1
|
Wilhelm D, Perea-Gomez A, Newton A, Chaboissier MC. Gonadal sex determination in vertebrates: rethinking established mechanisms. Development 2025; 152:dev204592. [PMID: 40162719 DOI: 10.1242/dev.204592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sex determination and differentiation are fundamental processes that are not only essential for fertility but also influence the development of many other organs, and hence, are important for species diversity and survival. In mammals, sex is determined by the inheritance of an X or a Y chromosome from the father. The Y chromosome harbours the testis-determining gene SRY, and it has long been thought that its absence is sufficient for ovarian development. Consequently, the ovarian pathway has been treated as a default pathway, in the sense that ovaries do not have or need a female-determining factor. Recently, a female-determining factor has been identified in mouse as the master regulator of ovarian development. Interestingly, this scenario was predicted as early as 1983. In this Review, we discuss the model predicted in 1983, how the mechanisms and genes currently known to be important for sex determination and differentiation in mammals have changed or supported this model, and finally, reflect on what these findings might mean for sex determination in other vertebrates.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Aitana Perea-Gomez
- Université Côte d'Azur, INSERM, CNRS, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Axel Newton
- TIGRR Lab, The School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | | |
Collapse
|
2
|
Binder AK, Burns KA, Rodriguez KF, Hamilton K, Pardo-Manuel de Villena F, Korach KS. Postnatal Ovarian Transdifferentiation in the Absence of Estrogen Receptor Signaling Is Dependent on Genetic Background. Endocrinology 2024; 166:bqae157. [PMID: 39576259 PMCID: PMC11630523 DOI: 10.1210/endocr/bqae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/12/2024]
Abstract
Normal ovarian function requires the expression of estrogen receptors α (ESR1) and β (ESR2) in distinct cell types within the ovary. The double estrogen receptor knockout (αβERKO) ovary had the appearance of seminiferous tubule-like structures that expressed SOX9; this phenotype was lost when the animals were repeatedly backcrossed to the C57BL/6J genetic background. A new line of ERKO mice, Ex3αβERKO, was developed for targeted disruption on a mixed genetic background. Histological examination of the ovaries in the Ex3αβERKO showed the appearance of seminiferous tubule-like structures in mice aged 6 to 12 months. These dismorphogenic regions have cells that no longer express granulosa cell-specific FOXL2, while other cells express Sertoli cell-specific SOX9 as examined by immunohistochemistry. Whole ovarian gene expression analysis in Ex3αERKO, Ex3βRKO, and Ex3αβERKO found many genes differentially expressed compared to controls with one Esr1 and Esr2 allele. The genes specific to the Ex3αβERKO ovary were compared to other models of postnatal ovarian transdifferentiation, identifying 21 candidate genes. To examine the genetic background contributions, DNA was isolated from αβERKO mice that did not show ovarian transdifferentiation and compared to DNA from Ex3αβERKO using Mouse Diversity Array. A genomic region putatively associated with transdifferentiation was identified on Chr18 (5-15 M) and genes in this region were compared to the genes differentially expressed in models of ovarian transdifferentiation. This work demonstrates the importance of ESRs in maintaining granulosa cell differentiation within the ovary, identifies several potential gene candidates, and suggests that genetic background can be a confounding factor.
Collapse
Affiliation(s)
- April K Binder
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine A Burns
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
- Department of Environmental and Public Health Science, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Karina F Rodriguez
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine Hamilton
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | | | - Kenneth S Korach
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Hurtado A, Mota-Gómez I, Lao M, Real FM, Jedamzick J, Burgos M, Lupiáñez DG, Jiménez R, Barrionuevo FJ. Complete male-to-female sex reversal in XY mice lacking the miR-17~92 cluster. Nat Commun 2024; 15:3809. [PMID: 38714644 PMCID: PMC11076593 DOI: 10.1038/s41467-024-47658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024] Open
Abstract
Mammalian sex determination is controlled by antagonistic gene cascades operating in embryonic undifferentiated gonads. The expression of the Y-linked gene SRY is sufficient to trigger the testicular pathway, whereas its absence in XX embryos leads to ovarian differentiation. Yet, the potential involvement of non-coding regulation in this process remains unclear. Here we show that the deletion of a single microRNA cluster, miR-17~92, induces complete primary male-to-female sex reversal in XY mice. Sry expression is delayed in XY knockout gonads, which develop as ovaries. Sertoli cell differentiation is reduced, delayed and unable to sustain testicular development. Pre-supporting cells in mutant gonads undergo a transient state of sex ambiguity which is subsequently resolved towards the ovarian fate. The miR-17~92 predicted target genes are upregulated, affecting the fine regulation of gene networks controlling gonad development. Thus, microRNAs emerge as key components for mammalian sex determination, controlling Sry expression timing and Sertoli cell differentiation.
Collapse
Grants
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P11-CVI-7291 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- P20-00583 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- IRTG2403 Deutsche Forschungsgemeinschaft (German Research Foundation)
- grant no. 101045439, 3D-REVOLUTION EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- Ministerio de Ciencia e Innovación. Agencia Estatal de Investigación. Grant No. PID2022-139302NB-I00
Collapse
Affiliation(s)
- Alicia Hurtado
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain
| | - Irene Mota-Gómez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Lao
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Francisca M Real
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johanna Jedamzick
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Miguel Burgos
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC/UPO/JA, Seville, Spain.
| | - Rafael Jiménez
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| | - Francisco J Barrionuevo
- Department of Genetics and Institute of Biotechnology, Labs. 127 and A105, Centre for Biomedical Research, University of Granada, Armilla, Granada, Spain.
| |
Collapse
|
4
|
Sánchez-Baizán N, Jarne-Sanz I, Roco ÁS, Schartl M, Piferrer F. Extraordinary variability in gene activation and repression programs during gonadal sex differentiation across vertebrates. Front Cell Dev Biol 2024; 12:1328365. [PMID: 38322165 PMCID: PMC10844511 DOI: 10.3389/fcell.2024.1328365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Genes involved in gonadal sex differentiation have been traditionally thought to be fairly conserved across vertebrates, but this has been lately questioned. Here, we performed the first comparative analysis of gonadal transcriptomes across vertebrates, from fish to mammals. Our results unambiguously show an extraordinary overall variability in gene activation and repression programs without a phylogenetic pattern. During sex differentiation, genes such as dmrt1, sox9, amh, cyp19a and foxl2 were consistently either male- or female-enriched across species while many genes with the greatest expression change within each sex were not. We also found that downregulation in the opposite sex, which had only been quantified in the mouse model, was also prominent in the rest of vertebrates. Finally, we report 16 novel conserved markers (e.g., fshr and dazl) and 11 signaling pathways. We propose viewing vertebrate gonadal sex differentiation as a hierarchical network, with conserved hub genes such as sox9 and amh alongside less connected and less conserved nodes. This proposed framework implies that evolutionary pressures may impact genes based on their level of connectivity.
Collapse
Affiliation(s)
- Núria Sánchez-Baizán
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Ignasi Jarne-Sanz
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Álvaro S. Roco
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, United States
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
5
|
Wagner S, Whiteley SL, Castelli M, Patel HR, Deveson IW, Blackburn J, Holleley CE, Marshall Graves JA, Georges A. Gene expression of male pathway genes sox9 and amh during early sex differentiation in a reptile departs from the classical amniote model. BMC Genomics 2023; 24:243. [PMID: 37147622 PMCID: PMC10163765 DOI: 10.1186/s12864-023-09334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sex determination is the process whereby the bipotential embryonic gonads become committed to differentiate into testes or ovaries. In genetic sex determination (GSD), the sex determining trigger is encoded by a gene on the sex chromosomes, which activates a network of downstream genes; in mammals these include SOX9, AMH and DMRT1 in the male pathway, and FOXL2 in the female pathway. Although mammalian and avian GSD systems have been well studied, few data are available for reptilian GSD systems. RESULTS We conducted an unbiased transcriptome-wide analysis of gonad development throughout differentiation in central bearded dragon (Pogona vitticeps) embryos with GSD. We found that sex differentiation of transcriptomic profiles occurs at a very early stage, before the gonad consolidates as a body distinct from the gonad-kidney complex. The male pathway genes dmrt1 and amh and the female pathway gene foxl2 play a key role in early sex differentiation in P. vitticeps, but the central player of the mammalian male trajectory, sox9, is not differentially expressed in P. vitticeps at the bipotential stage. The most striking difference from GSD systems of other amniotes is the high expression of the male pathway genes amh and sox9 in female gonads during development. We propose that a default male trajectory progresses if not repressed by a W-linked dominant gene that tips the balance of gene expression towards the female trajectory. Further, weighted gene expression correlation network analysis revealed novel candidates for male and female sex differentiation. CONCLUSION Our data reveal that interpretation of putative mechanisms of GSD in reptiles cannot solely depend on lessons drawn from mammals.
