1
|
Lei K, Chen Y, Wu J, Lin Y, Bai Y, Cao H, Che Q, Guo J, Su Z. Mechanism of liver x receptor alpha in intestine, liver and adipose tissues in metabolic associated fatty liver disease. Int J Biol Macromol 2025; 307:142275. [PMID: 40112983 DOI: 10.1016/j.ijbiomac.2025.142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Metabolism associated fatty liver disease (MAFLD) has emerged as a growing global health challenge with limited effective treatments. Research on nuclear receptors offers promising new therapeutic avenues for MAFLD. The liver X receptor (LXR) has gained attention for its roles in tumors and metabolic and inflammatory diseases; However, its effects on MAFLD treatment remain a subject of debate. This review explores the therapeutic role of LXRα in MAFLD, focusing on its functions in the intestine, hepatic and adipose tissue, and summarizes recent advancements in LXRα ligands over the past five years. In the intestine, LXRα activation enhances the efflux of non-biliary cholesterol and reduces inflammation in the gut-liver axis by regulating intestinal high-density lipoprotein synthesis and its interaction with lipopolysaccharide. In the liver, LXRα activation facilitates cholesterol transport, influences hepatic lipid synthesis, and exerts anti-inflammatory effects. In adipose tissue, LXRα helps delay MAFLD progression by managing lipid autophagy and insulin resistance. Ligands that modulate LXRα transcriptional activity show considerable promise for MAFLD treatment.
Collapse
Affiliation(s)
- Kaiwen Lei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianxing Wu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiyu Lin
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Chang X, Li Z, Khac Thai PV, Minh Ha DT, Thuong Thuong NT, Wee D, Binte Mohamed Subhan AS, Silcocks M, Eng Chee CB, Quynh Nhu NT, Heng CK, Teo YY, Singal A, Oehlers SH, Yuan JM, Koh WP, Caws M, Khor CC, Dorajoo R, Dunstan SJ. Genome-wide association study reveals a novel tuberculosis susceptibility locus in multiple East Asian and European populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.14.24304327. [PMID: 40313261 PMCID: PMC12045432 DOI: 10.1101/2024.03.14.24304327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Background Tuberculosis (TB) continues to be a leading cause of morbidity and mortality worldwide. Past genome-wide association studies (GWAS) have explored TB susceptibility across various ethnic groups, yet a significant portion of TB heritability remains unexplained. Methods We conducted GWAS in the Singapore Chinese and Vietnamese, followed by a comprehensive meta-analysis incorporating 4 independent East Asian datasets, resulting in a total of 11,841 cases and 197,373 population controls. Findings We identified a novel susceptibility locus for pulmonary TB (PTB) at 22q12.2 in East Asians [rs6006426, OR (95%Cl) =1.097(1.066, 1.130), P meta =3.31×10 -10 ]. The association was further validated in Europeans [OR (95%Cl) =1.101(1.002, 1.211), P =0.046] and was strengthened in the combined meta-anlaysis including 12,736 PTB cases and 673,864 controls [OR (95%Cl) =1.098(1.068, 1.129), P meta =4.33×10 -11 ]. rs6006426 affected SF3A1 expression in various immune cells ( P from 0.003 to 6.17×10 -18 ) and OSM expression in monocytes post lipopolysaccharide stimulation ( P =5.57×10 -4 ). CRISPR-Cas9 edited zebrafish embryos with osm depletion resulted in decreased burden of Mycobacterium marinum ( M.marinum ) in infected embryos ( P =0.047). Interpretation Our findings offer novel insights into the genetic factors underlying TB and reveals new avenues for understanding its etiology.
Collapse
|
3
|
Shuai X, Sun Y, Liu S, Cheng Z. SF3a1: A Novel Potential Tumor Biomarker or Therapeutic Target. J Cancer 2025; 16:2353-2359. [PMID: 40302801 PMCID: PMC12036105 DOI: 10.7150/jca.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Alternative splicing is an evolutionarily conserved and essential cellular process that is catalyzed by a multi-complex spliceosome. Dysregulation of this process has been implicated in various tumors over the recent years. SF3a1 is a critical subunit of U2 small nuclear ribonucleoprotein (snRNP) in the spliceosome, which has been found to be aberrant in several human diseases. Recent reports suggest that SF3a1 might be a novel therapeutic target. However, a comprehensive description of SF3a1 is lacking. In this review, we present the findings of SF3a1 from protein structure, biological function to strong associations with human diseases including cancer. Studies have reported that SF3a1 dysregulation and associated alternative splicing events mediate tumorigenesis and other immune-related disorders. However, further functional and mechanistic studies are needed to fully understand the regulatory network of SF3a1 in human diseases. In conclusion, SF3a1 could serve as a promising prognostic biomarker and therapeutic target for specific cancer types, including prostate cancer, colorectal cancer and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xueqian Shuai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Shupeng Liu
- Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, 200434, China
| | - Zhongping Cheng
- Gynecological Minimally Invasive Surgery Institute, Tongji University School of Medicine, Shanghai, 200331, China
| |
Collapse
|
4
|
Cao M, Yan J, Ding Y, Zhang Y, Sun Y, Jiang G, Zhang Y, Li B. The potential impact of RNA splicing abnormalities on immune regulation in endometrial cancer. Cell Death Dis 2025; 16:148. [PMID: 40032844 PMCID: PMC11876696 DOI: 10.1038/s41419-025-07458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
RNA splicing controls the post-transcriptional level of gene expression, allowing for the synthesis of many transcripts with various configurations and roles. Variations in RNA splicing regulatory factors, including splicing factors, signaling pathways, epigenetic modifications, and environmental factors, are typically the origin of tumor-associated splicing anomalies. Furthermore, thorough literature assessments on the intricate connection between tumor-related splicing dysregulation and tumor immunity are currently lacking. Therefore, we also thoroughly discuss putative targets associated with RNA splicing in endometrial cancer (EC) and the possible impacts of aberrant RNA splicing on the immune control of tumor cells and tumor microenvironment (TME), which contributes to enhancing the utilization of immunotherapy in the management of EC and offers an alternative viewpoint for the exploration of cancer therapies and plausible prognostic indicators.
Collapse
Affiliation(s)
- Minyue Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiayu Yan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yan Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiqin Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yihan Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Genyi Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yanli Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bilan Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Burke S, Chowdhury O, Rouault‐Pierre K. Low-risk MDS-A spotlight on precision medicine for SF3B1-mutated patients. Hemasphere 2025; 9:e70103. [PMID: 40124717 PMCID: PMC11926769 DOI: 10.1002/hem3.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
A deep understanding of the biological mechanisms driving the pathogenesis of myelodysplastic neoplasms (MDS) is essential to develop comprehensive therapeutic approaches that will benefit patient's disease management and quality of life. In this review, we focus on MDS harboring mutations in the splicing factor SF3B1. Clones harboring this mutation arise from the most primitive hematopoietic compartment and expand throughout the entire myeloid lineage, exerting distinct effects at various stages of differentiation. Supportive care, particularly managing anemia, remains essential in SF3B1-mutated MDS. While SF3B1 mutations are frequently linked with ring sideroblasts and iron overload due to impaired erythropoiesis, the current therapeutic landscape fails to adequately address the underlying disease biology, particularly in transfusion-dependent patients, where further iron overload contributes to increased morbidity and mortality. Novel agents such as Luspatercept and Imetelstat have shown promise, but their availability remains restricted and their long-term efficacy is to be investigated. Spliceosome modulators have failed to deliver and inhibitors of inflammatory pathways, including TLR and NF-κB inhibitors, are still under investigation. This scarcity of effective and disease-modifying therapies highlights the unmet need for new approaches tailored to the molecular and genetic abnormalities in SF3B1-mutated MDS. Emerging strategies targeting metabolic mis-splicing (e.g., COASY) with vitamin B5, pyruvate kinase activators, and inhibitors of oncogenic pathways like MYC and BCL-2 represent potential future avenues for treatment, but their clinical utility remains to be fully explored. The current limitations in treatment underscore the urgency of developing novel, more effective therapies for patients with SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Shoshana Burke
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Onima Chowdhury
- Oxford University Hospitals NHS Foundation TrustOxfordUK
- Molecular Haematology Unit, Weatherall institute of Molecular Medicine NHR, Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Kevin Rouault‐Pierre
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| |
Collapse
|
6
|
Scott KA, Kojima H, Ropek N, Warren CD, Zhang TL, Hogg SJ, Sanford H, Webster C, Zhang X, Rahman J, Melillo B, Cravatt BF, Lyu J, Abdel-Wahab O, Vinogradova EV. Covalent targeting of splicing in T cells. Cell Chem Biol 2025; 32:201-218.e17. [PMID: 39591969 PMCID: PMC12068509 DOI: 10.1016/j.chembiol.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and extensive ITK mRNA alternative splicing. We further introduce the most comprehensive list to date of proteins involved in splicing and leverage cysteine- and protein-directed activity-based protein profiling with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.
