulation during cell fate specification. Cell Rep 2025; 44:115680. [PMID: 40349339 DOI: 10.1016/j.celrep.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Chromatin and DNA modifications mediate the transcriptional activity of lineage-specifying enhancers, but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly resolved timeline of their dynamics during neural progenitor cell differentiation. We discovered that, while complete demethylation appears delayed relative to shorter-lived chromatin changes for thousands of enhancers, DNA demethylation actually initiates with 5-hydroxymethylation before appreciable accessibility and transcription factor occupancy is observed. The extended timeline of DNA demethylation creates temporal discordance appearing as heterogeneity in enhancer regulatory states. Few regions ever gain methylation, and resulting enhancer hypomethylation persists long after chromatin activities have dissipated. We demonstrate that the temporal methylation status of CpGs (mC/hmC/C) predicts past, present, and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to shape short- and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Timothy J Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacqueline A Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Fabio Puddu
- Biomodal, Chesterford Research Park, Cambridge CB10 1XL, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pediatrics - Section of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Center for Computational Systems Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Zhao Z, Chen S, Liu Z, Su J, Lü J, Hao L, Dou Y, Wang L, Song S. T7 Endonuclease I-Mediated Single-Base Mismatch Biosensing Strategy for High-Resolution Quantitative Analysis of 5-Hydroxymethylcytosine in Genomic DNA. JACS AU 2025; 5:1320-1327. [PMID: 40151246 PMCID: PMC11937965 DOI: 10.1021/jacsau.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 03/29/2025]
Abstract
5-hydroxymethylcytosine (5hmC) plays a pivotal role in the DNA demethylation pathway and transcriptional regulation. While sequencing-based methods such as TET-assisted bisulfite sequencing offer single-base resolution, they are not ideal for dynamic, time-sensitive quantification. Here, we present a novel enzymatic biosensing strategy leveraging T7 endonuclease I for rapid and locus-specific 5hmC detection with a single-base resolution. This electrochemical platform captures double-tagged dsDNA and detects 5hmC by monitoring the signal reduction upon T7 endonuclease cleavage of A-C mismatches. The method achieved high sensitivity, detecting as little as 10 pg of hydroxymethylated DNA amid a 100,000-fold excess of methylated or unmethylated DNA. Furthermore, we demonstrated its ability to quantify real-time 5hmC variation during umbilical cord mesenchymal stem cell differentiation. This approach offers a powerful tool for 5hmC analysis in dynamic biological processes.
Collapse
Affiliation(s)
- Zhihan Zhao
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shixing Chen
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhixiao Liu
- Department
of Histology and Embryology, Naval Medical
University, Shanghai 200433, China
| | - Jing Su
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Junhong Lü
- School
of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lihong Hao
- Ningbo
Junkang Medical Technology Co., Ltd., Ningbo 315000, China
| | - Yanzhi Dou
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Science and
Technology on Microsystem Laboratory, Shanghai
Institute of Microsystem and Information Technology Chinese Academy
of Science, Shanghai 200050, China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
| | - Shiping Song
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
3
|
Palczewski MB, Kuschman HP, Hoffman BM, Kathiresan V, Yang H, Glynn SA, Wilson DL, Kool ET, Montfort WR, Chang J, Petenkaya A, Chronis C, Cundari TR, Sappa S, Islam K, McVicar DW, Fan Y, Chen Q, Meerzaman D, Sierk M, Thomas DD. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. Nat Commun 2025; 16:1732. [PMID: 39966373 PMCID: PMC11836389 DOI: 10.1038/s41467-025-56928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.
Collapse
Affiliation(s)
- Marianne B Palczewski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Hannah Petraitis Kuschman
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Brian M Hoffman
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Venkatesan Kathiresan
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Hao Yang
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Sharon A Glynn
- Discipline of Pathology, University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, Galway, Ireland
| | - David L Wilson
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, School of Humanities and Sciences, Stanford, CA, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Jenny Chang
- Dr. Mary and Neal Cancer Center at Houston Methodist, Weill Cornell Medical College, Houston, NY, USA
| | - Aydolun Petenkaya
- Department of Biomedical Engineering, University of Illinois Chicago, College of Engineering, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, College of Medicine, Chicago, IL, USA
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, Denton, TX, USA
| | - Sushma Sappa
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel W McVicar
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology, Bethesda, USA
| | - Daoud Meerzaman
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Michael Sierk
- Cancer Innovation Laboratory, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Douglas D Thomas
- Department of Pharmaceutical Sciences, University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA.
| |
Collapse
|
4
|
Oatman SR, Reddy JS, Atashgaran A, Wang X, Min Y, Quicksall Z, Vanelderen F, Carrasquillo MM, Liu CC, Yamazaki Y, Nguyen TT, Heckman M, Zhao N, DeTure M, Murray ME, Bu G, Kanekiyo T, Dickson DW, Allen M, Ertekin-Taner N. Integrative Epigenomic Landscape of Alzheimer's Disease Brains Reveals Oligodendrocyte Molecular Perturbations Associated with Tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637140. [PMID: 40027794 PMCID: PMC11870448 DOI: 10.1101/2025.02.12.637140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) brains are characterized by neuropathologic and biochemical changes that are highly variable across individuals. Capturing epigenetic factors that associate with this variability can reveal novel biological insights into AD pathophysiology. We conducted an epigenome-wide association study of DNA methylation (DNAm) in 472 AD brains with neuropathologic measures (Braak stage, Thal phase, and cerebral amyloid angiopathy score) and brain biochemical levels of five proteins (APOE, amyloid-β (Aβ)40, Aβ42, tau, and p-tau) core to AD pathogenesis. Using a novel regional methylation (rCpGm) approach, we identified 5,478 significant associations, 99.7% of which were with brain tau biochemical measures. Of the tau-associated rCpGms, 93 had concordant associations in external datasets comprising 1,337 brain samples. Integrative transcriptome-methylome analyses uncovered 535 significant gene expression associations for these 93 rCpGms. Genes with concurrent transcriptome-methylome perturbations were enriched in oligodendrocyte marker genes, including known AD risk genes such as BIN1 , myelination genes MYRF, MBP and MAG previously implicated in AD, as well as novel genes like LDB3 . We further annotated the top oligodendrocyte genes in an additional 6 brain single cell and 2 bulk transcriptome datasets from AD and two other tauopathies, Pick's disease and progressive supranuclear palsy (PSP). Our findings support consistent rCpGm and gene expression associations with these tauopathies and tau-related phenotypes in both bulk brain tissue and oligodendrocyte clusters. In summary, we uncover the integrative epigenomic landscape of AD and demonstrate tau-related oligodendrocyte gene perturbations as a common potential pathomechanism across different tauopathies.
Collapse
|
5
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Foong YH, Caldwell B, Thorvaldsen JL, Krapp C, Mesaros CA, Zhou W, Kohli RM, Bartolomei MS. TET1 displays catalytic and non-catalytic functions in the adult mouse cortex. Epigenetics 2024; 19:2374979. [PMID: 38970823 PMCID: PMC11229741 DOI: 10.1080/15592294.2024.2374979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
Collapse
Affiliation(s)
- Yee Hoon Foong
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Blake Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| | - Rahul M. Kohli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| |
Collapse
|
7
|
Mortillo M, Kennedy EG, Hermetz KM, Burt AA, Marsit CJ. Epigenetic landscape of 5-hydroxymethylcytosine and associations with gene expression in placenta. Epigenetics 2024; 19:2326869. [PMID: 38507502 PMCID: PMC10956631 DOI: 10.1080/15592294.2024.2326869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth G. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M. Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Zheng K, Lyu Z, Chen J, Chen G. 5-Hydroxymethylcytosine: Far Beyond the Intermediate of DNA Demethylation. Int J Mol Sci 2024; 25:11780. [PMID: 39519332 PMCID: PMC11546248 DOI: 10.3390/ijms252111780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics plays a pivotal role in regulating gene expression and cellular differentiation. DNA methylation, involving the addition of methyl groups to specific cytosine bases, is a well-known epigenetic modification. The recent discovery of 5-hydroxymethylcytosine (5hmC) has provided new insights into cytosine modifications. 5hmC, derived from the oxidation of 5-methylcytosine (5mC), serves as both an intermediate in demethylation and a stable chemical modification in the genome. In this comprehensive review, we summarize the recent research advancements regarding the functions of 5hmC in development and disease. We discuss its implications in gene expression regulation, cellular differentiation, and its potential role as a diagnostic and prognostic marker in various diseases. Additionally, we highlight the challenges associated with accurately detecting and quantifying 5hmC and present the latest methodologies employed for its detection. Understanding the functional role of 5hmC in epigenetic regulation and further advancing our understanding of gene expression dynamics and cellular processes hold immense promise for the development of novel therapeutic strategies and precision medicine approaches.