Collapse
Affiliation(s)
- Susan Wagner
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Meghan Castelli
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Hardip R Patel
- Genome Sciences Department. John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - James Blackburn
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
6
|
Szydlowski M. A clue to the etiology of disorders of sex development from identity-by-descent analysis in dogs with cryptic relatedness. Anim Genet 2023; 54:166-176. [PMID: 36437751 DOI: 10.1111/age.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
Disorders of sex development (DSDs) are discrepancies between sex chromosomes and phenotypical sex. Quite common forms of DSD in canine populations include testicular and ovotesticular XX DSDs with a normal set of sex chromosomes. The objective of this study was to identify genes and putative harmful variants for canine XX DSDs. I have reanalyzed data from the whole-genome sequencing of 11 XX DSD French Bulldogs and six XX DSD American Staffordshire Terriers. Identity-by-descent analysis revealed cryptic relatedness in affected French Bulldogs. Causative genes were sought in chromosomal segments shared identical-by-descent by close relatives. In French Bulldogs, the reanalysis identified 19 regions of importance with a total length of just 65.9 Mb. Variant filtering within the regions implicated AKAP2, PIWIL1, POLR3A and SH2D4B as genes that may be involved in individual cases of testicular and ovotesticular XX DSD in French Bulldogs and American Staffordshire Terriers.
Collapse
Affiliation(s)
- Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
7
|
Bunce C, Barske L, Zhang G, Capel B. Biased precursor ingression underlies the center-to-pole pattern of male sex determination in mouse. Development 2023; 150:297121. [PMID: 36912416 PMCID: PMC10112898 DOI: 10.1242/dev.201060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
During mammalian development, gonadal sex determination results from the commitment of bipotential supporting cells to Sertoli or granulosa cell fates. Typically, this decision is coordinated across the gonad to ensure commitment to a single organ fate. When unified commitment fails in an XY mouse, an ovotestis forms in which supporting cells in the center of the gonad typically develop as Sertoli cells, while supporting cells in the poles develop as granulosa cells. This central bias for Sertoli cell fate was thought to result from the initial expression of the drivers of Sertoli cell fate, SRY and/or SOX9, in the central domain, followed by paracrine expansion to the poles. However, we show here that the earliest cells expressing SRY and SOX9 are widely distributed across the gonad. In addition, Sertoli cell fate does not spread among supporting cells through paracrine relay. Instead, we uncover a center-biased pattern of supporting cell precursor ingression that occurs in both sexes and results in increased supporting cell density in the central domain. Our findings prompt a new model of gonad patterning in which a density-dependent organizing principle dominates Sertoli cell fate stabilization.
Collapse
Affiliation(s)
- Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lindsey Barske
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gloria Zhang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Imaimatsu K, Uchida A, Hiramatsu R, Kanai Y. Gonadal Sex Differentiation and Ovarian Organogenesis along the Cortical-Medullary Axis in Mammals. Int J Mol Sci 2022; 23:13373. [PMID: 36362161 PMCID: PMC9655463 DOI: 10.3390/ijms232113373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 09/20/2023] Open
Abstract
In most mammals, the sex of the gonads is based on the fate of the supporting cell lineages, which arises from the proliferation of coelomic epithelium (CE) that surfaces on the bipotential genital ridge in both XY and XX embryos. Recent genetic studies and single-cell transcriptome analyses in mice have revealed the cellular and molecular events in the two-wave proliferation of the CE that produce the supporting cells. This proliferation contributes to the formation of the primary sex cords in the medullary region of both the testis and the ovary at the early phase of gonadal sex differentiation, as well as to that of the secondary sex cords in the cortical region of the ovary at the perinatal stage. To support gametogenesis, the testis forms seminiferous tubules in the medullary region, whereas the ovary forms follicles mainly in the cortical region. The medullary region in the ovary exhibits morphological and functional diversity among mammalian species that ranges from ovary-like to testis-like characteristics. This review focuses on the mechanism of gonadal sex differentiation along the cortical-medullary axis and compares the features of the cortical and medullary regions of the ovary in mammalian species.
Collapse
Affiliation(s)
- Kenya Imaimatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Aya Uchida
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- RIKEN BioResouce Research Center, Tsukuba 305-0074, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
9
|
Sánchez-Baizán N, Ribas L, Piferrer F. Improved biomarker discovery through a plot twist in transcriptomic data analysis. BMC Biol 2022; 20:208. [PMID: 36153614 PMCID: PMC9509653 DOI: 10.1186/s12915-022-01398-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. Results In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. Conclusions We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01398-w.
Collapse
|
10
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
11
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Tandem Mass Tag-Based Quantitative Proteomics Analysis of Gonads Reveals New Insight into Sexual Reversal Mechanism in Chinese Soft-Shelled Turtles. BIOLOGY 2022; 11:biology11071081. [PMID: 36101459 PMCID: PMC9312195 DOI: 10.3390/biology11071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Chinese soft-shelled turtles display obvious sex dimorphism. The exogenous application of hormones (estradiol and methyltestosterone) can change the direction of gonadal differentiation of P. sinensis to produce sex reversed individuals. However, the molecular mechanism remains unclear. In this study, TMT-based quantitative proteomics analysis of four types of P. sinensis (female, male, pseudo-female, and pseudo-male) gonads were compared. Quantitative analysis of 6107 labeled proteins in the four types of P. sinensis gonads was performed. We identified 440 downregulated and 423 upregulated proteins between pseudo-females and males, as well as 394 downregulated and 959 upregulated proteins between pseudo-males and females. In the two comparisons, the differentially expressed proteins, including K7FKG1, K7GIQ2, COL4A6, K7F2U2, and K7FF80, were enriched in some important pathways, such as focal adhesion, endocytosis, apoptosis, extracellular matrix-receptor interaction, and the regulation of actin cytoskeleton, which were upregulated in pseudo-female vs. male and downregulated in pseudo-male vs. female. In pathways such as ribosome and spliceosome, the levels of RPL28, SRSF3, SNRNP40, and HNRNPK were increased from male to pseudo-female, while they decreased from female to pseudo-male. All differentially expressed proteins after sexual reversal were divided into six clusters, according to their altered levels in the four types of P. sinensis, and associated with cellular processes, such as embryonic development and catabolic process, that were closely related to sexual reversal. These data will provide clues for the sexual reversal mechanism in P. sinensis.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| |
Collapse
|
12
|
Sun X, Tao B, Wang Y, Hu W, Sun Y. Isolation and Characterization of Germline Stem Cells in Protogynous Hermaphroditic Monopterus albus. Int J Mol Sci 2022; 23:ijms23115861. [PMID: 35682541 PMCID: PMC9180834 DOI: 10.3390/ijms23115861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Germline stem cells (GSCs) are a group of unique adult stem cells in gonads that act as important transmitters for genetic information. Donor GSCs have been used to produce offspring by transplantation in fisheries. In this study, we successfully isolated and enriched GSCs from the ovary, ovotestis, and testis of Monopterus albus, one of the most important breeding freshwater fishes in China. Transcriptome comparison assay suggests that a distinct molecular signature exists in each type of GSC, and that different signaling activities are required for the maintenance of distinct GSCs. Functional analysis shows that fGSCs can successfully colonize and contribute to the germline cell lineage of a host zebrafish gonad after transplantation. Finally, we describe a simple feeder-free method for the isolation and enrichment of GSCs that can contribute to the germline cell lineage of zebrafish embryos and generate the germline chimeras after transplantation.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
| | - Binbin Tao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
| | - Yongxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Wei Hu
- University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The aim of this study was to provide a basic overview on human sex development with a focus on involved genes and pathways, and also to discuss recent advances in the molecular diagnostic approaches applied to clinical workup of individuals with a difference/disorder of sex development (DSD). RECENT FINDINGS Rapid developments in genetic technologies and bioinformatics analyses have helped to identify novel genes and genomic pathways associated with sex development, and have improved diagnostic algorithms to integrate clinical, hormonal and genetic data. Recently, massive parallel sequencing approaches revealed that the phenotype of some DSDs might be only explained by oligogenic inheritance. SUMMARY Typical sex development relies on very complex biological events, which involve specific interactions of a large number of genes and pathways in a defined spatiotemporal sequence. Any perturbation in these genetic and hormonal processes may result in atypical sex development leading to a wide range of DSDs in humans. Despite the huge progress in the understanding of molecular mechanisms underlying DSDs in recent years, in less than 50% of DSD individuals, the genetic cause is currently solved at the molecular level.