Collapse
Affiliation(s)
- Kevin A Scott
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hiroyuki Kojima
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathalie Ropek
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Charles D Warren
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Tiffany L Zhang
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henry Sanford
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Caroline Webster
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiankun Lyu
- The Evnin Family Laboratory of Computational Molecular Discovery, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina V Vinogradova
- Department of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
7
|
Takashima M, Kurita M, Terai H, Zhao FQ, Suzuki JI. S-allylmercaptocysteine inhibits TLR4-mediated inflammation through enhanced formation of inhibitory MyD88 splice variant in mammary epithelial cells. Sci Rep 2024; 14:29627. [PMID: 39609525 PMCID: PMC11604973 DOI: 10.1038/s41598-024-81304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Mastitis is an inflammatory disease affecting mammary tissues caused by bacterial infection that negatively affects milk quality and quantity. S-Allylmercaptocysteine (SAMC), a sulfur compound in aged garlic extract (AGE), suppresses lipopolysaccharide (LPS)-induced inflammation in mouse models and cell cultures. However, the mechanisms underlying this anti-inflammatory effect remain unclear. In this study, we demonstrated that oral administration of AGE suppressed the LPS-induced immune response in a mastitis mouse model and that SAMC inhibited LPS-induced interleukin-6 production and nuclear factor κB p65 subunit activation in HC11 mammary epithelial cells. Global phosphoproteomic analysis revealed that SAMC treatment downregulated 910 of the 1,304 phosphorylation sites upregulated by LPS stimulation in mammary cells, including those associated with toll-like receptor 4 (TLR4) signaling. Additionally, SAMC decreased the phosphorylation of 26 proteins involved in pre-mRNA splicing, particularly the U2 small nuclear ribonucleoprotein complex. Furthermore, we found that SAMC increased the production of the myeloid differentiation factor 88 short form (MyD88-S), an alternatively spliced form of MyD88 that negatively regulates TLR4 signaling. These findings suggest that SAMC inhibits TLR4-mediated inflammation via alternative pre-mRNA splicing, thus promoting MyD88-S production in mammary epithelial cells. Therefore, SAMC may alleviate various inflammatory diseases, such as mastitis, by modulating immune responses.
Collapse
Affiliation(s)
- Miyuki Takashima
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan.
| | - Masahiro Kurita
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Haruhi Terai
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, 102 Terrill, 570 Main Street, Burlington, VT, 05405, USA
| | - Jun-Ichiro Suzuki
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd, 1624, Koda-cho, Akitakata-shi, Hiroshima, 739-1195, Japan
| |
Collapse
|
8
|
Salz R, Vorsteveld EE, van der Made CI, Kersten S, Stemerdink M, Riepe TV, Hsieh TH, Mhlanga M, Netea MG, Volders PJ, Hoischen A, ’t Hoen PA. Multi-omic profiling of pathogen-stimulated primary immune cells. iScience 2024; 27:110471. [PMID: 39091463 PMCID: PMC11293528 DOI: 10.1016/j.isci.2024.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Emil E. Vorsteveld
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Caspar I. van der Made
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Simone Kersten
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Merel Stemerdink
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tsung-han Hsieh
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Musa Mhlanga
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium
| | - Alexander Hoischen
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
9
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
10
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
11
|
Lee FFY, Harris C, Alper S. RNA Binding Proteins that Mediate LPS-induced Alternative Splicing of the MyD88 Innate Immune Regulator. J Mol Biol 2024; 436:168497. [PMID: 38369277 PMCID: PMC11001520 DOI: 10.1016/j.jmb.2024.168497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Inflammation driven by Toll-like receptor (TLR) signaling pathways is required to combat infection. However, inflammation can damage host tissues; thus it is essential that TLR signaling ultimately is terminated to prevent chronic inflammatory disorders. One mechanism that terminates persistent TLR signaling is alternative splicing of the MyD88 signaling adaptor, which functions in multiple TLR signaling pathways. While the canonical long isoform of MyD88 (MyD88-L) mediates TLR signaling and promotes inflammation, an alternatively-spliced shorter isoform of MyD88 (MyD88-S) produces a dominant negative inhibitor of TLR signaling. MyD88-S production is induced by inflammatory agonists including lipopolysaccharide (LPS), and thus MyD88-S induction is thought to act as a negative feedback loop that prevents chronic inflammation. Despite the potential role that MyD88-S production plays in inflammatory disorders, the mechanisms controlling MyD88 alternative splicing remain unclear. Here, we identify two RNA binding proteins, SRSF1 and HNRNPU, that regulate LPS-induced alternative splicing of MyD88.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA; Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO 80045, USA.
| |
Collapse
|
12
|
Wu Y, Ni T, Zhang M, Fu S, Ren D, Feng Y, Liang H, Zhang Z, Zhao Y, He Y, Yang Y, Tian Z, Yan T, Liu J. Treatment with β-Adrenoceptor Agonist Isoproterenol Reduces Non-parenchymal Cell Responses in LPS/D-GalN-Induced Liver Injury. Inflammation 2024; 47:733-752. [PMID: 38129360 PMCID: PMC11074027 DOI: 10.1007/s10753-023-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
There is an increasing evidence indicating the involvement of the sympathetic nervous system (SNS) in liver disease development. To achieve an extensive comprehension of the obscure process by which the SNS alleviates inflammatory damage in non-parenchymal liver cells (NPCs) during acute liver failure (ALF), we employ isoproterenol (ISO), a beta-adrenoceptor agonist, to mimic SNS signaling. ISO was administered to C57BL/6J mice to establish an acute liver failure (ALF) model using LPS/D-GalN, which was defined as ISO + ALF. Non-parenchymal cells (NPCs) were isolated from liver tissues and digested for tandem mass tag (TMT) labeled proteomics to identify differentially expressed proteins (DEPs). The administration of ISO resulted in a decreased serum levels of pro-inflammatory cytokines, e.g., TNF-α, IL-1β, and IL-6 in ALF mice, which alleviated liver damage. By using TMT analysis, it was possible to identify 1587 differentially expressed proteins (DEPs) in isolated NPCs. Notably, over 60% of the DEPs in the ISO + ALF vs. ALF comparison were shared in the Con vs. ALF comparison. According to enrichment analysis, the DEPs influenced by ISO in ALF mice were linked to biological functions of heme and fatty acid metabolism, interferon gamma response, TNFA signaling pathway, and mitochondrial oxidation function. Protein-protein interaction network analysis indicated Mapk14 and Caspase3 may serve as potentially valuable indicators of ISO intervention. In addition, the markers on activated macrophages, such as Mapk14, Casp1, Casp8, and Mrc1, were identified downregulated after ISO initiation. ISO treatment increased the abundance of anti-inflammatory markers in mouse macrophages, as evidenced by the immunohistochemistry (IHC) slides showing an increase in Arg + staining and a reduction in iNOS + staining. Furthermore, pretreatment with ISO also resulted in a reduction of LPS-stimulated inflammation signaling markers, Mapk14 and NF-κB, in human THP-1 cells. Prior treatment with ISO may have the potential to modify the biological functions of NPCs and could serve as an innovative pharmacotherapy for delaying the pathogenesis and progression of ALF.