Collapse
Affiliation(s)
- Kaixi Zheng
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (K.Z.); (Z.L.); (J.C.)
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
9
|
Kamei N, Day K, Guo W, Haus DL, Nguyen HX, Scarfone VM, Booher K, Jia XY, Cummings BJ, Anderson AJ. Injured inflammatory environment overrides the TET2 shaped epigenetic landscape of pluripotent stem cell derived human neural stem cells. Sci Rep 2024; 14:25186. [PMID: 39448736 PMCID: PMC11502794 DOI: 10.1038/s41598-024-75689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity. We demonstrate a significant up-regulation of methylcytosine dioxygenase 2 gene (TET2) expression in undifferentiated hNSC derived from human embryonic stem cells (hES-NSC), and report that this is associated with hES-NSC competence for differentiation marker expression. TET2 protein catalyzes active demethylation and TET2 upregulation could be a signature of pluripotent exit, while shaping the epigenetic landscape in hES-NSC. We determine that the inflammatory environment overrides epigenetic programming in vitro and in vivo by directly modulating TET2 expression levels in hES-NSC to change cell fate. We also report the effect of cell fate and microenvironment on differential methylation 5mC/5hmC balance. Understanding how the activity of epigenetic modifiers changes within the transplantation niche in vivo is crucial for assessment of hES-NSC behavior for potential clinical applications.
Collapse
Affiliation(s)
- Noriko Kamei
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
- Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| | - Kenneth Day
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
- Vidium Animal Health, 7201 E Henkel Way Suite210, Scottsdale, AZ, 85255, USA
| | - Wei Guo
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Daniel L Haus
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Keith Booher
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Xi-Yu Jia
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| |
Collapse
|
10
|
Parasyraki E, Mallick M, Hatch V, Vastolo V, Musheev MU, Karaulanov E, Gopanenko A, Moxon S, Méndez-Lago M, Han D, Schomacher L, Mukherjee D, Niehrs C. 5-Formylcytosine is an activating epigenetic mark for RNA Pol III during zygotic reprogramming. Cell 2024; 187:6088-6103.e18. [PMID: 39214079 DOI: 10.1016/j.cell.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
5-Methylcytosine (5mC) is an established epigenetic mark in vertebrate genomic DNA, but whether its oxidation intermediates formed during TET-mediated DNA demethylation possess an instructive role of their own that is also physiologically relevant remains unresolved. Here, we reveal a 5-formylcytosine (5fC) nuclear chromocenter, which transiently forms during zygotic genome activation (ZGA) in Xenopus and mouse embryos. We identify this chromocenter as the perinucleolar compartment, a structure associated with RNA Pol III transcription. In Xenopus embryos, 5fC is highly enriched on Pol III target genes activated at ZGA, notably at oocyte-type tandem arrayed tRNA genes. By manipulating Tet and Tdg enzymes, we show that 5fC is required as a regulatory mark to promote Pol III recruitment as well as tRNA expression. Concordantly, 5fC modification of a tRNA transgene enhances its expression in vivo. The results establish 5fC as an activating epigenetic mark during zygotic reprogramming of Pol III gene expression.
Collapse
Affiliation(s)
| | | | - Victoria Hatch
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | | | | | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TU, UK
| | | | - Dandan Han
- Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | | | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz 55128, Germany; Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg 69120, Germany.
| |
Collapse
|
11
|
Núñez-Ríos DL, Nagamatsu ST, Martínez-Magaña JJ, Hurd Y, Rompala G, Krystal JH, Traumatic Stress Brain Research Group, Montalvo-Ortiz JL. Mapping the epigenomic landscape of post-traumatic stress disorder in human cortical neurons. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315258. [PMID: 39484232 PMCID: PMC11527063 DOI: 10.1101/2024.10.11.24315258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The study conducted a comprehensive genome-wide analysis of differential 5mC and 5hmC modifications at both CpG and non-CpG sites in postmortem orbitofrontal neurons from 25 PTSD cases and 13 healthy controls. It was observed that PTSD patients exhibit a greater number of differential 5hmC sites compared to 5mC sites. Specifically, individuals with PTSD tend to show hyper-5mC/5hmC at CpG sites, particularly within CpG islands and promoter regions, and hypo-5mC/5hmC at non-CpG sites, especially within intragenic regions. Functional enrichment analysis indicated distinct yet interconnected roles for 5mC and 5hmC in PTSD. The 5mC marks primarily regulate cell-cell adhesion processes, whereas 5hmC marks are involved in embryonic morphogenesis and cell fate commitment. By integrating published PTSD findings from central and peripheral tissues through multi-omics approaches, several biological mechanisms were prioritized, including developmental processes, HPA axis regulation, and immune responses. Based on the consistent enrichment in developmental processes, we hypothesize that if epigenetic changes occur during early developmental stages, they may increase the risk of developing PTSD following trauma exposure. Conversely, if these epigenetic changes occur in adulthood, they may influence neuronal apoptosis and survival mechanisms.
Collapse
Affiliation(s)
- Diana L. Núñez-Ríos
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Jose Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Yasmin Hurd
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gregory Rompala
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center of Post-Traumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
12
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
13
|
Guerin LN, Scott TJ, Yap JA, Johansson A, Puddu F, Charlesworth T, Yang Y, Simmons AJ, Lau KS, Ihrie RA, Hodges E. Temporally discordant chromatin accessibility and DNA demethylation define short and long-term enhancer regulation during cell fate specification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609789. [PMID: 39253426 PMCID: PMC11383056 DOI: 10.1101/2024.08.27.609789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.
Collapse
Affiliation(s)
- Lindsey N. Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Timothy J. Scott
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jacqueline A. Yap
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Fabio Puddu
- biomodal, Chesterford Research Park, Cambridge, UK
| | | | - Yilin Yang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J. Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca A. Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
14
|
Hubinský M, Hobza R, Starczak M, Gackowski D, Kubát Z, Janíček T, Horáková L, Rodriguez Lorenzo JL. Non-canonical bases differentially represented in the sex chromosomes of the dioecious plant Silene latifolia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3849-3861. [PMID: 38652039 PMCID: PMC11233409 DOI: 10.1093/jxb/erae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), known as oxi-mCs, garners significant interest in plants as potential epigenetic marks. While research in mammals has established a role in cell reprogramming, carcinogenesis, and gene regulation, their functions in plants remain unclear. In rice, 5hmC has been associated with transposable elements (TEs) and heterochromatin. This study utilizes Silene latifolia, a dioecious plant with heteromorphic sex chromosomes and a genome with a large proportion of TEs, which provides a favourable environment for the study of oxi-mCs in individual sexes. Notably, we detected surprisingly high levels of oxi-mCs in S. latifolia comparable with mammals. Nuclei showed enrichment in heterochromatic regions, except for 5hmC whose signal was homogeneously distributed. Intriguingly, the same X chromosome in females displayed overall enrichment of 5hmC and 5fC compared with its counterpart. This fact is shared with 5mC, resembling dosage compensation. Co-localization showed higher correlation between 5mC and 5fC than with 5hmC, indicating no potential relationship between 5hmC and 5fC. Additionally, the promoter of several sex-linked genes and sex-biased TEs clustered in a clear sex-dependent way. Together, these findings unveil a hypothetical role for oxi-mCs in S. latifolia sex chromosome development, warranting further exploration.
