1
|
Huo J, Feng L, Cheng Y, Miao YL, Liu W, Hou MM, Zhang HF, Yang CH, Li Y, Zhang MS, Fan YY. Delayed simvastatin treatment improves neurological recovery after cryogenic traumatic brain injury through downregulation of ELOVL1 by inhibiting mTOR signaling. Brain Res Bull 2024; 217:111072. [PMID: 39243948 DOI: 10.1016/j.brainresbull.2024.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Statins are well-tolerated and widely available lipid-lowering medications with neuroprotective effects against traumatic brain injury (TBI). However, whether delayed statin therapy starting in the subacute phase promotes recovery after TBI is unknown. Elongation of the very long-chain fatty acid protein 1 (ELOVL1) is involved in astrocyte-mediated neurotoxicity, but its role in TBI and the relationship between ELOVL1 and statins are unclear. We hypothesized that delayed simvastatin treatment promotes neurological functional recovery after TBI by regulating the ELOVL1-mediated production of very long-chain fatty acids (VLCFAs). ICR male mice received daily intragastric administration of 1, 2 or 5 mg/kg simvastatin on Days 1-14, 3-14, 5-14, or 7-14 after cryogenic TBI (cTBI). The results showed that simvastatin promoted motor functional recovery in a dose-dependent manner, with a wide therapeutic window of at least 7 days postinjury. Meanwhile, simvastatin inhibited astrocyte and microglial overactivation and glial scar formation, and increased total dendritic length, neuronal complexity and spine density on day 14 after cTBI. The up-regulation of ELOVL1 expression and saturated VLCFAs concentrations in the cortex surrounding the lesion caused by cTBI was inhibited by simvastatin, which was related to the inhibition of the mTOR signaling. Overexpression of ELOVL1 in astrocytes surrounding the lesion using HBAAV2/9-GFAP-m-ELOVL1-3xFlag-EGFP partially attenuated the benefits of simvastatin. These results showed that delayed simvastatin treatment promoted functional recovery and brain tissue repair after TBI through the downregulation of ELOVL1 expression by inhibiting mTOR signaling. Astrocytic ELOVL1 may be a potential target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Jing Huo
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Lin Feng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Wen Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Miao-Miao Hou
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi 030600, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
3
|
Tucker SK, Ghosal R, Swartz ME, Zhang S, Eberhart JK. Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death. Development 2024; 151:dev202216. [PMID: 38512806 PMCID: PMC11006402 DOI: 10.1242/dev.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
Collapse
Affiliation(s)
- Scott K. Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Ritika Ghosal
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Mary E. Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Stephanie Zhang
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
4
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
6
|
Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, Minner S, Sauter G, McDade SS, Mills IG. VPRBP Functions Downstream of the Androgen Receptor and OGT to Restrict p53 Activation in Prostate Cancer. Mol Cancer Res 2022; 20:1047-1060. [PMID: 35348747 PMCID: PMC9381113 DOI: 10.1158/1541-7786.mcr-21-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Androgen receptor (AR) is a major driver of prostate cancer initiation and progression. O-GlcNAc transferase (OGT), the enzyme that catalyzes the covalent addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threonine residues of proteins, is often highly expressed in prostate cancer with its expression correlated with high Gleason score. In this study, we have identified an AR and OGT coregulated factor, Vpr (HIV-1) binding protein (VPRBP) also known as DDB1 and CUL4 Associated Factor 1 (DCAF1). We show that VPRBP is regulated by the AR at the transcript level, and stabilized by OGT at the protein level. VPRBP knockdown in prostate cancer cells led to a significant decrease in cell proliferation, p53 stabilization, nucleolar fragmentation, and increased p53 recruitment to the chromatin. In human prostate tumor samples, VPRBP protein overexpression correlated with AR amplification, OGT overexpression, a shorter time to postoperative biochemical progression and poor clinical outcome. In clinical transcriptomic data, VPRBP expression was positively correlated with the AR and also with AR activity gene signatures. IMPLICATIONS In conclusion, we have shown that VPRBP/DCAF1 promotes prostate cancer cell proliferation by restraining p53 activation under the influence of the AR and OGT.
Collapse
Affiliation(s)
- Ninu Poulose
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Adam Polonski
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Gemma Gregg
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Marc Fuchs
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Minner
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Simon S. McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Ian G. Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| |
Collapse
|
7
|
Fedorova D, Ovsyannikova G, Kurnikova M, Pavlova A, Konyukhova T, Pshonkin A, Smetanina N. De novo TP53 germline activating mutations in two patients with the phenotype mimicking Diamond-Blackfan anemia. Pediatr Blood Cancer 2022; 69:e29558. [PMID: 35084091 DOI: 10.1002/pbc.29558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome, associated with mutations in ribosomal protein (RP) genes. Growing data on mutations in non-RP genes in patients with DBA-like phenotype became available over recent years. We describe two patients with the phenotype of DBA (onset of macrocytic anemia within the first year of life, paucity of erythroid precursors in bone marrow) and germline de novo variants in the TP53 gene. Both patients became transfusion independent, probably due to L-leucine therapy. The possible role of TP53 variants should be considered in patients with DBA-like phenotype and no mutations in RP genes.
Collapse
Affiliation(s)
- Daria Fedorova
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Ovsyannikova
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Maria Kurnikova
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Pavlova
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Tatiana Konyukhova
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Pshonkin
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Nataliya Smetanina
- Dmitry Rogachev National Research Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
8
|
Sanchez AC, Thren ED, Iovine MK, Skibbens RV. Esco2 and cohesin regulate CRL4 ubiquitin ligase ddb1 expression and thalidomide teratogenicity. Cell Cycle 2022; 21:501-513. [PMID: 34989322 PMCID: PMC8942496 DOI: 10.1080/15384101.2021.2023304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) are severe developmental maladies that arise from mutation of cohesin (including SMC3, CdLS) and ESCO2 (RBS). Though ESCO2 activates cohesin, CdLS and RBS etiologies are currently considered non-synonymous and for which pharmacological treatments are unavailable. Here, we identify a unifying mechanism that integrates these genetic maladies to pharmacologically-induced teratogenicity via thalidomide. Our results reveal that Esco2 and cohesin co-regulate the transcription of a component of CRL4 ubiquitin ligase through which thalidomide exerts teratogenic effects. These findings are the first to link RBS and CdLS to thalidomide teratogenicity and offer new insights into treatments.
