1
|
Walker BM, Palumbo RJ, Knutson BA. Tissue-specific requirement of Polr1D in the prothoracic gland for ecdysone-mediated developmental transitions in Drosophila melanogaster. Dev Dyn 2025. [PMID: 40317818 DOI: 10.1002/dvdy.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND POLR1D is a shared subunit of RNA Polymerases I and III, which transcribe the rRNA incorporated into ribosomes. Mutations in POLR1D cause Treacher Collins syndrome, a craniofacial disorder that arises from impaired ribosome biogenesis in neural crest cells. Previously, we found that RNAi knockdown of Polr1D in several non-neural Drosophila tissues caused developmental defects that phenocopy mutations affecting ecdysone signaling. Ecdysone is a steroid hormone produced in the prothoracic gland (PG) of insects that triggers developmental transitions. Here, we show that Polr1D is required for PG development and ecdysone production to facilitate larval developmental transitions. RESULTS We found that Polr1D RNAi in the PG causes larval developmental arrest due to defective peripheral ecdysone signaling. We also found that Polr1D is required for the growth of PG cells and for maintaining nucleolar structure. We found that Polr1D is required for the synthesis of mature ribosomes and the production of the Pol III-transcribed 7SK RNA. Furthermore, developmental arrest of Polr1D RNAi larvae and Polr1D mutant (G30R) larvae was partially rescued by treatment with exogenous ecdysone. CONCLUSION These results demonstrate a role for Drosophila Polr1D in PG development and suggest that disruptions in human Polr1D might impact additional cell types during development.
Collapse
Affiliation(s)
- Bridget M Walker
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ryan J Palumbo
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Zhang J, Liu S, Li Y, Xu G, Deng H, King-Jones K, Li S. Nutrient status alters developmental fates via a switch in mitochondrial homeodynamics. Nat Commun 2025; 16:1258. [PMID: 39893174 PMCID: PMC11787341 DOI: 10.1038/s41467-025-56528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Steroid hormones are powerful endocrine regulators, but little is known about how environmental conditions modulate steroidogenesis to reprogram developmental fates. Here, we use the Drosophila prothoracic gland (PG) to investigate how a nutrient restriction checkpoint (NRC) ensures or blocks developmental progression and sexual maturation via regulating steroidogenesis. Extensive transcriptome analysis of the PG reveals that pre-NRC starvation significantly downregulates mitochondria-associated genes. Pre-NRC starvation reduces prothoracicotropic neuropeptide hormone signaling, insulin signaling, and TORC1 activity in PG cells, which prevent mitochondrial fragmentation and import of Disembodied, a key steroidogenic enzyme. Ultimately, pre-NRC starvation causes severe mitophagy and proteasome dysfunction, blocking steroidogenesis and metamorphosis. By contrast, post-NRC starvation does not impair mitochondrial homeostasis in PG cells but reduces sit expression and induces moderate autophagy to promote steroidogenesis, leading to precocious metamorphosis. This study constitutes a paradigm for exploring how steroid hormone levels are controlled in response to environmental stress during developmental checkpoints.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| | - Yang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China.
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China.
| |
Collapse
|
3
|
Liu W, Yan M, King-Jones K. Soul is a master control gene governing the development of the Drosophila prothoracic gland. Proc Natl Acad Sci U S A 2024; 121:e2405469121. [PMID: 39312662 PMCID: PMC11459192 DOI: 10.1073/pnas.2405469121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
The prothoracic gland (PG) is a major insect endocrine organ. It is the principal source of insect steroid hormones, and critical for key developmental events such as the molts, the establishment of critical weight (CW), pupation, and sexual maturation. However, little is known about the developmental processes that regulate PG morphology. In this study, we identified soul, which encodes a PG-specific basic helix-loop-helix (bHLH) transcription factor. We demonstrate that Tap, also a bHLH protein, dimerizes with Soul. Both are expressed in the developing PG. Interfering with either soul or tap function caused strikingly similar phenotypes, resulting in small and fragmented PGs, the abolishment of steroid hormone-producing gene expression, larval arrest, and a failure to undergo metamorphosis. Furthermore, both soul and tap showed expression peaks just prior to the CW checkpoint. Disrupting soul- or tap-function before, but not after, the CW checkpoint caused larval arrest, and perturbed highly similar gene cohorts, which were enriched for regulators and components of the steroid hormone biosynthesis pathway. Intriguingly, a chitin-based cuticle gene, Cpr49Ah, and a POU domain transcription factor gene, pdm3, are direct target genes of the Soul/Tap complex, and disruption of either phenocopied key aspects of soul/tap loss-of-function phenotypes. Taken together, our findings demonstrate that the Soul/Tap heterodimer resides at the top of a complex gene hierarchy that drives PG development, CW establishment, and steroid hormone production.
