1
|
Bencun M, Spreyer L, Boileau E, Eschenbach J, Frey N, Dieterich C, Völkers M. A novel uORF regulates folliculin to promote cell growth and lysosomal biogenesis during cardiac stress. Sci Rep 2025; 15:3319. [PMID: 39865126 PMCID: PMC11770079 DOI: 10.1038/s41598-025-87107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/16/2025] [Indexed: 01/28/2025] Open
Abstract
Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling. The tumor suppressor folliculin (FLCN) is part of the network regulating non-canonical mTORC1 activity. FLCN activates mTORC1 by functioning as a guanosine triphosphatase activating protein (GAP). Our work has identified a regulatory upstream open reading frame (uORF) localized in the 5'UTR of the FLCN mRNA. These small genetic elements are important regulators of protein expression. They are particularly important for the regulation of stress-responsive protein synthesis. We have studied the relevance of the FLCN uORF in the regulation of FLCN translation. We show that FLCN downregulation through the uORF is linked to cardiomyocyte growth and increased lysosomal activity. In summary, we have identified uORF-mediated control of RNA translation as another layer of regulation in the complex molecular network controlling cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Maja Bencun
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany.
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Laura Spreyer
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Etienne Boileau
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jessica Eschenbach
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
2
|
Guijarro-Hernández A, Hurtado C, Urizar-Compains E, Ezcurra B, Galiana-Sáenz A, Baquero E, Cabello J, Vizmanos JL. Myeloproliferative Neoplasm-like Mutations of Calreticulin Induce Phenotypes Associated with Calreticulin Dysfunction in C. elegans. Int J Mol Sci 2024; 25:11606. [PMID: 39519157 PMCID: PMC11546369 DOI: 10.3390/ijms252111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In previous research, we created a C. elegans model with homozygous mutations in calreticulin similar to those found in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF), two myeloproliferative neoplasms (MPNs). This model, lacking JAK orthologs, enabled us to examine the transcriptomic effects caused by mutant calreticulin without the influence of JAK/STAT activation, the primary pathogenic mechanism associated with calreticulin mutations known to date. Most of the gene expression changes observed seemed to be due to a partial loss of protein function, with the alteration of the extracellular matrix being particularly notable. In this study, our aim was to determine whether this model exhibited any phenotype related to these transcriptomic alterations. The results demonstrate that these strains exhibit multiple phenotypes related to the alteration of the extracellular matrix, fat levels, and fertility, which could be a possible consequence of a partial loss of calreticulin function. These phenotypes resemble some of the clinical and molecular characteristics described in patients with MPNs, but they had never before been linked to a loss of protein function in humans. Thus, these results collectively suggest that CALR mutations could have significant effects on MPNs due to loss of protein function. Delving deeper into these effects to develop innovative therapies for these patients offers considerable potential and interest, given that targeted therapies for these patients have not yielded very promising results so far.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Cristina Hurtado
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Estibaliz Urizar-Compains
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Begoña Ezcurra
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - Alberto Galiana-Sáenz
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - Enrique Baquero
- Department of Environmental Biology, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Institute for Biodiversity and Environment BIOMA, University of Navarra, 31008 Pamplona, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| |
Collapse
|
3
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
5
|
Cicchetti R, Basconi M, Litterio G, Mascitti M, Tamborino F, Orsini A, Digiacomo A, Ferro M, Schips L, Marchioni M. Advances in Molecular Mechanisms of Kidney Disease: Integrating Renal Tumorigenesis of Hereditary Cancer Syndrome. Int J Mol Sci 2024; 25:9060. [PMID: 39201746 PMCID: PMC11355026 DOI: 10.3390/ijms25169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Renal cell carcinoma (RCC) comprises various histologically distinct subtypes, each characterized by specific genetic alterations, necessitating individualized management and treatment strategies for each subtype. An exhaustive search of the PubMed database was conducted without any filters or restrictions. Inclusion criteria encompassed original English articles focusing on molecular mechanisms of kidney cancer. On the other hand, all non-original articles and articles published in any language other than English were excluded. Hereditary kidney cancer represents 5-8% of all kidney cancer cases and is associated with syndromes such as von Hippel-Lindau syndrome, Birt-Hogg-Dubè syndrome, succinate dehydrogenase-deficient renal cell cancer syndrome, tuberous sclerosis complex, hereditary papillary renal cell carcinoma, fumarate hydratase deficiency syndrome, BAP1 tumor predisposition syndrome, and other uncommon hereditary cancer syndromes. These conditions are characterized by distinct genetic mutations and related extra-renal symptoms. The majority of renal cell carcinoma predispositions stem from loss-of-function mutations in tumor suppressor genes. These mutations promote malignant advancement through the somatic inactivation of the remaining allele. This review aims to elucidate the main molecular mechanisms underlying the pathophysiology of major syndromes associated with renal cell carcinoma. By providing a comprehensive overview, it aims to facilitate early diagnosis and to highlight the principal therapeutic options available.
Collapse
Affiliation(s)
- Rossella Cicchetti
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Martina Basconi
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Giulio Litterio
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Marco Mascitti
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Flavia Tamborino
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Angelo Orsini
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Alessio Digiacomo
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Luigi Schips
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| | - Michele Marchioni
- Department of Medical Oral and Biotechnological Science, Università degli Studi “G. d’Annunzio” of Chieti, 66100 Chieti, Italy; (R.C.); (M.B.); (G.L.); (M.M.); (F.T.); (A.O.); (A.D.); (M.M.)
| |
Collapse
|
6
|
Sam AH, Buckley AJ, Lam BY, Bewick GA, Bech PR, Meeran K, Barakat MT, Bloom SR, Yeo GS, Lessan NG, Murphy KG. Fasting pancreatic polypeptide predicts incident microvascular and macrovascular complications of type 2 diabetes: An observational study. Diabetes Metab Res Rev 2024; 40:e3829. [PMID: 38850100 PMCID: PMC7617488 DOI: 10.1002/dmrr.3829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024]
Abstract
AIMS Pancreatic polypeptide (PP) is elevated in people with vascular risk factors such as type 2 diabetes or increased visceral fat. We investigated potential relationships between PP and microvascular and macrovascular complications of diabetes. MATERIALS AND METHODS Animal study: Subcutaneous PP infusion for 4 weeks in high fat diet mouse model. Retinal mRNA submitted for Ingenuity Pathway Analysis. Human study: fasting PP measured in 1478 participants and vascular complications recorded over median 5.5 (IQR 4.9-5.8) years follow-up. RESULTS Animal study: The retinal transcriptional response to PP was indicative of cellular stress and damage, and this footprint matched responses described in previously published studies of retinal disease. Of mechanistic importance the transcriptional landscape was consistent with upregulation of folliculin, a recently identified susceptibility gene for diabetic retinopathy. Human study: Adjusting for established risk factors, PP was associated with prevalent and incident clinically significant retinopathy (odds ratio (OR) 1.289 (1.107-1.501) p = 0.001; hazard ratio (HR) 1.259 (1.035-1.531) p = 0.0213), albuminuria (OR 1.277 (1.124-1.454), p = 0.0002; HR 1.608 (1.208-2.141) p = 0.0011), and macrovascular disease (OR 1.021 (1.006-1.037) p = 0.0068; HR 1.324 (1.089-1.61), p = 0.0049), in individuals with type 2 diabetes, and progression to diabetes in non-diabetic individuals (HR 1.402 (1.081-1.818), p = 0.0109). CONCLUSIONS Elevated fasting PP is independently associated with vascular complications of diabetes and affects retinal pathways potentially influencing retinal neuronal survival. Our results suggest possible new roles for PP-fold peptides in the pathophysiology of diabetes complications and vascular risk stratification.
Collapse
Affiliation(s)
- Amir H. Sam
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Adam J. Buckley
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Brian Y.H. Lam
- Wellcome-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, UK
| | - Gavin A. Bewick
- Department of Diabetes and Obesity, King’s College London, London, UK
| | - Paul R. Bech
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Karim Meeran
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Maha T. Barakat
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Stephen R. Bloom
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Giles S.H. Yeo
- Wellcome-MRC Institute of Metabolic Science Metabolic Research Laboratories, Cambridge, UK
| | - Nader G. Lessan
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Research Department, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Kevin G. Murphy
- Division of Diabetes, Endocrinology and Metabolism, Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Boya P, Kaarniranta K, Handa JT, Sinha D. Lysosomes in retinal health and disease. Trends Neurosci 2023; 46:1067-1082. [PMID: 37848361 PMCID: PMC10842632 DOI: 10.1016/j.tins.2023.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.