Collapse
Affiliation(s)
- Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Elise D. Thren
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
9
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
10
|
Leask M, Carleton C, Leeke B, Newman T, Antoun J, Farella M, Horsfield J. Riboceine Rescues Auranofin-Induced Craniofacial Defects in Zebrafish. Antioxidants (Basel) 2021; 10:antiox10121964. [PMID: 34943067 PMCID: PMC8750187 DOI: 10.3390/antiox10121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Craniofacial abnormalities are a common group of congenital developmental disorders that can require intensive oral surgery as part of their treatment. Neural crest cells (NCCs) contribute to the facial structures; however, they are extremely sensitive to high levels of oxidative stress, which result in craniofacial abnormalities under perturbed developmental environments. The oxidative stress-inducing compound auranofin (AFN) disrupts craniofacial development in wildtype zebrafish embryos. Here, we tested whether the antioxidant Riboceine (RBC) rescues craniofacial defects arising from exposure to AFN. RBC rescued AFN-induced cellular apoptosis and distinct defects of the cranial cartilage in zebrafish larvae. Zebrafish embryos exposed to AFN have higher expression of antioxidant genes gstp1 and prxd1, with RBC treatment partially rescuing these gene expression profiles. Our data suggest that antioxidants may have utility in preventing defects in the craniofacial cartilage owing to environmental or genetic risk, perhaps by enhancing cell survival.
Collapse
Affiliation(s)
- Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
| | - Catherine Carleton
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Bryony Leeke
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
| | - Trent Newman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
| | - Joseph Antoun
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Mauro Farella
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Julia Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
11
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
12
|
Gu W, Wang L, Gu R, Ouyang H, Bao B, Zheng L, Xu B. Defects of cohesin loader lead to bone dysplasia associated with transcriptional disturbance. J Cell Physiol 2021; 236:8208-8225. [PMID: 34170011 DOI: 10.1002/jcp.30491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
Cohesin loader nipped-B-like protein (Nipbl) is increasingly recognized for its important role in development and cancer. Cornelia de Lange Syndrome (CdLS), mostly caused by heterozygous mutations of Nipbl, is an autosomal dominant disease characterized by multiorgan malformations. However, the regulatory role and underlying mechanism of Nipbl in skeletal development remain largely elusive. In this study, we constructed a Nipbl-a Cas9-knockout (KO) zebrafish, which displayed severe retardation of global growth and skeletal development. Deficiency of Nipbl remarkably compromised cell growth and survival, and osteogenic differentiation of mammalian osteoblast precursors. Furthermore, Nipbl depletion impaired the cell cycle process, and caused DNA damage accumulation and cellular senescence. In addition, nucleolar fibrillarin expression, global rRNA biogenesis, and protein translation were defective in the Nipbl-depleted osteoblast precursors. Interestingly, an integrated stress response inhibitor (ISRIB), partially rescued Nipbl depletion-induced cellular defects in proliferation and apoptosis, osteogenesis, and nucleolar function. Simultaneously, we performed transcriptome analysis of Nipbl deficiency on human neural crest cells and mouse embryonic fibroblasts in combination with Nipbl ChIP-Seq. We found that Nipbl deficiency caused thousands of differentially expressed genes including some important genes in bone and cartilage development. In conclusion, Nipbl deficiency compromised skeleton development through impairing osteoblast precursor cell proliferation and survival, and osteogenic differentiation, and also disturbing the expression of some osteogenesis-regulatory genes. Our study elucidated that Nipbl played a pivotal role in skeleton development, and supported the fact that treatment of ISRIB may provide an early intervention strategy to alleviate the bone dysplasia of CdLS.
Collapse
Affiliation(s)
- Weihuai Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renjie Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huiya Ouyang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Baicheng Bao
- Hospital of Stomatology, Orthodontic Department, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Baoshan Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
14
|
Markowicz-Piasecka M, Huttunen J, Montaser A, Huttunen KM. Hemocompatible LAT1-inhibitor can induce apoptosis in cancer cells without affecting brain amino acid homeostasis. Apoptosis 2021; 25:426-440. [PMID: 32405891 PMCID: PMC7244471 DOI: 10.1007/s10495-020-01603-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased amounts of amino acids are essential for cancer cells to support their sustained growth and survival. Therefore, inhibitors of amino acid transporters, such as l-type amino acid transporter 1 (LAT1) have been developed. In this study, a previously reported LAT1-inhibitor (KMH-233) was studied for its hemocompatibility and toxicity towards human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (AoSMCs). Furthermore, the cytotoxic effects against human breast adenocarcinoma cells (MCF-7) and its ability to affect mammalian (or mechanistic) target of rapamycin (mTOR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling were evaluated. Moreover, the effects of this inhibitor to modulate LAT1 function on the cell surface and the brain amino acid homeostasis were evaluated after intraperitoneal (i.p.) administration of LAT1-inhibitor (23 µmol/kg) in mice. The results showed that LAT1-inhibitor (KMH-233) is hemocompatible at concentrations below 25 µM and it does not affect coagulation in plasma. However, it can reduce the total protein amount of mTOR and NF-κB, resulting in increased apoptosis in LAT1-expressing cancer cells. Most importantly, the inhibitor did not affect mouse brain levels of l-Leu, l-Tyr or l-Trp or modulate the function of LAT1 on the MCF-7 cell surface. Therefore, this inhibitor can be considered as a safe but effective anti-cancer agent. However, due to the compensative mechanism of cancer cells for their increased amino acid demand, this compound is most effective inducing apoptosis when used in combinations with other chemotherapeutics, such as protease inhibitor, bestatin, as demonstrated in this study.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, Lodz, 90-151, Poland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
15
|
5q35 duplication presents with psychiatric and undergrowth phenotypes mediated by NSD1 overexpression and mTOR signaling downregulation. Hum Genet 2021; 140:681-690. [PMID: 33389145 DOI: 10.1007/s00439-020-02240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Nuclear receptor binding SET domain protein 1, NSD1, encodes a histone methyltransferase H3K36. NSD1 is responsible for the phenotype of the reciprocal 5q35.2q35.3 microdeletion-microduplication syndromes. We expand the phenotype and demonstrate the functional role of NSD1 in microduplication 5q35 syndrome. METHODS Through an international collaboration, we report nine new patients, contributing to the emerging phenotype, highlighting psychiatric phenotypes in older affected individuals. Focusing specifically on the undergrowth phenotype, we have modeled the effects of Mes-4/NSD overexpression in Drosophila melanogaster. RESULTS The individuals (including a family) from diverse backgrounds with duplications ranging in size from 0.6 to 4.5 Mb, have a consistent undergrowth phenotype. Mes-4 overexpression in the developing wing causes undergrowth, increased H3K36 methylation, and increased apoptosis. We demonstrate that altering the levels of insulin receptor (IR) rescues the apoptosis and the wing undergrowth phenotype, suggesting changes in mTOR pathway signaling. Leucine supplementation rescued Mes-4/NSD induced cell death, demonstrating decreased mTOR signaling caused by NSD1. CONCLUSION Given that we show mTOR inhibition as a likely mechanism and amelioration of the phenotype by leucine supplementation in a fly model, we suggest further studies should evaluate the therapeutic potential of leucine or branched chain amino acids as an adjunct possible treatment to ameliorate human growth and psychiatric phenotypes and propose inclusion of 5q35-microduplication as part of the differential diagnosis for children and adults with delayed bone age, short stature, microcephaly, developmental delay, and psychiatric phenotypes.