Collapse
Affiliation(s)
- Idoia Martinez de LaPiscina
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
- Biocruces Bizkaia Health Research Institute, Cruces University Hospital, UPV/EHU, CIBERER, CIBERDEM, ENDO-ERN, Barakaldo, Spain
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Granada ML, Audí L. El laboratorio en el diagnóstico multidisciplinar del desarrollo sexual anómalo o diferente (DSD). ADVANCES IN LABORATORY MEDICINE 2021; 2:481-493. [PMCID: PMC10197318 DOI: 10.1515/almed-2020-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objetivos El desarrollo de las características sexuales femeninas o masculinas acontece durante la vida fetal, determinándose el sexo genético, el gonadal y el sexo genital interno y externo (femenino o masculino). Cualquier discordancia en las etapas de diferenciación ocasiona un desarrollo sexual anómalo o diferente (DSD) que se clasifica según la composición de los cromosomas sexuales del cariotipo. Contenido En este capítulo se abordan la fisiología de la determinación y el desarrollo de las características sexuales femeninas o masculinas durante la vida fetal, la clasificación general de los DSD y su estudio diagnóstico clínico, bioquímico y genético que debe ser multidisciplinar. Los estudios bioquímicos deben incluir, además de las determinaciones bioquímicas generales, análisis de hormonas esteroideas y peptídicas, en condiciones basales o en pruebas funcionales de estimulación. El estudio genético debe comenzar con la determinación del cariotipo al que seguirá un estudio molecular en los cariotipos 46,XX ó 46,XY, orientado a la caracterización de un gen candidato. Además, se expondrán de manera específica los marcadores bioquímicos y genéticos en los DSD 46,XX, que incluyen el desarrollo gonadal anómalo (disgenesias, ovotestes y testes), el exceso de andrógenos de origen fetal (el más frecuente), fetoplacentario o materno y las anomalías del desarrollo de los genitales internos. Perspectivas El diagnóstico de un DSD requiere la contribución de un equipo multidisciplinar coordinado por un clínico y que incluya los servicios de bioquímica y genética clínica y molecular, un servicio de radiología e imagen y un servicio de anatomía patológica.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, España
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, España
| |
Collapse
|
15
|
Dupont S, Capel B. The Chromatin State during Gonadal Sex Determination. Sex Dev 2021; 15:308-316. [PMID: 34753132 DOI: 10.1159/000520007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
At embryonic day (E) 10.5, prior to gonadal sex determination, XX and XY gonads are bipotential and able to differentiate into either a testis or an ovary. At this point, they are transcriptionally and morphologically indistinguishable. Sex determination begins around E11.5 in the mouse when the supporting cell lineage commits to either Sertoli or granulosa cell fate. Testis-specific factors such as SRY and SOX9 drive differentiation of bipotential-supporting cells into the Sertoli cell pathway, whereas ovary-specific factors like WNT4 and FOXL2 guide differentiation into granulosa cells. It is known that these 2 pathways are mutually antagonistic, and repression of the alternative fate is critical for maintenance of the testis or ovary programs. While we understand much about the transcription factor networks guiding the process of sex determination, it is only more recently that we have begun to understand how this process is epigenetically controlled. Studies in the past decade have demonstrated the importance of the chromatin state for gene expression and cell fate commitment, with histone modifications and DNA accessibility having a direct role in gene regulation. It is now clear that the chromatin state during sex determination is dynamic and likely critical for the establishment and/or maintenance of the transcriptional programs. Prior to sex determination, supporting cells have similar chromatin structure and histone modification profiles, reflecting the bipotential nature of these cells. After differentiation to Sertoli or granulosa cells, the chromatin state acquires sex-specific profiles. The proteins that regulate the deposition of histone modifications or the opening of compact chromatin likely play an important role in Sertoli and granulosa cell fate commitment and gonad development. Here, we describe studies profiling the chromatin state during gonadal sex determination and one example in which depletion of Cbx2, a member of the Polycomb Repressive Complex 1 (PRC1), causes male-to-female sex reversal due to a failure to repress the ovarian pathway.
Collapse
Affiliation(s)
- Shannon Dupont
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA,
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
16
|
Granada ML, Audí L. The laboratory in the multidisciplinary diagnosis of differences or disorders of sex development (DSD): I) Physiology, classification, approach, and methodologyII) Biochemical and genetic markers in 46,XX DSD. ADVANCES IN LABORATORY MEDICINE 2021; 2:468-493. [PMID: 37360895 PMCID: PMC10197333 DOI: 10.1515/almed-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 06/28/2023]
Abstract
Objectives The development of female or male sex characteristics occurs during fetal life, when the genetic, gonadal, and internal and external genital sex is determined (female or male). Any discordance among sex determination and differentiation stages results in differences/disorders of sex development (DSD), which are classified based on the sex chromosomes found on the karyotype. Content This chapter addresses the physiological mechanisms that determine the development of female or male sex characteristics during fetal life, provides a general classification of DSD, and offers guidance for clinical, biochemical, and genetic diagnosis, which must be established by a multidisciplinary team. Biochemical studies should include general biochemistry, steroid and peptide hormone testing either at baseline or by stimulation testing. The genetic study should start with the determination of the karyotype, followed by a molecular study of the 46,XX or 46,XY karyotypes for the identification of candidate genes. Summary 46,XX DSD include an abnormal gonadal development (dysgenesis, ovotestes, or testes), an androgen excess (the most frequent) of fetal, fetoplacental, or maternal origin and an abnormal development of the internal genitalia. Biochemical and genetic markers are specific for each group. Outlook Diagnosis of DSD requires the involvement of a multidisciplinary team coordinated by a clinician, including a service of biochemistry, clinical, and molecular genetic testing, radiology and imaging, and a service of pathological anatomy.