Collapse
Affiliation(s)
- Yuchao Wu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Tianzhi Ni
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Mengmeng Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
- Honghui Hospital, Xi'an Jiaotong University, Xi'an City, China
| | - Shan Fu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Danfeng Ren
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yali Feng
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Huiping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ze Zhang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingren Zhao
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yingli He
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yuan Yang
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Zhen Tian
- Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, China.
| | - Taotao Yan
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| | - Jinfeng Liu
- Department of Infectious Diseases and Hepatopathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China.
| |
Collapse
|
13
|
Sheridan R, Brennan K, Bazou D, O’Gorman P, Matallanas D, Mc Gee MM. Multiple Myeloma Derived Extracellular Vesicle Uptake by Monocyte Cells Stimulates IL-6 and MMP-9 Secretion and Promotes Cancer Cell Migration and Proliferation. Cancers (Basel) 2024; 16:1011. [PMID: 38473370 PMCID: PMC10930391 DOI: 10.3390/cancers16051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple Myeloma (MM) is an incurable haematological malignancy caused by uncontrolled growth of plasma cells. MM pathogenesis is attributed to crosstalk between plasma cells and the bone marrow microenvironment, where extracellular vesicles (EVs) play a role. In this study, EVs secreted from a panel of MM cell lines were isolated from conditioned media by ultracentrifugation and fluorescently stained EVs were co-cultured with THP-1 monocyte cells. MM EVs from three cell lines displayed a differential yet dose-dependent uptake by THP-1 cells, with H929 EVs displaying the greatest EV uptake compared to MM.1s and U266 EVs suggesting that uptake efficiency is dependent on the cell line of origin. Furthermore, MM EVs increased the secretion of MMP-9 and IL-6 from monocytes, with H929 EVs inducing the greatest effect, consistent with the greatest uptake efficiency. Moreover, monocyte-conditioned media collected following H929 EV uptake significantly increased the migration and proliferation of MM cells. Finally, EV proteome analysis revealed differential cargo enrichment that correlates with disease progression including a significant enrichment of spliceosome-related proteins in H929 EVs compared to the U266 and MM.1s EVs. Overall, this study demonstrates that MM-derived EVs modulate monocyte function to promote tumour growth and metastasis and reveals possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Rebecca Sheridan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Margaret M. Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
14
|
Scott KA, Kojima H, Ropek N, Warren CD, Zhang TL, Hogg SJ, Webster C, Zhang X, Rahman J, Melillo B, Cravatt BF, Lyu J, Abdel-Wahab O, Vinogradova EV. Covalent Targeting of Splicing in T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572199. [PMID: 38187674 PMCID: PMC10769204 DOI: 10.1101/2023.12.18.572199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide chemical probe EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and availability of functional mRNA pools that can be depleted due to extensive alternative splicing. We further introduce a comprehensive list of proteins involved in splicing and leverage both cysteine- and protein-directed activity-based protein profiling (ABPP) data with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in primary human T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.
Collapse
|
15
|
Wei W, Wang G, Zhang H, Bao X, An S, Luo Q, He J, Chen L, Ning C, Lai J, Yuan Z, Chen R, Jiang J, Ye L, Liang H. Talaromyces marneffei suppresses macrophage inflammation by regulating host alternative splicing. Commun Biol 2023; 6:1046. [PMID: 37845378 PMCID: PMC10579421 DOI: 10.1038/s42003-023-05409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Talaromyces marneffei (T. marneffei) immune escape is essential in the pathogenesis of talaromycosis. It is currently known that T. marneffei achieves immune escape through various strategies. However, the role of cellular alternative splicing (AS) in immune escape remains unclear. Here, we depict the AS landscape in macrophages upon T. marneffei infection via high-throughput RNA sequencing and detect a truncated protein of NCOR2 / SMRT, named NCOR2-013, which is significantly upregulated after T. marneffei infection. Mechanistic analysis indicates that NCOR2-013 forms a co-repression complex with TBL1XR1 / TBLR1 and HDAC3, thereby inhibiting JunB-mediated transcriptional activation of pro-inflammatory cytokines via the inhibition of histone acetylation. Furthermore, we identify TUT1 as the AS regulator that regulates NCOR2-013 production and promotes T. marneffei immune evasion. Collectively, these findings indicate that T. marneffei escapes macrophage killing through TUT1-mediated alternative splicing of NCOR2 / SMRT, providing insight into the molecular mechanisms of T. marneffei immune evasion and potential targets for talaromycosis therapy.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanyi Ning
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhen Lai
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
16
|
Gurule NJ, Malcolm KC, Harris C, Knapp JR, O'Connor BP, McClendon J, Janssen WJ, Lee FFY, Price C, Osaghae-Nosa J, Wheeler EA, McMahon CM, Pietras EM, Pollyea DA, Alper S. Myelodysplastic neoplasm-associated U2AF1 mutations induce host defense defects by compromising neutrophil chemotaxis. Leukemia 2023; 37:2115-2124. [PMID: 37591942 PMCID: PMC10539173 DOI: 10.1038/s41375-023-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients. To determine the molecular underpinnings of the host defense defects in MDS patients, we investigated the MDS-associated spliceosome mutation U2AF1-S34F using a transgenic mouse model that expresses this mutant gene. We found that U2AF1-S34F causes a profound host defense defect in these mice, likely by inducing a significant neutrophil chemotaxis defect. Studies in human neutrophils suggest that this effect of U2AF1-S34F likely extends to MDS patients as well. RNA-seq analysis suggests that the expression of multiple genes that mediate cell migration are affected by this spliceosome mutation and therefore are likely drivers of this neutrophil dysfunction.
Collapse
Affiliation(s)
- Natalia J Gurule
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | - Caitlin Price
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jackson Osaghae-Nosa
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Eric M Pietras
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA.
| |
Collapse
|
17
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
18
|
Jiang M, Chen M, Liu Q, Jin Z, Yang X, Zhang W. SF3B1 mutations in myelodysplastic syndromes: A potential therapeutic target for modulating the entire disease process. Front Oncol 2023; 13:1116438. [PMID: 37007111 PMCID: PMC10063959 DOI: 10.3389/fonc.2023.1116438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematologic malignancies characterized by ineffective hematopoiesis and dysplasia of the myeloid cell lineage and are characterized by peripheral blood cytopenia and an increased risk of transformation to acute myeloid leukemia (AML). Approximately half of the patients with MDS have somatic mutations in the spliceosome gene. Splicing Factor 3B Subunit 1A (SF3B1), the most frequently occurring splicing factor mutation in MDS is significantly associated with the MDS-RS subtype. SF3B1 mutations are intimately involved in the MDS regulation of various pathophysiological processes, including impaired erythropoiesis, dysregulated iron metabolism homeostasis, hyperinflammatory features, and R-loop accumulation. In the fifth edition of the World Health Organization (WHO) classification criteria for MDS, MDS with SF3B1 mutations has been classified as an independent subtype, which plays a crucial role in identifying the disease phenotype, promoting tumor development, determining clinical features, and influencing tumor prognosis. Given that SF3B1 has demonstrated therapeutic vulnerability both in early MDS drivers and downstream events, therapy based on spliceosome-associated mutations is considered a novel strategy worth exploring in the future.
