1
|
Zhang T, Lin Y, Zhang Z, Wang Z, Zeng F, Wang Q. Roles and applications of autophagy in guarding against environmental stress and DNA damage in Saccharomyces cerevisiae. FEBS J 2025. [PMID: 40272088 DOI: 10.1111/febs.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Saccharomyces cerevisiae (S. cerevisiae), a famous chassis cell factory, often faces various environmental stress conditions like extreme temperature, osmolarity, and nutrient starvation during the fermentation process. Additionally, chromosomal replication and genome editing-assisted metabolic engineering may cause DNA damage to S. cerevisiae. S. cerevisiae has evolved multiple elaborate mechanisms to fend against these adverse conditions. One of these "self-repair" mechanisms is autophagy, a ubiquitous "self-eating" mechanism that transports intracellular components to the lysosome/vacuole for degradation. Here, we reviewed the current state of our knowledge about the role and application of autophagy regulation in S. cerevisiae in response to environmental stress and genome damage, which may provide new strategies for developing robust industrial yeast and accelerating genome engineering.
Collapse
Affiliation(s)
- Tong Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ziteng Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Zhen Wang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
MacDiarmid CW, Taggart J, Wang Y, Vashisht A, Qing X, Wohlschlegel JA, Eide DJ. The interactome of the Bakers' yeast peroxiredoxin Tsa1 implicates it in the redox regulation of intermediary metabolism, glycolysis and zinc homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638137. [PMID: 40027620 PMCID: PMC11870615 DOI: 10.1101/2025.02.18.638137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast Saccharomyces cerevisiae, Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ~80 genes. A subset support zinc homeostasis by promoting zinc uptake and its distribution between compartments, while the remainder mediate an "adaptive response" to enhance fitness of zinc deficient cells. The peroxiredoxin Tsa1 is a Zap1-regulated adaptive factor essential for the growth of Zn deficient cells. Tsa1 can function as an antioxidant peroxidase, protein chaperone, or redox sensor: the latter activity oxidizes associated proteins via a redox relay mechanism. We previously reported that in Zn deficient cells, Tsa1 inhibits pyruvate kinase (Pyk1) to conserve phosphoenolpyruvate for aromatic amino acid synthesis. However, this regulation makes a relatively minor contribution to fitness in low zinc, suggesting that Tsa1 targets other pathways important to adaptation. Consistent with this model, the redox sensor function of Tsa1 was essential for growth of ZnD cells. Using an MBP-tagged version of Tsa1, we identified a redox-sensitive non-covalent interaction with Pyk1, and applied this system to identify multiple novel interacting partners. This interactome implicates Tsa1 in the regulation of critical processes including many Zn-dependent metabolic pathways. Interestingly, Zap1 was a preferred Tsa1 target, as Tsa1 strongly promoted the oxidation of Zap1 activation domain 2, and was essential for full Zap1 activity. Our findings reveal a novel posttranslational response to Zn deficiency, overlain on and interconnected with the Zap1-mediated transcriptional response.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- Department of Pediatrics, University of Wisconsin-Madison, WI 53706
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - Ajay Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - Xin Qing
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, CA 90095
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706
| |
Collapse
|
3
|
Pallares RM, Abergel RJ. New insights into the toxicity of lanthanides with functional genomics. Toxicology 2024; 509:153967. [PMID: 39384009 DOI: 10.1016/j.tox.2024.153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
As the use of lanthanides increases in many industries, concerns regarding their impact on human health rise. However, until recently, the toxicological profile of these elements had been incompletely characterized, with most studies relying on biodistribution assessments and lethal dose determinations in different animal models. In the last few years, the f-element field has started to pivot towards other examination types that identify cellular and molecular mechanisms of toxicity in a high-throughput manner. Under this new paradigm, functional genomics techniques, which rely on genetically modified cells or model organisms with missing genes or proteins, are becoming fundamental to gain novel insights into the genetic and proteomic bases of lanthanide toxicity, as well as to identify potential therapeutic targets to minimize the harmful effects of the metals. This review aims to provide an updated perspective on current efforts using functional genomics to characterize the toxicity and biological impact of lanthanides and improve their safety in different industrial applications.
Collapse
Affiliation(s)
- Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Nuclear Engineering and Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Dolan M, St. John N, Zaidi F, Doyle F, Fasullo M. High-throughput screening of the Saccharomyces cerevisiae genome for 2-amino-3-methylimidazo [4,5-f] quinoline resistance identifies colon cancer-associated genes. G3 (BETHESDA, MD.) 2023; 13:jkad219. [PMID: 37738679 PMCID: PMC11025384 DOI: 10.1093/g3journal/jkad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/25/2022] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.
Collapse
Affiliation(s)
- Michael Dolan
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Nick St. John
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Faizan Zaidi
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Francis Doyle
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| | - Michael Fasullo
- College of Nanotechnology, Science, and Engineering, State University of NewYork at Albany, Albany, NY 12203, USA
| |
Collapse
|
6
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
The NPR/Hal family of protein kinases in yeasts: biological role, phylogeny and regulation under environmental challenges. Comput Struct Biotechnol J 2022; 20:5698-5712. [PMID: 36320937 PMCID: PMC9596735 DOI: 10.1016/j.csbj.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Protein phosphorylation is the most common and versatile post-translational modification occurring in eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting to sudden changes in environmental conditions by regulating cellular processes and activating signal transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the “Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma membrane. Despite their biological relevance, these kinases remain poorly characterized and explored. This review provides an overview of the information available regarding each of the kinases from the NPR/Hal family, including their known biological functions, mechanisms of regulation, and integration in signaling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological or clinical relevance is also included.
Collapse
|
8
|
Cordova LT, Palmer CM, Alper HS. Shifting the distribution: modulation of the lipid profile in Yarrowia lipolytica via iron content. Appl Microbiol Biotechnol 2022; 106:1571-1581. [PMID: 35099573 DOI: 10.1007/s00253-022-11800-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Microbial fermentation offers a sustainable source of fuels, commodity chemicals, and pharmaceuticals, yet strain performance is influenced greatly by the growth media selected. Specifically, trace metals (e.g., iron, copper, manganese, zinc, and others) are critical for proper growth and enzymatic function within microorganisms yet are non-standardized across media formulation. In this work, the effect of trace metal supplementation on the lipid production profile of Yarrowia lipolytica was explored using tube scale fermentation followed by biomass and lipid characterization. Addition of iron (II) to the chemically defined Yeast Synthetic Complete (YSC) medium increased final optical density nearly twofold and lipid production threefold, while addition of copper (II) had no impact. Additionally, dose-responsive changes in lipid distribution were observed, with the percent of oleic acid increasing and stearic acid decreasing as initial iron concentration increased. These changes were reversible with subsequent iron-selective chelation. Use of rich Yeast Peptone Dextrose (YPD) medium enabled further increases in the production of two specialty oleochemicals ultimately reaching 63 and 47% of the lipid pool as α-linolenic acid and cyclopropane fatty acid, respectively, compared to YSC medium. Selective removal of iron (II) natively present in YPD medium decreased this oleochemical production, ultimately aligning the lipid profile with that of non-supplemented YSC medium. These results provide further insight into the proposed mechanisms for iron regulation in yeasts especially as these productions strains contain a mutant allele of the iron regulator, mga2. The work presented here also suggests a non-genetic method for control of the lipid profile in Y. lipolytica for use in diverse applications. KEY POINTS: • Iron supplementation increases cell density and lipid titer in Yarrowia lipolytica. • Iron addition reversibly alters lipid portfolio increasing linolenic acid. • Removal of iron from YPD media provides a link to enhanced oleochemical production.