Collapse
Affiliation(s)
- Maria Luisa Granada
- Department of Clinical Biochemistry, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Audí
- Growth and Development Research Group, Vall d’Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Singh N, Singh D, Modi D. LIM Homeodomain (LIM-HD) Genes and Their Co-Regulators in Developing Reproductive System and Disorders of Sex Development. Sex Dev 2021; 16:147-161. [PMID: 34518474 DOI: 10.1159/000518323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
LIM homeodomain (LIM-HD) family genes are transcription factors that play crucial roles in a variety of functions during embryonic development. The activities of the LIM-HD proteins are regulated by the co-regulators LIM only (LMO) and LIM domain-binding (LDB). In the mouse genome, there are 13 LIM-HD genes (Lhx1-Lhx9, Isl1-2, Lmx1a-1b), 4 Lmo genes (Lmo1-4), and 2 Ldb genes (Ldb1-2). Amongst these, Lhx1 is required for the development of the müllerian duct epithelium and the timing of the primordial germ cell migration. Lhx8 is necessary for oocyte differentiation and Lhx9 for somatic cell proliferation in the genital ridges and control of testosterone production in the Leydig cells. Lmo4 is involved in Sertoli cell differentiation. Mutations in LHX1 are associated with müllerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. LHX9 gene variants are reported in cases with disorders of sex development (DSD). Mutations in LHX3 and LHX4 are reported in patients with combined pituitary hormone deficiency having absent or delayed puberty. A transcript map of the Lhx, Lmo, and Ldb genes reveal that multiple LIM-HD genes and their co-regulators are expressed in a sexually dimorphic pattern in the developing mouse gonads. Unraveling the roles of LIM-HD genes during development will aid in our understanding of the causes of DSD.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
18
|
Weber C, Capel B. Sex determination without sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200109. [PMID: 34247500 DOI: 10.1098/rstb.2020.0109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With or without sex chromosomes, sex determination is a synthesis of many molecular events that drives a community of cells towards a coordinated tissue fate. In this review, we will consider how a sex determination pathway can be engaged and stabilized without an inherited genetic determinant. In many reptilian species, no sex chromosomes have been identified, yet a conserved network of gene expression is initiated. Recent studies propose that epigenetic regulation mediates the effects of temperature on these genes through dynamic post-transcriptional, post-translational and metabolic pathways. It is likely that there is no singular regulator of sex determination, but rather an accumulation of molecular events that shift the scales towards one fate over another until a threshold is reached sufficient to maintain and stabilize one pathway and repress the alternative pathway. Investigations into the mechanism underlying sex determination without sex chromosomes should focus on cellular processes that are frequently activated by multiple stimuli or can synthesize multiple inputs and drive a coordinated response. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Ceri Weber
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
19
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
20
|
Sararols P, Stévant I, Neirijnck Y, Rebourcet D, Darbey A, Curley MK, Kühne F, Dermitzakis E, Smith LB, Nef S. Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Front Cell Dev Biol 2021; 9:695546. [PMID: 34262907 PMCID: PMC8273516 DOI: 10.3389/fcell.2021.695546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.
Collapse
Affiliation(s)
- Pauline Sararols
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Annalucia Darbey
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael K Curley
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia.,Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Lindeman RE, Murphy MW, Agrimson KS, Gewiss R, Bardwell V, Gearhart M, Zarkower D. The conserved sex regulator DMRT1 recruits SOX9 in sexual cell fate reprogramming. Nucleic Acids Res 2021; 49:6144-6164. [PMID: 34096593 PMCID: PMC8216462 DOI: 10.1093/nar/gkab448] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/16/2023] Open
Abstract
Mammalian sexual development commences when fetal bipotential progenitor cells adopt male Sertoli (in XY) or female granulosa (in XX) gonadal cell fates. Differentiation of these cells involves extensive divergence in chromatin state and gene expression, reflecting distinct roles in sexual differentiation and gametogenesis. Surprisingly, differentiated gonadal cell fates require active maintenance through postnatal life to prevent sexual transdifferentiation and female cell fate can be reprogrammed by ectopic expression of the sex regulator DMRT1. Here we examine how DMRT1 reprograms granulosa cells to Sertoli-like cells in vivo and in culture. We define postnatal sex-biased gene expression programs and identify three-dimensional chromatin contacts and differentially accessible chromatin regions (DARs) associated with differentially expressed genes. Using a conditional transgene we find DMRT1 only partially reprograms the ovarian transcriptome in the absence of SOX9 and its paralog SOX8, indicating that these factors functionally cooperate with DMRT1. ATAC-seq and ChIP-seq show that DMRT1 induces formation of many DARs that it binds with SOX9, and DMRT1 is required for binding of SOX9 at most of these. We suggest that DMRT1 can act as a pioneer factor to open chromatin and allow binding of SOX9, which then cooperates with DMRT1 to reprogram sexual cell fate.
Collapse
Affiliation(s)
- Robin E Lindeman
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark W Murphy
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kellie S Agrimson
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Rachel L Gewiss
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vivian J Bardwell
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
| | - David Zarkower
- Developmental Biology Center and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Lecluze E, Rolland AD, Filis P, Evrard B, Leverrier-Penna S, Maamar MB, Coiffec I, Lavoué V, Fowler PA, Mazaud-Guittot S, Jégou B, Chalmel F. Dynamics of the transcriptional landscape during human fetal testis and ovary development. Hum Reprod 2021; 35:1099-1119. [PMID: 32412604 DOI: 10.1093/humrep/deaa041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.,Univ Poitiers, STIM, CNRS ERL7003, Poitiers Cedex 9, CNRS ERL7003, France
| | - Millissia Ben Maamar
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Isabelle Coiffec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Vincent Lavoué
- Service Gynécologie et Obstétrique, CHU Rennes, F-35000 Rennes, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
23
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
24
|
Tang F, Richardson N, Albina A, Chaboissier MC, Perea-Gomez A. Mouse Gonad Development in the Absence of the Pro-Ovary Factor WNT4 and the Pro-Testis Factor SOX9. Cells 2020; 9:cells9051103. [PMID: 32365547 PMCID: PMC7291083 DOI: 10.3390/cells9051103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
The transcription factors SRY and SOX9 and RSPO1/WNT4/β-Catenin signaling act as antagonistic pathways to drive testis and ovary development respectively, from a common gonadal primordium in mouse embryos. In this work, we took advantage of a double knockout mouse model to study gonadal development when Sox9 and Wnt4 are both mutated. We show that the XX gonad mutant for Wnt4 or for both Wnt4 and Sox9 develop as ovotestes, demonstrating that ectopic SOX9 function is not required for the partial female-to-male sex reversal caused by a Wnt4 mutation. Sox9 deletion in XY gonads leads to ovarian development accompanied by ectopic WNT/β-catenin signaling. In XY Sox9 mutant gonads, SRY-positive supporting precursors adopt a female-like identity and develop as pre-granulosa-like cells. This phenotype cannot be fully prevented by the deletion of Wnt4 or Rspo1, indicating that SOX9 is required for the early determination of the male supporting cell identity independently of repressing RSPO1/WNT4/β-Catenin signaling. However, in XY Sox9 Wnt4 double mutant gonads, pre-granulosa cells are not maintained, as they prematurely differentiate as mature granulosa cells and then trans-differentiate into Sertoli-like cells. Together, our results reveal the dynamics of the specific and independent actions of SOX9 and WNT4 during gonadal differentiation: SOX9 is essential in the testis for early specification of male-supporting cells whereas WNT4 functions in the ovary to maintain female-supporting cell identity and inhibit male-specific vascular and steroidogenic cell differentiation.
Collapse
|
25
|
Stévant I, Kühne F, Greenfield A, Chaboissier MC, Dermitzakis ET, Nef S. Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Rep 2020; 26:3272-3283.e3. [PMID: 30893600 DOI: 10.1016/j.celrep.2019.02.069] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sex determination is a unique process that allows the study of multipotent progenitors and their acquisition of sex-specific fates during differentiation of the gonad into a testis or an ovary. Using time series single-cell RNA sequencing (scRNA-seq) on ovarian Nr5a1-GFP+ somatic cells during sex determination, we identified a single population of early progenitors giving rise to both pre-granulosa cells and potential steroidogenic precursor cells. By comparing time series single-cell RNA sequencing of XX and XY somatic cells, we provide evidence that gonadal supporting cells are specified from these early progenitors by a non-sex-specific transcriptomic program before pre-granulosa and Sertoli cells acquire their sex-specific identity. In XX and XY steroidogenic precursors, similar transcriptomic profiles underlie the acquisition of cell fate but with XX cells exhibiting a relative delay. Our data provide an important resource, at single-cell resolution, for further interrogation of the molecular and cellular basis of mammalian sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire OX11 0RD, UK
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
26
|
Fernandes-Freitas I, Milona A, Murphy KG, Dhillo WS, Owen BM. Live Birth in Sex-Reversed XY Mice Lacking the Nuclear Receptor Dax1. Sci Rep 2020; 10:1703. [PMID: 32015477 PMCID: PMC6997165 DOI: 10.1038/s41598-020-58788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
The nuclear hormone receptor Dax1 functions during development as a testes-determining gene. However, the phenotype of male mice lacking Dax1 is strain-dependent due to the background-specific abundance of male-determining Sry gene-transcripts. We hypothesised that inter-individual variation in Sry mRNA-abundance would result in a spectrum of phenotypes even within-strain. We found that while all XY C57BL/6J mice lacking Dax1 presented as phenotypic females, there was a marked inter-individual variability in measures of fertility. Indeed, we report rare occasions where sex-reversed mice had measures of fertility comparable to those in control females. On two occasions, these sex-reversed XY mice were able to give birth to live offspring following mating to stud-males. As such, this work documents within-strain variability in phenotypes of XY mice lacking Dax1, and reports for the first time a complete sex-reversal capable of achieving live birth in these mice.