Collapse
|
16
|
Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLoS Genet 2020; 16:e1009219. [PMID: 33382686 PMCID: PMC7774850 DOI: 10.1371/journal.pgen.1009219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
17
|
Chen Y, Tang H, Wang L, Wei T, Liu X, Lin H. New insights into the role of mTORC1 in male fertility in zebrafish. Gen Comp Endocrinol 2020; 286:113306. [PMID: 31669651 DOI: 10.1016/j.ygcen.2019.113306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/20/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) plays crucial roles in male fertility. In mammals, deregulation of mTORC1 led to disordered spermatogonia proliferation and spermatogenesis, which eventually caused infertility in males. However, its roles in male fertility of non-mammalian species remain unclarified. In the present study, it was found that treatment of rapamycin, an mTORC1 inhibitor, resulted in infertility with decreased milt production and sperm motility in zebrafish. However, it is surprising to find that spermatogenesis was normal in these fish. All types of germ cells were found and the proliferation of spermatogonia and spermatocyte were normal. These results suggested that maturation of sperm may be impaired in males treated with rapamycin. Increased apoptosis was found surrounding the lumen containing spermatozoa, implicating a loss of Sertoli cells in testes treated with rapamycin. Moreover, LH/hCG mediated up-regulation of steroidogenic genes was abolished. The expression of npr and ar induced by LH/hCG was also blocked, which further suppressed the signaling of progestin and androgen. Collectively, mTORC1 maintains male fertility via different mechanisms in fish and mammals. mTORC1 is dispensable for spermatogenesis in zebrafish, but possibly supports the maintenance of Sertoli cells and mediates the signaling of hormones, which are crucial for sperm maturation.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tengyu Wei
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Wang QL, Liu L. Establishment of cohesion 1 homolog 2 facilitates cell aggressive behaviors and induces poor prognosis in renal cell carcinoma. J Clin Lab Anal 2020; 34:e23163. [PMID: 31944408 PMCID: PMC7246384 DOI: 10.1002/jcla.23163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background and aims Establishment of cohesion 1 homolog 2 (ESCO2) has been identified as an essential factor for cohesion in cell cycle in human multiple cancers. Nonetheless, its functional implication on prognosis and cellular behaviors of renal cell carcinoma (RCC) is rarely elucidated. We performed this study to detect the effects of ESCO2 in RCC progression. Methods We accessed The Cancer Genome Atlas (TCGA) database to evaluate the ESCO2 expression levels in tumor tissues, including 32 normal tissues and 289 tumor tissues. Quantitative real‐time PCR and Western blot were implemented for expression detection. After ESCO2 knockdown using siRNAs interference, functional experiments were conducted to explore the role of ESCO2, such as cell proliferation analysis and colony formation assay. Transwell assays for migration and invasion was also performed. Results In this study, ESCO2 was significantly increased in RCC tissues and cell lines. The RCC patients with high expression of ESCO2 were susceptible to unfavorable prognosis, and its expression has a marked association with clinical features containing age, gender, pathologic stage, and so on. Furthermore, knockdown of ESCO2 inhibited cell growth, invasion, and migration. Mechanistically, phosphorylation protein kinase B (AKT) and mammalian target of rapamycin (mTOR), proliferating cell nuclear antigen (PCNA), and p53 were all down‐regulated due to the ESCO2 inhibition. Conclusions Therefore, our results raised the possibility that ESCO2 may act as a promising option for tumor therapeutic interference by exhibiting enhanced selectivity over conventional chemotherapy.
Collapse
Affiliation(s)
- Qiu-Li Wang
- Department of Nephrology, Jining NO.1 People's Hospital, Shandong, China
| | - Ling Liu
- Department of Nephrology, Jining NO.1 People's Hospital, Shandong, China
| |
Collapse
|
19
|
Piñeyro-Ruiz C, Chorna NE, Pérez-Brayfield MR, Jorge JC. Severity-Dependent Profile of the Metabolome in Hypospadias. Front Pediatr 2020; 8:202. [PMID: 32391298 PMCID: PMC7192966 DOI: 10.3389/fped.2020.00202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background & Objective: Hypospadias, characterized by the displacement of the opening of the urethra at any point in the medial-ventral side of the penis, is classified upon severity as mild (Type I) and severe (Type II and Type III) hypospadias. Hypospadias' etiology is idiopathic in the majority of cases, and underlying causes seem of multifactorial origin. Studies regarding genetic variants support this notion. It is unknown whether downstream gene products fit this profile. This study evaluated the metabolome of hypospadias by using the emerging technology of metabolomics in the search for distinct cellular processes associated with hypospadias' etiology according to the severity of this congenital urogenital condition. Methods: Foreskin samples were collected during urethroplasty from boys with Type I, II, and III hypospadias or undergoing elective circumcision (N = 28) between 5 and 28 months of age. Samples were processed and submitted to gas chromatography-mass spectrometry (GC/MS). MetaboloAnalyst (http://www.metaboanalyst.ca/) online platform was used for bioinformatic analyses. Results: Thirty-five metabolites across experimental groups were identified by GC/MS. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) showed that the metabolome of Type II and Type III hypospadias patients differs from the metabolome of Type I hypospadias and control patients. Of those 35, 10 amino acids were found in significantly low concentrations in severe hypospadias: aspartate, glutamate, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, and tyrosine. A high concentration of the amino acid lysine was detected in mild hypospadias. Conclusions: The observed downregulation of specific amino acids in severe hypospadias provides alternative routes for future research aiming to identify disrupted networks and pathways while considering the severity of hypospadias.