Collapse
Affiliation(s)
- Lauren T Cordova
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, 78712, USA. .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Dai P, Lv Y, Gong X, Han J, Gao P, Xu H, Zhang Y, Zhang X. RNA-Seq Analysis of the Effect of Zinc Deficiency on Microsporum canis, ZafA Gene Is Important for Growth and Pathogenicity. Front Cell Infect Microbiol 2021; 11:727665. [PMID: 34604111 PMCID: PMC8481874 DOI: 10.3389/fcimb.2021.727665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Microsporum canis, a common pathogenic skin fungus, can cause dermatophytosis in humans and animals. Zinc is an important trace element and plays an important role in the growth and metabolism of fungi. Currently, the effects of zinc deficiency on growth, gene expression, and metabolic pathway have not been clarified in M. canis. Therefore, M. canis was cultured under zinc restriction, and RNA-Seq was conducted in this study. The growth of M. canis was severely inhibited, and many genes showed significant upregulation and downregulation in M. canis with zinc deficiency. Zinc deficiency could negatively affect the gene expression and biological metabolic pathway in M. canis. The zinc-responsiveness transcriptional activator (ZafA) gene was significantly upregulated and shared homology with Zap1. Thus, the ZafA gene might be the main transcription factor regulating M. canis zinc homeostasis. The ZafA gene knockout strain, ZafA-hph, was constructed via Agrobacterium tumefaciens-mediated transformation (ATMT) in M. canis for the first time to assess its function. In vitro growth ability, hair biodegradation ability, virulence test, and zinc absorption capacity in ZafA-hph and wild-type M. canis strains were compared. Results showed that the ZafA gene plays an important role in zinc absorption, expression of zinc transporter genes, and growth and pathogenicity in M. canis and can be used as a new drug target. Cutting off the zinc absorption pathway can be used as a way to prevent and control infection in M. canis.
Collapse
Affiliation(s)
- Pengxiu Dai
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yangou Lv
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaowen Gong
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Jianye Han
- The Animal Health Supervision Institute of Xi'an, Xi'an, China
| | - Peng Gao
- The Animal Health Supervision Institute of Yanta, Xi'an, China
| | - Haojie Xu
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yihua Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xinke Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
10
|
Abstract
Metal ions are essential to all living cells, as they can serve as cofactors of enzymes to drive catalysis of biochemical reactions. We present a constraint-based model of yeast that relates metabolism with metal ions via enzymes. The model is able to capture responses of metabolism and gene expression upon iron depletion, suggesting that yeast cells allocate iron resource in the way abiding to optimization principles. Interestingly, the model predicts up-regulation of several iron-containing enzymes that coincide with experiments, which raises the possibility that the decrease in activity due to limited iron could be compensated by elevated enzyme abundance. Moreover, the model paves the way for guiding biosynthesis of high-value compounds (e.g., p-coumaric acid) that relies on iron-containing enzymes. Metal ions are vital to metabolism, as they can act as cofactors on enzymes and thus modulate individual enzymatic reactions. Although many enzymes have been reported to interact with metal ions, the quantitative relationships between metal ions and metabolism are lacking. Here, we reconstructed a genome-scale metabolic model of the yeast Saccharomyces cerevisiae to account for proteome constraints and enzyme cofactors such as metal ions, named CofactorYeast. The model is able to estimate abundances of metal ions binding on enzymes in cells under various conditions, which are comparable to measured metal ion contents in biomass. In addition, the model predicts distinct metabolic flux distributions in response to reduced levels of various metal ions in the medium. Specifically, the model reproduces changes upon iron deficiency in metabolic and gene expression levels, which could be interpreted by optimization principles (i.e., yeast optimizes iron utilization based on metabolic network and enzyme kinetics rather than preferentially targeting iron to specific enzymes or pathways). At last, we show the potential of using the model for understanding cell factories that harbor heterologous iron-containing enzymes to synthesize high-value compounds such as p-coumaric acid. Overall, the model demonstrates the dependence of enzymes on metal ions and links metal ions to metabolism on a genome scale.
Collapse
|
11
|
Alamir OF, Oladele RO, Ibe C. Nutritional immunity: targeting fungal zinc homeostasis. Heliyon 2021; 7:e07805. [PMID: 34466697 PMCID: PMC8384899 DOI: 10.1016/j.heliyon.2021.e07805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Transition metals, such as Zn2+, are essential dietary constituents of all biological life, including mammalian hosts and the pathogens that infect them. Therefore, to thrive and cause infection, pathogens must successfully assimilate these elements from the host milieu. Consequently, mammalian immunity has evolved to actively restrict and/or pool metals to toxic concentrations in an effort to attenuate microbial pathogenicity - a process termed nutritional immunity. Despite host-induced Zn2+ nutritional immunity, pathogens such as Candida albicans, are still capable of causing disease and thus must be equipped with robust Zn2+ sensory, uptake and detoxification machinery. This review will discuss the strategies employed by mammalian hosts to limit Zn2+ during infection, and the subsequent fungal interventions that counteract Zn2+ nutritional immunity.
Collapse
Affiliation(s)
- Omran F Alamir
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education and Training, Al Asimah, Kuwait
| | - Rita O Oladele
- Department of Medical Microbiology & Parasitology, College of Medicine, University of Lagos, Lagos State, Nigeria
| | - C Ibe
- Department of Microbiology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| |
Collapse
|
12
|
Alli-Balogun GO, Levine TP. Fungal Ice2p is in the same superfamily as SERINCs, restriction factors for HIV and other viruses. Proteins 2021; 89:1240-1250. [PMID: 33982326 DOI: 10.1002/prot.26145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Ice2p is an integral endoplasmic reticulum (ER) membrane protein in budding yeast S. cerevisiae named ICE because it is required for Inheritance of Cortical ER. Ice2p has also been reported to be involved in an ER metabolic branch-point that regulates the flux of lipid either to be stored in lipid droplets or to be used as membrane components. Alternately, Ice2p has been proposed to act as a tether that physically bridges the ER at contact sites with both lipid droplets and the plasma membrane via a long loop on the protein's cytoplasmic face that contains multiple predicted amphipathic helices. Here we carried out a bioinformatic analysis to increase understanding of Ice2p. First, regarding topology, we found that diverse members of the fungal Ice2 family have 10 transmembrane helices (TMHs), which places the long loop on the exofacial face of Ice2p, where it cannot form inter-organelle bridges. Second, we identified Ice2p as a full-length homolog of SERINC (serine incorporator), a family of proteins with 10 TMHs found universally in eukaryotes. Since SERINCs are potent restriction factors for HIV and other viruses, study of Ice2p may reveal functions or mechanisms that shed light on viral restriction by SERINCs.
Collapse
Affiliation(s)
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
13
|
Zlobin IE. Current understanding of plant zinc homeostasis regulation mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:327-335. [PMID: 33714765 DOI: 10.1016/j.plaphy.2021.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
The essential nature of Zn and widespread Zn deficiency in plants under field conditions underlie the great interest of researchers in the regulation of plant Zn homeostasis. Here, the current knowledge of plant Zn homeostasis regulation, mainly in A. thaliana, is reviewed. The plant Zn homeostasis machinery is regulated largely at the transcriptional level. Local regulation in response to changes in cellular Zn status is based on the transcription factors bZIP19 and bZIP23, which sense changes in free Zn2+ concentrations in the cell. However, there are likely other unidentified ways to sense cellular free Zn2+ concentrations in addition to the well-known bZIP19 and bZIP23 factors. In recent years, the existence of a shoot-derived systemic Zn deficiency signal, which is involved in the upregulation of Zn transport from roots to shoots, was demonstrated. Additionally, rates of mRNA degradation of Zn homeostasis genes are likely regulated by changes in cellular Zn status. In addition to the regulation of Zn transport, other mechanisms for the regulation of plant Zn homeostasis exist. "Zn sparing" mechanisms could be involved in the decrease in plant Zn requirements under Zn deficiency. Additionally, autophagy is probably regulated by local Zn status and involved in Zn reutilization at the cellular level. Current issues related to studying Zn homeostasis regulation are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology RAS, 35 Botanicheskaya St., Moscow, 127276, Russia.
| |
Collapse
|
14
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
15
|
Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media. Proc Natl Acad Sci U S A 2020; 117:21804-21812. [PMID: 32817546 PMCID: PMC7474676 DOI: 10.1073/pnas.1921890117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a well-studied organism, which is used as a model organism for studying eukaryal biology and as a cell factory for the production of fuels, chemicals, and pharmaceuticals. For both applications, the way that the cell utilizes its finite protein resource and how those inherent trade-offs manifest themselves is of interest, not least for their impact on cellular metabolism. Here we elucidate how alterations of protein-allocation allow for S. cerevisiae to increase its growth rate. Our results on cellular proteome-allocation may aid the engineering of more efficient strains in industrial biotechnology as well as improve our understanding toward phenotypes of cancer cells that grow faster than normal cells. Several recent studies have shown that the concept of proteome constraint, i.e., the need for the cell to balance allocation of its proteome between different cellular processes, is essential for ensuring proper cell function. However, there have been no attempts to elucidate how cells’ maximum capacity to grow depends on protein availability for different cellular processes. To experimentally address this, we cultivated Saccharomyces cerevisiae in bioreactors with or without amino acid supplementation and performed quantitative proteomics to analyze global changes in proteome allocation, during both anaerobic and aerobic growth on glucose. Analysis of the proteomic data implies that proteome mass is mainly reallocated from amino acid biosynthetic processes into translation, which enables an increased growth rate during supplementation. Similar findings were obtained from both aerobic and anaerobic cultivations. Our findings show that cells can increase their growth rate through increasing its proteome allocation toward the protein translational machinery.