Collapse
Affiliation(s)
- Isabel Fernandes-Freitas
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Alexandra Milona
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kevin G Murphy
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| | - Bryn M Owen
- Section of Endocrinology & Investigative Medicine, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
27
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
28
|
Grinspon RP, Rey RA. Molecular Characterization of XX Maleness. Int J Mol Sci 2019; 20:ijms20236089. [PMID: 31816857 PMCID: PMC6928850 DOI: 10.3390/ijms20236089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Androgens and anti-Müllerian hormone (AMH), secreted by the foetal testis, are responsible for the development of male reproductive organs and the regression of female anlagen. Virilization of the reproductive tract in association with the absence of Müllerian derivatives in the XX foetus implies the existence of testicular tissue, which can occur in the presence or absence of SRY. Recent advancement in the knowledge of the opposing gene cascades driving to the differentiation of the gonadal ridge into testes or ovaries during early foetal development has provided insight into the molecular explanation of XX maleness.
Collapse
Affiliation(s)
- Romina P. Grinspon
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| | - Rodolfo A. Rey
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET – FEI – División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
- Correspondence: (R.P.G.); (R.A.R.); Tel.: +54-11-49635931 (R.P.G.)
| |
Collapse
|
29
|
RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nat Commun 2019; 10:5116. [PMID: 31712577 PMCID: PMC6848188 DOI: 10.1038/s41467-019-13060-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Sex determination of the gonads begins with fate specification of gonadal supporting cells into either ovarian pre-granulosa cells or testicular Sertoli cells. This fate specification hinges on a balance of transcriptional control. Here we report that expression of the transcription factor RUNX1 is enriched in the fetal ovary in rainbow trout, turtle, mouse, goat, and human. In the mouse, RUNX1 marks the supporting cell lineage and becomes pre-granulosa cell-specific as the gonads differentiate. RUNX1 plays complementary/redundant roles with FOXL2 to maintain fetal granulosa cell identity and combined loss of RUNX1 and FOXL2 results in masculinization of fetal ovaries. At the chromatin level, RUNX1 occupancy overlaps partially with FOXL2 occupancy in the fetal ovary, suggesting that RUNX1 and FOXL2 target common sets of genes. These findings identify RUNX1, with an ovary-biased expression pattern conserved across species, as a regulator in securing the identity of ovarian-supporting cells and the ovary.
Collapse
|
30
|
Flück CE, Audí L, Fernández-Cancio M, Sauter KS, Martinez de LaPiscina I, Castaño L, Esteva I, Camats N. Broad Phenotypes of Disorders/Differences of Sex Development in MAMLD1 Patients Through Oligogenic Disease. Front Genet 2019; 10:746. [PMID: 31555317 PMCID: PMC6726737 DOI: 10.3389/fgene.2019.00746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Disorders/differences of sex development (DSD) are the result of a discordance between chromosomal, gonadal, and genital sex. DSD may be due to mutations in any of the genes involved in sex determination and development in general, as well as gonadal and/or genital development specifically. MAMLD1 is one of the recognized DSD genes. However, its role is controversial as some MAMLD1 variants are present in normal individuals, several MAMLD1 mutations have wild-type activity in functional studies, and the Mamld1-knockout male mouse presents with normal genitalia and reproduction. We previously tested nine MAMLD1 variants detected in nine 46,XY DSD patients with broad phenotypes for their functional activity, but none of the mutants, except truncated L210X, had diminished transcriptional activity on known target promoters CYP17A1 and HES3. In addition, protein expression of MAMLD1 variants was similar to wild-type, except for the truncated L210X. We hypothesized that MAMLD1 variants may not be sufficient to explain the phenotype in 46,XY DSD individuals, and that further genetic studies should be performed to search for additional hits explaining the broad phenotypes. We therefore performed whole exome sequencing (WES) in seven of these 46,XY patients with DSD and in one 46,XX patient with ovarian insufficiency, who all carried MAMLD1 variants. WES data were filtered by an algorithm including disease-tailored lists of MAMLD1-related and DSD-related genes. Fifty-five potentially deleterious variants in 41 genes were identified; 16/55 variants were reported in genes in association with hypospadias, 8/55 with cryptorchidism, 5/55 with micropenis, and 13/55 were described in relation with female sex development. Patients carried 1-16 variants in 1-16 genes together with their MAMLD1 variation. Network analysis of the identified genes revealed that 23 genes presented gene/protein interactions with MAMLD1. Thus, our study shows that the broad phenotypes of individual DSD might involve multiple genetic variations contributing towards the complex network of sexual development.
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laura Audí
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Kay-Sara Sauter
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics and Department of BioMedical Research, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Idoia Martinez de LaPiscina
- Endocrinology and Diabetes Research Group, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, CIBERDEM, CIBERER, University of the Basque Country (UPV-EHU), Barakaldo, Spain
| | - Luis Castaño
- Pediatric Endocrinology Section, Cruces University Hospital, Endocrinology and Diabetes Research Group, BioCruces Bizkaia Health Research Institute, CIBERDEM, CIBERER, University of the Basque Country (UPV-EHU), Barakaldo, Spain
| | - Isabel Esteva
- Endocrinology Section, Gender Identity Unit, Regional University Hospital of Malaga, Málaga, Spain
| | - Núria Camats
- Growth and Development Research Unit, Vall d'Hebron Research Institute (VHIR), Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
31
|
Dynamics of Non-Canonical Amino Acid-Labeled Intra- and Extracellular Proteins in the Developing Mouse. Cell Mol Bioeng 2019; 12:495-509. [PMID: 31719929 DOI: 10.1007/s12195-019-00592-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/17/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Mapping protein synthesis and turnover during development will provide insight into functional tissue assembly; however, quantitative in vivo characterization has been hindered by a lack of tools. To address this gap, we previously demonstrated murine embryos can be labeled with the non-canonical amino acid azidohomoalanine (Aha), which enables the enrichment and identification of newly synthesized proteins. Using this technique, we now show how protein turnover varies as a function of both time and cellular compartment during murine development. Methods Pregnant C57BL/6 mice were injected with Aha or PBS (control) at different embryonic time points. Aha-labeled proteins from homogenized E12.5 and E15.5 embryos were conjugated with diazo biotin-alkyne, bound to NeutrAvidin beads, selectively released, then processed for either SDS-PAGE or LC-MS/MS. For turnover studies, embryos were harvested 0-48 h after Aha injection at E12.5, separated into different cellular fractions based on solubility, and analyzed via western blotting. Results We developed an enhanced method for isolating Aha-labeled proteins from embryos that minimizes background signal from unlabeled proteins and avidin contamination. Approximately 50% of all identified proteins were found only in Aha samples. Comparing proteins present in both Aha and PBS samples, 90% were > 2-fold enriched in Aha-treated embryos. Furthermore, this method could resolve differences in the Aha-labeled proteome between developmental time points. Newly synthesized Aha-labeled proteins were observed by 3 h and peak labeling was around 6 h. Notably, extracellular matrix and cytoskeletal turnover appeared lower than the cytosolic fraction. Conclusions The methods developed in this work enable the identification and quantification of protein synthesis and turnover in different tissue fractions during development. This will provide insight into functional tissue assembly and ultimately inform the design of regenerative therapies that seek to promote growth and repair.