Collapse
Affiliation(s)
- Marcel Hubinský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marta Starczak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Karlowicza 24, PO-85-092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Karlowicza 24, PO-85-092, Bydgoszcz, Poland
| | - Zdeněk Kubát
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Lucie Horáková
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jose Luis Rodriguez Lorenzo
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
15
|
Becht DC, Mohid SA, Lee JE, Zandian M, Benz C, Biswas S, Sinha VK, Ivarsson Y, Ge K, Zhang Y, Kutateladze TG. MLL4 binds TET3. Structure 2024; 32:706-714.e3. [PMID: 38579707 PMCID: PMC11162309 DOI: 10.1016/j.str.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Human mixed lineage leukemia 4 (MLL4), also known as KMT2D, regulates cell type specific transcriptional programs through enhancer activation. Along with the catalytic methyltransferase domain, MLL4 contains seven less characterized plant homeodomain (PHD) fingers. Here, we report that the sixth PHD finger of MLL4 (MLL4PHD6) binds to the hydrophobic motif of ten-eleven translocation 3 (TET3), a dioxygenase that converts methylated cytosine into oxidized derivatives. The solution NMR structure of the TET3-MLL4PHD6 complex and binding assays show that, like histone H4 tail, TET3 occupies the hydrophobic site of MLL4PHD6, and that this interaction is conserved in the seventh PHD finger of homologous MLL3 (MLL3PHD7). Analysis of genomic localization of endogenous MLL4 and ectopically expressed TET3 in mouse embryonic stem cells reveals a high degree overlap on active enhancers and suggests a potential functional relationship of MLL4 and TET3.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sk Abdul Mohid
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Mohamad Zandian
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vikrant Kumar Sinha
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, 751 23 Uppsala, Sweden
| | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Yi Zhang
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
16
|
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal. Genome Biol 2024; 25:142. [PMID: 38825692 PMCID: PMC11145787 DOI: 10.1186/s13059-024-03273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
Collapse
Affiliation(s)
- Edahi Gonzalez-Avalos
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Onodera
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Daniela Samaniego-Castruita
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Moshi JM, Ummelen M, Smedts F, Ramaekers FCS, Hopman AHN. Inhibition of cytosine 5-hydroxymethylation during progression of cancer precursor lesions in the uterine cervix. PLoS One 2024; 19:e0297008. [PMID: 38635731 PMCID: PMC11025792 DOI: 10.1371/journal.pone.0297008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/27/2023] [Indexed: 04/20/2024] Open
Abstract
Methylation and hydroxymethylation of cytosine moieties in CpG islands of specific genes are epigenetic processes shown to be involved in the development of cervical (pre)neoplastic lesions. We studied global (hydroxy)methylation during the subsequent steps in the carcinogenic process of the uterine cervix by using immunohistochemical protocols for the detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in paraffin-embedded tissues of the normal epithelia and (pre)malignant lesions. This approach allowed obtaining spatially resolved information of (epi)genetic alterations for individual cell populations in morphologically heterogeneous tissue samples. The normal ectocervical squamous epithelium showed a high degree of heterogeneity for both modifications, with a major positivity for 5-mC in the basal and parabasal layers in the ectocervical region, while 5-hmC immunostaining was even more restricted to the cells in the basal layer. Immature squamous metaplasia, characterized by expression of SOX17, surprisingly showed a decrease of 5-hmC in the basal compartments and an increase in the more superficial layers of the epithelium. The normal endocervical glandular epithelium showed a strong immunostaining reactivity for both modifications. At the squamocolumnar junctions, a specific 5-hmC pattern was observed in the squamous epithelium, resembling that of metaplasia, with the typical weak to negative reaction for 5-hmC in the basal cell compartment. The reserve cells underlying the glandular epithelium were also largely negative for 5-hmC but showed immunostaining for 5-mC. While the overall methylation status remained relatively constant, about 20% of the high-grade squamous lesions showed a very low immunostaining reactivity for 5-hmC. The (pre)malignant glandular lesions, including adenocarcinoma in situ (AIS) and adenocarcinoma showed a progressive decrease of hydroxymethylation with advancement of the lesion, resulting in cases with regions that were negative for 5-hmC immunostaining. These data indicate that inhibition of demethylation, which normally follows cytosine hydroxymethylation, is an important epigenetic switch in the development of cervical cancer.
Collapse
Affiliation(s)
- Jobran M. Moshi
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Monique Ummelen
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Frank Smedts
- Department of Pathology, Cork University Hospital, Cork, Ireland
| | - Frans C. S. Ramaekers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anton H. N. Hopman
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
18
|
Thomas D, Palczewski M, Kuschman H, Hoffman B, Yang H, Glynn S, Wilson D, Kool E, Montfort W, Chang J, Petenkaya A, Chronis C, Cundari T, Sappa S, Islam K, McVicar D, Fan Y, Chen Q, Meerzaman D, Sierk M. Nitric oxide inhibits ten-eleven translocation DNA demethylases to regulate 5mC and 5hmC across the genome. RESEARCH SQUARE 2024:rs.3.rs-4131804. [PMID: 38645113 PMCID: PMC11030528 DOI: 10.21203/rs.3.rs-4131804/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
DNA methylation at cytosine bases of eukaryotic DNA (5-methylcytosine, 5mC) is a heritable epigenetic mark that can regulate gene expression in health and disease. Enzymes that metabolize 5mC have been well-characterized, yet the discovery of endogenously produced signaling molecules that regulate DNA methyl-modifying machinery have not been described. Herein, we report that the free radical signaling molecule nitric oxide (NO) can directly inhibit the Fe(II)/2-OG-dependent DNA demethylases ten-eleven translocation (TET) and human AlkB homolog 2 (ALKBH2). Physiologic NO concentrations reversibly inhibited TET and ALKBH2 demethylase activity by binding to the mononuclear non-heme iron atom which formed a dinitrosyliron complex (DNIC) preventing cosubstrates (2-OG and O2) from binding. In cancer cells treated with exogenous NO, or cells endogenously synthesizing NO, there was a global increase in 5mC and 5-hydroxymethylcytosine (5hmC) in DNA, the substrates for TET, that could not be attributed to increased DNA methyltransferase activity. 5mC was also elevated in NO-producing cell-line-derived mouse xenograft and patient-derived xenograft tumors. Genome-wide DNA methylome analysis of cells chronically treated with NO (10 days) demonstrated enrichment of 5mC and 5hmC at gene-regulatory loci which correlated to changes in the expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a novel epigenetic role for NO.
Collapse
Affiliation(s)
| | - Marianne Palczewski
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | - Hannah Kuschman
- University of Illinois Chicago, College of Pharmacy, Department of Pharmaceutical Sciences
| | | | - Hao Yang
- Weinberg College of Arts and Sciences, Northwestern University, Department of Chemistry
| | - Sharon Glynn
- University of Galway, College of Medicine, Nursing and Health Sciences, School of Medicine, D. of Pathology
| | | | - Eric Kool
- Stanford University, Department of Chemistry, School of Humanities and Sciences
| | | | - Jenny Chang
- Houston Methodist, Department of Medicine and Oncology, Weill Cornell Medical College
| | - Aydolun Petenkaya
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | - Constantinos Chronis
- University of Illinois Chicago, College of Medicine, Biochemistry and Molecular Genetics
| | | | - Sushma Sappa
- University of Pittsburgh, Department of Chemistry
| | | | - Daniel McVicar
- National Institutes of Health, National Cancer Institute, Center for Cancer Research
| | - Yu Fan
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Qingrong Chen
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Daoud Meerzaman
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| | - Michael Sierk
- National Cancer Institute, Center for Biomedical Informatics and Information Technology
| |
Collapse
|
19
|
Skardžiūtė K, Kvederavičiūtė K, Pečiulienė I, Narmontė M, Gibas P, Ličytė J, Klimašauskas S, Kriukienė E. One-pot trimodal mapping of unmethylated, hydroxymethylated, and open chromatin sites unveils distinctive 5hmC roles at dynamic chromatin loci. Cell Chem Biol 2024; 31:607-621.e9. [PMID: 38154461 PMCID: PMC10962225 DOI: 10.1016/j.chembiol.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
We present a method, named Mx-TOP, for profiling of three epigenetic regulatory layers-chromatin accessibility, general DNA modification, and DNA hydroxymethylation-from a single library. The approach is based on chemo-enzymatic covalent tagging of unmodified CG sites and hydroxymethylated cytosine (5hmC) along with GC sites in chromatin, which are then mapped using tag-selective base-resolution TOP-seq sequencing. Our in-depth validation of the approach revealed its sensitivity and informativity in evaluating chromatin accessibility and DNA modification interactions that drive transcriptional regulation. We employed the technology in a study of chromatin and DNA demethylation dynamics during in vitro neuronal differentiation. The study highlighted the involvement of gene body 5hmC in modulating an extensive decoupling between promoter accessibility and transcription. The importance of 5hmC in chromatin remodeling was further demonstrated by the observed resistance of the developmentally acquired open loci to the global 5hmC erasure in neuronal progenitors.
Collapse
Affiliation(s)
- Kotryna Skardžiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Inga Pečiulienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania.
| |
Collapse
|
20
|
Lee SM. Detecting DNA hydroxymethylation: exploring its role in genome regulation. BMB Rep 2024; 57:135-142. [PMID: 38449301 PMCID: PMC10979348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].