Collapse
|
16
|
Hosomi A, Iida K, Cho T, Iida H, Kaneko M, Suzuki T. The ER-associated protease Ste24 prevents N-terminal signal peptide-independent translocation into the endoplasmic reticulum in Saccharomyces cerevisiae. J Biol Chem 2020; 295:10406-10419. [PMID: 32513868 DOI: 10.1074/jbc.ra120.012575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soluble proteins destined for the secretory pathway contain an N-terminal signal peptide that induces their translocation into the endoplasmic reticulum (ER). The importance of N-terminal signal peptides for ER translocation has been extensively examined over the past few decades. However, in the budding yeast Saccharomyces cerevisiae, a few proteins devoid of a signal peptide are still translocated into the ER and then N-glycosyl-ated. Using signal peptide-truncated reporter proteins, here we report the detection of significant translocation of N-terminal signal peptide-truncated proteins in a yeast mutant strain (ste24Δ) that lacks the endopeptidase Ste24 at the ER membrane. Furthermore, several ER/cytosolic proteins, including Sec61, Sec66, and Sec72, were identified as being involved in the translocation process. On the basis of screening for 20 soluble proteins that may be N-glycosylated in the ER in the ste24Δ strain, we identified the transcription factor Rme1 as a protein that is partially N-glycosylated despite the lack of a signal peptide. These results clearly indicate that some proteins lacking a signal peptide can be translocated into the ER and that Ste24 typically suppresses this process.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Kazuko Iida
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Toshihiko Cho
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Masashi Kaneko
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| |
Collapse
|
17
|
Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:479-488. [PMID: 31836620 PMCID: PMC7003084 DOI: 10.1534/g3.119.400933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zinc is essential for almost all living organisms, since it serves as a crucial cofactor for transcription factors and enzymes. However, it is toxic to cell growth when present in excess. The present work aims to investigate the toxicity mechanisms induced by zinc stress in yeast cells. To this end, 108 yeast single-gene deletion mutants were identified sensitive to 6 mM ZnCl2 through a genome-wide screen. These genes were predominantly related to the biological processes of vacuolar acidification and transport, polyphosphate metabolic process, cytosolic transport, the process utilizing autophagic mechanism. A result from the measurement of intracellular zinc content showed that 64 mutants accumulated higher intracellular zinc under zinc stress than the wild-type cells. We further measured the intracellular ROS (reactive oxygen species) levels of 108 zinc-sensitive mutants treated with 3 mM ZnCl2. We showed that the intracellular ROS levels in 51 mutants were increased by high zinc stress, suggesting their possible involvement in regulating ROS homeostasis in response to high zinc. The results also revealed that excess zinc could generate oxidative damage and then activate the expression of several antioxidant defenses genes. Taken together, the data obtained indicated that excess zinc toxicity might be mainly due to the high intracellular zinc levels and ROS levels induced by zinc stress in yeast cells. Our current findings would provide a basis to understand the molecular mechanisms of zinc toxicity in yeast cells.
Collapse
|
18
|
López‐Berges MS. ZafA-mediated regulation of zinc homeostasis is required for virulence in the plant pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2020; 21:244-249. [PMID: 31750619 PMCID: PMC6988419 DOI: 10.1111/mpp.12891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During infection, soilborne fungal pathogens face limiting conditions of different metal ions, including zinc. The role of zinc homeostasis in fungal pathogenicity on plants remains poorly understood. Here it is shown that the transcription factor ZafA, orthologous to Saccharomyces cerevisiae Zap1, functions as a key regulator of zinc homeostasis and virulence in Fusarium oxysporum, a cross-kingdom pathogen that causes vascular wilt on more than 100 plant species and opportunistic infections in humans. Expression of zafA is induced under zinc-limiting conditions and repressed by zinc. Interestingly, zafA is markedly up-regulated during early stages of plant infection, suggesting that F. oxysporum must cope with limited availability of zinc. Deletion of zafA results in deactivation of high-affinity zinc transporters, leading to impaired growth under zinc deficiency. Fusarium oxysporum strains lacking ZafA are reduced in their capability to invade and kill tomato plants and the non-vertebrate animal model Galleria mellonella. Collectively, the results indicate that ZafA-mediated adaptation to zinc deficiency is required for full virulence of F. oxysporum on plant and animal hosts.
Collapse
Affiliation(s)
- Manuel S. López‐Berges
- Departamento de GenéticaCampus de Excelencia Internacional Agroalimentario (ceiA3)Universidad de Córdoba14071CórdobaSpain
| |
Collapse
|
19
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
20
|
Wilson S, Liu YH, Cardona-Soto C, Wadhwa V, Foster MP, Bird AJ. The Loz1 transcription factor from Schizosaccharomyces pombe binds to Loz1 response elements and represses gene expression when zinc is in excess. Mol Microbiol 2019; 112:1701-1717. [PMID: 31515876 PMCID: PMC6904500 DOI: 10.1111/mmi.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2019] [Indexed: 12/14/2022]
Abstract
In Schizosaccharomyces pombe, the expression of the zrt1 zinc uptake gene is tightly regulated by zinc status. When intracellular zinc levels are low, zrt1 is highly expressed. However, when zinc levels are high, transcription of zrt1 is blocked in a manner that is dependent upon the transcription factor Loz1. To gain additional insight into the mechanism by which Loz1 inhibits gene expression in high zinc, we used RNA-seq to identify Loz1-regulated genes, and ChIP-seq to analyze the recruitment of Loz1 to target gene promoters. We find that Loz1 is recruited to the promoters of 27 genes that are also repressed in high zinc in a Loz1-dependent manner. We also find that the recruitment of Loz1 to the majority of target gene promoters is dependent upon zinc and the motif 5'-CGN(A/C)GATCNTY-3', which we have named the Loz1 response element (LRE). Using reporter assays, we show that LREs are both required and sufficient for Loz1-mediated gene repression, and that the level of gene repression is dependent upon the number and sequence of LREs. Our results elucidate the Loz1 regulon in fission yeast and provide new insight into how eukaryotic cells are able to respond to changes in zinc availability in the environment.
Collapse
Affiliation(s)
- Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
| | - Yi-Hsuan Liu
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Carlos Cardona-Soto
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
| | - Vibhuti Wadhwa
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Mark P. Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Amanda J. Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210
- Department of Human Nutrition, The Ohio State University, Columbus, OH, 43210
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
21
|
Taggart J, Wang Y, Weisenhorn E, MacDiarmid CW, Russell J, Coon JJ, Eide DJ. The GIS2 Gene Is Repressed by a Zinc-Regulated Bicistronic RNA in Saccharomyces cerevisiae. Genes (Basel) 2018; 9:E462. [PMID: 30235899 PMCID: PMC6162548 DOI: 10.3390/genes9090462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022] Open
Abstract
Zinc homeostasis is essential for all organisms. The Zap1 transcriptional activator regulates these processes in the yeast Saccharomyces cerevisiae. During zinc deficiency, Zap1 increases expression of zinc transporters and proteins involved in adapting to the stress of zinc deficiency. Transcriptional activation by Zap1 can also repress expression of some genes, e.g., RTC4. In zinc-replete cells, RTC4 mRNA is produced with a short transcript leader that is efficiently translated. During deficiency, Zap1-dependent expression of an RNA with a longer transcript leader represses the RTC4 promoter. This long leader transcript (LLT) is not translated due to the presence of small open reading frames upstream of the RTC4 coding region. In this study, we show that the RTC4 LLT RNA also plays a second function, i.e., repression of the adjacent GIS2 gene. In generating the LLT transcript, RNA polymerase II transcribes RTC4 through the GIS2 promoter. Production of the LLT RNA correlates with the decreased expression of GIS2 mRNA and mutations that prevent synthesis of the LLT RNA or terminate it before the GIS2 promoter renders GIS2 mRNA expression and Gis2 protein accumulation constitutive. Thus, we have discovered an unusual regulatory mechanism that uses a bicistronic RNA to control two genes simultaneously.