Collapse
|
32
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
33
|
Garcia-Moreno SA, Lin YT, Futtner CR, Salamone IM, Capel B, Maatouk DM. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet 2019; 15:e1007895. [PMID: 31116734 PMCID: PMC6548405 DOI: 10.1371/journal.pgen.1007895] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/04/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
XX and XY fetal gonads are initially bipotential, poised between the ovary and testis fate. Multiple lines of evidence suggest that commitment to testis fate requires the repression of genes associated with ovary fate. It was previously shown that loss of CBX2, the subunit of the Polycomb Repressive Complex 1 (PRC1) that binds H3K27me3 and mediates silencing, leads to ovary development in XY mice and humans. While it had been proposed that CBX2 is an activator of the testis-determining gene Sry, we investigated the alternative possibility that CBX2 has a direct role as a repressor of the antagonistic ovary-promoting pathway. To investigate this possibility, we developed a quantitative genome-wide profile of the repressive histone mark H3K27me3 and its active counterpart H3K4me3 in isolated XY and XX gonadal supporting cells before and after sex determination. We show that testis and ovary sex-determining (SD) genes are bivalent before sex determination, providing insight into how the bipotential state of the gonad is established at the epigenetic level. After sex determination, many SD genes of the alternate pathway remain bivalent, possibly contributing to the ability of these cells to transdifferentiate even in adults. The finding that many genes in the Wnt signaling pathway were targeted for H3K27me3-mediated repression in Sertoli cells led us to test whether deletion of Wnt4 could rescue testis development in Cbx2 mutants. We show that Sry expression and testis development were rescued in XY Cbx2-/-;Wnt4-/- mice. Furthermore, we show that CBX2 directly binds the downstream Wnt signaler Lef1, an ovary-promoting gene that remains bivalent in Sertoli cells. Our results suggest that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development. During development, the bipotential fetal gonad can commit to the testis fate or to the ovary fate. Mutation of the epigenetic regulator CBX2 leads to ovary development in XY embryos, suggesting a critical role for chromatin remodeling during sex determination. However, the epigenetic mechanisms that regulate the testis vs. ovary cell-fate decision in the mammalian bipotential gonad are poorly understood. In this study, we developed a genome-wide profile of two histone modifications that play critical roles during development: H3K27me3 (repressive) and H3K4me3 (active). We find that sex-determining genes that are initially co-expressed in XX and XY bipotential gonads are bivalent (marked by both H3K4me3 and H3K27me3) prior to sex determination, poised to engage either the testis or ovary fate. Remarkably, after sex determination, repressed genes that promote the alternate fate remain bivalent. We show that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development. Our study provides insight into how the bipotential state of the gonad is established at the epigenetic level, and how the testis fate is stabilized by repression of the ovary fate during sex determination.
Collapse
Affiliation(s)
- S. Alexandra Garcia-Moreno
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Yi-Tzu Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher R. Futtner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Isabella M. Salamone
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| | - Danielle M. Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
35
|
Stévant I, Nef S. Genetic Control of Gonadal Sex Determination and Development. Trends Genet 2019; 35:346-358. [PMID: 30902461 DOI: 10.1016/j.tig.2019.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Sex determination is the process by which the bipotential gonads develop as either testes or ovaries. With two distinct potential outcomes, the gonadal primordium offers a unique model for the study of cell fate specification and how distinct cell populations diverge from multipotent progenitors. This review focuses on recent advances in our understanding of the genetic programs and epigenetic mechanisms that regulate gonadal sex determination and the regulation of cell fate commitment in the bipotential gonads. We rely primarily on mouse data to illuminate the complex and dynamic genetic programs controlling cell fate decision and sex-specific cell differentiation during gonadal formation and gonadal sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
36
|
Abstract
Germ cells are the stem cells of the species. Thus, it is critical that we have a good understanding of how they are specified, how the somatic cells instruct and support them, how they commit to one or other sex, and how they ultimately develop into functional gametes. Here, we focus on specifics of how sexual fate is determined during fetal life. Because the majority of relevant experimental work has been done using the mouse model, we focus on that species. We review evidence regarding the identity of instructive signals from the somatic cells, and the molecular responses that occur in germ cells in response to those extrinsic signals. In this way we aim to clarify progress to date regarding the mechanisms underlying the mitotic to meiosis switch in germ cells of the fetal ovary, and those involved in adopting and securing male fate in germ cells of the fetal testis.
Collapse
Affiliation(s)
- Cassy Spiller
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
37
|
Garcia-Moreno SA, Futtner CR, Salamone IM, Gonen N, Lovell-Badge R, Maatouk DM. Gonadal supporting cells acquire sex-specific chromatin landscapes during mammalian sex determination. Dev Biol 2018; 446:168-179. [PMID: 30594505 DOI: 10.1016/j.ydbio.2018.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Cis-regulatory elements are critical for the precise spatiotemporal regulation of genes during development. However, identifying functional regulatory sites that drive cell differentiation in vivo has been complicated by the high numbers of cells required for whole-genome epigenetic assays. Here, we identified putative regulatory elements during sex determination by performing ATAC-seq and ChIP-seq for H3K27ac in purified XX and XY gonadal supporting cells before and after sex determination in mice. We show that XX and XY supporting cells initiate sex determination with similar chromatin landscapes and acquire sex-specific regulatory elements as they commit to the male or female fate. To validate our approach, we identified a functional gonad-specific enhancer downstream of Bmp2, an ovary-promoting gene. This work increases our understanding of the complex regulatory network underlying mammalian sex determination and provides a powerful resource for identifying non-coding regulatory elements that could harbor mutations that lead to Disorders of Sexual Development.
Collapse
Affiliation(s)
| | - Christopher R Futtner
- Department of Endocrinology, Northwestern University, Chicago, IL 60611, United States.
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nitzan Gonen
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Danielle M Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
38
|
Zhao L, Wang C, Lehman ML, He M, An J, Svingen T, Spiller CM, Ng ET, Nelson CC, Koopman P. Transcriptomic analysis of mRNA expression and alternative splicing during mouse sex determination. Mol Cell Endocrinol 2018; 478:84-96. [PMID: 30053582 DOI: 10.1016/j.mce.2018.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Mammalian sex determination hinges on sexually dimorphic transcriptional programs in developing fetal gonads. A comprehensive view of these programs is crucial for understanding the normal development of fetal testes and ovaries and the etiology of human disorders of sex development (DSDs), many of which remain unexplained. Using strand-specific RNA-sequencing, we characterized the mouse fetal gonadal transcriptome from 10.5 to 13.5 days post coitum, a key time window in sex determination and gonad development. Our dataset benefits from a greater sensitivity, accuracy and dynamic range compared to microarray studies, allows global dynamics and sex-specificity of gene expression to be assessed, and provides a window to non-transcriptional events such as alternative splicing. Spliceomic analysis uncovered female-specific regulation of Lef1 splicing, which may contribute to the enhanced WNT signaling activity in XX gonads. We provide a user-friendly visualization tool for the complete transcriptomic and spliceomic dataset as a resource for the field.
Collapse
Affiliation(s)
- Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chenwei Wang
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Mingyu He
- Longsoft, Brisbane, Queensland, 4109, Australia
| | - Jiyuan An
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Terje Svingen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Cassy M Spiller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ee Ting Ng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
39
|
Rotgers E, Jørgensen A, Yao HHC. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr Rev 2018; 39:739-759. [PMID: 29771299 PMCID: PMC6173476 DOI: 10.1210/er.2018-00010] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 01/07/2023]
Abstract
The reproductive endocrine systems are vastly different between males and females. This sexual dimorphism of the endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. Most gonadal somatic cells arise from the adrenogonadal primordium. After separation of the adrenal and gonadal primordia, the gonadal somatic cells initiate sex-specific differentiation during gonadal sex determination with the specification of the supporting cell lineages: Sertoli cells in the testis vs granulosa cells in the ovary. The supporting cell lineages then facilitate the differentiation of the steroidogenic cell lineages, Leydig cells in the testis and theca cells in the ovary. Proper differentiation of these cell types defines the somatic cell environment that is essential for germ cell development, hormone production, and establishment of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modeled using genetically modified mouse models. In this review, we focus on the fate decision processes from the initial stage of formation of the adrenogonadal primordium in the embryo to the maintenance of the somatic cell identities in the gonads when they become fully differentiated in adulthood.