Collapse
Affiliation(s)
- Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Novak SW, Yu J, Gilson R, Hellberg K, Fang L, Sheridan A, Hah N, Shadel GS, Manor U, Shaw RJ. Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science 2023; 380:eabj5559. [PMID: 37079666 PMCID: PMC10794112 DOI: 10.1126/science.abj5559] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Nazma Malik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bibiana I. Ferreira
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Pablo E. Hollstein
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Stephanie D. Curtis
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Elijah Trefts
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sammy Weiser Novak
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rebecca Gilson
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kristina Hellberg
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lingjing Fang
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arlo Sheridan
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Uri Manor
- Biophotonics Core, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
9
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
10
|
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022; 60:101481. [PMID: 35342037 PMCID: PMC9043965 DOI: 10.1016/j.molmet.2022.101481] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spatial compartmentalization of metabolic pathways within membrane-separated organelles is key to the ability of eukaryotic cells to precisely regulate their biochemical functions. Membrane-bound organelles such as mitochondria, endoplasmic reticulum (ER) and lysosomes enable the concentration of metabolic precursors within optimized chemical environments, greatly accelerating the efficiency of both anabolic and catabolic reactions, enabling division of labor and optimal utilization of resources. However, metabolic compartmentalization also poses a challenge to cells because it creates spatial discontinuities that must be bridged for reaction cascades to be connected and completed. To do so, cells employ different methods to coordinate metabolic fluxes occurring in different organelles, such as membrane-localized transporters to facilitate regulated metabolite exchange between mitochondria and lysosomes, non-vesicular transport pathways via physical contact sites connecting the ER with both mitochondria and lysosomes, as well as localized regulatory signaling processes that coordinately regulate the activity of all these organelles. SCOPE OF REVIEW This review covers how cells use membrane transporters, membrane contact sites, and localized signaling pathways to mediate inter-organelle communication and coordinate metabolism. We also describe how disruption of inter-organelle communication is an emerging driver in a multitude of diseases, from cancer to neurodegeneration. MAJOR CONCLUSIONS Effective communication among organelles is essential to cellular health and function. Identifying the major molecular players involved in mediating metabolic coordination between organelles will further our understanding of cellular metabolism in health and lead us to design better therapeutics against dysregulated metabolism in disease.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
12
|
Lee M, Chang Y, Ahmadinejad N, Johnson-Agbakwu C, Bailey C, Liu L. COVID-19 mortality is associated with pre-existing impaired innate immunity in health conditions. PeerJ 2022; 10:e13227. [PMID: 35547187 PMCID: PMC9083528 DOI: 10.7717/peerj.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
COVID-19 can be life-threatening to individuals with chronic diseases. To prevent severe outcomes, it is critical that we comprehend pre-existing molecular abnormalities found in common health conditions that predispose patients to poor prognoses. In this study, we focused on 14 pre-existing health conditions for which increased hazard ratios of COVID-19 mortality have been documented. We hypothesized that dysregulated gene expression in these pre-existing health conditions were risk factors of COVID-19 related death, and the magnitude of dysregulation (measured by fold change) were correlated with the severity of COVID-19 outcome (measured by hazard ratio). To test this hypothesis, we analyzed transcriptomics data sets archived before the pandemic in which no sample had COVID-19. For a given pre-existing health condition, we identified differentially expressed genes by comparing individuals affected by this health condition with those unaffected. Among genes differentially expressed in multiple health conditions, the fold changes of 70 upregulated genes and 181 downregulated genes were correlated with hazard ratios of COVID-19 mortality. These pre-existing dysregulations were molecular risk factors of severe COVID-19 outcomes. These genes were enriched with endoplasmic reticulum and mitochondria function, proinflammatory reaction, interferon production, and programmed cell death that participate in viral replication and innate immune responses to viral infections. Our results suggest that impaired innate immunity in pre-existing health conditions is associated with increased hazard of COVID-19 mortality. The discovered molecular risk factors are potential prognostic biomarkers and targets for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew Lee
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | - Yung Chang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States
| | | | - Celeste Bailey
- Valleywise Health Medical Center, Phoenix, AZ, United States
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States,Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
El-Houjeiri L, Biondini M, Paquette M, Kuasne H, Pacis A, Park M, Siegel PM, Pause A. Folliculin impairs breast tumor growth by repressing TFE3-dependent induction of the Warburg effect and angiogenesis. J Clin Invest 2021; 131:144871. [PMID: 34779410 DOI: 10.1172/jci144871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Morag Park
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and.,Department of Pathology, McGill University, Montréal, Canada
| | - Peter M Siegel
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and
| | - Arnim Pause
- Goodman Cancer Institute.,Department of Biochemistry
| |
Collapse
|
14
|
Alhasan BA, Gordeev SA, Knyazeva AR, Aleksandrova KV, Margulis BA, Guzhova IV, Suvorova II. The mTOR Pathway in Pluripotent Stem Cells: Lessons for Understanding Cancer Cell Dormancy. MEMBRANES 2021; 11:858. [PMID: 34832087 PMCID: PMC8620939 DOI: 10.3390/membranes11110858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Currently, the success of targeted anticancer therapies largely depends on the correct understanding of the dormant state of cancer cells, since it is increasingly regarded to fuel tumor recurrence. The concept of cancer cell dormancy is often considered as an adaptive response of cancer cells to stress, and, therefore, is limited. It is possible that the cancer dormant state is not a privilege of cancer cells but the same reproductive survival strategy as diapause used by embryonic stem cells (ESCs). Recent advances reveal that high autophagy and mTOR pathway reduction are key mechanisms contributing to dormancy and diapause. ESCs, sharing their main features with cancer stem cells, have a delicate balance between the mTOR pathway and autophagy activity permissive for diapause induction. In this review, we discuss the functioning of the mTOR signaling and autophagy in ESCs in detail that allows us to deepen our understanding of the biology of cancer cell dormancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irina I. Suvorova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (B.A.A.); (S.A.G.); (A.R.K.); (K.V.A.); (B.A.M.); (I.V.G.)
| |
Collapse
|
15
|
Loss of hepatic Flcn protects against fibrosis and inflammation by activating autophagy pathways. Sci Rep 2021; 11:21268. [PMID: 34711912 PMCID: PMC8553785 DOI: 10.1038/s41598-021-99958-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.
Collapse
|
16
|
Autophagy induced by H. pylori VacA regulated the survival mechanism of the SGC7901 human gastric cancer cell line. Genes Genomics 2021; 43:1223-1230. [PMID: 34398448 PMCID: PMC8429402 DOI: 10.1007/s13258-021-01151-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Background Vacuolating cytotoxin (VacA) is an important virulence factor of Helicobacter pylori (H. pylori). It was previously believed that VacA can trigger the cascade of apoptosis on mitochondria to lead to cell apoptosis. Recently, it was found that VacA can induce autophagy. However, the molecular mechanism by which VacA induces autophagy is largely unknown. Objective We aimed to explore the molecular mechanism of autophagy induced by H. pylori in gastric cancer cells and the effect of autophagy on the survival of gastric cancer cells. Methods The autophagy of human gastric cancer cell line SGC7901 was detected by Western blot and RT-PCR in the treatment of VacA protein of H. pylori. The relationship between autophagy and reactive oxygen species (ROS) in the proliferation of gastric cancer cells were studied by gene expression silences (siRNA) and CM-H2DCFDA (DCF) staining. Results The results showed that VacA protein secreted by H. pylori in the supernatant stimulated autophagy in SGC7901 cells. After VacA protein treatment, the mRNA expressions of BECN1, ATG7 and PIK3C3, were up-regulated. ATG7 silencing by siRNA inhibited VacA-induced autophagy. Furthermore, our data demonstrated that VacA protein increased ROS levels. Addition of the antioxidant N-acetyl-l-cysteine (NAC) suppressed the levels of ROS, leading to inhibition of autophagy. Conclusions H. pylori VacA is a key toxin that induces autophagy by increased ROS levels. And our findings demonstrated that VacA significantly inhibited proliferation in SGC7901 cells.