Collapse
Affiliation(s)
- Sun-Min Lee
- Department of Physics, Konkuk Univeristy, Seoul 05029, Korea
| |
Collapse
|
21
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
22
|
Guler GD, Ning Y, Coruh C, Mognol GP, Phillips T, Nabiyouni M, Hazen K, Scott A, Volkmuth W, Levy S. Plasma cell-free DNA hydroxymethylation profiling reveals anti-PD-1 treatment response and resistance biology in non-small cell lung cancer. J Immunother Cancer 2024; 12:e008028. [PMID: 38212123 PMCID: PMC10806554 DOI: 10.1136/jitc-2023-008028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.
Collapse
Affiliation(s)
| | - Yuhong Ning
- ClearNote Health Inc, San Diego, California, USA
| | - Ceyda Coruh
- ClearNote Health Inc, San Diego, California, USA
| | | | | | | | - Kyle Hazen
- ClearNote Health Inc, San Diego, California, USA
| | - Aaron Scott
- ClearNote Health Inc, San Diego, California, USA
| | | | - Samuel Levy
- ClearNote Health Inc, San Diego, California, USA
| |
Collapse
|
23
|
Haan D, Bergamaschi A, Friedl V, Guler GD, Ning Y, Reggiardo R, Kesling M, Collins M, Gibb B, Hazen K, Bates S, Antoine M, Fraire C, Lopez V, Malta R, Nabiyouni M, Nguyen A, Phillips T, Riviere M, Leighton A, Ellison C, McCarthy E, Scott A, Gigliotti L, Nilson E, Sheard J, Peters M, Bethel K, Chowdhury S, Volkmuth W, Levy S. Epigenomic Blood-Based Early Detection of Pancreatic Cancer Employing Cell-Free DNA. Clin Gastroenterol Hepatol 2023; 21:1802-1809.e6. [PMID: 36967102 DOI: 10.1016/j.cgh.2023.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS Early detection of pancreatic cancer (PaC) can drastically improve survival rates. Approximately 25% of subjects with PaC have type 2 diabetes diagnosed within 3 years prior to the PaC diagnosis, suggesting that subjects with type 2 diabetes are at high risk of occult PaC. We have developed an early-detection PaC test, based on changes in 5-hydroxymethylcytosine (5hmC) signals in cell-free DNA from plasma. METHODS Blood was collected from 132 subjects with PaC and 528 noncancer subjects to generate epigenomic and genomic feature sets yielding a predictive PaC signal algorithm. The algorithm was validated in a blinded cohort composed of 102 subjects with PaC, 2048 noncancer subjects, and 1524 subjects with non-PaCs. RESULTS 5hmC differential profiling and additional genomic features enabled the development of a machine learning algorithm capable of distinguishing subjects with PaC from noncancer subjects with high specificity and sensitivity. The algorithm was validated with a sensitivity for early-stage (stage I/II) PaC of 68.3% (95% confidence interval [CI], 51.9%-81.9%) and an overall specificity of 96.9% (95% CI, 96.1%-97.7%). CONCLUSIONS The PaC detection test showed robust early-stage detection of PaC signal in the studied cohorts with varying type 2 diabetes status. This assay merits further clinical validation for the early detection of PaC in high-risk individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bill Gibb
- ClearNote Health, San Mateo, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li F, Liu S, Li K, Zhang Y, Duan M, Yao Z, Zhu G, Guo Y, Wang Y, Huang L, Zhou F. EpiTEAmDNA: Sequence feature representation via transfer learning and ensemble learning for identifying multiple DNA epigenetic modification types across species. Comput Biol Med 2023; 160:107030. [PMID: 37196456 DOI: 10.1016/j.compbiomed.2023.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Methylation is a major DNA epigenetic modification for regulating the biological processes without altering the DNA sequence, and multiple types of DNA methylations have been discovered, including 6mA, 5hmC, and 4mC. Multiple computational approaches were developed to automatically identify the DNA methylation residues using machine learning or deep learning algorithms. The machine learning (ML) based methods are difficult to be transferred to the other predicting tasks of the DNA methylation sites using additional knowledge. Deep learning (DL) may facilitate the transfer learning of knowledge from similar tasks, but they are often ineffective on small datasets. This study proposes an integrated feature representation framework EpiTEAmDNA based on the strategies of transfer learning and ensemble learning, which is evaluated on multiple DNA methylation types across 15 species. EpiTEAmDNA integrates convolutional neural network (CNN) and conventional machine learning methods, and shows improved performances than the existing DL-based methods on small datasets when no additional knowledge is available. The experimental data suggests that the EpiTEAmDNA models may be further improved via transfer learning based on additional knowledge. The evaluation experiments on the independent test datasets also suggest that the proposed EpiTEAmDNA framework outperforms the existing models in most prediction tasks of the 3 DNA methylation types across 15 species. The source code, pre-trained global model, and the EpiTEAmDNA feature representation framework are freely available at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Shuai Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yaqi Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Zhaomin Yao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Gancheng Zhu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Guo
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
25
|
Kumar A, Kos MZ, Roybal D, Carless MA. A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder. Front Psychiatry 2023; 14:1077415. [PMID: 37139321 PMCID: PMC10150707 DOI: 10.3389/fpsyt.2023.1077415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Bipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders. Methods Induced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID. Results Approximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3' UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10-12) and axon guidance (FDR = 2.1 × 10-6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10-6), encoding a potassium channel protein involved in neuronal activity and migration. Protein-protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10-10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10-5) and DOK-7 (p = 3.6 × 10-3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10-8). Discussion Together, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mark Z. Kos
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, United States
| | - Donna Roybal
- Traditions Behavioral Health, Larkspur, CA, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
26
|
Moshi JM, Ummelen M, Broers JLV, Ramaekers FCS, Hopman AHN. Impact of antigen retrieval protocols on the immunohistochemical detection of epigenetic DNA modifications. Histochem Cell Biol 2023:10.1007/s00418-023-02187-4. [PMID: 37010548 DOI: 10.1007/s00418-023-02187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/04/2023]
Abstract
This study compares three different pretreatment protocols for the immunohistochemical detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in nuclear DNA. The human biological samples analyzed included formalin-fixed and paraffin-embedded (FFPE) normal squamous epithelium, ethanol-fixed cultured cells, and metaphase chromosomes. The antigen retrieval methods included low pH Citrate and high pH Tris-ethylenediaminetetraacetic acid (EDTA) protocols, as well as a method using Pepsin pretreatment combined with HCl for DNA denaturation. A gradual increase in the detection levels of 5-mC and 5-hmC was observed when going from Citrate via Tris/EDTA to Pepsin/HCl retrieval. While the Citrate retrieval protocol was the least efficient for the detection of 5-mC and 5-hmC, it did preserve nuclear morphology and enabled visualization of differences in intra- and internuclear distribution patterns in tissue and cell culture samples by single- and double-fluorescence detection. Quantification of (hydroxy)methylation levels in FFPE material demonstrated a significant heterogeneity and differences in 5-mC and 5-hmC levels within and between nuclei in the different compartments of normal squamous epithelium. It was concluded that immunohistochemical detection of 5-mC and 5-hmC enables the correlation of these DNA modifications with histomorphological features in heterogeneous tissues, but this is influenced by different pretreatment protocols that must be carefully chosen to allow an appropriate interpretation of these epigenetic switches.
Collapse
Affiliation(s)
- Jobran M Moshi
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Monique Ummelen
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Jos L V Broers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frans C S Ramaekers
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Anton H N Hopman
- Department of Molecular Cell Biology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Tung PW, Kennedy EM, Burt A, Hermetz K, Karagas M, Marsit CJ. Prenatal lead (Pb) exposure is associated with differential placental DNA methylation and hydroxymethylation in a human population. Epigenetics 2022; 17:2404-2420. [PMID: 36148884 PMCID: PMC9665158 DOI: 10.1080/15592294.2022.2126087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
Abstract
Prenatal lead (Pb) exposure is associated with adverse developmental outcomes and to epigenetic alterations such as DNA methylation and hydroxymethylation in animal models and in newborn blood. Given the importance of the placenta in foetal development, we sought to examine how prenatal Pb exposure was associated with differential placental DNA methylation and hydroxymethylation and to identify affected biological pathways linked to developmental outcomes. Maternal (n = 167) and infant (n = 172) toenail and placenta (n = 115) samples for prenatal Pb exposure were obtained from participants in a US birth cohort, and methylation and hydroxymethylation data were quantified using the Illumina Infinium MethylationEPIC BeadChip. An epigenome-wide association study was applied to identify differential methylation and hydroxymethylation associated with Pb exposure. Biological functions of the Pb-associated genes were determined by overrepresentation analysis through ConsensusPathDB. Prenatal Pb quantified from maternal toenail, infant toenail, and placenta was associated with 480, 27, and 2 differentially methylated sites (q < 0.05), respectively, with both increases and decreases associated with exposure. Alternatively, we identified 2, 1, and 14 differentially hydroxymethylated site(s) associated with maternal toenail, infant toenail, and placental Pb, respectively, with most showing increases in hydroxymethylation with exposure. Significantly overrepresented pathways amongst genes associated with differential methylation and hydroxymethylation (q < 0.10) included mechanisms pertaining to nervous system and organ development, calcium transport and regulation, and signalling activities. Our results suggest that both methylation and hydroxymethylation in the placenta can be variable based on Pb exposure and that the pathways impacted could affect placental function.