Collapse
|
19
|
Silva Dos Santos F, Neves RAF, Bernay B, Krepsky N, Teixeira VL, Artigaud S. The first use of LC-MS/MS proteomic approach in the brown mussel Perna perna after bacterial challenge: Searching for key proteins on immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108622. [PMID: 36803779 DOI: 10.1016/j.fsi.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The brown mussel Perna perna is a valuable fishing resource, primarily in tropical and subtropical coastal regions. Because of their filter-feeding habits, mussels are directly exposed to bacteria in the water column. Escherichia coli (EC) and Salmonella enterica (SE) inhabit human guts and reach the marine environment through anthropogenic sources, such as sewage. Vibrio parahaemolyticus (VP) is indigenous to coastal ecosystems but can be harmful to shellfish. In this study, we aimed to assess the protein profile of the hepatopancreas of P. perna mussel challenged by introduced - E. coli and S. enterica - and indigenous marine bacteria - V. parahaemolyticus. Bacterial-challenge groups were compared with non-injected (NC) and injected control (IC) - that consisted in mussels not challenged and mussels injected with sterile PBS-NaCl, respectively. Through LC-MS/MS proteomic analysis, 3805 proteins were found in the hepatopancreas of P. perna. From the total, 597 were significantly different among conditions. Mussels injected with VP presented 343 proteins downregulated compared with all the other conditions, suggesting that VP suppresses their immune response. Particularly, 31 altered proteins - upregulated or downregulated - for one or more challenge groups (EC, SE, and VP) compared with controls (NC and IC) are discussed in detail in the paper. For the three tested bacteria, significantly different proteins were found to perform critical roles in immune response at all levels, namely: recognition and signal transduction; transcription; RNA processing; translation and protein processing; secretion; and humoral effectors. This is the first shotgun proteomic study in P. perna mussel, therefore providing an overview of the protein profile of the mussel hepatopancreas, focused on the immune response against bacteria. Hence, it is possible to understand the immune-bacteria relationship at molecular levels better. This knowledge can support the development of strategies and tools to be applied to coastal marine resource management and contribute to the sustainability of coastal systems.
Collapse
Affiliation(s)
- Fernanda Silva Dos Santos
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil; Research Group of Experimental and Aquatic Ecology, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458-307, Urca, Rio de Janeiro, RJ, CEP: 22.290-240, Brazil.
| | - Benoît Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Valéria Laneuville Teixeira
- Graduate Program in Sciences and Biotechnology, Institute of Biology, Fluminense Federal University (UFF), R. Mario Santos Braga, S/n. Centro, Niterói, RJ, CEP 24.020-141, Brazil; Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, Urca, Rio de Janeiro, RJ, CEP: 22.290-255, Brazil.
| | - Sébastien Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
20
|
Del Padre M, Marrapodi R, Minafò YA, Piano Mortari E, Radicchio G, Bocci C, Gragnani L, Camponeschi A, Colantuono S, Stefanini L, Basili S, Carsetti R, Fiorilli M, Casato M, Visentini M. Dual stimulation by autoantigen and CpG fosters the proliferation of exhausted rheumatoid factor-specific CD21 low B cells in hepatitis C virus-cured mixed cryoglobulinemia. Front Immunol 2023; 14:1094871. [PMID: 36845129 PMCID: PMC9945227 DOI: 10.3389/fimmu.2023.1094871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Hepatitis C virus (HCV) causes mixed cryoglobulinemia (MC) by driving clonal expansion of B cells expressing B cell receptors (BCRs), often encoded by the VH1-69 variable gene, endowed with both rheumatoid factor (RF) and anti-HCV specificity. These cells display an atypical CD21low phenotype and functional exhaustion evidenced by unresponsiveness to BCR and Toll-like receptor 9 (TLR9) stimuli. Although antiviral therapy is effective on MC vasculitis, pathogenic B cell clones persist long thereafter and can cause virus-independent disease relapses. Methods Clonal B cells from patients with HCV-associated type 2 MC or healthy donors were stimulated with CpG or heath-aggregated IgG (as surrogate immune complexes) alone or in combination; proliferation and differentiation were then evaluated by flow cytometry. Phosphorylation of AKT and of the p65 NF-kB subunit were measured by flow cytometry. TLR9 was quantified by qPCR and by intracellular flow cytometry, and MyD88 isoforms were analyzed using RT-PCR. Discussion We found that dual triggering with autoantigen and CpG restored the capacity of exhausted VH1-69pos B cells to proliferate. The signaling mechanism for this BCR/TLR9 crosstalk remains elusive, since TLR9 mRNA and protein as well as MyD88 mRNA were normally expressed and CpG-induced phosphorylation of p65 NF-kB was intact in MC clonal B cells, whereas BCR-induced p65 NF-kB phosphorylation was impaired and PI3K/Akt signaling was intact. Our findings indicate that autoantigen and CpG of microbial or cellular origin may unite to foster persistence of pathogenic RF B cells in HCV-cured MC patients. BCR/TLR9 crosstalk might represent a more general mechanism enhancing systemic autoimmunity by the rescue of exhausted autoreactive CD21low B cells.
Collapse
Affiliation(s)
- Martina Del Padre
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ylenia A Minafò
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Giovanna Radicchio
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Bocci
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefania Colantuono
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- B cell unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Florence, Italy
| | - Massimo Fiorilli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Milvia Casato
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
22
|
Kim S, Ko E, Choi HG, Kim D, Luchi M, Khor B, Kim S. FRTX-02, a selective and potent inhibitor of DYRK1A, modulates inflammatory pathways in mouse models of psoriasis and atopic dermatitis. J Transl Autoimmun 2022; 6:100185. [PMID: 36654851 PMCID: PMC9841288 DOI: 10.1016/j.jtauto.2022.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) has been proposed as a novel regulator of adaptive immune homeostasis through modulating T cell polarization. Thus, DYRK1A could present a potential target in autoimmune disorders. Here, we identify FRTX-02 as a novel compound exhibiting potent and selective inhibition of DYRK1A. FRTX-02 induced transcriptional activity of the DYRK1A substrate NFAT in T cell lines. Correspondingly, FRTX-02 promoted ex vivo CD4+ polarization into anti-inflammatory Tregs and reduced their polarization into pro-inflammatory Th1 or Th17 cells. We show that FRTX-02 could also limit innate immune responses through negative regulation of the MyD88/IRAK4-NF-κB axis in a mast cell line. Finally, in mouse models of psoriasis and atopic dermatitis, both oral and topical formulations of FRTX-02 reduced inflammation and disease biomarkers in a dose-dependent manner. These results support further studies of DYRK1A inhibitors, including FRTX-02, as potential therapies for chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Soochan Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Eunhwa Ko
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Hwan Geun Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea,R&D Center, B2SBio Inc., Incheon, South Korea
| | - Daekwon Kim
- R&D Center, Voronoi Inc., Incheon, South Korea
| | - Monica Luchi
- Fresh Tracks Therapeutics, Inc., Boulder, CO, 80301, USA,Corresponding author.