Collapse
|
17
|
Metabolic impacts of cordycepin on hepatic proteomic expression in streptozotocin-induced type 1 diabetic mice. PLoS One 2021; 16:e0256140. [PMID: 34388207 PMCID: PMC8363009 DOI: 10.1371/journal.pone.0256140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Type 1 Diabetes mellitus (T1DM) is associated with abnormal liver function, but the exact mechanism is unclear. Cordycepin improves hepatic metabolic pathways leading to recovery from liver damage. We investigated the effects of cordycepin in streptozotocin-induced T1DM mice via the expression of liver proteins. Twenty-four mice were divided into four equal groups: normal (N), normal mice treated with cordycepin (N+COR), diabetic mice (DM), and diabetic mice treated with cordycepin (DM+COR). Mice in each treatment group were intraperitoneally injection of cordycepin at dose 24 mg/kg for 14 consecutive days. Body weight, blood glucose, and the tricarboxylic acid cycle intermediates were measured. Liver tissue protein profiling was performed using shotgun proteomics, while protein function and protein-protein interaction were predicted using PANTHER and STITCH v.5.0 software, respectively. No significant difference was observed in fasting blood glucose levels between DM and DM+COR for all time intervals. However, a significant decrease in final body weight, food intake, and water intake in DM+COR was found. Hepatic oxaloacetate and citrate levels were significantly increased in DM+COR compared to DM. Furthermore, 11 and 36 proteins were only expressed by the N+COR and DM+COR groups, respectively. Three unique proteins in DM+COR, namely, Nfat3, Flcn, and Psma3 were correlated with the production of ATP, AMPK signaling pathway, and ubiquitin proteasome system (UPS), respectively. Interestingly, a protein detected in N+COR and DM+COR (Gli3) was linked with the insulin signaling pathway. In conclusion, cordycepin might help in preventing hepatic metabolism by regulating the expression of energy-related protein and UPS to maintain cell survival. Further work on predicting the performance of metabolic mechanisms regarding the therapeutic applications of cordycepin will be performed in future.
Collapse
|
18
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
Xiao L, Liu J, Sun Z, Yin Y, Mao Y, Xu D, Liu L, Xu Z, Guo Q, Ding C, Sun W, Yang L, Zhou Z, Zhou D, Fu T, Zhou W, Zhu Y, Chen XW, Li JZ, Chen S, Xie X, Gan Z. AMPK-dependent and -independent coordination of mitochondrial function and muscle fiber type by FNIP1. PLoS Genet 2021; 17:e1009488. [PMID: 33780446 PMCID: PMC8031738 DOI: 10.1371/journal.pgen.1009488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for maintaining skeletal muscle metabolic homeostasis during adaptive response to a myriad of physiologic or pathophysiological stresses. The mechanisms by which mitochondrial function and contractile fiber type are concordantly regulated to ensure muscle function remain poorly understood. Evidence is emerging that the Folliculin interacting protein 1 (Fnip1) is involved in skeletal muscle fiber type specification, function, and disease. In this study, Fnip1 was specifically expressed in skeletal muscle in Fnip1-transgenic (Fnip1Tg) mice. Fnip1Tg mice were crossed with Fnip1-knockout (Fnip1KO) mice to generate Fnip1TgKO mice expressing Fnip1 only in skeletal muscle but not in other tissues. Our results indicate that, in addition to the known role in type I fiber program, FNIP1 exerts control upon muscle mitochondrial oxidative program through AMPK signaling. Indeed, basal levels of FNIP1 are sufficient to inhibit AMPK but not mTORC1 activity in skeletal muscle cells. Gain-of-function and loss-of-function strategies in mice, together with assessment of primary muscle cells, demonstrated that skeletal muscle mitochondrial program is suppressed via the inhibitory actions of FNIP1 on AMPK. Surprisingly, the FNIP1 actions on type I fiber program is independent of AMPK and its downstream PGC-1α. These studies provide a vital framework for understanding the intrinsic role of FNIP1 as a crucial factor in the concerted regulation of mitochondrial function and muscle fiber type that determine muscle fitness. Mitochondria provide an essential source of energy to drive cellular processes and the function of mitochondria is particularly important in skeletal muscle, a metabolically demanding tissue that depends critically on mitochondria, accounting for ~40% of total body mass. In this study, we discovered an essential function of adaptor protein FNIP1 in the coordinated regulation of the mitochondrial and structural programs controlling muscle fitness. Using both gain-of-function and loss-of-function strategies in mice and muscle cells, we provide clear genetic data that demonstrate FNIP1-dependent signaling is crucial for muscle mitochondrial remodeling as well as type I muscle fiber specification. We also uncover that FNIP1 exerts control upon muscle mitochondrial program through AMPK but not mTORC1 signaling. Furthermore, we demonstrate that FNIP1 acts independently of PGC-1α to regulate fiber type specification. Hence, our study emphasizes FNIP1 as a dominant factor that coordinates mitochondrial and muscle fiber type programs that govern muscle fitness.
Collapse
Affiliation(s)
- Liwei Xiao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jing Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zongchao Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yujing Yin
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yan Mao
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lin Liu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhisheng Xu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiqi Guo
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Chenyun Ding
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wanping Sun
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Likun Yang
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zheng Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Danxia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tingting Fu
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wenjing Zhou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yuangang Zhu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Chemistry and Biomedicine Innovation Center (ChemBIC), Model Animal Research Center, Nanjing University Medical School, Nanjing University, Nanjing, China
- * E-mail:
| |
Collapse
|
20
|
Paquette M, El-Houjeiri L, C Zirden L, Puustinen P, Blanchette P, Jeong H, Dejgaard K, Siegel PM, Pause A. AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3. Autophagy 2021; 17:3957-3975. [PMID: 33734022 DOI: 10.1080/15548627.2021.1898748] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.AbbreviationsACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Linda C Zirden
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Pietri Puustinen
- Cell Death and Metabolism, Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark
| | - Paola Blanchette
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
21
|
Wang X, Wu H, Zhao L, Liu Z, Qi M, Jin Y, Liu W. FLCN regulates transferrin receptor 1 transport and iron homeostasis. J Biol Chem 2021; 296:100426. [PMID: 33609526 PMCID: PMC7995610 DOI: 10.1016/j.jbc.2021.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Birt–Hogg–Dubé (BHD) syndrome is a multiorgan disorder caused by inactivation of the folliculin (FLCN) protein. Previously, we identified FLCN as a binding protein of Rab11A, a key regulator of the endocytic recycling pathway. This finding implies that the abnormal localization of specific proteins whose transport requires the FLCN-Rab11A complex may contribute to BHD. Here, we used human kidney-derived HEK293 cells as a model, and we report that FLCN promotes the binding of Rab11A with transferrin receptor 1 (TfR1), which is required for iron uptake through continuous trafficking between the cell surface and the cytoplasm. Loss of FLCN attenuated the Rab11A–TfR1 interaction, resulting in delayed recycling transport of TfR1. This delay caused an iron deficiency condition that induced hypoxia-inducible factor (HIF) activity, which was reversed by iron supplementation. In a Drosophila model of BHD syndrome, we further demonstrated that the phenotype of BHD mutant larvae was substantially rescued by an iron-rich diet. These findings reveal a conserved function of FLCN in iron metabolism and may help to elucidate the mechanisms driving BHD syndrome.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Hanjie Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Lingling Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Zeyao Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Maozhen Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| |
Collapse
|
22
|
Zou J, Li C, Jiang S, Luo L, Yan X, Huang D, Luo Z. AMPK inhibits Smad3-mediated autoinduction of TGF-β1 in gastric cancer cells. J Cell Mol Med 2021; 25:2806-2815. [PMID: 33538080 PMCID: PMC7957200 DOI: 10.1111/jcmm.16308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously shown that adenine monophosphate‐activated protein kinase (AMPK) regulates transforming growth factor β (TGF‐β)‐triggered Smad3 phosphorylation. Here we report that AMPK inhibits TGF‐β1 production. First, metformin reduced mRNA levels of TGF‐β1 in gastric cancer cells, in parallel to the decrease of its protein abundance. The effects were more prominent in the cells containing LKB1, an upstream kinase of AMPK. Second, knockdown of Smad3 by siRNA abrogated the expression of TGF‐β1. Third, metformin suppressed firefly luciferase activity whose transcription was driven by TGF‐β1 promoter. In accordance, deletion of the putative binding site of Smad3 in the TGF‐β1 promoter region severely impaired the promoter activity and response to metformin. Fourth, in support of our in vitro study, clinical treatment of type 2 diabetes with metformin significantly reduced the plasma level of TGF‐β1. Finally, immunohistochemical studies revealed that TGF‐β1 was highly expressed in human gastric cancer tissues as compared with adjacent normal tissues. In contrast, p‐AMPK exhibited opposite changes. Furthermore, the survival rate of gastric cancer patients was positively correlated with p‐AMPK and negative with TGF‐β1. Therefore, our present studies depict a mechanism underlying AMPK suppression of TGF‐β1 autoinduction, which is mediated through inhibition of Smad3 phosphorylation and activation. Collectively, our study sheds a light on the potential usage of AMPK activators in the treatment of TGF‐β1‐mediated gastric cancer progression.