Collapse
Affiliation(s)
- Pei Wen Tung
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Elizabeth M. Kennedy
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, Lebanon
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Sjöström M, Zhao SG, Levy S, Zhang M, Ning Y, Shrestha R, Lundberg A, Herberts C, Foye A, Aggarwal R, Hua JT, Li H, Bergamaschi A, Maurice-Dror C, Maheshwari A, Chen S, Ng SWS, Ye W, Petricca J, Fraser M, Chesner L, Perry MD, Moreno-Rodriguez T, Chen WS, Alumkal JJ, Chou J, Morgans AK, Beer TM, Thomas GV, Gleave M, Lloyd P, Phillips T, McCarthy E, Haffner MC, Zoubeidi A, Annala M, Reiter RE, Rettig MB, Witte ON, Fong L, Bose R, Huang FW, Luo J, Bjartell A, Lang JM, Mahajan NP, Lara PN, Evans CP, Tran PT, Posadas EM, He C, Cui XL, Huang J, Zwart W, Gilbert LA, Maher CA, Boutros PC, Chi KN, Ashworth A, Small EJ, He HH, Wyatt AW, Quigley DA, Feng FY. The 5-Hydroxymethylcytosine Landscape of Prostate Cancer. Cancer Res 2022; 82:3888-3902. [PMID: 36251389 PMCID: PMC9627125 DOI: 10.1158/0008-5472.can-22-1123] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.
Collapse
Affiliation(s)
- Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans' Hospital, Madison, WI
| | | | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Corinne Maurice-Dror
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver, BC, Canada
| | - Ashutosh Maheshwari
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wenbin Ye
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Jessica Petricca
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marc D Perry
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alicia K Morgans
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Robert E Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Matthew B Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Anders Bjartell
- Department of Translational Medicine, Medical Faculty, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
- Department of Urologic Surgery, University of California Davis, Sacramento, CA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland, College Park, Baltimore, MD
| | - Edwin M Posadas
- Urologic Oncology Program & Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Arc Institute, Palo Alto, CA
| | - Christopher A Maher
- Siteman Cancer Center, Washington University, St. Louis, MO
- McDonnell Genome Institute, Washington University, St. Louis, MO
- Department of Internal Medicine, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, Departments of Human Genetics and Urology, University of California Los Angeles, Los Angeles, CA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Lee B, Cyrill SL, Lee W, Melchiotti R, Andiappan AK, Poidinger M, Rötzschke O. Analysis of archaic human haplotypes suggests that 5hmC acts as an epigenetic guide for NCO recombination. BMC Biol 2022; 20:173. [PMID: 35927700 PMCID: PMC9354366 DOI: 10.1186/s12915-022-01353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-crossover (NCO) refers to a mechanism of homologous recombination in which short tracks of DNA are copied between homologue chromatids. The allelic changes are typically restricted to one or few SNPs, which potentially allow for the gradual adaptation and maturation of haplotypes. It is assumed to be a stochastic process but the analysis of archaic and modern human haplotypes revealed a striking variability in local NCO recombination rates. Methods NCO recombination rates of 1.9 million archaic SNPs shared with Denisovan hominids were defined by a linkage study and correlated with functional and genomic annotations as well as ChIP-Seq data from modern humans. Results We detected a strong correlation between NCO recombination rates and the function of the respective region: low NCO rates were evident in introns and quiescent intergenic regions but high rates in splice sites, exons, 5′- and 3′-UTRs, as well as CpG islands. Correlations with ChIP-Seq data from ENCODE and other public sources further identified epigenetic modifications that associated directly with these recombination events. A particularly strong association was observed for 5-hydroxymethylcytosine marks (5hmC), which were enriched in virtually all of the functional regions associated with elevated NCO rates, including CpG islands and ‘poised’ bivalent regions. Conclusion Our results suggest that 5hmC marks may guide the NCO machinery specifically towards functionally relevant regions and, as an intermediate of oxidative demethylation, may open a pathway for environmental influence by specifically targeting recently opened gene loci. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01353-9.
Collapse
Affiliation(s)
- Bernett Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Samantha Leeanne Cyrill
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Cold Spring Harbor Laboratory, One Bungtown Road, NY, 11724, Cold Spring Harbor, USA
| | - Wendy Lee
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Rossella Melchiotti
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.,Present address: Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, 3052, Australia
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency of Science Technology and Research (A*STAR), 8A Biomedical Drive, Singapore, 138648, Singapore.
| |
Collapse
|
30
|
Taka N, Asami S, Sakamoto M, Matsui T, Yoshida W. Quantification of Global DNA Hydroxymethylation Level Using UHRF2 SRA-Luciferase Based on Bioluminescence Resonance Energy Transfer. Anal Chem 2022; 94:8618-8624. [DOI: 10.1021/acs.analchem.1c05619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natsumi Taka
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Shoya Asami
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mikiya Sakamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Toru Matsui
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
31
|
Ma X, Yang B, Li X, Miao Z. Tet Enzymes-Mediated DNA 5hmC Modification in Cerebral Ischemic and Hemorrhagic Injury. Neurotox Res 2022; 40:884-891. [PMID: 35394559 DOI: 10.1007/s12640-022-00505-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
5-Hydroxymethylcytosine (5hmC) has recently been found that plays an important role in many diseases; however, there are still few studies in the field of stroke. The purpose of this review is to introduce the influence and function of 5hmC in stroke, in order for more people can study it. In this review, we introduced the role of 5hmC in ischemia and hemorrhage stroke, and summarized the possible therapeutic prospects of 5hmC in stroke. In conclusion, we suggest that 5hmC may serve as a biomarker or therapeutic target for the treatment of stroke.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China
- Institute of Neuroscience of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xiaojing Li
- Gusu School, Suzhou Science & Technology Town Hospital, Nanjing Medical University, Suzhou, 215153, China.
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215123, China.
- Institute of Neuroscience of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
32
|
Besaratinia A, Caceres A, Tommasi S. DNA Hydroxymethylation in Smoking-Associated Cancers. Int J Mol Sci 2022; 23:2657. [PMID: 35269796 PMCID: PMC8910185 DOI: 10.3390/ijms23052657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
5-hydroxymethylcytosine (5-hmC) was first detected in mammalian DNA five decades ago. However, it did not take center stage in the field of epigenetics until 2009, when ten-eleven translocation 1 (TET1) was found to oxidize 5-methylcytosine to 5-hmC, thus offering a long-awaited mechanism for active DNA demethylation. Since then, a remarkable body of research has implicated DNA hydroxymethylation in pluripotency, differentiation, neural system development, aging, and pathogenesis of numerous diseases, especially cancer. Here, we focus on DNA hydroxymethylation in smoking-associated carcinogenesis to highlight the diagnostic, therapeutic, and prognostic potentials of this epigenetic mark. We describe the significance of 5-hmC in DNA demethylation, the importance of substrates and cofactors in TET-mediated DNA hydroxymethylation, the regulation of TETs and related genes (isocitrate dehydrogenases, fumarate hydratase, and succinate dehydrogenase), the cell-type dependency and genomic distribution of 5-hmC, and the functional role of 5-hmC in the epigenetic regulation of transcription. We showcase examples of studies on three major smoking-associated cancers, including lung, bladder, and colorectal cancers, to summarize the current state of knowledge, outstanding questions, and future direction in the field.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (A.C.); (S.T.)
| | | | | |
Collapse
|
33
|
Papale LA, Madrid A, Zhang Q, Chen K, Sak L, Keleş S, Alisch RS. Gene by environment interaction mouse model reveals a functional role for 5-hydroxymethylcytosine in neurodevelopmental disorders. Genome Res 2022; 32:266-279. [PMID: 34949667 PMCID: PMC8805724 DOI: 10.1101/gr.276137.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/22/2021] [Indexed: 11/25/2022]
Abstract
Mouse knockouts of Cntnap2 show altered neurodevelopmental behavior, deficits in striatal GABAergic signaling, and a genome-wide disruption of an environmentally sensitive DNA methylation modification (5-hydroxymethylcytosine [5hmC]) in the orthologs of a significant number of genes implicated in human neurodevelopmental disorders. We tested adult Cntnap2 heterozygous mice (Cntnap2 +/-; lacking behavioral or neuropathological abnormalities) subjected to a prenatal stress and found that prenatally stressed Cntnap2 +/- female mice show repetitive behaviors and altered sociability, similar to the homozygote phenotype. Genomic profiling revealed disruptions in hippocampal and striatal 5hmC levels that are correlated to altered transcript levels of genes linked to these phenotypes (e.g., Reln, Dst, Trio, and Epha5). Chromatin immunoprecipitation coupled with high-throughput sequencing and hippocampal nuclear lysate pull-down data indicated that 5hmC abundance alters the binding of the transcription factor CLOCK near the promoters of these genes (e.g., Palld, Gigyf1, and Fry), providing a mechanistic role for 5hmC in gene regulation. Together, these data support gene-by-environment hypotheses for the origins of mental illness and provide a means to identify the elusive factors contributing to complex human diseases.