Collapse
Affiliation(s)
- Coriness Piñeyro-Ruiz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, United States
| | - Nataliya E Chorna
- Department of Biochemistry, PR-INBRE Metabolomics Research Core, University of Puerto Rico, Medical Sciences Campus, San Juan, United States
| | | | - Juan Carlos Jorge
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, United States
| |
Collapse
|
20
|
Sezer A, Kayhan G, Zenker M, Percin EF. Hypopigmented patches in Roberts/SC phocomelia syndrome occur via aneuploidy susceptibility. Eur J Med Genet 2019; 62:103608. [DOI: 10.1016/j.ejmg.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
|
21
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
22
|
Nie X, Zheng J, Ricupero CL, He L, Jiao K, Mao JJ. mTOR acts as a pivotal signaling hub for neural crest cells during craniofacial development. PLoS Genet 2018; 14:e1007491. [PMID: 29975682 PMCID: PMC6049956 DOI: 10.1371/journal.pgen.1007491] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/17/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022] Open
Abstract
mTOR is a highly conserved serine/threonine protein kinase that is critical for diverse cellular processes in both developmental and physiological settings. mTOR interacts with a set of molecules including Raptor and Rictor to form two distinct functional complexes, namely the mTORC1 and mTORC2. Here, we used novel genetic models to investigate functions of the mTOR pathway for cranial neural crest cells (NCCs), which are a temporary type of cells arising from the ectoderm layer and migrate to the pharyngeal arches participating craniofacial development. mTOR deletion elicited a proliferation deficit and excessive apoptosis of post-migratory NCCs, leading to growth arrest of the facial primordia along with midline orofacial clefts. Furthermore, NCC differentiation was impaired. Thus, NCC derivatives, such as skeletons, vasculatures and neural tissues were either rudimentary or malformed. We further demonstrate that disruption of mTOR caused P53 hyperactivity and cell cycle arrest in cranial NCCs, and lowering P53 activity by one copy reduction attenuated the severity of craniofacial phenotype in NCC-mTOR knockout mice. Remarkably, NCC-Rptor disruption caused a spectrum of defects mirroring that of the NCC-mTOR deletion, whereas NCC-Rictor disruption only caused a mild craniofacial phenotype compared to the mTOR and Rptor conditional knockout models. Altogether, our data demonstrate that mTOR functions mediated by mTORC1 are indispensable for multiple processes of NCC development including proliferation, survival, and differentiation during craniofacial morphogenesis and organogenesis, and P53 hyperactivity in part accounts for the defective craniofacial development in NCC-mTOR knockout mice.
Collapse
Affiliation(s)
- Xuguang Nie
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Jinxuan Zheng
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Christopher L. Ricupero
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Ling He
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
| | - Kai Jiao
- University of Alabama at Birmingham, Department of Genetics, Birmingham, Alabama, United States of America
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, College of Dental Medicine, Columbia University, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
23
|
Takayama K, Muto A, Kikuchi Y. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration. Sci Rep 2018; 8:8278. [PMID: 29844341 PMCID: PMC5974189 DOI: 10.1038/s41598-018-26664-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.
Collapse
Affiliation(s)
- Kazuya Takayama
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Hematology Business Development, HU Business Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
24
|
Chen H, Zhang L, He W, Liu T, Zhao Y, Chen H, Li Y. ESCO2 knockdown inhibits cell proliferation and induces apoptosis in human gastric cancer cells. Biochem Biophys Res Commun 2018; 496:475-481. [PMID: 29330052 DOI: 10.1016/j.bbrc.2018.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Establishment of cohesion 1 homolog 2 (ESCO2), an essential gene for cohesion regulation and genomic stability, has not been studied in human gastric cancer (GC). We found that ESCO2 knockdown in human GC cell lines dramatically inhibited cell proliferation and induced cell apoptosis in vitro and suppressed tumor xenograft development in vivo. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) was activated following the suppression of its downstream targets, including mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase 1 (p70S6K1), and this result was consistent with p53 activation. Significantly, co-immunoprecipitation (Co-IP) analyses indicated that ESCO2 can interact with p53 in GC cells. Taken together, our data demonstrate that ESCO2 is essential for the development of GC and might be a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Hongmei Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Institute of Medical Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, 199 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Wenting He
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Tao Liu
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yang Zhao
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Hao Chen
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yumin Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| |
Collapse
|
25
|
Banerji R, Skibbens RV, Iovine MK. Cohesin mediates Esco2-dependent transcriptional regulation in a zebrafish regenerating fin model of Roberts Syndrome. Biol Open 2017; 6:1802-1813. [PMID: 29084713 PMCID: PMC5769645 DOI: 10.1242/bio.026013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Robert syndrome (RBS) and Cornelia de Lange syndrome (CdLS) are human developmental disorders characterized by craniofacial deformities, limb malformation and mental retardation. These birth defects are collectively termed cohesinopathies as both arise from mutations in cohesion genes. CdLS arises due to autosomal dominant mutations or haploinsufficiencies in cohesin subunits (SMC1A, SMC3 and RAD21) or cohesin auxiliary factors (NIPBL and HDAC8) that result in transcriptional dysregulation of developmental programs. RBS arises due to autosomal recessive mutations in cohesin auxiliary factor ESCO2, the gene that encodes an N-acetyltransferase which targets the SMC3 subunit of the cohesin complex. The mechanism that underlies RBS, however, remains unknown. A popular model states that RBS arises due to mitotic failure and loss of progenitor stem cells through apoptosis. Previous findings in the zebrafish regenerating fin, however, suggest that Esco2-knockdown results in transcription dysregulation, independent of apoptosis, similar to that observed in CdLS patients. Previously, we used the clinically relevant CX43 to demonstrate a transcriptional role for Esco2. CX43 is a gap junction gene conserved among all vertebrates that is required for direct cell-cell communication between adjacent cells such that cx43 mutations result in oculodentodigital dysplasia. Here, we show that morpholino-mediated knockdown of smc3 reduces cx43 expression and perturbs zebrafish bone and tissue regeneration similar to those previously reported for esco2 knockdown. Also similar to Esco2-dependent phenotypes, Smc3-dependent bone and tissue regeneration defects are rescued by transgenic Cx43 overexpression, suggesting that Smc3 and Esco2 cooperatively act to regulate cx43 transcription. In support of this model, chromatin immunoprecipitation assays reveal that Smc3 binds to a discrete region of the cx43 promoter, suggesting that Esco2 exerts transcriptional regulation of cx43 through modification of Smc3 bound to the cx43 promoter. These findings have the potential to unify RBS and CdLS as transcription-based mechanisms.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
26
|
Chen Z, Cao H, Lu Y, Ren Q, Sun L. DNA polymerase 5 acetylation by Eso1 is essential for Schizosaccharomyces pombe viability. Int J Mol Med 2017; 40:1907-1913. [PMID: 29039458 DOI: 10.3892/ijmm.2017.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/24/2017] [Indexed: 11/05/2022] Open
Abstract
Eco1/Eso1 protein plays an important role in chromosome segregation, DNA repair and gene regulation. Eco1 mutation induces Roberts syndrome clinically and rDNA transcription disorders in vivo. In this study, we examined the role of Eso1 protein binding to polymerase 5 (Pol5) and the acetylation of Pol5 protein in the regulation of Schizosaccharomyces pombe (S. pombe) viability. Immunoprecipitation and mass spectrometry assays identified Eso1 protein binding to Cdc2, Pol5 and Cdc21, as well as other proteins. Pol5 protein specifically bound to Eso1 protein, but not to the Rad30 part or Rad30 part plus the additional zinc finger domain of Eco1 protein. Mass spectrometry data further identified several acetylation or trimethylation modification sites in the lysine residues of the Pol5 protein. However, the mutation of the Pol5 K47 site to arginine was lethal to S. pombe. Eso1 protein was able to acetylate Pol5 protein and mediate S. pombe viability. On the whole, our data indicate that the Eso1 interaction with Pol5 which acetylates Pol5 protein is essential for S. pombe viability.