Collapse
Affiliation(s)
- Emmi Rotgers
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Research and Research Training Center in Endocrine Disruption of Male Reproduction and Child Health, Copenhagen, Denmark
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
40
|
Della Torre S, Rando G, Meda C, Ciana P, Ottobrini L, Maggi A. Transcriptional activity of oestrogen receptors in the course of embryo development. J Endocrinol 2018; 238:165-176. [PMID: 30012715 PMCID: PMC6084787 DOI: 10.1530/joe-18-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
Abstract
Oestrogens are well-known proliferation and differentiation factors that play an essential role in the correct development of sex-related organs and behaviour in mammals. With the use of the ERE-Luc reporter mouse model, we show herein that throughout mouse development, oestrogen receptors (ERs) are active starting from day 12 post conception. Most interestingly, we show that prenatal luciferase expression in each organ is proportionally different in relation to the germ layer of the origin. The luciferase content is highest in ectoderm-derived organs (such as brain and skin) and is lowest in endoderm-derived organs (such as liver, lung, thymus and intestine). Consistent with the testosterone surge occurring in male mice at the end of pregnancy, in the first 2 days after birth, we observed a significant increase in the luciferase content in several organs, including the liver, bone, gonads and hindbrain. The results of the present study show a widespread transcriptional activity of ERs in developing embryos, pointing to the potential contribution of these receptors in the development of non-reproductive as well as reproductive organs. Consequently, the findings reported here might be relevant in explaining the significant differences in male and female physiopathology reported by a growing number of studies and may underline the necessity for more systematic analyses aimed at the identification of the prenatal effects of drugs interfering with ER signalling, such as aromatase inhibitors or endocrine disrupter chemicals.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Gianpaolo Rando
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Clara Meda
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| | - Paolo Ciana
- Department of Oncology and Hemato-OncologyUniversity of Milan, Milan, Italy
| | - Luisa Ottobrini
- Department of Pathophysiology and TransplantationUniversity of Milan, Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative DiseasesUniversity of Milan, Milan, Italy
- Department of Pharmacological and Biomolecular SciencesUniversity of Milan, Milan, Italy
| |
Collapse
|
41
|
Garcia-Moreno SA, Plebanek MP, Capel B. Epigenetic regulation of male fate commitment from an initially bipotential system. Mol Cell Endocrinol 2018; 468:19-30. [PMID: 29410272 PMCID: PMC6084468 DOI: 10.1016/j.mce.2018.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/21/2022]
Abstract
A fundamental goal in biology is to understand how distinct cell types containing the same genetic information arise from a single stem cell throughout development. Sex determination is a key developmental process that requires a unidirectional commitment of an initially bipotential gonad towards either the male or female fate. This makes sex determination a unique model to study cell fate commitment and differentiation in vivo. We have focused this review on the accumulating evidence that epigenetic mechanisms contribute to the bipotential state of the fetal gonad and to the regulation of chromatin accessibility during and immediately downstream of the primary sex-determining switch that establishes the male fate.
Collapse
Affiliation(s)
| | | | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
42
|
Stévant I, Nef S. Single cell transcriptome sequencing: A new approach for the study of mammalian sex determination. Mol Cell Endocrinol 2018; 468:11-18. [PMID: 29371022 DOI: 10.1016/j.mce.2018.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/21/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Mammalian sex determination is a highly complex developmental process that is particularly difficult to study due to the limited number of gonadal cells present at the bipotential stage, the large cellular heterogeneity in both testis and ovaries and the rapid sex-dependent differentiation processes. Single-cell RNA-sequencing (scRNA-seq) circumvents the averaging artifacts associated with methods traditionally used to profile bulk populations of cells. It is a powerful tool that allows the identification and classification of cell populations in a comprehensive and unbiased manner. In particular, scRNA-seq enables the tracing of cells along developmental trajectories and characterization of the transcriptional dynamics controlling their differentiation. In this review, we describe the current state-of-the-art experimental methods used for scRNA-seq and discuss their strengths and limitations. Additionally, we summarize the multiple key insights that scRNA-seq has provided to the understanding of mammalian sex determination. Finally, we briefly discuss the future of this technology, as well as complementary applications in single cell -omics in the context of mammalian sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
43
|
Lecluze E, Jégou B, Rolland AD, Chalmel F. New transcriptomic tools to understand testis development and functions. Mol Cell Endocrinol 2018; 468:47-59. [PMID: 29501799 DOI: 10.1016/j.mce.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
The testis plays a central role in the male reproductive system - secreting several hormones including male steroids and producing male gametes. A complex and coordinated molecular program is required for the proper differentiation of testicular cell types and maintenance of their functions in adulthood. The testicular transcriptome displays the highest levels of complexity and specificity across all tissues in a wide range of species. Many studies have used high-throughput sequencing technologies to define the molecular dynamics and regulatory networks in the testis as well as to identify novel genes or gene isoforms expressed in this organ. This review intends to highlight the complementarity of these transcriptomic studies and to show how the use of different sequencing protocols contribute to improve our global understanding of testicular biology.
Collapse
Affiliation(s)
- Estelle Lecluze
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Bernard Jégou
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, Environnement et travail) - UMR_S1085, F-35000 Rennes, France.
| |
Collapse
|
44
|
Rahmoun M, Lavery R, Laurent-Chaballier S, Bellora N, Philip GK, Rossitto M, Symon A, Pailhoux E, Cammas F, Chung J, Bagheri-Fam S, Murphy M, Bardwell V, Zarkower D, Boizet-Bonhoure B, Clair P, Harley VR, Poulat F. In mammalian foetal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Nucleic Acids Res 2017; 45:7191-7211. [PMID: 28472341 PMCID: PMC5499551 DOI: 10.1093/nar/gkx328] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
In mammalian embryonic gonads, SOX9 is required for the determination of Sertoli cells that orchestrate testis morphogenesis. To identify genetic networks directly regulated by SOX9, we combined analysis of SOX9-bound chromatin regions from murine and bovine foetal testes with sequencing of RNA samples from mouse testes lacking Sox9. We found that SOX9 controls a conserved genetic programme that involves most of the sex-determining genes. In foetal testes, SOX9 modulates both transcription and directly or indirectly sex-specific differential splicing of its target genes through binding to genomic regions with sequence motifs that are conserved among mammals and that we called ‘Sertoli Cell Signature’ (SCS). The SCS is characterized by a precise organization of binding motifs for the Sertoli cell reprogramming factors SOX9, GATA4 and DMRT1. As SOX9 biological role in mammalian gonads is to determine Sertoli cells, we correlated this genomic signature with the presence of SOX9 on chromatin in foetal testes, therefore equating this signature to a genomic bar code of the fate of foetal Sertoli cells. Starting from the hypothesis that nuclear factors that bind to genomic regions with SCS could functionally interact with SOX9, we identified TRIM28 as a new SOX9 partner in foetal testes.