Collapse
Affiliation(s)
- Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Erin Weisenhorn
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Jason Russell
- Morgridge Institute for Research, Madison, WI 53706, USA.
- Genome Center of Wisconsin, Madison, WI 53706, USA.
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
- Morgridge Institute for Research, Madison, WI 53706, USA.
- Genome Center of Wisconsin, Madison, WI 53706, USA.
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
22
|
Tdp1 processes chromate-induced single-strand DNA breaks that collapse replication forks. PLoS Genet 2018; 14:e1007595. [PMID: 30148840 PMCID: PMC6128646 DOI: 10.1371/journal.pgen.1007595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/07/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023] Open
Abstract
Hexavalent chromium [Cr(VI)] damages DNA and causes cancer, but it is unclear which DNA damage responses (DDRs) most critically protect cells from chromate toxicity. Here, genome-wide quantitative functional profiling, DDR measurements and genetic interaction assays in Schizosaccharomyces pombe reveal a chromate toxicogenomic profile that closely resembles the cancer chemotherapeutic drug camptothecin (CPT), which traps Topoisomerase 1 (Top1)-DNA covalent complex (Top1cc) at the 3’ end of single-stand breaks (SSBs), resulting in replication fork collapse. ATR/Rad3-dependent checkpoints that detect stalled and collapsed replication forks are crucial in Cr(VI)-treated cells, as is Mus81-dependent sister chromatid recombination (SCR) that repairs single-ended double-strand breaks (seDSBs) at broken replication forks. Surprisingly, chromate resistance does not require base excision repair (BER) or interstrand crosslink (ICL) repair, nor does co-elimination of XPA-dependent nucleotide excision repair (NER) and Rad18-mediated post-replication repair (PRR) confer chromate sensitivity in fission yeast. However, co-elimination of Tdp1 tyrosyl-DNA phosphodiesterase and Rad16-Swi10 (XPF-ERCC1) NER endonuclease synergistically enhances chromate toxicity in top1Δ cells. Pnk1 polynucleotide kinase phosphatase (PNKP), which restores 3’-hydroxyl ends to SSBs processed by Tdp1, is also critical for chromate resistance. Loss of Tdp1 ameliorates pnk1Δ chromate sensitivity while enhancing the requirement for Mus81. Thus, Tdp1 and PNKP, which prevent neurodegeneration in humans, repair an important class of Cr-induced SSBs that collapse replication forks. Hexavalent chromium is a carcinogen that is found at toxic waste sites and in some groundwater supplies. Cellular metabolism converts chromium into DNA-damaging chromate, but it is unclear which types of chromate-DNA lesions are most dangerous, and which cellular mechanisms most critically prevent chromium toxicity. This study uses whole-genome profiling to identify DNA repair pathways that are crucial for chromate resistance in fission yeast. The resulting ‘toxicogenomic’ profile of chromate closely matches camptothecin, a natural product representing a class of chemotherapeutic drugs that cause replication fork collapse by poisoning Topoisomerase 1 (Top1), which relaxes supercoiled DNA by creating and resealing single-strand breaks (SSBs). Genetic interaction analyses uncover important roles for Tdp1 tyrosyl-DNA phosphodiesterase and Pnk1 polynucleotide 5’-kinase 3’-phosphatase (PNKP), which repair camptothecin-induced SSBs and prevent neurological disease in humans. However, chromium toxicity does not involve Top1. As Tdp1 and Pnk1 repair SSBs with 3’-blocked termini, these data suggest that Top1-independent 3’-blocked SSBs contribute to the carcinogenic and mutagenic properties of chromium.
Collapse
|
23
|
Brown SR, Staff M, Lee R, Love J, Parker DA, Aves SJ, Howard TP. Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:1676-1684. [PMID: 29976056 DOI: 10.1021/acssynbio.8b00112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multifactorial approaches can quickly and efficiently model complex, interacting natural or engineered biological systems in a way that traditional one-factor-at-a-time experimentation can fail to do. We applied a Design of Experiments (DOE) approach to model ethanol biosynthesis in yeast, which is well-understood and genetically tractable, yet complex. Six alcohol dehydrogenase (ADH) isozymes catalyze ethanol synthesis, differing in their transcriptional and post-translational regulation, subcellular localization, and enzyme kinetics. We generated a combinatorial library of all ADH gene deletions and measured the impact of gene deletion(s) and environmental context on ethanol production of a subset of this library. The data were used to build a statistical model that described known behaviors of ADH isozymes and identified novel interactions. Importantly, the model described features of ADH metabolic behavior without explicit a priori knowledge. The method is therefore highly suited to understanding and optimizing metabolic pathways in less well-understood systems.
Collapse
Affiliation(s)
- Steven R. Brown
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Marta Staff
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Rob Lee
- Biodomain, Shell Technology Center Houston, 3333 Highway 6 South, Houston, Texas 77082-3101, United States
| | - John Love
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - David A. Parker
- Biodomain, Shell Technology Center Houston, 3333 Highway 6 South, Houston, Texas 77082-3101, United States
| | - Stephen J. Aves
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Thomas P. Howard
- School of Natural and Environmental Sciences, Devonshire Building, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, U.K
| |
Collapse
|
24
|
The Transcription Factor ZafA Regulates the Homeostatic and Adaptive Response to Zinc Starvation in Aspergillus fumigatus. Genes (Basel) 2018; 9:genes9070318. [PMID: 29949939 PMCID: PMC6070888 DOI: 10.3390/genes9070318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most important features that enables Aspergillus fumigatus to grow within a susceptible individual and to cause disease is its ability to obtain Zn2+ ions from the extremely zinc-limited environment provided by host tissues. Zinc uptake from this source in A. fumigatus relies on ZIP transporters encoded by the zrfA, zrfB and zrfC genes. The expression of these genes is tightly regulated by the ZafA transcription factor that regulates zinc homeostasis and is essential for A. fumigatus virulence. We combined the use of microarrays, Electrophoretic Mobility Shift Assays (EMSA) analyses, DNase I footprinting assays and in silico tools to better understand the regulation of the homeostatic and adaptive response of A. fumigatus to zinc starvation. We found that under zinc-limiting conditions, ZafA functions mainly as a transcriptional activator through binding to a zinc response sequence located in the regulatory regions of its target genes, although it could also function as a repressor of a limited number of genes. In addition to genes involved in the homeostatic response to zinc deficiency, ZafA also influenced, either directly or indirectly, the expression of many other genes. It is remarkable that the expression of many genes involved in iron uptake and ergosterol biosynthesis is strongly reduced under zinc starvation, even though only the expression of some of these genes appeared to be influenced directly or indirectly by ZafA. In addition, it appears to exist in A. fumigatus a zinc/iron cross-homeostatic network to allow the adaptation of the fungus to grow in media containing unbalanced Zn:Fe ratios. The adaptive response to oxidative stress typically linked to zinc starvation was also mediated by ZafA, as was the strong induction of genes involved in gliotoxin biosynthesis and self-protection against endogenous gliotoxin. This study has expanded our knowledge about the regulatory and metabolic changes displayed by A. fumigatus in response to zinc starvation and has helped us to pinpoint new ZafA target genes that could be important for fungal pathogens to survive and grow within host tissues and, hence, for virulence.