| | - Bernard Khor
- Benaroya Research Institute, Seattle, WA, 98195, USA
| | | |
Collapse
|
23
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
24
|
Jia B, Wang X, Ma F, Li X, Han X, Zhang L, Li J, Diao N, Shi K, Ge C, Yang F, Du R. The combination of SMRT sequencing and Illumina sequencing highlights organ-specific and age-specific expression patterns of miRNAs in Sika Deer. Front Vet Sci 2022; 9:1042445. [DOI: 10.3389/fvets.2022.1042445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Due to the lack of high-quality Sika Deer (Cervus nippon) transcriptome and sRNAome across multiple organs or development stages, it is impossible to comprehensively analyze the mRNA and miRNA regulatory networks related to growth, development and immunity response. In this study, we used single molecule-real time sequencing (SMRT-seq) and Illumina sequencing methods to generate transcriptome and sRNAome from ten tissues and four age groups of Sika Deer to help us understand molecular characteristics and global miRNA expression profiles. The results showed that a total of 240,846 consensus transcripts were generated with an average length of 2,784 bp. 4,329 Transcription factors (TFs), 109,000 Simple Sequence Repeats (SSRs) and 18,987 Long non-coding RNAs (LncRNAs) were identified. Meanwhile, 306 known miRNAs and 143 novel miRNAs were obtained. A large number of miRNAs showed organ-specific and age-specific differential expression patterns. In particular, we found that the organ-specific miRNAs were enriched in the brain, some of which shared only between the brain and adrenal. These miRNAs were involved in maintaining specific functions within the brain and adrenal. By constructing miRNA96mRNA interaction networks associated with Sika Deer immunity, we found that miRNAs (miR-148a, miR-26a, miR-214, let-7b, etc.) and mRNAs (CD6, TRIM38, C3, CD163, etc.) might play an important role in the immune response of Sika Deer spleen. Together, our study generated an improved transcript annotation for Sika Deer by SMRT-seq and revealed the role of miRNA in regulating the growth, development and immunity response of Sika Deer.
Collapse
|
25
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
26
|
Li N, Li Y, Han X, Zhang J, Han J, Jiang X, Wang W, Xu Y, Xu Y, Fu Y, Si S. LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing. Front Pharmacol 2022; 13:973612. [PMID: 36313296 PMCID: PMC9614042 DOI: 10.3389/fphar.2022.973612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Liver X receptors (LXRs) are important regulators of cholesterol metabolism and inflammatory responses. LXR agonists exhibit potently anti-inflammatory effects in macrophages, which make them beneficial to anti-atherogenic therapy. In addition to transrepressive regulation by SUMOylation, LXRs can inhibit inflammation by various mechanisms through affecting multiple targets. In this study, we found that the classic LXR agonist T0901317 mediated numerous genes containing alternative splice sites, including myeloid differentiation factor 88 (MyD88), that contribute to inflammatory inhibition in RAW264.7 macrophages. Furthermore, T0901317 increased level of alternative splice short form of MyD88 mRNA by down-regulating expression of splicing factor SF3A1, leading to nuclear factor κB-mediated inhibition of inflammation. In conclusion, our results suggest for the first time that the LXR agonist T0901317 inhibits lipopolysaccharide-induced inflammation through regulating MyD88 mRNA alternative splicing involved in TLR4 signaling pathway.
Collapse
Affiliation(s)
- Ni Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Yan Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangxue Han
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Ni Li, ; Yu Fu, ; Shuyi Si,
| |
Collapse
|
27
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
28
|
Sun J, Liu Z, Quan J, Li L, Zhao G, Lu J. RNA-seq Analysis Reveals Alternative Splicing Under Heat Stress in Rainbow Trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:5-17. [PMID: 34787764 DOI: 10.1007/s10126-021-10082-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is one of the most economically important cold-water farmed species in the world, and transcriptomic studies in response to heat stress have been conducted and will be studied in depth. Alternative splicing (AS), a post-transcriptional regulatory process that regulates gene expression and increases proteomic diversity, is still poorly understood in rainbow trout under heat stress. In the present study, 18,623 alternative splicing events were identified from 9936 genes using RNA transcriptome sequencing technology (RNA-Seq) and genomic information. A total of 2731 differential alternative splicing (DAS) events were found among 2179 differentially expressed genes (DEGs). Gene ontology analysis revealed that the DEGs were mainly enriched in cellular metabolic process, cell part, and organic cyclic compound binding under heat stress. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis displayed that the DEGs were enriched for 39 pathways, and some key pathways, such as lysine degradation, are involved in the regulation of heat stress in liver tissues of rainbow trout. The results were validated by qRT-PCR, confirming reliability of our bioinformatics analysis.
Collapse
Affiliation(s)
- Jun Sun
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Province, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
29
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
30
|
Sun J, Li L, Hu J, Gao Y, Song J, Zhang X, Hu H. Time-course RNA-Seq profiling reveals isoform-level gene expression dynamics of the cGAS-STING pathway. Comput Struct Biotechnol J 2022; 20:6490-6500. [PMCID: PMC9686058 DOI: 10.1016/j.csbj.2022.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The cGAS-STING pathway, orchestrating complicated transcriptome-wide immune responses, is essential for host antiviral defense but can also drive immunopathology in severe COVID-19. Here, we performed time-course RNA-Seq experiments to dissect the transcriptome expression dynamics at the gene-isoform level after cGAS-STING pathway activation. The in-depth time-course transcriptome after cGAS-STING pathway activation within 12 h enabled quantification of 48,685 gene isoforms. By employing regression models, we obtained 13,232 gene isoforms with expression patterns significantly associated with the process of cGAS-STING pathway activation, which were named activation-associated isoforms. The combination of hierarchical and k-means clustering algorithms revealed four major expression patterns of activation-associated isoforms, including two clusters with increased expression patterns enriched in cell cycle, autophagy, antiviral innate-immune functions, and COVID-19 coronavirus disease pathway, and two clusters showing decreased expression pattern that mainly involved in ncRNA metabolism, translation process, and mRNA processing. Importantly, by merging four clusters of activation-associated isoforms, we identified three types of genes that underwent isoform usage alteration during the cGAS-STING pathway activation. We further found that genes exhibiting protein-coding and non-protein-coding gene isoform usage alteration were strongly enriched for the factors involved in innate immunity and RNA splicing. Notably, overexpression of an enriched splicing factor, EFTUD2, shifted transcriptome towards the cGAS-STING pathway activated status and promoted protein-coding isoform abundance of several key regulators of the cGAS-STING pathway. Taken together, our results revealed the isoform-level gene expression dynamics of the cGAS-STING pathway and uncovered novel roles of splicing factors in regulating cGAS-STING pathway mediated immune responses.
Collapse
|
31
|
Song R, Tikoo S, Jain R, Pinello N, Au AY, Nagarajah R, Porse B, Rasko JEJ, Wong JJL. Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology 2021; 165:274-286. [PMID: 34775600 DOI: 10.1111/imm.13435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/01/2022] Open
Abstract
Monocytes play a crucial role in maintaining homeostasis and mediating a successful innate immune response. They also act as central players in diverse pathological conditions, thus making them an attractive therapeutic target. Within the bone marrow, monocytes arise from a committed precursor termed cMoP (Common Monocyte Progenitor). However, molecular mechanisms that regulate the differentiation of cMoP to various monocytic subsets remain unclear. Herein, we purified murine myeloid precursors for deep poly-A enriched RNA sequencing to understand the role of alternative splicing in the development and differentiation of monocytes under homeostasis. Our analyses revealed intron retention to be the major alternative splicing mechanism involved in the monocyte differentiation cascade, especially in the differentiation of Ly6Chi monocytes to Ly6Clo monocytes. Furthermore, we found that the key genes regulated by intron retention in the differentiation of murine Ly6Chi to Ly6Clo monocytes were also conserved in humans. Our data highlight the unique role of intron retention in the regulation of the monocytic differentiation pathway.