Collapse
Affiliation(s)
- Wen Liu
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Minyi Yan
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
4
|
Ostalé CM, Pulido D, Vega-Cuesta P, López-Varea A, de Celis JF. Developmental analysis of Spalt function in the Drosophila prothoracic gland. Development 2024; 151:dev202751. [PMID: 39087588 PMCID: PMC11385645 DOI: 10.1242/dev.202751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Diego Pulido
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patricia Vega-Cuesta
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
5
|
Rogers MF, Marshall OJ, Secombe J. KDM5-mediated activation of genes required for mitochondrial biology is necessary for viability in Drosophila. Development 2023; 150:dev202024. [PMID: 37800333 PMCID: PMC10651110 DOI: 10.1242/dev.202024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Histone-modifying proteins play important roles in the precise regulation of the transcriptional programs that coordinate development. KDM5 family proteins interact with chromatin through demethylation of H3K4me3 as well as demethylase-independent mechanisms that remain less understood. To gain fundamental insights into the transcriptional activities of KDM5 proteins, we examined the essential roles of the single Drosophila Kdm5 ortholog during development. KDM5 performs crucial functions in the larval neuroendocrine prothoracic gland, providing a model to study its role in regulating key gene expression programs. Integrating genome binding and transcriptomic data, we identify that KDM5 regulates the expression of genes required for the function and maintenance of mitochondria, and we find that loss of KDM5 causes morphological changes to mitochondria. This is key to the developmental functions of KDM5, as expression of the mitochondrial biogenesis transcription factor Ets97D, homolog of GABPα, is able to suppress the altered mitochondrial morphology as well as the lethality of Kdm5 null animals. Together, these data establish KDM5-mediated cellular functions that are important for normal development and could contribute to KDM5-linked disorders when dysregulated.
Collapse
Affiliation(s)
- Michael F. Rogers
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Owen J. Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Scanlan JL, Robin C, Mirth CK. Rethinking the ecdysteroid source during Drosophila pupal-adult development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103891. [PMID: 36481381 DOI: 10.1016/j.ibmb.2022.103891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the development, reproduction and physiology of insects and other arthropods. For over half a century, the vinegar fly Drosophila melanogaster (Ephydroidea: Diptera) has been used as a model of ecdysteroid biology. Many aspects of the biosynthesis and regulation of ecdysteroids in this species are understood at the molecular level, particularly with respect to their secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate transitions during the D. melanogaster life cycle, the sources of which are generally well understood, apart from the large 20E pulse at the onset of pharate adult development, which has received little recent attention. As the source of this pharate adult pulse (PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published biochemical and genetic data as they pertain to three hypotheses for the source of PAP 20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, with other data consistent with D. melanogaster able to recycle ecdysteroids before and during metamorphosis. Published data also suggest the PAP is conserved across Diptera, with evidence for pupal-adult ecdysteroid recycling occurring in other cyclorrhaphan flies. Further experimental work is required to test the ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the function, regulation, and evolution of metamorphic hormones in dipterans and other insects.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
7
|
Ohhara Y, Kato Y, Kamiyama T, Yamakawa-Kobayashi K. Su(var)2-10- and Su(var)205-dependent upregulation of the heterochromatic gene neverland is required for developmental transition in Drosophila. Genetics 2022; 222:iyac137. [PMID: 36149288 PMCID: PMC9630985 DOI: 10.1093/genetics/iyac137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Animals develop from juveniles to sexually mature adults through the action of steroid hormones. In insect metamorphosis, a surge of the steroid hormone ecdysone prompts the transition from the larval to the adult stage. Ecdysone is synthesized by a series of biosynthetic enzymes that are specifically expressed in an endocrine organ, the prothoracic gland. At the late larval stage, the expression levels of ecdysone biosynthetic enzymes are upregulated through the action of numerous transcription factors, thus initiating metamorphosis. In contrast, the mechanism by which chromatin