Collapse
|
25
|
Garcia Silva-Bailão M, Lobato Potenciano da Silva K, Raniere Borges dos Anjos L, de Sousa Lima P, de Melo Teixeira M, Maria de Almeida Soares C, Melo Bailão A. Mechanisms of copper and zinc homeostasis in pathogenic black fungi. Fungal Biol 2018; 122:526-537. [DOI: 10.1016/j.funbio.2017.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 02/08/2023]
|
26
|
Steiger MG, Patzschke A, Holz C, Lang C, Causon T, Hann S, Mattanovich D, Sauer M. Impact of glutathione metabolism on zinc homeostasis in Saccharomyces cerevisiae. FEMS Yeast Res 2018; 17:3821179. [PMID: 28505300 DOI: 10.1093/femsyr/fox028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Zinc is a crucial mineral for all organisms as it is an essential cofactor for the proper function of a plethora of proteins and depletion of zinc causes oxidative stress. Glutathione is the major redox buffering agent in the cell and therefore important for mitigation of the adverse effects of oxidative stress. In mammalian cells, zinc deficiency is accompanied by a glutathione depletion. In the yeast Saccharomyces cerevisiae, the opposite effect is observed: under low zinc conditions, an elevated glutathione concentration is found. The main regulator to overcome zinc deficiency is Zap1p. However, we show that Zap1p is not involved in this glutathione accumulation phenotype. Furthermore, we found that in glutathione-accumulating strains also the metal ion-binding phytochelatin-2, which is an oligomer of glutathione, is accumulated. This increased phytochelatin concentration correlates with a lower free zinc level in the vacuole. These results suggest that phytochelatin is important for zinc buffering in S. cerevisiae and thus explains how zinc homeostasis is connected with glutathione metabolism.
Collapse
Affiliation(s)
- Matthias G Steiger
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Anett Patzschke
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Caterina Holz
- Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christine Lang
- Organobalance GmbH, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tim Causon
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- ACIB GmbH, Muthgasse 18, 1190 Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
27
|
Bucci MD, Weisenhorn E, Haws S, Yao Z, Zimmerman G, Gannon M, Taggart J, Lee T, Klionsky DJ, Russell J, Coon J, Eide DJ. An Autophagy-Independent Role for ATG41 in Sulfur Metabolism During Zinc Deficiency. Genetics 2018; 208:1115-1130. [PMID: 29321173 PMCID: PMC5844326 DOI: 10.1534/genetics.117.300679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The Zap1 transcription factor of Saccharomyces cerevisiae is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene ATG41 Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of ATG41 diminishes that response. Several experiments indicated that the importance of ATG41 function to growth during zinc deficiency is not because of its role in macroautophagy, but rather is due to one or more autophagy-independent functions. For example, rapamycin treatment fully induced autophagy in zinc-deficient atg41Δ mutants but failed to improve growth. In addition, atg41Δ mutants showed a far more severe growth defect than any of several other autophagy mutants tested, and atg41Δ mutants showed increased Heat Shock Factor 1 activity, an indicator of protein homeostasis stress, while other autophagy mutants did not. An autophagy-independent function for ATG41 in sulfur metabolism during zinc deficiency was suggested by analyzing the transcriptome of atg41Δ mutants during the transition from zinc-replete to -deficient conditions. Analysis of sulfur metabolites confirmed that Atg41 is needed for the normal accumulation of methionine, homocysteine, and cysteine in zinc-deficient cells. Therefore, we conclude that Atg41 plays roles in both macroautophagy and sulfur metabolism during zinc deficiency.
Collapse
Affiliation(s)
- Michael D Bucci
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Erin Weisenhorn
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Spencer Haws
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Zhiyuan Yao
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Ginelle Zimmerman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Molly Gannon
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Janet Taggart
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| | - Traci Lee
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, Wisconsin 53144
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Jason Russell
- Morgridge Institute for Research, Madison, Wisconsin 53715
- Genome Center of Wisconsin, University of Wisconsin-Madison, Wisconsin 53706
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Wisconsin 53706
- Morgridge Institute for Research, Madison, Wisconsin 53715
- Genome Center of Wisconsin, University of Wisconsin-Madison, Wisconsin 53706
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
28
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
29
|
Cai Y, Wei YH. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion. Oncotarget 2017; 7:10812-26. [PMID: 26934328 PMCID: PMC4905441 DOI: 10.18632/oncotarget.7769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yue-Hua Wei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhang X, Dai P, Gao Y, Gong X, Cui H, Jin Y, Zhang Y. Transcriptome sequencing and analysis of zinc-uptake-related genes in Trichophyton mentagrophytes. BMC Genomics 2017; 18:888. [PMID: 29157209 PMCID: PMC5697147 DOI: 10.1186/s12864-017-4284-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Background Trichophyton mentagrophytes is an important zoonotic dermatophytic (ringworm) pathogen; causing severe skin infection in humans and other animals worldwide. Fortunately, commonly used fungal skin disease prevention and treatment measures are relatively simple. However, T. mentagrophytes is primarily studied at the epidemiology and drug efficacy research levels, yet current study has been unable to meet the needs of clinical medicine. Zinc is a crucial trace element for the growth and reproduction of fungi and other microorganisms. The metal ions coordinate within a variety of proteins to form zinc finger proteins, which perform many vital biological functions. Zinc transport regulatory networks have not been resolved in T. mentagrophytes. The T. mentagrophytes transcriptome will allow us to discover new genes, particularly those genes involved in zinc uptake. Result We found T. mentagrophytes growth to be restricted by zinc deficiency; natural T. mentagrophytes growth requires zinc ions. T. Mentagrophytes must acquire zinc ions for growth and development. The transcriptome of T. mentagrophytes was sequenced by using Illumina HiSeq™ 2000 technology and the de novo assembly of the transcriptome was performed by using the Trinity method, and functional annotation was analyzed. We got 10,751 unigenes. The growth of T. mentagrophytes is severely inhibited and there were many genes showing significant up regulation and down regulation respectively in T. mentagrophytes when zinc deficiency. Zinc deficiency can affect the expression of multiple genes of T. mentagrophytes. The effect of the zinc deficiency could be recovered in the normal medium. And we finally found the zinc-responsive activating factor (ZafA) and speculated that 4 unigenes are zinc transporters. We knocked ZafA gene by ATMT transformation in T. mentagrophytes, the result showed that ZafA gene is very important for the growth and the generation of conidia in T. mentagrophytes. The expression of 4 zinc transporter genes is potentially regulated by the zinc-responsive activating factor. The data of this study is also sufficient to be used as a support to study T. mentagrophytes. Conclusion We reported the first large transcriptome study carried out in T. mentagrophytes where we have compared physiological and transcriptional responses to zinc deficiency, and analyzed the expression of genes involved in zinc uptake. The study also produced high-resolution digital profiles of global genes expression relating to T. mentagrophytes growth. Electronic supplementary material The online version of this article (10.1186/s12864-017-4284-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinke Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China
| | - Pengxiu Dai
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China
| | - Yongping Gao
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China
| | - Xiaowen Gong
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China
| | - Hao Cui
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China
| | - Yipeng Jin
- Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yihua Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
Ruytinx J, Coninx L, Nguyen H, Smisdom N, Morin E, Kohler A, Cuypers A, Colpaert JV. Identification, evolution and functional characterization of two Zn CDF-family transporters of the ectomycorrhizal fungus Suillus luteus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:419-427. [PMID: 28557335 DOI: 10.1111/1758-2229.12551] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
Two genes, SlZnT1 and SlZnT2, encoding Cation Diffusion Facilitator (CDF) family transporters were isolated from Suillus luteus mycelium by genome walking. Both gene models are very similar and phylogenetic analysis indicates that they are most likely the result of a recent gene duplication event. Comparative sequence analysis of the deduced proteins predicts them to be Zn transporters. This function was confirmed by functional analysis in yeast for SlZnT1. SlZnT1 was able to restore growth of the highly Zn sensitive yeast mutant Δzrc1 and localized to the vacuolar membrane. Transformation of Δzrc1 yeast cells with SlZnT1 resulted in an increased accumulation of Zn compared to empty vector transformed Δzrc1 yeast cells and equals Zn accumulation in wild type yeast cells. We were not able to express functional SlZnT2 in yeast. In S. luteus, both SlZnT genes are constitutively expressed whatever the external Zn concentrations. A labile Zn pool was detected in the vacuoles of S. luteus free-living mycelium. Therefore we conclude that SlZnT1 is indispensable for maintenance of Zn homeostasis by transporting excess Zn into the vacuole.