Collapse
Affiliation(s)
- Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
- Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Qi Zhang
- Department Mathematics and Statistics, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - Kailei Chen
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Lara Sak
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Sündüz Keleş
- Department of Statistics, Biostatistics, and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53719, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53719, USA
| |
Collapse
|
34
|
Huang G, Chen J, Zhou J, Xiao S, Zeng W, Xia J, Zeng X. Epigenetic modification and BRAF gene mutation in thyroid carcinoma. Cancer Cell Int 2021; 21:687. [PMID: 34923978 PMCID: PMC8684614 DOI: 10.1186/s12935-021-02405-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022] Open
Abstract
AbstractThyroid cancer remains the most prevailing endocrine malignancy, and a progressively increasing incidence rate has been observed in recent years, with 95% of thyroid cancer represented by differentiated thyroid carcinomas. The genetics and epigenetics of thyroid cancer are gradually increasing, and gene mutations and methylation changes play an important roles in its occurrence and development. Although the role of RAS and BRAF mutations in thyroid cancer have been partially clarified,but the pathogenesis and molecular mechanisms of thyroid cancer remain to be elucidated. Epigenetic modification refer to genetic modification that does not change the DNA sequence of a gene but causes heritable phenotypic changes in its expression. Epigenetic modification mainly includes four aspects: DNA methylation, chromatin remodelling, noncoding RNA regulation, and histone modification. This article reviews the importance of thyroid cancer epigenetic modification and BRAF gene mutation in the treatment of thyroid cancer.
Collapse
|
35
|
Battistini F, Dans PD, Terrazas M, Castellazzi CL, Portella G, Labrador M, Villegas N, Brun-Heath I, González C, Orozco M. The Impact of the HydroxyMethylCytosine epigenetic signature on DNA structure and function. PLoS Comput Biol 2021; 17:e1009547. [PMID: 34748533 PMCID: PMC8601608 DOI: 10.1371/journal.pcbi.1009547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
We present a comprehensive, experimental and theoretical study of the impact of 5-hydroxymethylation of DNA cytosine. Using molecular dynamics, biophysical experiments and NMR spectroscopy, we found that Ten-Eleven translocation (TET) dioxygenases generate an epigenetic variant with structural and physical properties similar to those of 5-methylcytosine. Experiments and simulations demonstrate that 5-methylcytosine (mC) and 5-hydroxymethylcytosine (hmC) generally lead to stiffer DNA than normal cytosine, with poorer circularization efficiencies and lower ability to form nucleosomes. In particular, we can rule out the hypothesis that hydroxymethylation reverts to unmodified cytosine physical properties, as hmC is even more rigid than mC. Thus, we do not expect dramatic changes in the chromatin structure induced by differences in physical properties between d(mCpG) and d(hmCpG). Conversely, our simulations suggest that methylated-DNA binding domains (MBDs), associated with repression activities, are sensitive to the substitution d(mCpG) ➔ d(hmCpG), while MBD3 which has a dual activation/repression activity is not sensitive to the d(mCpG) d(hmCpG) change. Overall, while gene activity changes due to cytosine methylation are the result of the combination of stiffness-related chromatin reorganization and MBD binding, those associated to 5-hydroxylation of methylcytosine could be explained by a change in the balance of repression/activation pathways related to differential MBD binding. In Eukaryotic cells, DNA epigenetic modifications play an important role in gene expression and regulation, and protein recognition. In this work we investigate the physical implications of cytosine 5-hydroxymethylation on DNA, its structural and flexibility differences with methylated and unmodified cytosine using molecular dynamics, biophysical experiments and NMR spectroscopy. In particular the effect of hydroxyl group on free energy of nucleosome and Methyl binding Protein (MBD) binding, comparing in silico and experimental data to shed light on the effect of the reduced flexibility and the direct protein-DNA recognition.
Collapse
Affiliation(s)
- Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pablo D. Dans
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
- Functional Genomics Lab., Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Chiara L. Castellazzi
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guillem Portella
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Chemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Mireia Labrador
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos González
- Instituto Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Dai J, Leung M, Guan W, Guo HT, Krasnow RE, Wang TJ, El-Rifai W, Zhao Z, Reed T. Whole-Genome Differentially Hydroxymethylated DNA Regions among Twins Discordant for Cardiovascular Death. Genes (Basel) 2021; 12:genes12081183. [PMID: 34440357 PMCID: PMC8392630 DOI: 10.3390/genes12081183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is a mechanism underlying cardiovascular disease. It is unknown whether DNA hydroxymethylation is prospectively associated with the risk for cardiovascular death independent of germline and common environment. Male twin pairs middle-aged in 1969–1973 and discordant for cardiovascular death through December 31, 2014, were included. Hydroxymethylation was quantified in buffy coat DNA collected in 1986–1987. The 1893 differentially hydroxymethylated regions (DhMRs) were identified after controlling for blood leukocyte subtypes and age among 12 monozygotic (MZ) pairs (Benjamini–Hochberg False Discovery Rate < 0.01), of which the 102 DhMRs were confirmed with directionally consistent log2-fold changes and p < 0.01 among additional 7 MZ pairs. These signature 102 DhMRs, independent of the germline, were located on all chromosomes except for chromosome 21 and the Y chromosome, mainly within/overlapped with intergenic regions and introns, and predominantly hyper-hydroxymethylated. A binary linear classifier predicting cardiovascular death among 19 dizygotic pairs was identified and equivalent to that generated from MZ via the 2D transformation. Computational bioinformatics discovered pathways, phenotypes, and DNA motifs for these DhMRs or their subtypes, suggesting that hydroxymethylation was a pathophysiological mechanism underlying cardiovascular death that might be influenced by genetic factors and warranted further investigations of mechanisms of these signature regions in vivo and in vitro.
Collapse
Affiliation(s)
- Jun Dai
- Department of Public Health, College of Health Sciences, Des Moines University, Des Moines, IA 50312, USA
- Correspondence: ; Tel.: +1-515-271-1367
| | - Ming Leung
- Institute for Personalized Medicine, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, USA;
| | - Han-Tian Guo
- Bioinformatics and Computational Biology Undergraduate Program, Iowa State University, Ames, IA 50011, USA;
| | - Ruth E. Krasnow
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA;
| | - Thomas J. Wang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Terry Reed
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
37
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
38
|
Krapivin MI, Tikhonov AV, Efimova OA, Pendina AA, Smirnova AA, Chiryaeva OG, Talantova OE, Petrova LI, Dudkina VS, Baranov VS. Telomere Length in Chromosomally Normal and Abnormal Miscarriages and Ongoing Pregnancies and Its Association with 5-hydroxymethylcytosine Patterns. Int J Mol Sci 2021; 22:ijms22126622. [PMID: 34205622 PMCID: PMC8234291 DOI: 10.3390/ijms22126622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
The present study investigates telomere length (TL) in dividing chorionic cytotrophoblast cells from karyotypically normal and abnormal first trimester miscarriages and ongoing pregnancies. Using Q-FISH, we measured relative TLs in the metaphase chromosomes of 61 chorionic villous samples. Relative TLs did not differ between karyotypically normal samples from miscarriages and those from ongoing pregnancies (p = 0.3739). However, among the karyotypically abnormal samples, relative TLs were significantly higher in ongoing pregnancies than in miscarriages (p < 0.0001). Relative TLs were also significantly higher in chorion samples from karyotypically abnormal ongoing pregnancies than in those from karyotypically normal ones (p = 0.0018) in contrast to miscarriages, where relative TL values were higher in the karyotypically normal samples (p = 0.002). In the karyotypically abnormal chorionic cytotrophoblast, the TL variance was significantly lower than in any other group (p < 0.05). Assessed by TL ratios between sister chromatids, interchromatid TL asymmetry demonstrated similar patterns across all of the chorion samples (p = 0.22) but significantly exceeded that in PHA-stimulated lymphocytes (p < 0.0001, p = 0.0003). The longer telomere was predominantly present in the hydroxymethylated sister chromatid in chromosomes featuring hemihydroxymethylation (containing 5-hydroxymethylcytosine in only one sister chromatid)-a typical sign of chorionic cytotrophoblast cells. Our results suggest that the phenomena of interchromatid TL asymmetry and its association to 5hmC patterns in chorionic cytotrophoblast, which are potentially linked to telomere lengthening through recombination, are inherent to the development programme. The TL differences in chorionic cytotrophoblast that are associated with karyotype and embryo viability seem to be determined by heredity rather than telomere elongation mechanisms. The inheritance of long telomeres by a karyotypically abnormal embryo promotes his development, whereas TL in karyotypically normal first-trimester embryos does not seem to have a considerable impact on developmental capacity.