Collapse
Affiliation(s)
- Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Shweta Tikoo
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Rohit Jain
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Immune Imaging Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Natalia Pinello
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| | - Amy Ym Au
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Rajini Nagarajah
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - John E J Rasko
- Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia.,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, 2050, Australia.,Faculty of Medicine and Health, The University of Sydney, Camperdown, 2050, Australia
| |
Collapse
|
32
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nephrology, The First People’s Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Cardona Gloria Y, Bernhart SH, Fillinger S, Wolz OO, Dickhöfer S, Admard J, Ossowski S, Nahnsen S, Siebert R, Weber ANR. Absence of Non-Canonical, Inhibitory MYD88 Splice Variants in B Cell Lymphomas Correlates With Sustained NF-κB Signaling. Front Immunol 2021; 12:616451. [PMID: 34163463 PMCID: PMC8215704 DOI: 10.3389/fimmu.2021.616451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Gain-of-function mutations of the TLR adaptor and oncoprotein MyD88 drive B cell lymphomagenesis via sustained NF-κB activation. In myeloid cells, both short and sustained TLR activation and NF-κB activation lead to the induction of inhibitory MYD88 splice variants that restrain prolonged NF-κB activation. We therefore sought to investigate whether such a negative feedback loop exists in B cells. Analyzing MYD88 splice variants in normal B cells and different primary B cell malignancies, we observed that MYD88 splice variants in transformed B cells are dominated by the canonical, strongly NF-κB-activating isoform of MYD88 and contain at least three novel, so far uncharacterized signaling-competent splice isoforms. Sustained TLR stimulation in B cells unexpectedly reinforces splicing of NF-κB-promoting, canonical isoforms rather than the 'MyD88s', a negative regulatory isoform reported to be typically induced by TLRs in myeloid cells. This suggests that an essential negative feedback loop restricting TLR signaling in myeloid cells at the level of alternative splicing, is missing in B cells when they undergo proliferation, rendering B cells vulnerable to sustained NF-κB activation and eventual lymphomagenesis. Our results uncover MYD88 alternative splicing as an unappreciated promoter of B cell lymphomagenesis and provide a rationale why oncogenic MYD88 mutations are exclusively found in B cells.
Collapse
Affiliation(s)
- Yamel Cardona Gloria
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Stephan H. Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
- Transcriptome Bioinformatics, Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sven Fillinger
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Sabine Dickhöfer
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
- Institute of Human Genetics, Christian-Albrechts-University, Kiel, Germany
| | - Alexander N. R. Weber
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK; German Cancer Consortium), Partner Site Tübingen, Department of Immunology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Robinson EK, Jagannatha P, Covarrubias S, Cattle M, Smaliy V, Safavi R, Shapleigh B, Abu-Shumays R, Jain M, Cloonan SM, Akeson M, Brooks AN, Carpenter S. Inflammation drives alternative first exon usage to regulate immune genes including a novel iron-regulated isoform of Aim2. eLife 2021; 10:69431. [PMID: 34047695 PMCID: PMC8260223 DOI: 10.7554/elife.69431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Determining the layers of gene regulation within the innate immune response is critical to our understanding of the cellular responses to infection and dysregulation in disease. We identified a conserved mechanism of gene regulation in human and mouse via changes in alternative first exon (AFE) usage following inflammation, resulting in changes to the isoforms produced. Of these AFE events, we identified 95 unannotated transcription start sites in mice using a de novo transcriptome generated by long-read native RNA-sequencing, one of which is in the cytosolic receptor for dsDNA and known inflammatory inducible gene, Aim2. We show that this unannotated AFE isoform of Aim2 is the predominant isoform expressed during inflammation and contains an iron-responsive element in its 5′UTR enabling mRNA translation to be regulated by iron levels. This work highlights the importance of examining alternative isoform changes and translational regulation in the innate immune response and uncovers novel regulatory mechanisms of Aim2.
Collapse
Affiliation(s)
- Elektra K Robinson
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Pratibha Jagannatha
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States.,Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Matthew Cattle
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Valeriya Smaliy
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Rojin Safavi
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Barbara Shapleigh
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| | - Robin Abu-Shumays
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, United States
| | - Mark Akeson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, United States
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States
| |
Collapse
|
37
|
Bugg WS, Jeffries KM, Gary Anderson W. Survival and gene expression responses in immune challenged larval lake sturgeon. FISH & SHELLFISH IMMUNOLOGY 2021; 112:1-7. [PMID: 33588083 DOI: 10.1016/j.fsi.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Larval lake sturgeon, Acipenser fulvescens, reared in hatcheries for stock enhancement of wild populations may be susceptible to early opportunistic bacterial infection. Thus, we examined survival and whole-body mRNA expression of both stress- and immune-related genes (MyD88, IL-1β, StAR, GR1, and HSP70) in 30 days post fertilization larval lake sturgeon following immune challenge with lipopolysaccharides (LPS). Larval sturgeon were exposed to 0, 25, 50, 100, 150, and 200 μg ml-1 LPS and sampled after 30 min, 4 h, and 48 h. Mortality was zero in 0 and 25 μg ml-1 LPS; 37.5% in 50 μg ml-1 LPS and 100% in the higher concentrations. Expression of MyD88 and StAR mRNA were positively correlated and increased with time in the 50 μg ml-1 LPS treatment. There was an influence of both treatment and time on IL-1β mRNA, with expression 10-fold higher than controls after 4 h. Expression of HSP70 mRNA was suppressed within 30 min of 50 μg ml-1 LPS exposure and remained so throughout the time course. Correlated mRNA expression of GR1 with MyD88, StAR and IL-1β suggests a potential relationship between the innate immune and glucocorticoid responses of larval lake sturgeon during this early developmental stage. Data presented suggest that larval lake sturgeon largely responded with predicted changes in gene expression of immune related and stress response genes following LPS challenge. This study provides a foundation for future research examining the effects of hatchery and naturally occurring stressors on the immune responses of larval lake sturgeon.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
38
|
Su Z, Huang D. Alternative Splicing of Pre-mRNA in the Control of Immune Activity. Genes (Basel) 2021; 12:genes12040574. [PMID: 33921058 PMCID: PMC8071365 DOI: 10.3390/genes12040574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
The human immune response is a complex process that responds to numerous exogenous antigens in preventing infection by microorganisms, as well as to endogenous components in the surveillance of tumors and autoimmune diseases, and a great number of molecules are necessary to carry the functional complexity of immune activity. Alternative splicing of pre-mRNA plays an important role in immune cell development and regulation of immune activity through yielding diverse transcriptional isoforms to supplement the function of limited genes associated with the immune reaction. In addition, multiple factors have been identified as being involved in the control of alternative splicing at the cis, trans, or co-transcriptional level, and the aberrant splicing of RNA leads to the abnormal modulation of immune activity in infections, immune diseases, and tumors. In this review, we summarize the recent discoveries on the generation of immune-associated alternative splice variants, clinical disorders, and possible regulatory mechanisms. We also discuss the immune responses to the neoantigens produced by alternative splicing, and finally, we issue some alternative splicing and immunity correlated questions based on our knowledge.
Collapse
Affiliation(s)
- Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| | - Dongyang Huang
- Department of Cell Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou 515041, China
- Correspondence: (Z.S.); (D.H.)
| |
Collapse
|
39
|
Proximity Biotin Labeling Reveals Kaposi's Sarcoma-Associated Herpesvirus Interferon Regulatory Factor Networks. J Virol 2021; 95:JVI.02049-20. [PMID: 33597212 PMCID: PMC8104114 DOI: 10.1128/jvi.02049-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 01/04/2023] Open
Abstract
Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Studies on “hit-and-run” effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi’s sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses. IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects—those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.