Collapse
Affiliation(s)
- Zhiming Chen
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Hongshi Cao
- Department of Neurosurgery, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Yingqiang Lu
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Qiang Ren
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Forensic Pathology, Basic Medical College, The First Hospital, Jilin University, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL. Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 2017. [PMID: 28640831 PMCID: PMC5480814 DOI: 10.1371/journal.pgen.1006771] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments. The ribosomal DNA encodes the RNAs needed to make ribosomes for protein synthesis and cellular proliferation. However, ribosomal DNA has been excluded from most mammalian genome-wide studies due to challenges associated with its analysis. We find that both the sequence and copy number of the ribosomal DNA can change in human cancer genomes. mTOR is a kinase that senses the nutritional environment and is often over-active in cancer. Given mutational evidence for mTOR activation in the human cancer genomes with loss of ribosomal DNA copies, we analyzed ribosomal DNA in hematopoietic stem cells derived from mice under conditions of mTOR activation. Like the human cancer genomes, the ribosomal DNA copy number contracts in mTOR activated hematopoietic stem cells relative to normal stem cells. Loss is associated with high rates of cellular proliferation, rRNA production, and protein synthesis, but compromised survival in the presence of DNA damage. Contractions are a recurrent feature in cancer genomes with overactive mTOR and may predict sensitivity to DNA damaging chemotherapeutics. Ribosomal DNA may be altered in other disease contexts.
Collapse
Affiliation(s)
- Baoshan Xu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - John M. Perry
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Vijay Pratap Singh
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Musinu Zakari
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William McDowell
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Linheng Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- University of Kansas School of Medicine, Department of Pathology and Laboratory Medicine, Kansas City, Kansas, United States of America
| | - Jennifer L. Gerton
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas Cancer Center, Kansas City, Kansas, United States of America
- University of Kansas School of Medicine, Department of Biochemistry and Molecular Biology, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
28
|
A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton. Mol Cell Biochem 2017; 429:11-21. [DOI: 10.1007/s11010-016-2932-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
|
29
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
30
|
Lysyl Oxidase and the Tumor Microenvironment. Int J Mol Sci 2016; 18:ijms18010062. [PMID: 28036074 PMCID: PMC5297697 DOI: 10.3390/ijms18010062] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase (LOX) family of oxidases contains a group of extracellular copper-dependent enzymes that catalyze the cross-linking of collagen and elastin by oxidation, thus maintaining the rigidity and structural stability of the extracellular matrix (ECM). Aberrant expression or activation of LOX alters the cellular microenvironment, leading to many diseases, including atherosclerosis, tissue fibrosis, and cancer. Recently, a number of studies have shown that LOX is overexpressed in most cancers and that it is involved in the regulation of tumor progression and metastasis. In contrast, a few reports have also indicated the tumor-suppressing role of LOX. In this short review, we discuss recent research on the correlations between LOX and cancer. Further, the role of LOX in tumor microenvironment remodeling, tumorigenesis, and metastasis and the underlying mechanisms have also been elucidated.
Collapse
|
31
|
Zhou Y, Ren J, Song T, Peng J, Wei H. Methionine Regulates mTORC1 via the T1R1/T1R3-PLCβ-Ca 2+-ERK1/2 Signal Transduction Process in C2C12 Cells. Int J Mol Sci 2016; 17:ijms17101684. [PMID: 27727170 PMCID: PMC5085716 DOI: 10.3390/ijms17101684] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca2+ stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1. In response to l-AAs, such as serine (Ser), arginine (Arg), threonine (Thr), alanine (Ala), methionine (Met), glutamine (Gln), and glycine (Gly), Met induced mTORC1 activation and promoted protein synthesis. Met also regulated mTORC1 via T1R1/T1R3-PLCβ-Ca2+-ERK1/2 signal transduction. Results revealed a new role for Met-regulated mTORC1 via an AA receptor. Further studies should be performed to determine the role of T1R1/T1R3 in mediating extracellular AA to regulate mTOR signaling and to reveal its mechanism.
Collapse
Affiliation(s)
- Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Jiao Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, Hubei, China.
| |
Collapse
|
32
|
Cnbp ameliorates Treacher Collins Syndrome craniofacial anomalies through a pathway that involves redox-responsive genes. Cell Death Dis 2016; 7:e2397. [PMID: 27711076 PMCID: PMC5133970 DOI: 10.1038/cddis.2016.299] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022]
Abstract
Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/- mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.
Collapse
|
33
|
Six2 Is a Coordinator of LiCl-Induced Cell Proliferation and Apoptosis. Int J Mol Sci 2016; 17:ijms17091504. [PMID: 27618015 PMCID: PMC5037781 DOI: 10.3390/ijms17091504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/16/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
The metanephric mesenchyme (MM) cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET), the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR) and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP) signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM). The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM) at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM). However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3β that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.
Collapse
|
34
|
Mms21 SUMO Ligase Activity Promotes Nucleolar Function in Saccharomyces cerevisiae. Genetics 2016; 204:645-658. [PMID: 27510371 PMCID: PMC5068852 DOI: 10.1534/genetics.115.181750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The budding yeast E3 SUMO ligase Mms21, also known as Nse2, is a component of the Smc5/6 complex, which regulates sister chromatid cohesion, DNA replication, and repair. Our study shows that the mms21RINGΔ mutant exhibits (1) reduced ribosomal RNA production; (2) nuclear accumulation of ribosomal proteins; (3) elevated Gcn4 translation, indicating translational stress; and (4) upregulation of Gcn4 targets. Genes involved in ribosome biogenesis and translation are downregulated in the mms21RINGΔ mutant. We identified RPL19A as a novel genetic suppressor of the mms21RINGΔ mutant. Deletion of RPL19A partially suppresses growth defects in both smc5-6 and mms21RINGΔ mutants as well as nuclear accumulation of ribosome subunits in the mms21RINGΔ mutant. Deletion of a previously identified strong suppressor, MPH1, rescues both the accumulation of ribosome subunits and translational stress. This study suggests that the Smc5/6 complex supports nucleolar function.