regulators support the expression of ecdysone biosynthetic genes is largely unknown. Here, we demonstrate that Su(var)2-10 and Su(var)205, suppressor of variegation [Su(var)] genes encoding a chromatin regulator Su(var)2-10 and nonhistone heterochromatic protein 1a, respectively, regulate the transcription of one of the heterochromatic ecdysone biosynthetic genes, neverland, in Drosophila melanogaster. Knockdown of Su(var)2-10 and Su(var)205 in the prothoracic gland caused a decrease in neverland expression, resulting in a defect in larval-to-prepupal transition. Furthermore, overexpression of neverland and administration of 7-dehydrocholesterol, a biosynthetic precursor of ecdysone produced by Neverland, rescued developmental defects in Su(var)2-10 and Su(var)205 knockdown animals. These results indicate that Su(var)2-10- and Su(var)205-mediated proper expression of neverland is required for the initiation of metamorphosis. Given that Su(var)2-10-positive puncta are juxtaposed with the pericentromeric heterochromatic region, we propose that Su(var)2-10- and Su(var)205-dependent regulation of inherent heterochromatin structure at the neverland gene locus is essential for its transcriptional activation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuki Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
8
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Colgan TJ, Arce AN, Gill RJ, Ramos Rodrigues A, Kanteh A, Duncan EJ, Li L, Chittka L, Wurm Y. Genomic Signatures of Recent Adaptation in a Wild Bumblebee. Mol Biol Evol 2022; 39:msab366. [PMID: 35134226 PMCID: PMC8845123 DOI: 10.1093/molbev/msab366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental changes threaten insect pollinators, creating risks for agriculture and ecosystem stability. Despite their importance, we know little about how wild insects respond to environmental pressures. To understand the genomic bases of adaptation in an ecologically important pollinator, we analyzed genomes of Bombus terrestris bumblebees collected across Great Britain. We reveal extensive genetic diversity within this population, and strong signatures of recent adaptation throughout the genome affecting key processes including neurobiology and wing development. We also discover unusual features of the genome, including a region containing 53 genes that lacks genetic diversity in many bee species, and a horizontal gene transfer from a Wolbachia bacteria. Overall, the genetic diversity we observe and how it is distributed throughout the genome and the population should support the resilience of this important pollinator species to ongoing and future selective pressures. Applying our approach to more species should help understand how they can differ in their adaptive potential, and to develop conservation strategies for those most at risk.
Collapse
Affiliation(s)
- Thomas J Colgan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Abdoulie Kanteh
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Li Li
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Lars Chittka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Yannick Wurm
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
10
|
Lu K, Cheng YB, Li YM, Li WR, Song YY, Zeng RS, Sun ZX. The KNRL nuclear receptor controls hydrolase-mediated vitellin breakdown during embryogenesis in the brown planthopper, Nilaparvata lugens. INSECT SCIENCE 2021; 28:1633-1650. [PMID: 33191602 DOI: 10.1111/1744-7917.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Vitellin (Vn) homeostasis is central to the fecundity of oviparous insects. Most studies have focused on the synthesis and transportation of Vn as a building block for developing eggs during vitellogenesis; however, less is known about how the utilization of this nutrient reserve affects embryonic development. Here, we show that the single ortholog of the knirps and knirps-like nuclear receptors, KNRL, negatively regulates Vn breakdown by suppressing the expression of hydrolase genes in the brown planthopper, Nilaparvata lugens. KNRL was highly expressed in the ovary of adult females, and knockdown of KNRL by RNA interference resulted in the acceleration of Vn breakdown and the inhibition of embryonic development. Transcriptome sequencing analysis revealed that numerous hydrolase genes, including cathepsins and trypsins were up-regulated after KNRL knockdown. At least eight of the nine significantly enriched Gene Ontology terms for the up-regulated genes were in proteolysis-related categories. The expression levels of five selected trypsin genes and the enzymatic activities of trypsin in the embryos were significantly increased after KNRL knockdown. Moreover, trypsin injection prolonged egg duration, delayed embryonic development, accelerated Vn breakdown and severely reduced egg hatchability, a pattern similar to that observed in KNRL-silenced N. lugens. These observations suggest that KNRL controls Vn breakdown in embryos via the transcriptional inhibition of hydrolases. Generally, this study provides a foundation for understanding how embryo nutrient reserves are mobilized during embryogenesis and identifies several genes and pathways that may prove valuable targets for pest control.