Collapse
Affiliation(s)
- Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Li
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Pharmacy Department, Xiangyang Stomatological Hospital, Affiliated Stomatological Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shanshan Jiang
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Glykofridis IE, Knol JC, Balk JA, Westland D, Pham TV, Piersma SR, Lougheed SM, Derakhshan S, Veen P, Rooimans MA, van Mil SE, Böttger F, Poddighe PJ, van de Beek I, Drost J, Zwartkruis FJ, de Menezes RX, Meijers-Heijboer HE, Houweling AC, Jimenez CR, Wolthuis RM. Loss of FLCN-FNIP1/2 induces a non-canonical interferon response in human renal tubular epithelial cells. eLife 2021; 10:61630. [PMID: 33459596 PMCID: PMC7899648 DOI: 10.7554/elife.61630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sinéad M Lougheed
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Puck Veen
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Martin A Rooimans
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Saskia E van Mil
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Franziska Böttger
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Pino J Poddighe
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Irma van de Beek
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Fried Jt Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | | | - Hanne Ej Meijers-Heijboer
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Arjan C Houweling
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Zhang Y, Liu Y, Dai Y, Ren Y, Bao G, Bo A, Jiang Y. Ciliary localization of folliculin mediated via a kinesin-2-binding motif is required for its functions in mTOR regulation and tumor suppression. FEBS Lett 2021; 595:123-132. [PMID: 33064845 PMCID: PMC7980781 DOI: 10.1002/1873-3468.13959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Folliculin (FLCN) is a tumor suppressor protein involved in many cellular processes, including cell signaling, apoptosis, and autophagy. In ciliated cells, FLCN localizes to primary cilia and controls mTORC1 signaling in response to flow stress. Here, we show that the ciliary localization of FLCN requires its interaction with kinesin-2, the motor protein for anterograde intraflagellar transport. FLCN binds to kinesin-2 through a loop region in the middle of the protein. Single point mutations within this region of FLCN disrupt its kinesin-2 binding and ciliary entry. The mutants lose the ability to suppress the abnormal mTORC1/2 signaling activities and anchorage-independent growth of FLCN-deficient tumor cells. These observations suggest that ciliary localization of FLCN is essential for its function as a tumor suppressor.
Collapse
Affiliation(s)
- Yunlong Zhang
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ying Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yu Dai
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yazhe Ren
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guangsen Bao
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Ai Bo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
26
|
Skol AD, Jung SC, Sokovic AM, Chen S, Fazal S, Sosina O, Borkar PP, Lin A, Sverdlov M, Cao D, Swaroop A, Bebu I, Stranger BE, Grassi MA. Integration of genomics and transcriptomics predicts diabetic retinopathy susceptibility genes. eLife 2020; 9:59980. [PMID: 33164750 PMCID: PMC7728435 DOI: 10.7554/elife.59980] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
We determined differential gene expression in response to high glucose in lymphoblastoid cell lines derived from matched individuals with type 1 diabetes with and without retinopathy. Those genes exhibiting the largest difference in glucose response were assessed for association with diabetic retinopathy in a genome-wide association study meta-analysis. Expression quantitative trait loci (eQTLs) of the glucose response genes were tested for association with diabetic retinopathy. We detected an enrichment of the eQTLs from the glucose response genes among small association p-values and identified folliculin (FLCN) as a susceptibility gene for diabetic retinopathy. Expression of FLCN in response to glucose was greater in individuals with diabetic retinopathy. Independent cohorts of individuals with diabetes revealed an association of FLCN eQTLs with diabetic retinopathy. Mendelian randomization confirmed a direct positive effect of increased FLCN expression on retinopathy. Integrating genetic association with gene expression implicated FLCN as a disease gene for diabetic retinopathy. One of the side effects of diabetes is loss of vision from diabetic retinopathy, which is caused by injury to the light sensing tissue in the eye, the retina. Almost all individuals with diabetes develop diabetic retinopathy to some extent, and it is the leading cause of irreversible vision loss in working-age adults in the United States. How long a person has been living with diabetes, the extent of increased blood sugars and genetics all contribute to the risk and severity of diabetic retinopathy. Unfortunately, virtually no genes associated with diabetic retinopathy have yet been identified. When a gene is activated, it produces messenger molecules known as mRNA that are used by cells as instructions to produce proteins. The analysis of mRNA molecules, as well as genes themselves, can reveal the role of certain genes in disease. The studies of all genes and their associated mRNAs are respectively called genomics and transcriptomics. Genomics reveals what genes are present, while transcriptomics shows how active genes are in different cells. Skol et al. developed methods to study genomics and transcriptomics together to help discover genes that cause diabetic retinopathy. Genes involved in how cells respond to high blood sugar were first identified using cells grown in the lab. By comparing the activity of these genes in people with and without retinopathy the study identified genes associated with an increased risk of retinopathy in diabetes. In people with retinopathy, the activity of the folliculin gene (FLCN) increased more in response to high blood sugar. This was further verified with independent groups of people and using computer models to estimate the effect of different versions of the folliculin gene. The methods used here could be applied to understand complex genetics in other diseases. The results provide new understanding of the effects of diabetes. They may also help in the development of new treatments for diabetic retinopathy, which are likely to improve on the current approach of using laser surgery or injections into the eye.
Collapse
Affiliation(s)
- Andrew D Skol
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, United States
| | - Segun C Jung
- Research and Development, NeoGenomics Laboratories, Aliso Viejo, United States
| | | | - Siquan Chen
- Cellular Screening Center, Office of Shared Research Facilities, The University of Chicago, Chicago, United States
| | - Sarah Fazal
- Cellular Screening Center, Office of Shared Research Facilities, The University of Chicago, Chicago, United States
| | - Olukayode Sosina
- Department of Biostatistics, Johns Hopkins University, Baltimore, United States.,National Eye Institute, National Institutes of Health (NIH), Bethesda, United States
| | | | - Amy Lin
- University of Illinois at Chicago, Chicago, United States
| | - Maria Sverdlov
- University of Illinois at Chicago, Chicago, United States
| | - Dingcai Cao
- University of Illinois at Chicago, Chicago, United States
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health (NIH), Bethesda, United States
| | - Ionut Bebu
- The George Washington University, Biostatistics Center, Rockville, United States
| | | | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| | | |
Collapse
|
27
|
Yang T, Heydarian M, Kozjak-Pavlovic V, Urban M, Harbottle RP, Rudel T. Folliculin Controls the Intracellular Survival and Trans-Epithelial Passage of Neisseria gonorrhoeae. Front Cell Infect Microbiol 2020; 10:422. [PMID: 33014885 PMCID: PMC7499807 DOI: 10.3389/fcimb.2020.00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Neisseria gonorrhoeae, a Gram-negative obligate human pathogenic bacterium, infects human epithelial cells and causes sexually transmitted diseases. Emerging multi-antibiotic resistant gonococci and increasing numbers of infections complicate the treatment of infected patients. Here, we used an shRNA library screen and next-generation sequencing to identify factors involved in epithelial cell infection. Folliculin (FLCN), a 64 kDa protein with a tumor repressor function was identified as a novel host factor important for N. gonorrhoeae survival after uptake. We further determined that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for its survival in the cells by modulating autophagy. In addition, FLCN was also required to maintain cell to cell contacts in the epithelial layer. In an infection model with polarized cells, FLCN inhibited the polarized localization of E-cadherin and the transcytosis of gonococci across polarized epithelial cells. In conclusion, we demonstrate here the connection between FLCN and bacterial infection and in particular the role of FLCN in the intracellular survival and transcytosis of gonococci across polarized epithelial cell layers.