Collapse
|
40
|
Human endogenous retrovirus W family envelope protein (HERV-W env) facilitates the production of TNF-α and IL-10 by inhibiting MyD88s in glial cells. Arch Virol 2021; 166:1035-1045. [PMID: 33438105 DOI: 10.1007/s00705-020-04933-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Human endogenous retrovirus W family envelope protein (HERV-W env) is associated with several neurological and psychiatric disorders, including multiple sclerosis (MS) and schizophrenia. Clinical studies have demonstrated a common link between inflammatory abnormalities and HERV-W env in neuropsychiatric diseases. Nonetheless, the molecular mechanisms by which HERV-W env mediates neuroinflammation are still unclear. In this study, we found that HERV-W env significantly increased the mRNA and protein levels of TNF-α and IL-10 in U251 and A172 cells. HERV-W env also induced a notable increase in Toll-like receptor 4 (TLR4). Knockdown of TLR4 impaired the expressions of TNF-α and IL-10 induced by HERV-W env. Overexpression of HERV-W env led to the upregulation of MyD88 but caused a decrease in MyD88s. MyD88s overexpression suppressed the expressions of TNF-α and IL-10 induced by HERV-W env. These findings indicate that HERV-W env upregulates the expressions of IL-10 and TNF-α by inhibiting the production of MyD88s in glial cells. This work sheds light on the immune pathogenesis of HERV-W env in neuropsychiatric disorders.
Collapse
|
41
|
Wasiak S, Dzobo KE, Rakai BD, Kaiser Y, Versloot M, Bahjat M, Stotz SC, Fu L, Sweeney M, Johansson JO, Wong NCW, Stroes ESG, Kroon J, Kulikowski E. BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes. Clin Epigenetics 2020; 12:166. [PMID: 33172487 PMCID: PMC7657365 DOI: 10.1186/s13148-020-00943-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Patients with cardiovascular disease (CVD) and type 2 diabetes (DM2) have a high residual risk for experiencing a major adverse cardiac event. Dysregulation of epigenetic mechanisms of gene transcription in innate immune cells contributes to CVD development but is currently not targeted by therapies. Apabetalone (RVX-208) is a small molecule inhibitor of bromodomain and extra-terminal (BET) proteins—histone acetylation readers that drive pro-inflammatory and pro-atherosclerotic gene transcription. Here, we assess the impact of apabetalone on ex vivo inflammatory responses of monocytes from DM2 + CVD patients. Results Monocytes isolated from DM2 + CVD patients and matched controls were treated ex vivo with apabetalone, interferon γ (IFNγ), IFNγ + apabetalone or vehicle and phenotyped for gene expression and protein secretion. Unstimulated DM2 + CVD monocytes had higher baseline IL-1α, IL-1β and IL-8 cytokine gene expression and Toll-like receptor (TLR) 2 surface abundance than control monocytes, indicating pro-inflammatory activation. Further, DM2 + CVD monocytes were hyper-responsive to stimulation with IFNγ, upregulating genes within cytokine and NF-κB pathways > 30% more than control monocytes (p < 0.05). Ex vivo apabetalone treatment countered cytokine secretion by DM2 + CVD monocytes at baseline (GROα and IL-8) and during IFNγ stimulation (IL-1β and TNFα). Apabetalone abolished pro-inflammatory hyper-activation by reducing TLR and cytokine gene signatures more robustly in DM2 + CVD versus control monocytes. Conclusions Monocytes isolated from DM2 + CVD patients receiving standard of care therapies are in a hyper-inflammatory state and hyperactive upon IFNγ stimulation. Apabetalone treatment diminishes this pro-inflammatory phenotype, providing mechanistic insight into how BET protein inhibition may reduce CVD risk in DM2 patients.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Kim E Dzobo
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Brooke D Rakai
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Miranda Versloot
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Mahnoush Bahjat
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stephanie C Stotz
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Jan O Johansson
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Norman C W Wong
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ewelina Kulikowski
- Resverlogix Corp, 300-4820 Richard Road SW, Calgary, AB, T3E 6L1, Canada.
| |
Collapse
|
42
|
Pollyea DA, Kim HM, Stevens BM, Lee FFY, Harris C, Hedin BR, Knapp JR, O'Connor BP, Jordan CT, Pietras EM, Tan AC, Alper S. MDS-associated SF3B1 mutations enhance proinflammatory gene expression in patient blast cells. J Leukoc Biol 2020; 110:197-205. [PMID: 33155727 DOI: 10.1002/jlb.6ab0520-318rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Two factors known to contribute to the development of myelodysplastic syndrome (MDS) and other blood cancers are (i) somatically acquired mutations in components of the spliceosome and (ii) increased inflammation. Spliceosome genes, including SF3B1, are mutated at high frequency in MDS and other blood cancers; these mutations are thought to be neomorphic or gain-of-function mutations that drive disease pathogenesis. Likewise, increased inflammation is thought to contribute to MDS pathogenesis; inflammatory cytokines are strongly elevated in these patients, with higher levels correlating with worsened patient outcome. In the current study, we used RNAseq to analyze pre-mRNA splicing and gene expression changes present in blast cells isolated from MDS patients with or without SF3B1 mutations. We determined that SF3B1 mutations lead to enhanced proinflammatory gene expression in these cells. Thus, these studies suggest that SF3B1 mutations could contribute to MDS pathogenesis by enhancing the proinflammatory milieu in these patients.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hyun Min Kim
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Frank Fang-Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Brenna R Hedin
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Aik Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
43
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
44
|
Kew C, Huang W, Fischer J, Ganesan R, Robinson N, Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 2020; 9:57591. [PMID: 32538777 PMCID: PMC7332298 DOI: 10.7554/elife.57591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/14/2020] [Indexed: 12/25/2022] Open
Abstract
Splicing is a vital cellular process that modulates important aspects of animal physiology, yet roles in regulating innate immunity are relatively unexplored. From genetic screens in C. elegans, we identified splicing factor RNP-6/PUF60 whose activity suppresses immunity, but promotes longevity, suggesting a tradeoff between these processes. Bacterial pathogen exposure affects gene expression and splicing in a rnp-6 dependent manner, and rnp-6 gain and loss-of-function activities reveal an active role in immune regulation. Another longevity promoting splicing factor, SFA-1, similarly exerts an immuno-suppressive effect, working downstream or parallel to RNP-6. RNP-6 acts through TIR-1/PMK-1/MAPK signaling to modulate immunity. The mammalian homolog, PUF60, also displays anti-inflammatory properties, and its levels swiftly decrease after bacterial infection in mammalian cells, implying a role in the host response. Altogether our findings demonstrate an evolutionarily conserved modulation of immunity by specific components of the splicing machinery.
Collapse
Affiliation(s)
- Chun Kew
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Division of Infectious Diseases, University of Cologne, Cologne, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Raja Ganesan
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Nirmal Robinson
- Cellular-Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Lee FFY, Davidson K, Harris C, McClendon J, Janssen WJ, Alper S. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. J Biol Chem 2020; 295:6236-6248. [PMID: 32179652 DOI: 10.1074/jbc.ra119.011495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.