Collapse
Affiliation(s)
- Mikhail I. Krapivin
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Andrei V. Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Olga A. Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
- Correspondence:
| | - Anna A. Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Anna A. Smirnova
- Department of Medical Biophysics, Saint Petersburg State Pediatric Medical University, Litovskaya Street 2, 194100 Saint Petersburg, Russia;
| | - Olga G. Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Olga E. Talantova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Lubov’ I. Petrova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Vera S. Dudkina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia; (M.I.K.); (A.V.T.); (A.A.P.); (O.G.C.); (O.E.T.); (L.I.P.); (V.S.D.); (V.S.B.)
| |
Collapse
|
39
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
40
|
Siomek-Gorecka A, Dlugosz A, Czarnecki D. The Molecular Basis of Alcohol Use Disorder (AUD). Genetics, Epigenetics, and Nutrition in AUD: An Amazing Triangle. Int J Mol Sci 2021; 22:ijms22084262. [PMID: 33924016 PMCID: PMC8072802 DOI: 10.3390/ijms22084262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol use disorder (AUD) is a very common and complex disease, as alcohol is the most widely used addictive drug in the world. This disorder has an enormous impact on public health and social and private life, and it generates a huge number of social costs. Alcohol use stimulates hypothalamic-pituitary-adrenal (HPA) axis responses and is the cause of many physical and social problems (especially liver disease and cancer), accidental injury, and risky sexual behavior. For years, researchers have been trying to identify the genetic basis of alcohol use disorder, the molecular mechanisms responsible for its development, and an effective form of therapy. Genetic and environmental factors are known to contribute to the development of AUD, and the expression of genes is a complicated process that depends on epigenetic modulations. Dietary nutrients, such as vitamins, may serve as one these modulators, as they have a direct impact on epigenomes. In this review, we connect gathered knowledge from three emerging fields-genetics, epigenetics, and nutrition-to form an amazing triangle relating to alcohol use disorder.
Collapse
Affiliation(s)
- Agnieszka Siomek-Gorecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-095 Bydgoszcz, Poland
- Correspondence: ; Tel.: +48-52-585-37-48
| | - Anna Dlugosz
- Department of Engineering and Chemical and Food Analytics, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | - Damian Czarnecki
- Department of Preventive Nursing, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-821 Bydgoszcz, Poland;
| |
Collapse
|
41
|
Smith AR, Smith RG, Macdonald R, Marzi SJ, Burrage J, Troakes C, Al-Sarraj S, Mill J, Lunnon K. The histone modification H3K4me3 is altered at the ANK1 locus in Alzheimer's disease brain. Future Sci OA 2021; 7:FSO665. [PMID: 33815817 PMCID: PMC8015672 DOI: 10.2144/fsoa-2020-0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Several epigenome-wide association studies of DNA methylation have highlighted altered DNA methylation in the ANK1 gene in Alzheimer's disease (AD) brain samples. However, no study has specifically examined ANK1 histone modifications in the disease. We use chromatin immunoprecipitation-qPCR to quantify tri-methylation at histone 3 lysine 4 (H3K4me3) and 27 (H3K27me3) in the ANK1 gene in entorhinal cortex from donors with high (n = 59) or low (n = 29) Alzheimer's disease pathology. We demonstrate decreased levels of H3K4me3, a marker of active gene transcription, with no change in H3K27me3, a marker of inactive genes. H3K4me3 is negatively correlated with DNA methylation in specific regions of the ANK1 gene. Our study suggests that the ANK1 gene shows altered epigenetic marks indicative of reduced gene activation in Alzheimer's disease.
Collapse
Affiliation(s)
- Adam R Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Rebecca G Smith
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Sarah J Marzi
- The Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Joe Burrage
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK
| |
Collapse
|
42
|
Iancu IV, Botezatu A, Plesa A, Huica I, Fudulu A, Albulescu A, Bostan M, Mihaila M, Grancea C, Manda DA, Dobrescu R, Vladoiu SV, Anton G, Badiu CV. Alterations of regulatory factors and DNA methylation pattern in thyroid cancer. Cancer Biomark 2021; 28:255-268. [PMID: 32390600 DOI: 10.3233/cbm-190871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE DNA methylation plays an important role in thyroid oncogenesis. The aim of this study was to investigate the connection between global and local DNA methylation status and to establish the levels of important DNA methylation regulators (TET family and DNMT1) in thyroid tumours: follicular adenoma-FA, papillary thyroid carcinoma-PTC (classic papillary thyroid carcinoma-cPTC and papillary thyroid carcinoma follicular variant fvPTC). METHODS Global DNA methylation profile in thyroid tumours tissue (41 paired samples) was assessed by 5-methylcytosine and 5-hydroxymethylcytosine levels evaluation (ELISA), along with TETs and DNMT1 genes expression quantification. Also, it was investigated for the first time TET1 and TET2 promoter's methylation in thyroid tumours. BRAF V600E mutation and RET/PTC translocation testing were performed on all investigated samples. In vitro studies upon DNA methylation in K1 thyroid cancer cells were performed with demethylating agents (5-AzaC and vitamin C). RESULTS TET1 and TET2 displayed a significantly reduced gene expression level in PTC, while DNMT1 gene presented a high level of expression. PTC samples presented increased levels of 5-methylcytosine and low levels of 5-hydroxymethylcytosine. 5-methylcytosine levels were associated with TET1/TET2 expression levels. TET1 gene expression was significantly lower in patients positive for BRAF mutation and with RET/PTC rearrangement. TET2 gene was found hypermethylated in thyroid carcinoma patients overall, especially in PTC-follicular variant samples (p= 0.0002), where TET2 gene expression levels were significantly reduced (p= 0.0031). Furthermore, the data indicate for all thyroid cancer patients a good sensitivity (81.08%) and specificity (86.49%) regarding the use of TET1 (p< 0.0001), and TET2 (71.79%, 64.10%, p= 0.0001) hypermethylation as biomarkers for thyroid oncogenesis. CONCLUSIONS These results suggest that TET1/TET2 gene expression and methylation may serve as potential diagnostic tools for thyroid neoplasia. Our study showed that the methylation of TET1 increases in malignant thyroid tumours. fvPTC patients presented lower methylation levels compared to cPTC and could be a discriminatory factor between two cancer types and benign lesions. TET2 is a poorer discriminator between FA and fvPTC, but it can be useful for cPTC identification. K1-cells treated with demethylating agents showed a demethylation effect, especially upon TET2 gene. The cumulative effect of L-AA and 5-AzaC proved to have a potent combined demethylating effect on genes promoter's activation and could open new perspectives for thyroid cancer therapy.
Collapse
Affiliation(s)
- Iulia V Iancu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Anca Botezatu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adriana Plesa
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Irina Huica
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Alina Fudulu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Adrian Albulescu
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,National Institute for Chemical Pharmaceutical Research and Development, Bucharest, Romania
| | - Marinela Bostan
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Mirela Mihaila
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Camelia Grancea
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Dana Alice Manda
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Ruxandra Dobrescu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Susana Vilma Vladoiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - Corin Virgil Badiu
- "CI Parhon" National Institute of Endocrinology, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,"Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| |
Collapse
|
43
|
Li CC, Chen HY, Dong YH, Luo X, Hu J, Zhang CY. Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20120564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Epigenetics and Heart Failure. Int J Mol Sci 2020; 21:ijms21239010. [PMID: 33260869 PMCID: PMC7729735 DOI: 10.3390/ijms21239010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to changes in phenotypes without changes in genotypes. These changes take place in a number of ways, including via genomic DNA methylation, DNA interacting proteins, and microRNAs. The epigenome is the second dimension of the genome and it contains key information that is specific to every type of cell. Epigenetics is essential for many fundamental processes in biology, but its importance in the development and progression of heart failure, which is one of the major causes of morbidity and mortality worldwide, remains unclear. Our understanding of the underlying molecular mechanisms is incomplete. While epigenetics is one of the most innovative research areas in modern biology and medicine, compounds that directly target the epigenome, such as epidrugs, have not been well translated into therapies. This paper focuses on epigenetics in terms of genomic DNA methylation, such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) modifications. These appear to be more dynamic than previously anticipated and may underlie a wide variety of conditions, including heart failure. We also outline possible new strategies for the development of novel therapies.