Collapse
|
35
|
Zeb1 Is a Potential Regulator of Six2 in the Proliferation, Apoptosis and Migration of Metanephric Mesenchyme Cells. Int J Mol Sci 2016; 17:ijms17081283. [PMID: 27509493 PMCID: PMC5000680 DOI: 10.3390/ijms17081283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.
Collapse
|
36
|
Non-Invasive Methods to Monitor Mechanisms of Resistance to Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer: Where Do We Stand? Int J Mol Sci 2016; 17:ijms17071186. [PMID: 27455248 PMCID: PMC4964555 DOI: 10.3390/ijms17071186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
The induction of resistance mechanisms represents an important problem for the targeted therapy of patients with non-small-cell lung cancer (NSCLC). The best-known resistance mechanism induced during treatment with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is EGFR T790M mutation for which specific drugs are have been developed. However, other molecular alterations have also been reported as induced resistance mechanisms to EGFR-TKIs. Similarly, there is growing evidence of acquired resistance mechanisms to anaplastic lymphoma kinase (ALK)-TKI treatment. A better understanding of these acquired resistance mechanisms is essential in clinical practice as patients could be treated with specific drugs that are active against the induced alterations. The use of free circulating tumor nucleic acids or circulating tumor cells (CTCs) enables resistance mechanisms to be characterized in a non-invasive manner and reduces the need for tumor re-biopsy. This review discusses the main resistance mechanisms to TKIs and provides a comprehensive overview of innovative strategies to evaluate known resistance mechanisms in free circulating nucleic acids or CTCs and potential future orientations for these non-invasive approaches.
Collapse
|
37
|
The CLC-2 Chloride Channel Modulates ECM Synthesis, Differentiation, and Migration of Human Conjunctival Fibroblasts via the PI3K/Akt Signaling Pathway. Int J Mol Sci 2016; 17:ijms17060910. [PMID: 27294913 PMCID: PMC4926444 DOI: 10.3390/ijms17060910] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/28/2022] Open
Abstract
Recent evidence suggests that chloride channels are critical for cell proliferation, migration, and differentiation. We examined the effects of transforming growth factor (TGF)-β1 on chloride channel expression and associations with human conjunctival fibroblast (HConF) biology. To investigate the potential role of chloride channel (CLC)-2 in migration, transition to myofibroblasts and extracellular matrix (ECM) synthesis of HconF, a small interfering RNA (siRNA) approach was applied. TGF-β1-induced migration and transition of fibroblasts to myofibroblasts characterized by α-smooth muscle actin (α-SMA) expression, supported by increased endogenous expression of CLC-2 protein and mRNA transcripts. ECM (collagen I and fibronectin) synthesis in HConF was enhanced by TGF-β1. CLC-2 siRNA treatment reduced TGF-β1-induced cell migration, transition of fibroblasts to myofibroblasts, and ECM synthesis of HConF. CLC-2 siRNA treatment in the presence of TGF-β1 inhibited phosphorylation of PI3K and Akt in HConF. These findings demonstrate that CLC-2 chloride channels are important for TGF-β1-induced migration, differentiation, and ECM synthesis via PI3K/Akt signaling in HConF.
Collapse
|
38
|
Knockdown of AMPKα2 Promotes Pulmonary Arterial Smooth Muscle Cells Proliferation via mTOR/Skp2/p27(Kip1) Signaling Pathway. Int J Mol Sci 2016; 17:ijms17060844. [PMID: 27258250 PMCID: PMC4926378 DOI: 10.3390/ijms17060844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
It has been shown that activation of adenosine monophosphate-activated protein kinase (AMPK) suppresses proliferation of a variety of tumor cells as well as nonmalignant cells. In this study, we used post-transcriptional gene silencing with small interfering RNA (siRNA) to specifically examine the effect of AMPK on pulmonary arterial smooth muscle cells (PASMCs) proliferation and to further elucidate its underlying molecular mechanisms. Our results showed that knockdown of AMPKα2 promoted primary cultured PASMCs proliferation; this was accompanied with the elevation of phosphorylation of mammalian target of rapamycin (mTOR) and S-phase kinase-associated protein 2 (Skp2) protein level and reduction of p27(Kip1). Importantly, prior silencing of mTOR with siRNA abolished AMPKα2 knockdown-induced Skp2 upregulation, p27(Kip1) reduction as well as PASMCs proliferation. Furthermore, pre-depletion of Skp2 by siRNA also eliminated p27(Kip1) downregulation and PASMCs proliferation caused by AMPKα2 knockdown. Taken together, our study indicates that AMPKα2 isoform plays an important role in regulation of PASMCs proliferation by modulating mTOR/Skp2/p27(Kip1) axis, and suggests that activation of AMPKα2 might have potential value in the prevention and treatment of pulmonary arterial hypertension.
Collapse
|
39
|
Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma. Int J Mol Sci 2016; 17:ijms17060814. [PMID: 27231905 PMCID: PMC4926348 DOI: 10.3390/ijms17060814] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated the role of mitochondrial DNA (mtDNA) copy number alteration in human renal cell carcinoma (RCC). The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR). An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM). Null target (NT) and TFAM-knockdown (TFAM-KD) represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1), ND6 and cytochrome c oxidase subunit 2 (COX-2); nuclear DNA (nDNA)-encoded succinate dehydrogenase subunit A (SDHA); v-akt murine thymoma viral oncogene homolog 1 gene (AKT)-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC)-encoded MYC; glycolytic enzymes including hexokinase II (HK-II), glucose 6-phosphate isomerase (GPI), phosphofructokinase (PFK), and lactate dehydrogenase subunit A (LDHA); and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1), and pyruvate dehydrogenase E1 component α subunit (PDHA1) were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB) and basal extracellular acidification rate (ECARB), were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043). The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034), lower mRNA levels of TFAM (p = 0.008), ND1 (p = 0.007), and ND6 (p = 0.017), and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0.007); and drug resistance to doxorubicin (p = 0.008) of the TFAM-KD clone were significantly higher than those of the NT clone. Bioenergetically, the TFAM-KD clone expressed lower mOCRB (p = 0.009) but higher ECARB (p = 0.037) than did the NT clone. We conclude that a reduction of mtDNA copy number and decrease of respiratory function of mitochondria in RCC might be compensated for by an increase of enzymes and factors that are involved in the upregulation of glycolysis to confer RCC more invasive and a drug-resistant phenotype in vitro.