Collapse
Affiliation(s)
- Joske Ruytinx
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium
| | - Laura Coninx
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium
| | - Hoai Nguyen
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium
| | - Nick Smisdom
- Biomedical Research Institute, Hasselt University, Agoralaan building C, Diepenbeek, 3590, Belgium
| | - Emmanuelle Morin
- Institut National de la Recherche Agronomique, UMR1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Champenoux, 54280, France
| | - Annegret Kohler
- Institut National de la Recherche Agronomique, UMR1136 INRA-Université de Lorraine Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Champenoux, 54280, France
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium
| | - Jan V Colpaert
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium
| |
Collapse
|
32
|
Abstract
Cells respond to deprivation of certain nutrients such as glucose or nitrogen by inducing autophagy, reclaiming pieces of proteins for use in critical functions. A recent study shows that, in yeast, zinc depletion acts in a similar fashion. Depletion of this essential nutrient induces non-selective autophagy by inhibiting TORC1, leading to release and recycling of zinc from degraded proteins.
Collapse
Affiliation(s)
- Binbin Ding
- Center for Autophagy Research, Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
33
|
Makthal N, Nguyen K, Do H, Gavagan M, Chandrangsu P, Helmann JD, Olsen RJ, Kumaraswami M. A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development. EBioMedicine 2017; 21:131-141. [PMID: 28596134 PMCID: PMC5514391 DOI: 10.1016/j.ebiom.2017.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens. Host employs calprotectin to impose zinc (Zn) limitation on the human pathogen group A streptococcus (GAS) during infection. As a defense, GAS uses a sensor, AdcR, to monitor Zn availability, and a high-affinity transporter, AdcABC, to acquire Zn. Finally, we characterized the extracellular subunit of AdcA as a vaccine candidate to protect mice from GAS infections.
There is an urgent need for a human vaccine to protect against diseases caused by human pathogen, group A streptococcus (GAS). Herein, we identified the key molecular players involved in the battle between the host and invading bacteria for the critical nutrient zinc. The host recruits calprotectin at GAS infection sites to limit zinc availability to the pathogen. The pathogen senses the alterations in zinc availability using a sensor, AdcR, and outcompetes calprotectin by employing a high-affinity zinc uptake system, AdcABC. Using this knowledge, we developed a successful vaccination strategy by immunization with AdcA and demonstrated protection against GAS infections.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Kimberly Nguyen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Maire Gavagan
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Pete Chandrangsu
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, United States
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, United States.
| |
Collapse
|
34
|
Kawamata T, Horie T, Matsunami M, Sasaki M, Ohsumi Y. Zinc starvation induces autophagy in yeast. J Biol Chem 2017; 292:8520-8530. [PMID: 28264932 DOI: 10.1074/jbc.m116.762948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.
Collapse
Affiliation(s)
- Tomoko Kawamata
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Tetsuro Horie
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503; Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan
| | - Miou Matsunami
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Michiko Sasaki
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503
| | - Yoshinori Ohsumi
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503.
| |
Collapse
|
35
|
MacDiarmid CW, Taggart J, Jeong J, Kerdsomboon K, Eide DJ. Activation of the Yeast UBI4 Polyubiquitin Gene by Zap1 Transcription Factor via an Intragenic Promoter Is Critical for Zinc-deficient Growth. J Biol Chem 2016; 291:18880-96. [PMID: 27432887 DOI: 10.1074/jbc.m116.743120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stability of many proteins requires zinc. Zinc deficiency disrupts their folding, and the ubiquitin-proteasome system may help manage this stress. In Saccharomyces cerevisiae, UBI4 encodes five tandem ubiquitin monomers and is essential for growth in zinc-deficient conditions. Although UBI4 is only one of four ubiquitin-encoding genes in the genome, a dramatic decrease in ubiquitin was observed in zinc-deficient ubi4Δ cells. The three other ubiquitin genes were strongly repressed under these conditions, contributing to the decline in ubiquitin. In a screen for ubi4Δ suppressors, a hypomorphic allele of the RPT2 proteasome regulatory subunit gene (rpt2(E301K)) suppressed the ubi4Δ growth defect. The rpt2(E301K) mutation also increased ubiquitin accumulation in zinc-deficient cells, and by using a ubiquitin-independent proteasome substrate we found that proteasome activity was reduced. These results suggested that increased ubiquitin supply in suppressed ubi4Δ cells was a consequence of more efficient ubiquitin release and recycling during proteasome degradation. Degradation of a ubiquitin-dependent substrate was restored by the rpt2(E301K) mutation, indicating that ubiquitination is rate-limiting in this process. The UBI4 gene was induced ∼5-fold in low zinc and is regulated by the zinc-responsive Zap1 transcription factor. Surprisingly, Zap1 controls UBI4 by inducing transcription from an intragenic promoter, and the resulting truncated mRNA encodes only two of the five ubiquitin repeats. Expression of a short transcript alone complemented the ubi4Δ mutation, indicating that it is efficiently translated. Loss of Zap1-dependent UBI4 expression caused a growth defect in zinc-deficient conditions. Thus, the intragenic UBI4 promoter is critical to preventing ubiquitin deficiency in zinc-deficient cells.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Janet Taggart
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - Jeeyon Jeong
- Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Kittikhun Kerdsomboon
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| | - David J Eide
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706 and
| |
Collapse
|
36
|
Mattiazzi Ušaj M, Prelec M, Brložnik M, Primo C, Curk T, Ščančar J, Yenush L, Petrovič U. Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Metallomics 2016; 7:1338-51. [PMID: 26067383 DOI: 10.1039/c5mt00095e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The functional link between zinc homeostasis and membrane-related processes, including lipid metabolism regulation, extends from yeast to humans, and has a likely role in the pathogenesis of diabetes. The yeast Izh2 protein has been previously implicated in zinc ion homeostasis and in the regulation of lipid and phosphate metabolism, but its precise molecular function is not known. We performed a chemogenomics experiment to determine the genes conferring resistance or sensitivity to different environmental zinc concentrations. We then determined at normal, depleted and excess zinc concentrations, the genetic interactions of IZH2 at the genome-wide level and measured changes in the transcriptome caused by deletion of IZH2. We found evidence for an important cellular function of the Rim101 pathway in zinc homeostasis in neutral or acidic environments, and observed that phosphatidylinositol is a source of inositol when zinc availability is limited. Comparison of our experimental profiles with published gene expression and genetic interaction profiles revealed pleiotropic functions for Izh2. We propose that Izh2 acts as an integrator of intra- and extracellular signals in providing adequate cellular responses to maintain homeostasis under different external conditions, including - but not limited to - alterations in zinc concentrations.
Collapse
Affiliation(s)
- Mojca Mattiazzi Ušaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sowada N, Stiller B, Kubisch C. Increased copper toxicity in Saccharomyces cerevisiae lacking VPS35, a component of the retromer and monogenic Parkinson disease gene in humans. Biochem Biophys Res Commun 2016; 476:528-533. [PMID: 27262440 DOI: 10.1016/j.bbrc.2016.05.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
The Saccharomyces cerevisiae gene VPS35 encodes a component of the retromer complex which is involved in vesicle transport from endosomes to the trans-Golgi network. Yeast and human VPS35 orthologs are highly conserved and mutations in human VPS35 cause an autosomal dominant form of late-onset Parkinson disease (PD). We now show that deletion of VPS35 in yeast (vps35Δ) leads to a dose-dependent growth defect towards copper. This increased sensitivity could be rescued by transformation with yeast wild-type VPS35 but not by the expression of a construct harboring the yeast equivalent (i.e. D686N) of the most commonly identified VPS35-associated PD mutation, p.D620N. In addition, we show that expression of one copy of α-synuclein, which is known to directly interact with copper, leads to a pronounced aggravation of copper toxicity in vps35Δ cells, thereby linking the regulation of copper homeostasis by Vps35p in yeast to one of the key molecules in PD pathophysiology.
Collapse
Affiliation(s)
- Nadine Sowada
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Barbara Stiller
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
38
|
Sarks C, Higbee A, Piotrowski J, Xue S, Coon JJ, Sato TK, Jin M, Balan V, Dale BE. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover. BIORESOURCE TECHNOLOGY 2016; 205:24-33. [PMID: 26802184 DOI: 10.1016/j.biortech.2016.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.