Collapse
|
45
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
46
|
Guler GD, Ning Y, Ku CJ, Phillips T, McCarthy E, Ellison CK, Bergamaschi A, Collin F, Lloyd P, Scott A, Antoine M, Wang W, Chau K, Ashworth A, Quake SR, Levy S. Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA. Nat Commun 2020; 11:5270. [PMID: 33077732 PMCID: PMC7572413 DOI: 10.1038/s41467-020-18965-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is often detected late, when curative therapies are no longer possible. Here, we present non-invasive detection of pancreatic ductal adenocarcinoma (PDAC) by 5-hydroxymethylcytosine (5hmC) changes in circulating cell free DNA from a PDAC cohort (n = 64) in comparison with a non-cancer cohort (n = 243). Differential hydroxymethylation is found in thousands of genes, most significantly in genes related to pancreas development or function (GATA4, GATA6, PROX1, ONECUT1, MEIS2), and cancer pathogenesis (YAP1, TEAD1, PROX1, IGF1). cfDNA hydroxymethylome in PDAC cohort is differentially enriched for genes that are commonly de-regulated in PDAC tumors upon activation of KRAS and inactivation of TP53. Regularized regression models built using 5hmC densities in genes perform with AUC of 0.92 (discovery dataset, n = 79) and 0.92-0.94 (two independent test sets, n = 228). Furthermore, tissue-derived 5hmC features can be used to classify PDAC cfDNA (AUC = 0.88). These findings suggest that 5hmC changes enable classification of PDAC even during early stage disease.
Collapse
Affiliation(s)
- Gulfem D Guler
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Yuhong Ning
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Chin-Jen Ku
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Tierney Phillips
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA
| | - Erin McCarthy
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA
| | | | - Anna Bergamaschi
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA
| | - Francois Collin
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Paul Lloyd
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Aaron Scott
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Michael Antoine
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA
| | - Wendy Wang
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA
| | - Kim Chau
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University, Stanford, CA, 94304, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Samuel Levy
- Bluestar Genomics, 185 Berry Street, Lobby 4, Suite 210, San Francisco, CA, 94107, USA.
- Bluestar Genomics, 10578 Science Center Drive Suite 210, San Diego, CA, 92121, USA.
| |
Collapse
|
47
|
Imai Y, Biot M, Clément JA, Teragaki M, Urbach S, Robert T, Baudat F, Grey C, de Massy B. PRDM9 activity depends on HELLS and promotes local 5-hydroxymethylcytosine enrichment. eLife 2020; 9:57117. [PMID: 33047671 PMCID: PMC7599071 DOI: 10.7554/elife.57117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic recombination starts with the formation of DNA double-strand breaks (DSBs) at specific genomic locations that correspond to PRDM9-binding sites. The molecular steps occurring from PRDM9 binding to DSB formation are unknown. Using proteomic approaches to find PRDM9 partners, we identified HELLS, a member of the SNF2-like family of chromatin remodelers. Upon functional analyses during mouse male meiosis, we demonstrated that HELLS is required for PRDM9 binding and DSB activity at PRDM9 sites. However, HELLS is not required for DSB activity at PRDM9-independent sites. HELLS is also essential for 5-hydroxymethylcytosine (5hmC) enrichment at PRDM9 sites. Analyses of 5hmC in mice deficient for SPO11, which catalyzes DSB formation, and in PRDM9 methyltransferase deficient mice reveal that 5hmC is triggered at DSB-prone sites upon PRDM9 binding and histone modification, but independent of DSB activity. These findings highlight the complex regulation of the chromatin and epigenetic environments at PRDM9-specified hotspots.
Collapse
Affiliation(s)
- Yukiko Imai
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Mathilde Biot
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Julie Aj Clément
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Mariko Teragaki
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thomas Robert
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Frédéric Baudat
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Corinne Grey
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique, Univ Montpellier, Montpellier, France
| |
Collapse
|
48
|
Ishikawa Y, Nakai K. A hypothetical trivalent epigenetic code that affects the nature of human ESCs. PLoS One 2020; 15:e0238742. [PMID: 32911515 PMCID: PMC7482980 DOI: 10.1371/journal.pone.0238742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that DNA methylation can work in concert with other epigenetic factors, leading to changes in cellular phenotypes. For example, DNA demethylation modifications producing 5-hydroxymethylcytosine (5hmC) are thought to interact with histone modifications to influence the acquisition of embryonic stem cell (ESC) potency. However, the mechanism by which this occurs is still unknown. Thus, we systematically analysed the co-occurrence of DNA and histone modifications at genic regions as well as their relationship with ESC-specific expression using a number of heterogeneous public datasets. From a set of 19 epigenetic factors, we found remarkable co-occurrence of 5hmC and H4K8ac, accompanied by H3K4me1. This enrichment was more prominent at gene body regions. The results were confirmed using data obtained from different detection methods and species. Our analysis shows that these marks work cooperatively to influence ESC-specific gene expression. We also found that this trivalent mark is relatively enriched in genes related with immunity, which is a bit specific in ESCs. We propose that a trivalent epigenetic mark, composed of 5hmC, H4K8ac and H3K4me1, regulates gene expression and modulates the nature of human ESCs as a novel epigenetic code.
Collapse
Affiliation(s)
- Yasuhisa Ishikawa
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa-shi, Chiba, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020; 68:1568-1583. [PMID: 31958184 DOI: 10.1002/glia.23784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is one of many epigenetic marks, which directly modifies base residues, usually cytosines, in a multiple-step cycle. It has been linked to the regulation of gene expression and alternative splicing in several cell types, including during cell lineage specification and differentiation processes. DNA methylation changes have also been observed during aging, and aberrant methylation patterns have been reported in several neurological diseases. We here review the role of DNA methylation in Schwann cells and oligodendrocytes, the myelin-forming glia of the peripheral and central nervous systems, respectively. We first address how methylation and demethylation are regulating myelinating cells' differentiation during development and repair. We then mention how DNA methylation dysregulation in diseases and cancers could explain their pathogenesis by directly influencing myelinating cells' proliferation and differentiation capacities.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Moyon
- Neuroscience Initiative Advanced Science Research Center, CUNY, New York, New York
| |
Collapse
|
50
|
Borkowska J, Domaszewska-Szostek A, Kołodziej P, Wicik Z, Połosak J, Buyanovskaya O, Charzewski L, Stańczyk M, Noszczyk B, Puzianowska-Kuznicka M. Alterations in 5hmC level and genomic distribution in aging-related epigenetic drift in human adipose stem cells. Epigenomics 2020; 12:423-437. [PMID: 32031421 DOI: 10.2217/epi-2019-0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To clarify mechanisms affecting the level and distribution of 5-hydroxymethylcytosine (5hmC) during aging. Materials & methods: We examined levels and genomic distribution of 5hmC along with the expression of ten-eleven translocation methylcytosine dioxygenases (TETs) in adipose stem cells in young and age-advanced individuals. Results: 5hmC levels were higher in adipose stem cells of age-advanced than young individuals (p = 0.0003), but were not associated with age-related changes in expression of TETs. 5hmC levels correlated with population doubling time (r = 0.62; p = 0.01). We identified 58 differentially hydroxymethylated regions. Hypo-hydroxymethylated differentially hydroxymethylated regions were approximately twofold enriched in CCCTC-binding factor binding sites. Conclusion: Accumulation of 5hmC in aged cells can result from inefficient active demethylation due to altered TETs activity and reduced passive demethylation due to slower proliferation.
Collapse
Affiliation(s)
- Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Paulina Kołodziej
- Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| | - Zofia Wicik
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Jacek Połosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Olga Buyanovskaya
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Lukasz Charzewski
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland
| | - Marek Stańczyk
- Department of General Surgery, Wolski Hospital, 17 Kasprzaka Street, 01-211 Warsaw, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 99/103 Marymoncka Street, 01-813 Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106 Warsaw, Poland.,Department of Geriatrics & Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| |
Collapse
|