Collapse
Affiliation(s)
- Frank Fang-Yao Lee
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kevin Davidson
- Pulmonary and Critical Care, WakeMed Hospital, Raleigh, North Carolina 27610
| | - Chelsea Harris
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Jazalle McClendon
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado 80206; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Scott Alper
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045.
| |
Collapse
|
46
|
Janssen WJ, Danhorn T, Harris C, Mould KJ, Lee FFY, Hedin BR, D'Alessandro A, Leach SM, Alper S. Inflammation-Induced Alternative Pre-mRNA Splicing in Mouse Alveolar Macrophages. G3 (BETHESDA, MD.) 2020; 10:555-567. [PMID: 31810980 PMCID: PMC7003074 DOI: 10.1534/g3.119.400935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022]
Abstract
Alveolar macrophages serve as central orchestrators of inflammatory responses in the lungs, both initiating their onset and promoting their resolution. However, the mechanisms that program macrophages for these dynamic responses are not fully understood. Over 95% of all mammalian genes undergo alternative pre-mRNA splicing. While alternative splicing has been shown to regulate inflammatory responses in macrophages in vitro, it has not been investigated on a genome-wide scale in vivo Here we used RNAseq to investigate alternative pre-mRNA splicing in alveolar macrophages isolated from lipopolysaccharide (LPS)-treated mice during the peak of inflammation and during its resolution. We found that lung inflammation induced substantial alternative pre-mRNA splicing in alveolar macrophages. The number of changes in isoform usage was greatest at the peak of inflammation and involved multiple classes of alternative pre-mRNA splicing events. Comparative pathway analysis of inflammation-induced changes in alternative pre-mRNA splicing and differential gene expression revealed overlap of pathways enriched for immune responses such as chemokine signaling and cellular metabolism. Moreover, alternative pre-mRNA splicing of genes in metabolic pathways differed in tissue resident vs. recruited (blood monocyte-derived) alveolar macrophages and corresponded to changes in core metabolism, including a switch to Warburg-like metabolism in recruited macrophages with increased glycolysis and decreased flux through the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- William J Janssen
- Department of Medicine
- Division of Pulmonary Sciences and Critical Care Medicine, and
| | | | - Chelsea Harris
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kara J Mould
- Department of Medicine
- Division of Pulmonary Sciences and Critical Care Medicine, and
| | - Frank Fang-Yao Lee
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Brenna R Hedin
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80045
| | - Sonia M Leach
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
| | - Scott Alper
- Center for Genes, Environment and Health, and
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
47
|
Mitra SD, Ganaie F, Bankar K, Velu D, Mani B, Vasudevan M, Shome R, Rahman H, Kumar Ghosh S, Shome BR. Genome-wide analysis of mammary gland shows modulation of transcriptome landscape with alternative splice variants in Staphylococcus aureus mastitis in mice. Gene 2019; 735:144278. [PMID: 31821873 DOI: 10.1016/j.gene.2019.144278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
Epidemiological mapping shows Staphylococcus aureus to be the leading mastitis causing pathogen in India with diverse genetic lineages circulating in the dairy cattle population. We previously reported that endemic clonal strains of S. aureus isolated from subclinical mastitis lead to specific alteration of epigenetic modulators resulting in deviating immune response in intramammary infection mouse model. However, the extent of transcriptome modulation and associated alternative splicing in S. aureus mastitis is poorly understood. Hence, to gain a deeper insight of the extent of modulation of transcriptome landscape, we expanded the study here using high throughput, paired-end RNA sequencing analysis of the mouse mammary gland inoculated with three strains of S. aureus (SA1, SA2, and SA3) possessing specific genotype, virulence and enterotoxin traits. Overall, we detected 35,878 transcripts in S. aureus inoculated mammary gland, 23% more than those annotated in the reference genome. Expression of 20,756 transcripts was > 1 fragment per kilobase of transcript per million mapped fragments and 25.95% of multi-exonic genes were alternatively spliced. We noted Alternative Splicing (AS) events for > 100 immune-related genes. S. aureus infection quantitatively altered AS events in mice mammary gland. Collectively, the majority of differentially expressed significant genes clustered into immune-associated, cell adhesion and metabolic process categories. We observed AS events for 379 transcripts of genes putatively encoding several splicing associated proteins and transcription factors besides inflammatory mediators. The present analysis provides new insights into global transcriptome landscape and AS events in host-defense related genes in response to S. aureus intramammary infection, suggesting the need for studies focusing on multi-target and/or network therapeutics approach to combat mastitis.
Collapse
Affiliation(s)
- Susweta Das Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Biotechnology, Assam University, Silchar, AS, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, KA, India
| | - Feroze Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; Department of Medicine, Division of Pulmonary/Allergy/Critical care, University of Alabama at Birmingham, AL, USA
| | - Kiran Bankar
- Bionivid Technology Pvt. Ltd., Bangalore, KA, India
| | - Dhanikachalam Velu
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Bhuvana Mani
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | | | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India
| | - Habibur Rahman
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India; International Livestock Research Institute, Pusa, DL, India
| | | | - Bibek Ranjan Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, KA, India.
| |
Collapse
|
48
|
West KO, Scott HM, Torres-Odio S, West AP, Patrick KL, Watson RO. The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Rep 2019; 29:1594-1609.e5. [PMID: 31693898 PMCID: PMC6981299 DOI: 10.1016/j.celrep.2019.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
While transcriptional control of innate immune gene expression is well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, or are influenced by, macrophage activation. Here, we demonstrate that the splicing factor hnRNP M is a critical repressor of innate immune gene expression and that its function is regulated by pathogen sensing cascades. Loss of hnRNP M led to hyperinduction of a unique regulon of inflammatory and antimicrobial genes following diverse innate immune stimuli. While mutating specific serines on hnRNP M had little effect on its ability to control pre-mRNA splicing or transcript levels of housekeeping genes in resting macrophages, it greatly impacted the protein's ability to dampen induction of specific innate immune transcripts following pathogen sensing. These data reveal a previously unappreciated role for pattern recognition receptor signaling in controlling splicing factor phosphorylation and establish pre-mRNA splicing as a critical regulatory node in defining innate immune outcomes.
Collapse
Affiliation(s)
- Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
49
|
Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in breast cancer. J Mol Cell Biol 2019; 11:920-929. [PMID: 31065692 PMCID: PMC6884705 DOI: 10.1093/jmcb/mjz033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/03/2019] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is critical for human gene expression regulation, which plays a determined role in expanding the diversity of functional proteins. Importantly, alternative splicing is a hallmark of cancer and a potential target for cancer therapeutics. Based on the statistical data, breast cancer is one of the top leading causes of cancer-related deaths in women worldwide. Strikingly, alternative splicing is closely associated with breast cancer development. Here, we seek to provide a general review of the relationship between alternative splicing and breast cancer. We introduce the process of alternative splicing and its regulatory role in cancers. In addition, we highlight the functions of aberrant alternative splicing and mutations of splicing factors in breast cancer progression. Moreover, we discuss the role of alternative splicing in cancer drug resistance and the potential of being targets for cancer therapeutics.
Collapse
Affiliation(s)
- Quan Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
50
|
Tan S, Wang W, Tian C, Niu D, Zhou T, Yang Y, Gao D, Liu Z. Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). FISH & SHELLFISH IMMUNOLOGY 2019; 91:188-193. [PMID: 31077849 DOI: 10.1016/j.fsi.2019.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/22/2023]
Abstract
Columnaris disease has long been recognized as a serious problem worldwide which affects both wild and cultured freshwater fish including the commercially important channel catfish (Ictalurus punctatus). The fundamental molecular mechanisms of the host immune response to the causative agent Flavobacterium columnare remain unclear, though gene expression analysis after the bacterial infection has been conducted. Alternative splicing, a post-transcriptional regulation process to modulate gene expression and increase the proteomic diversity, has not yet been studied in channel catfish following infection with F. columnare. In this study, genomic information and RNA-Seq datasets of channel catfish were used to characterize the changes of alternative splicing after the infection. Alternative splicing was shown to be induced by F. columnare infection, with 8.0% increase in alternative splicing event at early infection stage. Intriguingly, genes involved in RNA binding and RNA splicing themselves were significantly enriched in differentially alternatively spliced (DAS) gene sets after infection. This finding was consistent with our previous study in channel catfish following infection with Edwardsiella ictaluri. It was suggested to be a universal mechanism that genes involved in RNA binding and splicing were regulated to undergo differential alternative splicing after stresses in channel catfish. Moreover, many immune genes were observed to be differentially alternatively spliced after infection. Further studies need to be performed to get a deeper view of molecular regulation on alternative splicing after stresses, setting a foundation for developing catfish broodstocks with enhanced disease resistance.
Collapse
Affiliation(s)
- Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Donghong Niu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; College of Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|