Collapse
|
40
|
Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia. Int J Mol Sci 2016; 17:ijms17050706. [PMID: 27187355 PMCID: PMC4881528 DOI: 10.3390/ijms17050706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
Bone metastatic cells release bone microenvironment proteins, such as the matricellular protein SPARC (secreted protein acidic and rich in cysteine), and share a cell signaling typical of the bone metabolism controlled by Runx2. The megakaryocytes in the bone marrow engrafted by the metastases seem to be one of the principal microenvironment sources of the biological stimuli, implicated in the formation of an osteoblastic niche, and affecting metastasis phenotype and colonization. Educated platelets in the circulation might derive from megakaryocytes in bone metastasis. The evaluation of predictive markers in the circulating platelets might be useful for the stratification of patients for therapeutic purposes. The hypoxic environment in bone metastasis is one of the key regulators of the network of the biological soluble and structural components of the matrix. In bone metastatic cells under hypoxia, similar patterns of Runx2 and SPARC are observed, both showing downregulation. Conversely, hypoxia induces Endothelin 1, which upregulates SPARC, and these biological stimuli may be considered prognostic markers of bone metastasis in breast carcinoma patients.
Collapse
|
41
|
Ravera S, Dufour C, Cesaro S, Bottega R, Faleschini M, Cuccarolo P, Corsolini F, Usai C, Columbaro M, Cipolli M, Savoia A, Degan P, Cappelli E. Evaluation of energy metabolism and calcium homeostasis in cells affected by Shwachman-Diamond syndrome. Sci Rep 2016; 6:25441. [PMID: 27146429 PMCID: PMC4857091 DOI: 10.1038/srep25441] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Isomorphic mutation of the SBDS gene causes Shwachman-Diamond syndrome (SDS). SDS is a rare genetic bone marrow failure and cancer predisposition syndrome. SDS cells have ribosome biogenesis and their protein synthesis altered, which are two high-energy consuming cellular processes. The reported changes in reactive oxygen species production, endoplasmic reticulum stress response and reduced mitochondrial functionality suggest an energy production defect in SDS cells. In our work, we have demonstrated that SDS cells display a Complex IV activity impairment, which causes an oxidative phosphorylation metabolism defect, with a consequent decrease in ATP production. These data were confirmed by an increased glycolytic rate, which compensated for the energetic stress. Moreover, the signalling pathways involved in glycolysis activation also appeared more activated; i.e. we reported AMP-activated protein kinase hyper-phosphorylation. Notably, we also observed an increase in a mammalian target of rapamycin phosphorylation and high intracellular calcium concentration levels ([Ca(2+)]i), which probably represent new biochemical equilibrium modulation in SDS cells. Finally, the SDS cell response to leucine (Leu) was investigated, suggesting its possible use as a therapeutic adjuvant to be tested in clinical trials.
Collapse
Affiliation(s)
- Silvia Ravera
- DIFAR-Biochemistry Lab., Department of Pharmacy, University of Genova, 16132 Genova, Italy
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Simone Cesaro
- Oncoematologia Pediatrica, Azienda Ospedaleira universitaria Integrata, Verona, Italy
| | - Roberta Bottega
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Cuccarolo
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Fabio Corsolini
- Centro Diagnostica Genetica e Biochimica Malattie Metaboliche, Istituto Giannina Gaslini, 16148 Genova, Italy
| | - Cesare Usai
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Marta Columbaro
- SC Laboratory of Musculoskeletal Cell Biology, IOR, Bologna, Italy
| | - Marco Cipolli
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria, Piazzale Stefani, 1-37126 Verona, Italy
| | - Anna Savoia
- Institute for Maternal and Child Health – IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paolo Degan
- S. C. Mutagenesis, IRCCS AOU San Martino – IST (Istituto Nazionale per la Ricerca sul Cancro), CBA Torre A2, 16123 Genova, Italy
| | - Enrico Cappelli
- Haematology Unit, Istituto Giannina Gaslini, 16148 Genova, Italy
| |
Collapse
|
42
|
Slomnicki LP, Malinowska A, Kistowski M, Palusinski A, Zheng JJ, Sepp M, Timmusk T, Dadlez M, Hetman M. Nucleolar Enrichment of Brain Proteins with Critical Roles in Human Neurodevelopment. Mol Cell Proteomics 2016; 15:2055-75. [PMID: 27053602 DOI: 10.1074/mcp.m115.051920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as "nucleolus", "ribosome" and "chromatin". Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Agata Malinowska
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kistowski
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Palusinski
- ‖Department of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jing-Juan Zheng
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Mari Sepp
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tonis Timmusk
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Michal Dadlez
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Hetman
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and §Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
43
|
Sucularli C, Shehwana H, Kuscu C, Dungul DC, Ozdag H, Konu O. Functionally conserved effects of rapamycin exposure on zebrafish. Mol Med Rep 2016; 13:4421-30. [PMID: 27035657 DOI: 10.3892/mmr.2016.5059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | - Cem Kuscu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| | | | - Hilal Ozdag
- Biotechnology Institute, Ankara University, Ankara 06010, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
44
|
Abstract
Here, we summarize the composition and uses of Schizosaccharomyces pombe media and discuss key issues for consideration in the generation of S. pombe cultures. We discuss the concept of "culture memory," in which the growth state and stress experienced by a strain during storage, propagation, and starter culture preparation can alter experimental outcomes at later stages. We also describe the triggers that are widely used to manipulate signaling through the environment sensing pathways.