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Bei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi-Min Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Ru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Yuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ren-Sen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong-Xiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Chafino S, Martín D, Franch-Marro X. Activation of EGFR signaling by Tc-Vein and Tc-Spitz regulates the metamorphic transition in the red flour beetle Tribolium castaneum. Sci Rep 2021; 11:18807. [PMID: 34552169 PMCID: PMC8458297 DOI: 10.1038/s41598-021-98334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Animal development relies on a sequence of specific stages that allow the formation of adult structures with a determined size. In general, juvenile stages are dedicated mainly to growth, whereas last stages are devoted predominantly to the maturation of adult structures. In holometabolous insects, metamorphosis marks the end of the growth period as the animals stops feeding and initiate the final differentiation of the tissues. This transition is controlled by the steroid hormone ecdysone produced in the prothoracic gland. In Drosophila melanogaster different signals have been shown to regulate the production of ecdysone, such as PTTH/Torso, TGFß and Egfr signaling. However, to which extent the roles of these signals are conserved remains unknown. Here, we study the role of Egfr signaling in post-embryonic development of the basal holometabolous beetle Tribolium castaneum. We show that Tc-Egfr and Tc-pointed are required to induced a proper larval-pupal transition through the control of the expression of ecdysone biosynthetic genes. Furthermore, we identified an additional Tc-Egfr ligand in the Tribolium genome, the neuregulin-like protein Tc-Vein (Tc-Vn), which contributes to induce larval-pupal transition together with Tc-Spitz (Tc-Spi). Interestingly, we found that in addition to the redundant role in the control of pupa formation, each ligand possesses different functions in organ morphogenesis. Whereas Tc-Spi acts as the main ligand in urogomphi and gin traps, Tc-Vn is required in wings and elytra. Altogether, our findings show that in Tribolium, post-embryonic Tc-Egfr signaling activation depends on the presence of two ligands and that its role in metamorphic transition is conserved in holometabolous insects.
Collapse
Affiliation(s)
- Sílvia Chafino
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - David Martín
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| | - Xavier Franch-Marro
- grid.507636.10000 0004 0424 5398Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Passeig de la Barceloneta 37, 08003 Barcelona, Catalonia Spain
| |
Collapse
|
12
|
Zhao Y, Lindberg BG, Esfahani SS, Tang X, Piazza S, Engström Y. Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biol 2021; 19:185. [PMID: 34479564 PMCID: PMC8417969 DOI: 10.1186/s12915-021-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01106-0.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Department of Molecular Biology, Umeå University, SE-901 87, Umeå, SE, Sweden
| | - Bo Gustav Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Shiva Seyedoleslami Esfahani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Stefano Piazza
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, 38010, San Michele a/Adige, Italy
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
13
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
14
|
Hu B, Huang H, Hu S, Ren M, Wei Q, Tian X, Esmail Abdalla Elzaki M, Bass C, Su J, Reddy Palli S. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genet 2021; 17:e1009403. [PMID: 33690635 PMCID: PMC7978377 DOI: 10.1371/journal.pgen.1009403] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/19/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The evolution of insect resistance to insecticides is frequently associated with overexpression of one or more cytochrome P450 enzyme genes. Although overexpression of CYP450 genes is a well-known mechanism of insecticide resistance, the underlying regulatory mechanisms are poorly understood. Here we uncovered the mechanisms of overexpression of the P450 gene, CYP321A8 in a major pest insect, Spodoptera exigua that is resistant to multiple insecticides. CYP321A8 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in this insect. Constitutive upregulation of transcription factors CncC/Maf are partially responsible for upregulated expression of CYP321A8 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses demonstrated that CncC/Maf enhanced the expression of CYP321A8 by binding to specific sites in the promoter. Additional cis-regulatory elements resulting from a mutation in the CYP321A8 promoter in the resistant strain facilitates the binding of the orphan nuclear receptor, Knirps, and enhances the promoter activity. These results demonstrate that two independent mechanisms; overexpression of transcription factors and mutations in the promoter region resulting in a new cis-regulatory element that facilitates binding of the orphan nuclear receptor are involved in overexpression of CYP321A8 in insecticide-resistant S. exigua. Insect pests developing resistance to insecticides used for their control is a major problem in agriculture. Many pests including the beet armyworm, Spodoptera exigua have developed resistance to insecticides used for their control. Information on the mechanisms of resistance would help in resistance management programs. Overexpression of detoxifying enzymes were associated with insecticide resistance, but their functions and regulatory mechanisms are still unidentified. The expression levels of P450 genes between susceptible and resistant strains of S. exigua were compared and CYP321A8 was identified as the major contributor to resistance to organophosphate and pyrethroid insecticides. Further studies uncovered two independent but synergistic mechanisms; constitutive upregulation of b-Zip transcription factors and mutations in the promoter that facilitates the binding of an orphan nuclear receptor, Knirps contributing to increase in the expression of CYP321A8 and resistance to multiple insecticides in S. exigua.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - He Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Songzhu Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JS); (SRP)
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (JS); (SRP)
| |
Collapse
|
15
|
Kannangara JR, Mirth CK, Warr CG. Regulation of ecdysone production in Drosophila by neuropeptides and peptide hormones. Open Biol 2021; 11:200373. [PMID: 33593157 PMCID: PMC8103234 DOI: 10.1098/rsob.200373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In both mammals and insects, steroid hormones play a major role in directing the animal's progression through developmental stages. To maximize fitness outcomes, steroid hormone production is regulated by the environmental conditions experienced by the animal. In insects, the steroid hormone ecdysone mediates transitions between developmental stages and is regulated in response to environmental factors such as nutrition. These environmental signals are communicated to the ecdysone-producing gland via the action of neuropeptide and peptide hormone signalling pathways. While some of these pathways have been well characterized, there is evidence to suggest more signalling pathways than has previously been thought function to control ecdysone production, potentially in response to a greater range of environmental conditions. Here, we review the neuropeptide and peptide hormone signalling pathways known to regulate the production of ecdysone in the model genetic insect Drosophila melanogaster, as well as what is known regarding the environmental signals that trigger these pathways. Areas for future research are highlighted that can further contribute to our overall understanding of the complex orchestration of environmental, physiological and developmental cues that together produce a functioning adult organism.
Collapse
Affiliation(s)
- Jade R. Kannangara
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Coral G. Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
16
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
17
|
Christensen CF, Koyama T, Nagy S, Danielsen ET, Texada MJ, Halberg KA, Rewitz K. Ecdysone-dependent feedback regulation of prothoracicotropic hormone controls the timing of developmental maturation. Development 2020; 147:dev188110. [PMID: 32631830 PMCID: PMC7390634 DOI: 10.1242/dev.188110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The activation of a neuroendocrine system that induces a surge in steroid production is a conserved initiator of the juvenile-to-adult transition in many animals. The trigger for maturation is the secretion of brain-derived neuropeptides, yet the mechanisms controlling the timely onset of this event remain ill-defined. Here, we show that a regulatory feedback circuit controlling the Drosophila neuropeptide Prothoracicotropic hormone (PTTH) triggers maturation onset. We identify the Ecdysone Receptor (EcR) in the PTTH-expressing neurons (PTTHn) as a regulator of developmental maturation onset. Loss of EcR in these PTTHn impairs PTTH signaling, which delays maturation. We find that the steroid ecdysone dose-dependently affects Ptth transcription, promoting its expression at lower concentrations and inhibiting it at higher concentrations. Our findings indicate the existence of a feedback circuit in which rising ecdysone levels trigger, via EcR activity in the PTTHn, the PTTH surge that generates the maturation-inducing ecdysone peak toward the end of larval development. Because steroid feedback is also known to control the vertebrate maturation-inducing hypothalamic-pituitary-gonadal axis, our findings suggest an overall conservation of the feedback-regulatory neuroendocrine circuitry that controls the timing of maturation initiation.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| |