Collapse
Affiliation(s)
- Tao Yang
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | - Manuela Urban
- DNA Vector Lab, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Chang WH, Lai AG. An integrative pan-cancer investigation reveals common genetic and transcriptional alterations of AMPK pathway genes as important predictors of clinical outcomes across major cancer types. BMC Cancer 2020; 20:773. [PMID: 32807122 PMCID: PMC7433212 DOI: 10.1186/s12885-020-07286-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of cellular energy homeostasis. As a nexus for transducing metabolic signals, AMPK cooperates with other energy-sensing pathways to modulate cellular responses to metabolic stressors. With metabolic reprogramming being a hallmark of cancer, the utility of agents targeting AMPK has received continued scrutiny and results have demonstrated conflicting effects of AMPK activation in tumorigenesis. Harnessing multi-omics datasets from human tumors, we seek to evaluate the seemingly pleiotropic, tissue-specific dependencies of AMPK signaling dysregulation. METHODS We interrogated copy number variation and differential transcript expression of 92 AMPK pathway genes across 21 diverse cancers involving over 18,000 patients. Cox proportional hazards regression and receiver operating characteristic analyses were used to evaluate the prognostic significance of AMPK dysregulation on patient outcomes. RESULTS A total of 24 and seven AMPK pathway genes were identified as having loss- or gain-of-function features. These genes exhibited tissue-type dependencies, where survival outcomes in glioma patients were most influenced by AMPK inactivation. Cox regression and log-rank tests revealed that the 24-AMPK-gene set could successfully stratify patients into high- and low-risk groups in glioma, sarcoma, breast and stomach cancers. The 24-AMPK-gene set could not only discriminate tumor from non-tumor samples, as confirmed by multidimensional scaling analyses, but is also independent of tumor, node and metastasis staging. AMPK inactivation is accompanied by the activation of multiple oncogenic pathways associated with cell adhesion, calcium signaling and extracellular matrix organization. Anomalous AMPK signaling converged on similar groups of transcriptional targets where a common set of transcription factors were identified to regulate these targets. We also demonstrated crosstalk between pro-catabolic AMPK signaling and two pro-anabolic pathways, mammalian target of rapamycin and peroxisome proliferator-activated receptors, where they act synergistically to influence tumor progression significantly. CONCLUSION Genetic and transcriptional aberrations in AMPK signaling have tissue-dependent pro- or anti-tumor impacts. Pan-cancer investigations on molecular changes of this pathway could uncover novel therapeutic targets and support risk stratification of patients in prospective trials.
Collapse
Affiliation(s)
- Wai Hoong Chang
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK
| | - Alvina G Lai
- Institute of Health Informatics, University College London, 222 Euston Road, London, NW1 2DA, UK.
| |
Collapse
|
29
|
Testa U, Pelosi E, Castelli G. Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E44. [PMID: 32751108 PMCID: PMC7459851 DOI: 10.3390/medicines7080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Renal cell cancer (RCC) involves three most recurrent sporadic types: clear-cell RCC (70-75%, CCRCC), papillary RCCC (10-15%, PRCC), and chromophobe RCC (5%, CHRCC). Hereditary cases account for about 5% of all cases of RCC and are caused by germline pathogenic variants. Herein, we review how a better understanding of the molecular biology of RCCs has driven the inception of new diagnostic and therapeutic approaches. Genomic research has identified relevant genetic alterations associated with each RCC subtype. Molecular studies have clearly shown that CCRCC is universally initiated by Von Hippel Lindau (VHL) gene dysregulation, followed by different types of additional genetic events involving epigenetic regulatory genes, dictating disease progression, aggressiveness, and differential response to treatments. The understanding of the molecular mechanisms that underlie the development and progression of RCC has considerably expanded treatment options; genomic data might guide treatment options by enabling patients to be matched with therapeutics that specifically target the genetic alterations present in their tumors. These new targeted treatments have led to a moderate improvement of the survival of metastatic RCC patients. Ongoing studies based on the combination of immunotherapeutic agents (immune check inhibitors) with VEGF inhibitors are expected to further improve the survival of these patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy; (E.P.); (G.C.)
| | | | | |
Collapse
|
30
|
Bellamy J, Szemes M, Melegh Z, Dallosso A, Kollareddy M, Catchpoole D, Malik K. Increased Efficacy of Histone Methyltransferase G9a Inhibitors Against MYCN-Amplified Neuroblastoma. Front Oncol 2020; 10:818. [PMID: 32537432 PMCID: PMC7269128 DOI: 10.3389/fonc.2020.00818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Targeted inhibition of proteins modulating epigenetic changes is an increasingly important priority in cancer therapeutics, and many small molecule inhibitors are currently being developed. In the case of neuroblastoma (NB), a pediatric solid tumor with a paucity of intragenic mutations, epigenetic deregulation may be especially important. In this study we validate the histone methyltransferase G9a/EHMT2 as being associated with indicators of poor prognosis in NB. Immunological analysis of G9a protein shows it to be more highly expressed in NB cell-lines with MYCN amplification, which is a primary determinant of dismal outcome in NB patients. Furthermore, G9a protein in primary tumors is expressed at higher levels in poorly differentiated/undifferentiated NB, and correlates with high EZH2 expression, a known co-operative oncoprotein in NB. Our functional analyses demonstrate that siRNA-mediated G9a depletion inhibits cell growth in all NB cell lines, but, strikingly, only triggers apoptosis in NB cells with MYCN amplification, suggesting a synthetic lethal relationship between G9a and MYCN. This pattern of sensitivity is also evident when using small molecule inhibitors of G9a, UNC0638, and UNC0642. The increased efficacy of G9a inhibition in the presence of MYCN-overexpression is also demonstrated in the SHEP-21N isogenic model with tet-regulatable MYCN. Finally, using RNA sequencing, we identify several potential tumor suppressor genes that are reactivated by G9a inhibition in NB, including the CLU, FLCN, AMHR2, and AKR1C1-3. Together, our study underlines the under-appreciated role of G9a in NB, especially in MYCN-amplified tumors.
Collapse
Affiliation(s)
- Jacob Bellamy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Marianna Szemes
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Zsombor Melegh
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Anthony Dallosso
- Department of Cellular Pathology, Southmead Hospital, Bristol, United Kingdom
| | - Madhu Kollareddy
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Daniel Catchpoole
- The Kids Research Institute, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Karim Malik
- Cancer Epigenetics Laboratory, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
31
|
El-Houjeiri L, Possik E, Vijayaraghavan T, Paquette M, Martina JA, Kazan JM, Ma EH, Jones R, Blanchette P, Puertollano R, Pause A. The Transcription Factors TFEB and TFE3 Link the FLCN-AMPK Signaling Axis to Innate Immune Response and Pathogen Resistance. Cell Rep 2020; 26:3613-3628.e6. [PMID: 30917316 DOI: 10.1016/j.celrep.2019.02.102] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.
Collapse
Affiliation(s)
- Leeanna El-Houjeiri
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Mathieu Paquette
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - José A Martina
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jalal M Kazan
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Eric H Ma
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Russell Jones
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Paola Blanchette
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada; Department of Biochemistry, McGill University, Montréal, QC, Canada.
| |
Collapse
|
32
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
33
|
Chu L, Luo Y, Chen H, Miao Q, Wang L, Moats R, Wang T, Kennedy JC, Henske EP, Shi W. Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax 2020; 75:486-493. [PMID: 32238524 DOI: 10.1136/thoraxjnl-2019-214112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary cysts and spontaneous pneumothorax are presented in most patients with Birt-Hogg-Dubé (BHD) syndrome, which is caused by loss of function mutations in the folliculin (FLCN) gene. The pathogenic mechanisms underlying the cystic lung disease in BHD are poorly understood. METHODS Mesenchymal Flcn was specifically deleted in mice or in cultured lung mesenchymal progenitor cells using a Cre/loxP approach. Dynamic changes in lung structure, cellular and molecular phenotypes and signalling were measured by histology, immunofluorescence staining and immunoblotting. RESULTS Deletion of Flcn in mesoderm-derived mesenchymal cells results in significant reduction of postnatal alveolar growth and subsequent alveolar destruction, leading to cystic lesions. Cell proliferation and alveolar myofibroblast differentiation are inhibited in the Flcn knockout lungs, and expression of the extracellular matrix proteins Col3a1 and elastin are downregulated. Signalling pathways including mTORC1, AMP-activated protein kinase, ERK1/2 and Wnt-β-catenin are differentially affected at different developmental stages. All the above changes have statistical significance (p<0.05). CONCLUSIONS Mesenchymal Flcn is an essential regulator during alveolar development and maintenance, through multiple cellular and molecular mechanisms. The mesenchymal Flcn knockout mouse model provides the first in vivo disease model that may recapitulate the stages of cyst development in human BHD. These findings elucidate the developmental origins and mechanisms of lung disease in BHD.