Collapse
Affiliation(s)
- Massilva Rahmoun
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Rowena Lavery
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Sabine Laurent-Chaballier
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France
| | - Nicolas Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue - CONICET, Bariloche, Argentina
| | - Gayle K Philip
- VLSCI, LAB-14, 700 Swanston Street, Carlton 3053, Victoria, Australia
| | - Moïra Rossitto
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Aleisha Symon
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Eric Pailhoux
- INRA Biologie du Développement et Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France
| | - Jessica Chung
- VLSCI, LAB-14, 700 Swanston Street, Carlton 3053, Victoria, Australia
| | - Stefan Bagheri-Fam
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Mark Murphy
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - Vivian Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - David Zarkower
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Philippe Clair
- University of Montpellier, Montpellier GenomiX, bat 24, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Vincent R Harley
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Francis Poulat
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| |
Collapse
|
45
|
Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 2017; 18:675-689. [DOI: 10.1038/nrg.2017.60] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Radhakrishnan S, Literman R, Neuwald J, Severin A, Valenzuela N. Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development. PLoS One 2017; 12:e0172044. [PMID: 28296881 PMCID: PMC5352168 DOI: 10.1371/journal.pone.0172044] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the thermosensitive period, and at equivalent stages in soft-shell turtles (Apalone spinifera-GSD), to test whether TSD's and GSD's transcriptional circuitry is identical but deployed differently between mechanisms. Our data show that most elements of the mammalian urogenital network are active during turtle gonadogenesis, but their transcription is generally more thermoresponsive in TSD than GSD, and concordant with their sex-specific function in mammals [e.g., upregulation of Amh, Ar, Esr1, Fog2, Gata4, Igf1r, Insr, and Lhx9 at male-producing temperature, and of β-catenin, Foxl2, Aromatase (Cyp19a1), Fst, Nf-kb, Crabp2 at female-producing temperature in Chrysemys]. Notably, antagonistic elements in gonadogenesis (e.g., β-catenin and Insr) were thermosensitive only in TSD early-embryos. Cirbp showed warm-temperature upregulation in both turtles disputing its purported key TSD role. Genes that may convert thermal inputs into sex-specific development (e.g., signaling and hormonal pathways, RNA-binding and heat-shock) were differentially regulated. Jak-Stat, Nf-κB, retinoic-acid, Wnt, and Mapk-signaling (not Akt and Ras-signaling) potentially mediate TSD thermosensitivity. Numerous species-specific ncRNAs (including Xist) were differentially-expressed, mostly upregulated at colder temperatures, as were unannotated loci that constitute novel TSD candidates. Cirbp showed warm-temperature upregulation in both turtles. Consistent transcription between turtles and alligator revealed putatively-critical reptilian TSD elements for male (Sf1, Amh, Amhr2) and female (Crabp2 and Hspb1) gonadogenesis. In conclusion, while preliminary, our data helps illuminate the regulation and evolution of vertebrate sex determination, and contribute genomic resources to guide further research into this fundamental biological process.
Collapse
Affiliation(s)
- Srihari Radhakrishnan
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States of America
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Robert Literman
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
- Ecology and Evolutionary Biology Program, Iowa State University, Ames, IA, United States of America
| | - Jennifer Neuwald
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Andrew Severin
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
- Genome Informatics Facility, Iowa State University, Ames, IA, United States of America
| | - Nicole Valenzuela
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
47
|
McClelland KS, Yao HHC. Leveraging Online Resources to Prioritize Candidate Genes for Functional Analyses: Using the Fetal Testis as a Test Case. Sex Dev 2017; 11:1-20. [PMID: 28196369 PMCID: PMC6171109 DOI: 10.1159/000455113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
With each new microarray or RNA-seq experiment, massive quantities of transcriptomic information are generated with the purpose to produce a list of candidate genes for functional analyses. Yet an effective strategy remains elusive to prioritize the genes on these candidate lists. In this review, we outline a prioritizing strategy by taking a step back from the bench and leveraging the rich range of public databases. This in silico approach provides an economical, less biased, and more effective solution. We discuss the publicly available online resources that can be used to answer a range of questions about a gene. Is the gene of interest expressed in the system of interest (using expression databases)? Where else is this gene expressed (using added-value transcriptomic resources)? What pathways and processes is the gene involved in (using enriched gene pathway analysis and mouse knockout databases)? Is this gene correlated with human diseases (using human disease variant databases)? Using mouse fetal testis as an example, our strategies identified 298 genes annotated as expressed in the fetal testis. We cross-referenced these genes to existing microarray data and narrowed the list down to cell-type-specific candidates (35 for Sertoli cells, 11 for Leydig cells, and 25 for germ cells). Our strategies can be customized so that they allow researchers to effectively and confidently prioritize genes for functional analysis.
Collapse
Affiliation(s)
- Kathryn S McClelland
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
48
|
Maatouk DM, Natarajan A, Shibata Y, Song L, Crawford GE, Ohler U, Capel B. Genome-wide identification of regulatory elements in Sertoli cells. Development 2017; 144:720-730. [PMID: 28087634 DOI: 10.1242/dev.142554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/30/2016] [Indexed: 01/22/2023]
Abstract
A current goal of molecular biology is to identify transcriptional networks that regulate cell differentiation. However, identifying functional gene regulatory elements has been challenging in the context of developing tissues where material is limited and cell types are mixed. To identify regulatory sites during sex determination, we subjected Sertoli cells from mouse fetal testes to DNaseI-seq and ChIP-seq for H3K27ac. DNaseI-seq identified putative regulatory sites around genes enriched in Sertoli and pregranulosa cells; however, active enhancers marked by H3K27ac were enriched proximal to only Sertoli-enriched genes. Sequence analysis identified putative binding sites of known and novel transcription factors likely controlling Sertoli cell differentiation. As a validation of this approach, we identified a novel Sertoli cell enhancer upstream of Wt1, and used it to drive expression of a transgenic reporter in Sertoli cells. This work furthers our understanding of the complex genetic network that underlies sex determination and identifies regions that potentially harbor non-coding mutations underlying disorders of sexual development.
Collapse
Affiliation(s)
- Danielle M Maatouk
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.,Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Anirudh Natarajan
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Yoichiro Shibata
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC 27708, USA
| | - Uwe Ohler
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA.,Max Delbruck Center for Molecular Medicine, Berlin 13125, Germany
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
49
|
Abstract
Renal anomalies are common birth defects that may manifest as a wide spectrum of anomalies from hydronephrosis (dilation of the renal pelvis and calyces) to renal aplasia (complete absence of the kidney(s)). Aneuploidies and mosaicisms are the most common syndromes associated with CAKUT. Syndromes with single gene and renal developmental defects are less common but have facilitated insight into the mechanism of renal and other organ development. Analysis of underlying genetic mutations with transgenic and mutant mice has also led to advances in our understanding of mechanisms of renal development.
Collapse
|
50
|
Gonen N, Quinn A, O’Neill HC, Koopman P, Lovell-Badge R. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLoS Genet 2017; 13:e1006520. [PMID: 28045957 PMCID: PMC5207396 DOI: 10.1371/journal.pgen.1006520] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/02/2016] [Indexed: 01/18/2023] Open
Abstract
During mouse sex determination, transient expression of the Y-linked gene Sry up-regulates its direct target gene Sox9, via a 3.2 kb testis specific enhancer of Sox9 (TES), which includes a core 1.4 kb element, TESCO. SOX9 activity leads to differentiation of Sertoli cells, rather than granulosa cells from the bipotential supporting cell precursor lineage. Here, we present functional analysis of TES/TESCO, using CRISPR/Cas9 genome editing in mice. Deletion of TESCO or TES reduced Sox9 expression levels in XY fetal gonads to 60 or 45% respectively relative to wild type gonads, and reduced expression of the SOX9 target Amh. Although human patients heterozygous for null mutations in SOX9, which are assumed to have 50% of normal expression, often show XY female sex reversal, mice deleted for one copy of Sox9 do not. Consistent with this, we did not observe sex reversal in either TESCO-/- or TES-/- XY embryos or adult mice. However, embryos carrying both a conditional Sox9 null allele and the TES deletion developed ovotestes. Quantitative analysis of these revealed levels of 23% expression of Sox9 compared to wild type, and a significant increase in the expression of the granulosa cell marker Foxl2. This indicates that the threshold in mice where sex reversal begins to be seen is about half that of the ~50% levels predicted in humans. Our results demonstrate that TES/TESCO is a crucial enhancer regulating Sox9 expression in the gonad, but point to the existence of additional enhancers that act redundantly.
Collapse
Affiliation(s)
- Nitzan Gonen
- The Francis Crick Institute, Midland Road, London, United Kingdom
| | - Alexander Quinn
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Helen C. O’Neill
- The Francis Crick Institute, Midland Road, London, United Kingdom
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|