Collapse
Affiliation(s)
- Cory Sarks
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, United States.
| | - Alan Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, United States.
| | - Jeff Piotrowski
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, United States.
| | - Saisi Xue
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, United States.
| | - Joshua J Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53704, United States.
| | - Trey K Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53704, United States.
| | - Mingjie Jin
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, United States.
| | - Venkatesh Balan
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, United States.
| | - Bruce E Dale
- Biomass Conversion Research Laboratory (BCRL), Department of Chemical Engineering and Materials Science, Michigan State University, 3815 Technology Boulevard, Lansing, MI 48910, United States; DOE Great Lakes Bioenergy Research Center (GLBRC), Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
39
|
Zinc sensing and regulation in yeast model systems. Arch Biochem Biophys 2016; 611:30-36. [PMID: 26940262 DOI: 10.1016/j.abb.2016.02.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 11/23/2022]
Abstract
The Zap1 transcription factor of Saccharomyces cerevisiae and the Loz1 transcription factor of Schizosaccharomyces pombe both play a central role in zinc homeostasis by controlling the expression of genes necessary for zinc metabolism. Zap1 activates gene expression when cells are limited for zinc, while Loz1 is required for gene repression when zinc is in excess. In this review we highlight what is known about the underlying mechanisms by which these factors are regulated by zinc, and how transcriptional activation and repression in eukaryotic cells can be finely tuned according to intracellular zinc availability.
Collapse
|
40
|
Guyot S, Gervais P, Young M, Winckler P, Dumont J, Davey HM. Surviving the heat: heterogeneity of response in Saccharomyces cerevisiae provides insight into thermal damage to the membrane. Environ Microbiol 2015; 17:2982-92. [PMID: 25845620 PMCID: PMC4676927 DOI: 10.1111/1462-2920.12866] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/30/2015] [Indexed: 01/03/2023]
Abstract
Environmental heat stress impacts on the physiology and viability of microbial cells with concomitant implications for microbial activity and diversity. Previously, it has been demonstrated that gradual heating of Saccharomyces cerevisiae induces a degree of thermal resistance, whereas a heat shock results in a high level of cell death. Here, we show that the impact of exogenous nutrients on acquisition of thermal resistance differs between strains. Using single-cell methods, we demonstrate the extent of heterogeneity of the heat-stress response within populations of yeast cells and the presence of subpopulations that are reversibly damaged by heat stress. Such cells represent potential for recovery of entire populations once stresses are removed. The results show that plasma membrane permeability and potential are key factors involved in cell survival, but thermal resistance is not related to homeoviscous adaptation of the plasma membrane. These results have implications for growth and regrowth of populations experiencing environmental heat stress and our understanding of impacts at the level of the single cell. Given the important role of microbes in biofuel production and bioremediation, a thorough understanding of the impact of stress responses of populations and individuals is highly desirable.
Collapse
Affiliation(s)
- Stéphane Guyot
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Patrick Gervais
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Michael Young
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityPenglais, Aberystwyth, Wales, SY23 3DA, UK
| | - Pascale Winckler
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| | - Jennifer Dumont
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Equipe Procédés Microbiologiques et Biotechnologiques (PMB)1 Esplanade Erasme, 21000, Dijon, France
| | - Hazel Marie Davey
- Spectral Imagerie Resource Center, Agrosup Dijon/Université de Bourgogne1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
41
|
López-Martínez G, Margalef-Català M, Salinas F, Liti G, Cordero-Otero R. ATG18 and FAB1 are involved in dehydration stress tolerance in Saccharomyces cerevisiae. PLoS One 2015; 10:e0119606. [PMID: 25803831 PMCID: PMC4372426 DOI: 10.1371/journal.pone.0119606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
Abstract
Recently, different dehydration-based technologies have been evaluated for the purpose of cell and tissue preservation. Although some early results have been promising, they have not satisfied the requirements for large-scale applications. The long experience of using quantitative trait loci (QTLs) with the yeast Saccharomyces cerevisiae has proven to be a good model organism for studying the link between complex phenotypes and DNA variations. Here, we use QTL analysis as a tool for identifying the specific yeast traits involved in dehydration stress tolerance. Three hybrids obtained from stable haploids and sequenced in the Saccharomyces Genome Resequencing Project showed intermediate dehydration tolerance in most cases. The dehydration resistance trait of 96 segregants from each hybrid was quantified. A smooth, continuous distribution of the anhydrobiosis tolerance trait was found, suggesting that this trait is determined by multiple QTLs. Therefore, we carried out a QTL analysis to identify the determinants of this dehydration tolerance trait at the genomic level. Among the genes identified after reciprocal hemizygosity assays, RSM22, ATG18 and DBR1 had not been referenced in previous studies. We report new phenotypes for these genes using a previously validated test. Finally, our data illustrates the power of this approach in the investigation of the complex cell dehydration phenotype.
Collapse
Affiliation(s)
- Gema López-Martínez
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
| | - Mar Margalef-Català
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
| | - Francisco Salinas
- Institute of Research on Cancer and Ageing of Nice, University Sophia Antipolis, Nice, France
| | - Gianni Liti
- Institute of Research on Cancer and Ageing of Nice, University Sophia Antipolis, Nice, France
| | - Ricardo Cordero-Otero
- Department of Biochemistry and Biotechnology, University Rovira i Virgili, Tarragona, Spain
- * E-mail:
| |
Collapse
|
42
|
Mith O, Benhamdi A, Castillo T, Bergé M, MacDiarmid CW, Steffen J, Eide DJ, Perrier V, Subileau M, Gosti F, Berthomieu P, Marquès L. The antifungal plant defensin AhPDF1.1b is a beneficial factor involved in adaptive response to zinc overload when it is expressed in yeast cells. Microbiologyopen 2015; 4:409-22. [PMID: 25755096 PMCID: PMC4475384 DOI: 10.1002/mbo3.248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial peptides represent an expanding family of peptides involved in innate immunity of many living organisms. They show an amazing diversity in their sequence, structure, and mechanism of action. Among them, plant defensins are renowned for their antifungal activity but various side activities have also been described. Usually, a new biological role is reported along with the discovery of a new defensin and it is thus not clear if this multifunctionality exists at the family level or at the peptide level. We previously showed that the plant defensin AhPDF1.1b exhibits an unexpected role by conferring zinc tolerance to yeast and plant cells. In this paper, we further explored this activity using different yeast genetic backgrounds: especially the zrc1 mutant and an UPRE-GFP reporter yeast strain. We showed that AhPDF1.1b interferes with adaptive cell response in the endoplasmic reticulum to confer cellular zinc tolerance. We thus highlighted that, depending on its cellular localization, AhPDF1.1b exerts quite separate activities: when it is applied exogenously, it is a toxin against fungal and also root cells, but when it is expressed in yeast cells, it is a peptide that modulates the cellular adaptive response to zinc overload.
Collapse
Affiliation(s)
- Oriane Mith
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Asma Benhamdi
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Teddy Castillo
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Muriel Bergé
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Colin W MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Janet Steffen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Véronique Perrier
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Maeva Subileau
- INRA/CIRAD UMR 1028 IATE Ingénierie des Agropolymères et Technologies Emergentes, Montpellier SupAgro/Université Montpellier 2, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Françoise Gosti
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Pierre Berthomieu
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| | - Laurence Marquès
- INRA/CNRS UMR B&PMP, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/Université Montpellier 2, Campus Montpellier SupAgro, 2 Place Viala, F-34060, Montpellier Cedex 2, France
| |
Collapse
|
43
|
Qin J, Wang G, Jiang C, Xu JR, Wang C. Fgk3 glycogen synthase kinase is important for development, pathogenesis, and stress responses in Fusarium graminearum. Sci Rep 2015; 5:8504. [PMID: 25703795 PMCID: PMC4336942 DOI: 10.1038/srep08504] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022] Open
Abstract
Wheat scab caused by Fusarium graminearum is an important disease. In a previous study, the FGK3 glycogen synthase kinase gene orthologous to mammalian GSK3 was identified as an important virulence factor. Although GSK3 orthologs are well-conserved, none of them have been functionally characterized in fungal pathogens. In this study, we further characterized the roles of FGK3 gene. The Δfgk3 mutant had pleiotropic defects in growth rate, conidium morphology, germination, and perithecium formation. It was non-pathogenic in infection assays and blocked in DON production. Glycogen accumulation was increased in the Δfgk3 mutant, confirming the inhibitory role of Fgk3 on glycogen synthase. In FGK3-GFP transformants, GFP signals mainly localized to the cytoplasm in conidia but to the cytoplasm and nucleus in hyphae. Moreover, the expression level of FGK3 increased in response to cold, H2O2, and SDS stresses. In the Δfgk3 mutant, cold, heat, and salt stresses failed to induce the expression of the stress response-related genes FgGRE2, FgGPD1, FgCTT1, and FgMSN2. In the presence of 80 mM LiCl, a GSK3 kinase inhibitor, the wild type displayed similar defects to the Δfgk3 mutant. Overall, our results indicate that FGK3 is important for growth, conidiogenesis, DON production, pathogenicity, and stress responses in F. graminearum.