Collapse
Affiliation(s)
- Ling Chu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yongfeng Luo
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Chen
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Qing Miao
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Larry Wang
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rex Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tiansheng Wang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John C Kennedy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Shi
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
34
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
35
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Isono Y, Furuya M, Kuwahara T, Sano D, Suzuki K, Jikuya R, Mitome T, Otake S, Kawahara T, Ito Y, Muraoka K, Nakaigawa N, Kimura Y, Baba M, Nagahama K, Takahata H, Saito I, Schmidt LS, Linehan WM, Kodama T, Yao M, Oridate N, Hasumi H. FLCN alteration drives metabolic reprogramming towards nucleotide synthesis and cyst formation in salivary gland. Biochem Biophys Res Commun 2020; 522:931-938. [PMID: 31806376 PMCID: PMC8195446 DOI: 10.1016/j.bbrc.2019.11.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
FLCN is a tumor suppressor gene which controls energy homeostasis through regulation of a variety of metabolic pathways including mitochondrial oxidative metabolism and autophagy. Birt-Hogg-Dubé (BHD) syndrome which is driven by germline alteration of the FLCN gene, predisposes patients to develop kidney cancer, cutaneous fibrofolliculomas, pulmonary cysts and less frequently, salivary gland tumors. Here, we report metabolic roles for FLCN in the salivary gland as well as their clinical relevance. Screening of salivary glands of BHD patients using ultrasonography demonstrated increased cyst formation in the salivary gland. Salivary gland tumors that developed in BHD patients exhibited an upregulated mTOR-S6R pathway as well as increased GPNMB expression, which are characteristics of FLCN-deficient cells. Salivary gland-targeted Flcn knockout mice developed cytoplasmic clear cell formation in ductal cells with increased mitochondrial biogenesis, upregulated mTOR-S6K pathway, upregulated TFE3-GPNMB axis and upregulated lipid metabolism. Proteomic and metabolite analysis using LC/MS and GC/MS revealed that Flcn inactivation in salivary gland triggers metabolic reprogramming towards the pentose phosphate pathway which consequently upregulates nucleotide synthesis and redox regulation, further supporting that Flcn controls metabolic homeostasis in salivary gland. These data uncover important roles for FLCN in salivary gland; metabolic reprogramming under FLCN deficiency might increase nucleotide production which may feed FLCN-deficient salivary gland cells to trigger tumor initiation and progression, providing mechanistic insight into salivary gland tumorigenesis as well as a foundation for development of novel therapeutics for salivary gland tumors.
Collapse
Affiliation(s)
- Yasuhiro Isono
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama, 236-0004, Japan
| | - Tatsu Kuwahara
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Yokohama, 236-0004, Japan
| | - Kae Suzuki
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Taku Mitome
- Department of Urology, Yokohama, 236-0004, Japan
| | - Shinji Otake
- Department of Urology, Yokohama, 236-0004, Japan
| | | | - Yusuke Ito
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, 236-0004, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Graduate School of Medical Sciences, Kyorin University, Mitaka, Tokyo, 181-8611, Japan
| | - Hiroyuki Takahata
- Department of Pathology, Shikoku Cancer Center, Matsuyama, Ehime, 791-0280, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
| | - Masahiro Yao
- Department of Urology, Yokohama, 236-0004, Japan
| | | | | |
Collapse
|
37
|
Nowsheen S, Hand JL, Gibson LE, El-Azhary RA. Melanoma in a patient with previously unrecognized Birt-Hogg-Dubé syndrome. JAAD Case Rep 2019; 5:947-952. [PMID: 31687461 PMCID: PMC6820253 DOI: 10.1016/j.jdcr.2019.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Somaira Nowsheen
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, Minnesota
| | - Jennifer L Hand
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota.,Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Lawrence E Gibson
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
38
|
Steinlein OK, Ertl-Wagner B, Ruzicka T, Sattler EC. Birt-Hogg-Dubé syndrome: an underdiagnosed genetic tumor syndrome. J Dtsch Dermatol Ges 2019. [PMID: 29537177 DOI: 10.1111/ddg.13457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Birt-Hogg-Dubé syndrome (BHD, also referred to as Hornstein-Knickenberg syndrome) is an autosomal dominant tumor syndrome caused by mutations in the FLCN gene located on chromosome 17. Depending on their age, patients with BHD may exhibit various clinical signs and symptoms. Disease severity can vary greatly among members of the same family. Early symptoms include basal lung cysts, which can lead to recurrent spontaneous pneumothoraces. The majority of patients (> 90 %) develop multiple fibrofolliculomas, especially on the face and upper trunk, in the second or third decade of life. Given the 12-34 % lifetime risk of developing benign or malignant renal tumors, targeted screening programs are prognostically crucial. While these renal tumors may belong to various histological subtypes, common variants include multifocal - sometimes bilateral - chromophobe and oncocytic hybrid tumors. Early diagnosis and adequate long-term care of families with BHD require interdisciplinary cooperation.
Collapse
Affiliation(s)
- Ortrud K Steinlein
- Interdisciplinary Clinic for Birt-Hogg-Dubé syndrome, Institute of Human Genetics, University Medical Center, Ludwig Maximilians University, Munich, Germany
| | - Birgit Ertl-Wagner
- Interdisciplinary Clinic for Birt-Hogg-Dubé syndrome, Institute of Clinical Radiology, University Medical Center, Ludwig Maximilians University, Munich, Germany
| | - Thomas Ruzicka
- Department of Dermatology, University Medical Center, Ludwig Maximilians University, Munich, Germany
| | - Elke C Sattler
- Interdisciplinary Clinic for Birt-Hogg-Dubé syndrome, Institute of Clinical Radiology, University Medical Center, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
39
|
Qin Y, Sekine I, Hanazono M, Morinaga T, Fan M, Takiguchi Y, Tada Y, Shingyoji M, Yamaguchi N, Tagawa M. AMPK activation induced in pemetrexed-treated cells is associated with development of drug resistance independently of target enzyme expression. Mol Oncol 2019; 13:1419-1432. [PMID: 31033201 PMCID: PMC6547620 DOI: 10.1002/1878-0261.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/13/2019] [Accepted: 04/26/2019] [Indexed: 12/29/2022] Open
Abstract
Pemetrexed (PEM) inhibits DNA and RNA synthesis and is currently one of the first‐line agents for mesothelioma. PEM suppresses the activities of several enzymes involved in purine and pyrimidine synthesis, and elevated activity of these enzymes in tumors is often linked with resistance to PEM. The agent also stimulates AMP‐activated protein kinase (AMPK) and consequently influences the mammalian target of rapamycin complex 1 (mTORC1) pathways. Nevertheless, it remains unclear whether PEM resistance is linked to the AMPK or mTORC1 pathways. Here, we established two independent PEM‐resistant mesothelioma cell lines in which expression of the PEM‐target enzymes was not elevated, and found that levels of phosphorylated AMPK and p70S6K and, to a lesser extent, levels of phosphorylated AKT and p53, were increased in these cells as compared with the respective parent cells. PEM stimulation also augmented phosphorylation of AMPK, p70S6K, AKT and p53 in most cases. An AMPK activator increased phosphorylation and PEM resistance in parental cells, and the inhibitor decreased the resistance of PEM‐resistant cells. In contrast, inhibitors for p70S6K and AKT did not influence PEM resistance; furthermore, increased levels of endogenous p53 did not affect PEM sensitivity. These data collectively indicate that constitutive activation of AMPK is associated with PEM resistance, and that this is unconnected with elevated DNA and RNA synthesis.