Collapse
Affiliation(s)
- Janni Petersen
- Flinders University, Flinders Centre for Innovation in Cancer, School of Medicine, FMST, Bedford Park, SA 5042, Adelaide Australia
| | - Paul Russell
- Department of Cell and Molecular Biology. The Scripps Research Institute 10550 N. Torrey Pines Road, MB3, La Jolla, CA 92037 – USA
| |
Collapse
|
45
|
Slomnicki LP, Pietrzak M, Vashishta A, Jones J, Lynch N, Elliot S, Poulos E, Malicote D, Morris BE, Hallgren J, Hetman M. Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree. J Biol Chem 2016; 291:5721-5739. [PMID: 26757818 DOI: 10.1074/jbc.m115.682161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 01/23/2023] Open
Abstract
The nucleolus serves as a principal site of ribosome biogenesis but is also implicated in various non-ribosomal functions, including negative regulation of the pro-apoptotic transcription factor p53. Although disruption of the nucleolus may trigger the p53-dependent neuronal death, neurotoxic consequences of a selective impairment of ribosome production are unclear. Here, we report that in rat forebrain neuronal maturation is associated with a remarkable expansion of ribosomes despite postnatal down-regulation of ribosomal biogenesis. In cultured rat hippocampal neurons, inhibition of the latter process by knockdowns of ribosomal proteins S6, S14, or L4 reduced ribosome content without disrupting nucleolar integrity, cell survival, and signaling responses to the neurotrophin brain-derived neurotrophic factor. Moreover, reduced general protein synthesis and/or formation of RNA stress granules suggested diminished ribosome recruitment to at least some mRNAs. Such a translational insufficiency was accompanied by impairment of brain-derived neurotrophic factor-mediated dendritic growth. Finally, RNA stress granules and smaller dendritic trees were also observed when ribosomal proteins were depleted from neurons with established dendrites. Thus, a robust ribosomal apparatus is required to carry out protein synthesis that supports dendritic growth and maintenance. Consequently, deficits of ribosomal biogenesis may disturb neurodevelopment by reducing neuronal connectivity. Finally, as stress granule formation and dendritic loss occur early in neurodegenerative diseases, disrupted homeostasis of ribosomes may initiate and/or amplify neurodegeneration-associated disconnection of neuronal circuitries.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Maciej Pietrzak
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Aruna Vashishta
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - James Jones
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Nicholas Lynch
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Shane Elliot
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Eric Poulos
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - David Malicote
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Bridgit E Morris
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Justin Hallgren
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and
| | - Michal Hetman
- From the Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery and; Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
46
|
Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 2016; 17:25. [PMID: 26729373 PMCID: PMC4700579 DOI: 10.1186/s12864-015-2354-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Background Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. Results In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Conclusions Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Karin Gaudenz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
47
|
Yuen KC, Xu B, Krantz ID, Gerton JL. NIPBL Controls RNA Biogenesis to Prevent Activation of the Stress Kinase PKR. Cell Rep 2015; 14:93-102. [PMID: 26725122 PMCID: PMC4904785 DOI: 10.1016/j.celrep.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/27/2015] [Accepted: 11/23/2015] [Indexed: 12/30/2022] Open
Abstract
NIPBL, a cohesin loader, has been implicated in transcriptional control and genome organization. Mutations in NIPBL, cohesin, and its deacetylase HDAC8 result in Cornelia de Lange syndrome. We report activation of the RNA-sensing kinase PKR in human lymphoblastoid cell lines carrying NIPBL or HDAC8 mutations, but not SMC1A or SMC3 mutations. PKR activation can be triggered by unmodified RNAs. Gene expression profiles in NIPBL-deficient lymphoblastoid cells and mouse embryonic stem cells reveal lower expression of genes involved in RNA processing and modification. NIPBL mutant lymphoblastoid cells show reduced proliferation and protein synthesis with increased apoptosis, all of which are partially reversed by a PKR inhibitor. Non-coding RNAs from an NIPBL mutant line had less m6A modification and activated PKR activity in vitro. This study provides insight into the molecular pathology of Cornelia de Lange syndrome by establishing a relationship between NIPBL and HDAC8 mutations and PKR activation.
Collapse
Affiliation(s)
- Kobe C Yuen
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Baoshan Xu
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Ian D Krantz
- Children's Hospital of Philadelphia, Division of Human Genetics, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research (SIMR), 1000 East 50(th) Street, Kansas City, MO 64110, USA; University of Kansas School of Medicine, Department of Biochemistry and Molecular Biology, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
48
|
Singh VP, Gerton JL. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 2015; 37:9-17. [PMID: 26343989 DOI: 10.1016/j.ceb.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Cohesin is an evolutionarily conserved large ring-like multi-subunit protein structure that can encircle DNA. Cohesin affects many processes that occur on chromosomes such as segregation, DNA replication, double-strand break repair, condensation, chromosome organization, and gene expression. Mutations in the genes that encode cohesin and its regulators cause human developmental disorders and cancer. Several mouse models have been established with the aim of understanding the cohesin mediated processes that are disrupted in these diseases. Mouse models support the idea that cohesin is essential for cell division, but partial loss of function can alter gene expression, DNA replication and repair, gametogenesis, and nuclear organization.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
49
|
Zakari M, Yuen K, Gerton JL. Etiology and pathogenesis of the cohesinopathies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:489-504. [PMID: 25847322 PMCID: PMC6680315 DOI: 10.1002/wdev.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Universite Pierre et Marie Curie, Paris, France
| | - Kobe Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
50
|
Percival SM, Thomas HR, Amsterdam A, Carroll AJ, Lees JA, Yost HJ, Parant JM. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Dis Model Mech 2015; 8:941-55. [PMID: 26044958 PMCID: PMC4527282 DOI: 10.1242/dmm.019059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations in ESCO2, one of two establishment of cohesion factors necessary for proper sister chromatid cohesion (SCC), cause a spectrum of developmental defects in the autosomal-recessive disorder Roberts syndrome (RBS), warranting in vivo analysis of the consequence of cohesion dysfunction. Through a genetic screen in zebrafish targeting embryonic-lethal mutants that have increased genomic instability, we have identified an esco2 mutant zebrafish. Utilizing the natural transparency of zebrafish embryos, we have developed a novel technique to observe chromosome dynamics within a single cell during mitosis in a live vertebrate embryo. Within esco2 mutant embryos, we observed premature chromatid separation, a unique chromosome scattering, prolonged mitotic delay, and genomic instability in the form of anaphase bridges and micronuclei formation. Cytogenetic studies indicated complete chromatid separation and high levels of aneuploidy within mutant embryos. Amongst aneuploid spreads, we predominantly observed decreases in chromosome number, suggesting that either cells with micronuclei or micronuclei themselves are eliminated. We also demonstrated that the genomic instability leads to p53-dependent neural tube apoptosis. Surprisingly, although many cells required Esco2 to establish cohesion, 10-20% of cells had only weakened cohesion in the absence of Esco2, suggesting that compensatory cohesion mechanisms exist in these cells that undergo a normal mitotic division. These studies provide a unique in vivo vertebrate view of the mitotic defects and consequences of cohesion establishment loss, and they provide a compensation-based model to explain the RBS phenotypes.
Collapse
Affiliation(s)
- Stefanie M Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam Amsterdam
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew J Carroll
- Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|