Collapse
Affiliation(s)
- Jun Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
44
|
Emmerstorfer A, Wimmer-Teubenbacher M, Wriessnegger T, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H, Pichler H. Over-expression ofICE2stabilizes cytochrome P450 reductase inSaccharomyces cerevisiaeandPichia pastoris. Biotechnol J 2015; 10:623-35. [DOI: 10.1002/biot.201400780] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/17/2014] [Accepted: 01/09/2015] [Indexed: 01/15/2023]
|
45
|
Yan J, Bradley MD, Friedman J, Welch RD. Phenotypic profiling of ABC transporter coding genes in Myxococcus xanthus. Front Microbiol 2014; 5:352. [PMID: 25101061 PMCID: PMC4103005 DOI: 10.3389/fmicb.2014.00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
Information about a gene sometimes can be deduced by examining the impact of its mutation on phenotype. However, the genome-scale utility of the method is limited because, for nearly all model organisms, the majority of mutations result in little or no observable phenotypic impact. The cause of this is often attributed to robustness or redundancy within the genome, but that is only one plausible hypothesis. We examined a standard set of phenotypic traits, and applied statistical methods commonly used in the study of natural variants to an engineered mutant strain collection representing disruptions in 180 of the 192 ABC transporters within the bacterium Myxococcus xanthus. These strains display continuous variation in their phenotypic distributions, with a small number of “outlier” strains at both phenotypic extremes, and the majority within a confidence interval about the mean that always includes wild type. Correlation analysis reveals substantial pleiotropy, indicating that the traits do not represent independent variables. The traits measured in this study co-cluster with expression profiles, thereby demonstrating that these changes in phenotype correspond to changes at the molecular level, and therefore can be indirectly connected to changes in the genome. However, the continuous distributions, the pleiotropy, and the placement of wild type always within the confidence interval all indicate that this standard set of M. xanthus phenotypic assays is measuring a narrow range of partially overlapping traits that do not directly reflect fitness. This is likely a significant cause of the observed small phenotypic impact from mutation, and is unrelated to robustness and redundancy.
Collapse
Affiliation(s)
- Jinyuan Yan
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | - Roy D Welch
- Department of Biology, Syracuse University Syracuse, NY, USA
| |
Collapse
|
46
|
Ruytinx J, Nguyen H, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K. Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 2014; 5:1225-33. [PMID: 23715468 DOI: 10.1039/c3mt00061c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
On Zn-polluted soils, populations of the ectomycorrhizal basidiomycete Suillus bovinus exhibit an elevated Zn tolerance when compared to populations on non-polluted sites. To elucidate the mechanism of Zn tolerance, the time-course of Zn uptake was studied in isolates with contrasting Zn tolerance. Unidirectional fluxes and subcellular compartmentation of Zn were investigated through radiotracer flux analyses. Fluorescence imaging was used to support the subcellular Zn compartmentation. After 2 h of exposure to 200 μM Zn, significantly more Zn was accumulated in Zn-sensitive isolates compared to tolerant isolates, despite similar short-term uptake kinetics and similar extracellular Zn sequestration in cell walls. In Zn-sensitive isolates twice as much Zn accumulated in the cytoplasm and 12 times more Zn in the vacuole. (65)Zn efflux analyses revealed a considerably faster Zn export in the Zn-tolerant isolate. The adaptive Zn tolerance in S. bovinus is therefore achieved by a preferential removal of Zn out of the cytoplasm, back into the apoplast, instead of the usual transfer of Zn into the vacuole. Zn exclusion in the fungal symbiont eventually contributes to a lower Zn influx in host plants.
Collapse
Affiliation(s)
- Joske Ruytinx
- Hasselt University, Centre for Environmental Sciences, Environmental Biology Group, Agoralaan, Gebouw D, 3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cohen Y, Megyeri M, Chen OCW, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM, Futerman AH, Schuldiner M. The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 2013; 8:e85519. [PMID: 24392018 PMCID: PMC3877380 DOI: 10.1371/journal.pone.0085519] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.
Collapse
Affiliation(s)
- Yifat Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Oscar C. W. Chen
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Condomitti
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Alaa Abdul-Sada
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Nitzan Rimon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- The Joseph Meyerhoff Professor of Biochemistry at the Weizmann Institute of Science, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
48
|
Markgraf DF, Klemm RW, Junker M, Hannibal-Bach HK, Ejsing CS, Rapoport TA. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER. Cell Rep 2013; 6:44-55. [PMID: 24373967 PMCID: PMC3947819 DOI: 10.1016/j.celrep.2013.11.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/01/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023] Open
Abstract
Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.
Collapse
Affiliation(s)
- Daniel F Markgraf
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Robin W Klemm
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mirco Junker
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hans K Hannibal-Bach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Tom A Rapoport
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Danziger SA, Ratushny AV, Smith JJ, Saleem RA, Wan Y, Arens CE, Armstrong AM, Sitko K, Chen WM, Chiang JH, Reiss DJ, Baliga NS, Aitchison JD. Molecular mechanisms of system responses to novel stimuli are predictable from public data. Nucleic Acids Res 2013; 42:1442-60. [PMID: 24185701 PMCID: PMC3919619 DOI: 10.1093/nar/gkt938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Systems scale models provide the foundation for an effective iterative cycle between hypothesis generation, experiment and model refinement. Such models also enable predictions facilitating the understanding of biological complexity and the control of biological systems. Here, we demonstrate the reconstruction of a globally predictive gene regulatory model from public data: a model that can drive rational experiment design and reveal new regulatory mechanisms underlying responses to novel environments. Specifically, using ∼ 1500 publically available genome-wide transcriptome data sets from Saccharomyces cerevisiae, we have reconstructed an environment and gene regulatory influence network that accurately predicts regulatory mechanisms and gene expression changes on exposure of cells to completely novel environments. Focusing on transcriptional networks that induce peroxisomes biogenesis, the model-guided experiments allow us to expand a core regulatory network to include novel transcriptional influences and linkage across signaling and transcription. Thus, the approach and model provides a multi-scalar picture of gene dynamics and are powerful resources for exploiting extant data to rationally guide experimentation. The techniques outlined here are generally applicable to any biological system, which is especially important when experimental systems are challenging and samples are difficult and expensive to obtain-a common problem in laboratory animal and human studies.
Collapse
Affiliation(s)
- Samuel A Danziger
- Seattle Biomedical Research Institute, Seattle, WA 98109-5219 USA, Institute for Systems Biology, Seattle, WA 98109-5240 USA, The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing 210096, China and Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 704, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Staats CC, Kmetzsch L, Schrank A, Vainstein MH. Fungal zinc metabolism and its connections to virulence. Front Cell Infect Microbiol 2013; 3:65. [PMID: 24133658 PMCID: PMC3796257 DOI: 10.3389/fcimb.2013.00065] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 12/03/2022] Open
Abstract
Zinc is a ubiquitous metal in all life forms, as it is a structural component of the almost 10% of eukaryotic proteins, which are called zinc-binding proteins. In zinc-limiting conditions such as those found during infection, pathogenic fungi activate the expression of several systems to enhance the uptake of zinc. These systems include ZIP transporters (solute carrier 39 family) and secreted zincophores, which are proteins that are able to chelate zinc. The expression of some fungal zinc uptake systems are regulated by a master regulator (Zap1), first characterized in the yeast Saccharomyces cerevisiae. In this review, we highlight features of zinc uptake and metabolism in human fungal pathogens and aspects of the relationship between proper zinc metabolism and the expression of virulence factors and adaptation to the host habitat.
Collapse
Affiliation(s)
- Charley C Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil ; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | | | | | | |
Collapse
|