Collapse
Affiliation(s)
- Yiyang Qin
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan
| | - Mengmeng Fan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Japan
| | | | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
40
|
Jiang S, Wang Y, Luo L, Shi F, Zou J, Lin H, Ying Y, Luo Y, Zhan Z, Liu P, Zhu B, Huang D, Luo Z. AMP-activated protein kinase regulates cancer cell growth and metabolism via nuclear and mitochondria events. J Cell Mol Med 2019; 23:3951-3961. [PMID: 30993829 PMCID: PMC6533503 DOI: 10.1111/jcmm.14279] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Adenine monophosphate‐activated protein kinase (AMPK) is a fuel sensing enzyme that is activated in shortage of energy and inhibited in its surplus. Cancer is a metabolic disease characteristic of aerobic glycolysis, namely Warburg effect, and possesses heterogeneity featured by spatiotemporal hypoxia and normoxia, where AMPK is deeply implicated. The present study delineates the regulation of mitochondrial functions by AMPK in cancer cells. On the one hand, AMPKα subunit binds to mitochondria independently of β subunit and targeting AMPK to mitochondria facilitates oxidative phosphorylation and fatty acid oxidation, and inhibits glycolysis. As such, mitochondrial AMPK inhibits the growth of cancer cells and tumorigenesis. On the other hand, ablation of the β subunits completely abolishes AMPK activity and simultaneously leads to decreases in mitochondria DNA and protein contents. The effect of the β deletion is rescued by overexpression of the active mutant of bulky AMPKα1 subunit. In conjunction, the transcriptional factors PGC1α and Nrf‐1 are up‐regulated by LKB1/AMPK, an event that is abolished in the absence of the β subunits. Intriguingly, the stimulation of mitochondria biogenesis is not achieved by mitochondria‐targeted AMPK. Therefore, our study suggests that AMPK inhibits cancer cell growth and tumorigenesis via regulation of mitochondria‐mediated metabolism.
Collapse
Affiliation(s)
- Shanshan Jiang
- Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang, China.,Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China.,Institute of Hematological Research, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yan Wang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China.,Pharmaceutical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Lingyu Luo
- Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang, China
| | - Fuli Shi
- Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang, China.,Pharmaceutical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Junrong Zou
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China.,Pharmaceutical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China
| | - Ying Ying
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China
| | - Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China
| | - Zhan Zhan
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China.,Pharmaceutical Sciences, Nanchang University Jiangxi Medical College, Nanchang, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Deqiang Huang
- Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang, China
| | - Zhijun Luo
- Institute of Digestive Diseases, The First Affiliated Hospital, Nanchang, China.,Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, Schools of Basic Sciences, Nanchang, China
| |
Collapse
|
41
|
Suvorova II, Pospelov VA. AMPK/Ulk1-dependent autophagy as a key mTOR regulator in the context of cell pluripotency. Cell Death Dis 2019; 10:260. [PMID: 30886138 PMCID: PMC6423002 DOI: 10.1038/s41419-019-1501-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Irina I Suvorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - Valery A Pospelov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
42
|
Zemirli N, Boukhalfa A, Dupont N, Botti J, Codogno P, Morel E. The primary cilium protein folliculin is part of the autophagy signaling pathway to regulate epithelial cell size in response to fluid flow. Cell Stress 2019; 3:100-109. [PMID: 31225504 PMCID: PMC6551741 DOI: 10.15698/cst2019.03.180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a conserved molecular pathway directly involved in the degradation and recycling of intracellular components. Autophagy is associated with a response to stress situations, such as nutrients deficit, chemical toxicity, mechanical stress or microbial host defense. We have recently shown that primary cilium-dependent autophagy is important to control kidney epithelial cell size in response to fluid flow induced shear stress. Here we show that the ciliary protein folliculin (FLCN) actively participates to the signaling cascade leading to the stimulation of fluid flow-dependent autophagy upstream of the cell size regulation in HK2 kidney epithelial cells. The knockdown of FLCN induces a shortening of the primary cilium, inhibits the activation of AMPK and the recruitment of the autophagy protein ATG16L1 at the primary cilium. Altogether, our results suggest that FLCN is essential in the dialog between autophagy and the primary cilium in epithelial cells to integrate shear stress-dependent signaling.
Collapse
Affiliation(s)
- Naïma Zemirli
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Asma Boukhalfa
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Joëlle Botti
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Denis Diderot Sorbonne Paris Cité, F-75993, Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253.,Université Paris Descartes-Sorbonne Paris Cité, F-75993, Paris, France
| |
Collapse
|
43
|
Lundquist MR, Goncalves MD, Loughran RM, Possik E, Vijayaraghavan T, Yang A, Pauli C, Ravi A, Verma A, Yang Z, Johnson JL, Wong JCY, Ma Y, Hwang KSK, Weinkove D, Divecha N, Asara JM, Elemento O, Rubin MA, Kimmelman AC, Pause A, Cantley LC, Emerling BM. Phosphatidylinositol-5-Phosphate 4-Kinases Regulate Cellular Lipid Metabolism By Facilitating Autophagy. Mol Cell 2019; 70:531-544.e9. [PMID: 29727621 DOI: 10.1016/j.molcel.2018.03.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/13/2018] [Accepted: 03/29/2018] [Indexed: 01/21/2023]
Abstract
While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.
Collapse
Affiliation(s)
- Mark R Lundquist
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan M Loughran
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Elite Possik
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Tarika Vijayaraghavan
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Annan Yang
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Chantal Pauli
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Archna Ravi
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA
| | - Akanksha Verma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zhiwei Yang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jared L Johnson
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenny C Y Wong
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yilun Ma
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Katie Seo-Kyoung Hwang
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David Weinkove
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Nullin Divecha
- The Inositide Laboratory, Centre for Biological Sciences, Southampton University, Southampton, SO17 1BJ, UK
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olivier Elemento
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mark A Rubin
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY 10065, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, NY 10016, USA
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Brooke M Emerling
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Metabolism and Signaling Networks Program, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Springhorn A, Hoppe T. Western blot analysis of the autophagosomal membrane protein LGG-1/LC3 in Caenorhabditis elegans. Methods Enzymol 2019; 619:319-336. [DOI: 10.1016/bs.mie.2018.12.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Zhao L, Ji X, Zhang X, Li L, Jin Y, Liu W. FLCN is a novel Rab11A-interacting protein that is involved in the Rab11A-mediated recycling transport. J Cell Sci 2018; 131:jcs.218792. [PMID: 30446510 DOI: 10.1242/jcs.218792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
The Birt-Hogg-Dubé (BHD) syndrome related protein FLCN has recently been implicated in the vesicular trafficking processes by interacting with several Rab family GTPases. In the previous studies, we have shown that FLCN could inhibit the binding of overexpressed PAT1, which is a membrane-bound amino acid transporter, to the lysosome in human embryonic kidney 293 cells. This tends to stabilize the lysosomal amino acid pool that is a critical signal to activate the mTORC1 signaling pathway. However, the mechanisms of FLCN during this process remain unexplored. Here we report that FLCN can bind through its C-terminal DENN-like domain to the recycling transport regulator, Rab11A. Suppression of either Rab11A or FLCN facilitated the localization of the overexpressed PAT1 to the lysosome and inhibited its targeting on the plasma membrane. As a consequence, the mTORC1 was down-regulated. The in vitro GEF activity assay does not support FLCN modifies the Rab11A activity directly. Instead, we found FLCN promoted the loading of PAT1 on Rab11A. Our data uncover a function of FLCN in the Rab11A-mediated recycling pathway and might provide new clues to understand BHD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lingling Zhao
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| | - Xin Ji
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| | - Xiangxiang Zhang
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| | - Lin Li
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| | - Wei Liu
- Key Laboratory of Animal Biotechnology, the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China 712100
| |
Collapse
|
46
|
Hasumi H, Furuya M, Tatsuno K, Yamamoto S, Baba M, Hasumi Y, Isono Y, Suzuki K, Jikuya R, Otake S, Muraoka K, Osaka K, Hayashi N, Makiyama K, Miyoshi Y, Kondo K, Nakaigawa N, Kawahara T, Izumi K, Teranishi J, Yumura Y, Uemura H, Nagashima Y, Metwalli AR, Schmidt LS, Aburatani H, Linehan WM, Yao M. BHD-associated kidney cancer exhibits unique molecular characteristics and a wide variety of variants in chromatin remodeling genes. Hum Mol Genet 2018; 27:2712-2724. [PMID: 29767721 PMCID: PMC6048985 DOI: 10.1093/hmg/ddy181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Birt-Hogg-Dubé (BHD) syndrome is a hereditary kidney cancer syndrome, which predisposes patients to develop kidney cancer, cutaneous fibrofolliculomas and pulmonary cysts. The responsible gene FLCN is a tumor suppressor for kidney cancer, which plays an important role in energy homeostasis through the regulation of mitochondrial oxidative metabolism. However, the process by which FLCN-deficiency leads to renal tumorigenesis is unclear. In order to clarify molecular pathogenesis of BHD-associated kidney cancer, we conducted whole-exome sequencing analysis using next-generation sequencing technology as well as metabolite analysis using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Whole-exome sequencing analysis of BHD-associated kidney cancer revealed that copy number variations of BHD-associated kidney cancer are considerably different from those already reported in sporadic cases. In somatic variant analysis, very few variants were commonly observed in BHD-associated kidney cancer; however, variants in chromatin remodeling genes were frequently observed in BHD-associated kidney cancer (17/29 tumors, 59%). Metabolite analysis of BHD-associated kidney cancer revealed metabolic reprogramming toward upregulated redox regulation which may neutralize reactive oxygen species potentially produced from mitochondria with increased respiratory capacity under FLCN-deficiency. BHD-associated kidney cancer displays unique molecular characteristics that are completely different from sporadic kidney cancer, providing mechanistic insight into tumorigenesis under FLCN-deficiency as well as a foundation for development of novel therapeutics for kidney cancer.
Collapse
Affiliation(s)
- Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama, Japan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University, Yokohama, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology, The University Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology, The University Tokyo, Tokyo, Japan
| | - Masaya Baba
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiko Hasumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Ophthalmology, Yokohama City University, Yokohama, Japan
| | - Yasuhiro Isono
- Department of Otorhinolaryngology, Yokohama City University, Yokohama, Japan
| | - Kae Suzuki
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Ryosuke Jikuya
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Shinji Otake
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Kentaro Muraoka
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Kimito Osaka
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Narihiko Hayashi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | | | - Yasuhide Miyoshi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Keiichi Kondo
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Noboru Nakaigawa
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Takashi Kawahara
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Koji Izumi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | | | - Yasushi Yumura
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Hiroji Uemura
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Adam R Metwalli
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University Tokyo, Tokyo, Japan
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masahiro Yao
- Department of Urology, Yokohama City University, Yokohama, Japan
| |
Collapse
|
47
|
Centini R, Tsang M, Iwata T, Park H, Delrow J, Margineantu D, Iritani BM, Gu H, Liggitt HD, Kang J, Kang L, Hockenbery DM, Raftery D, Iritani BM. Loss of Fnip1 alters kidney developmental transcriptional program and synergizes with TSC1 loss to promote mTORC1 activation and renal cyst formation. PLoS One 2018; 13:e0197973. [PMID: 29897930 PMCID: PMC5999084 DOI: 10.1371/journal.pone.0197973] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Abstract
Birt-Hogg-Dube' Syndrome (BHDS) is a rare genetic disorder in humans characterized by skin hamartomas, lung cysts, pneumothorax, and increased risk of renal tumors. BHDS is caused by mutations in the BHD gene, which encodes for Folliculin, a cytoplasmic adapter protein that binds to Folliculin interacting proteins-1 and -2 (Fnip1, Fnip2) as well as the master energy sensor AMP kinase (AMPK). Whereas kidney-specific deletion of the Bhd gene in mice is known to result in polycystic kidney disease (PKD) and renal cell carcinoma, the roles of Fnip1 in renal cell development and function are unclear. In this study, we utilized mice with constitutive deletion of the Fnip1 gene to show that the loss of Fnip1 is sufficient to result in renal cyst formation, which was characterized by decreased AMPK activation, increased mTOR activation, and metabolic hyperactivation. Using RNAseq, we found that Fnip1 disruption resulted in many cellular and molecular changes previously implicated in the development of PKD in humans, including alterations in the expression of ion and amino acid transporters, increased cell adhesion, and increased inflammation. Loss of Fnip1 synergized with Tsc1 loss to hyperactivate mTOR, increase Erk activation, and greatly accelerate the development of PKD. Our results collectively define roles for Fnip1 in regulating kidney development and function, and provide a model for how loss of Fnip1 contributes to PKD and perhaps renal cell carcinoma.
Collapse
Affiliation(s)
- Ryan Centini
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mark Tsang
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Terri Iwata
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Heon Park
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey Delrow
- Genomics and Bioinformatics Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daciana Margineantu
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brandon M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Haiwei Gu
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, Northwest Metabolomics Research Center, University of Washington, Seattle, Washington, United States of America
| | - H. Denny Liggitt
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Janella Kang
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lim Kang
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - David M. Hockenbery
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, Northwest Metabolomics Research Center, University of Washington, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Brian M. Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Salvi AM, DeMali KA. Mechanisms linking mechanotransduction and cell metabolism. Curr Opin Cell Biol 2018; 54:114-120. [PMID: 29902730 DOI: 10.1016/j.ceb.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Throughout their lifetimes, all cells experience force. These forces are sensed by cell surface adhesion receptors, such as the cadherins and integrins. Much attention has focused on identifying how these adhesion receptors transmit force. In contrast, less is known regarding how these force-activated pathways are integrated with other cellular processes. In this review, we describe how cadherins and integrins transmit force, and discuss how these adhesion receptors are linked to cell metabolism. We focus on understanding this connection by highlighting how the cadherins and integrins interact with a master regulator of energy homeostasis, AMP-activated protein kinase (AMPK) and its upstream activator, Liver Kinase B1 (LKB1). We consider why there is a need for force transmission to be coupled to metabolism and highlight the major unanswered questions in the field.
Collapse
Affiliation(s)
- Alicia M Salvi
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
49
|
Steinlein OK, Ertl-Wagner B, Ruzicka T, Sattler EC. Birt-Hogg-Dubé-Syndrom: ein zu selten diagnostiziertes erbliches Tumorsyndrom. J Dtsch Dermatol Ges 2018. [DOI: 10.1111/ddg.13457_g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ortrud K. Steinlein
- Interdisziplinäre Sprechstunde für Birt-Hogg-Dubé-Syndrom; Institut für Humangenetik; Klinikum der Ludwig-Maximilians-Universität München
| | - Birgit Ertl-Wagner
- Interdisziplinäre Sprechstunde für Birt-Hogg-Dubé-Syndrom; Institut für Klinische Radiologie; Klinikum der Ludwig-Maximilians-Universität München
| | - Thomas Ruzicka
- Klinik und Poliklinik für Dermatologie; Klinikum der Ludwig-Maximilians-Universität München
| | - Elke C. Sattler
- Interdisziplinäre Sprechstunde für Birt-Hogg-Dubé-Syndrom; Institut für Klinische Radiologie; Klinikum der Ludwig-Maximilians-Universität München
| |
Collapse
|
50
|
Schmidt LS, Linehan WM. FLCN: The causative gene for Birt-Hogg-Dubé syndrome. Gene 2018; 640:28-42. [PMID: 28970150 PMCID: PMC5682220 DOI: 10.1016/j.gene.2017.09.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023]
Abstract
Germline mutations in the novel tumor suppressor gene FLCN are responsible for the autosomal dominant inherited disorder Birt-Hogg-Dubé (BHD) syndrome that predisposes to fibrofolliculomas, lung cysts and spontaneous pneumothorax, and an increased risk for developing kidney tumors. Although the encoded protein, folliculin (FLCN), has no sequence homology to known functional domains, x-ray crystallographic studies have shown that the C-terminus of FLCN has structural similarity to DENN (differentially expressed in normal cells and neoplasia) domain proteins that act as guanine nucleotide exchange factors (GEFs) for small Rab GTPases. FLCN forms a complex with folliculin interacting proteins 1 and 2 (FNIP1, FNIP2) and with 5' AMP-activated protein kinase (AMPK). This review summarizes FLCN functional studies which support a role for FLCN in diverse metabolic pathways and cellular processes that include modulation of the mTOR pathway, regulation of PGC1α and mitochondrial biogenesis, cell-cell adhesion and RhoA signaling, control of TFE3/TFEB transcriptional activity, amino acid-dependent activation of mTORC1 on lysosomes through Rag GTPases, and regulation of autophagy. Ongoing research efforts are focused on clarifying the primary FLCN-associated pathway(s) that drives the development of fibrofolliculomas, lung cysts and kidney tumors in BHD patients carrying germline FLCN mutations.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States; Basic Science Program, Leidos Biomedical Research, Inc., Frederick Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|