Collapse
|
18
|
Kamiyama T, Sun W, Tani N, Nakamura A, Niwa R. Poly(A) Binding Protein Is Required for Nuclear Localization of the Ecdysteroidogenic Transcription Factor Molting Defective in the Prothoracic Gland of Drosophila melanogaster. Front Genet 2020; 11:636. [PMID: 32676099 PMCID: PMC7333772 DOI: 10.3389/fgene.2020.00636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022] Open
Abstract
Steroid hormone signaling contributes to the development of multicellular organisms. In insects, ecdysteroids, like ecdysone and the more biologically-active derivative 20-hydroxyecdysone (20E), promote molting and metamorphosis. Ecdysone is biosynthesized in the prothoracic gland (PG), via several steps catalyzed by ecdysteroidogenic enzymes that are encoded by Halloween genes. The spatio-temporal expression pattern of ecdysteroidogenic genes is strictly controlled, resulting in a proper fluctuation of the 20E titer during insect development. However, their transcriptional regulatory mechanism is still elusive. A previous study has found that the polyadenylated tail [poly(A)] deadenylation complex, called Carbon catabolite repressor 4-Negative on TATA (CCR4-NOT) regulates the expression of spookier (spok), which encodes one of the ecdysteroidogenic enzymes in the fruit fly Drosophila melanogaster. Based on this finding, we speculated whether any other poly(A)-related protein also regulates spok expression. In this study, we reported that poly(A) binding protein (Pabp) is involved in spok expression by regulating nuclear localization of the transcription factor molting defective (Mld). When pabp was knocked down specifically in the PG by transgenic RNAi, both spok mRNA and Spok protein levels were significantly reduced. In addition, the spok promoter-driven green fluorescence protein (GFP) signal was also reduced in the pabp-RNAi PG, suggesting that Pabp is involved in the transcriptional regulation of spok. We next examined which transcription factors are responsible for Pabp-dependent transcriptional regulation. Among the transcription factors acting in the PG, we primarily focused on the zinc-finger transcription factor Mld, as Mld is essential for spok transcription. Mld was localized in the nucleus of the control PG cells, while Mld abnormally accumulated in the cytoplasm of pabp-RNAi PG cells. In contrast, pabp-RNAi did not affect the nuclear localization of other transcription factors, including ventral vein lacking (Vvl) and POU domain motif 3 (Pdm3), in PG cells. From these results, we propose that Pabp regulates subcellular localization in the PG, specifically of the transcription factor Mld, in the context of ecdysone biosynthesis.
Collapse
Affiliation(s)
- Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Tani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Sarwar PF, McDonald IR, Wang VR, Suzuki Y. The POU factor Ventral veins lacking regulates ecdysone and juvenile hormone biosynthesis during development and reproduction of the milkweed bug, Oncopeltus fasciatus. Dev Biol 2020; 459:181-193. [PMID: 31812605 DOI: 10.1016/j.ydbio.2019.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Recent studies have demonstrated endocrine roles for the POU domain transcription factor Ventral veins lacking (Vvl) during larval development of holometabolous insects - insects that undergo complete metamorphosis. In this study, the role of Vvl was examined in the milkweed bug, Oncopeltus fasciatus, a hemimetabolous insect. In the embryos, vvl was found to be expressed in the presumptive prothoracic glands. When vvl expression was knocked down using RNA interference (RNAi), embryos arrested their development after dorsal closure. Vvl double-stranded RNA (dsRNA)-injected nymphs failed to molt and had reduced expression of the ecdysone response gene, hormone receptor 3 (HR3), the ecdysone biosynthesis genes, disembodied and spook, and the juvenile hormone (JH) response gene, Krüppel homolog 1 (Kr-h1). Injection of 20-hydroxyecdysone rescued the molting phenotype and HR3 expression in vvl knockdown nymphs. In adults, vvl RNAi inhibited egg laying and suppressed the expression of Kr-h1 and vitellogenin in the fat body. Application of JH III or methoprene restored oviposition in vvl knockdown adults, indicating that Vvl regulates JH biosynthesis during reproduction. Thus, Vvl functions as a critical regulator of hormone biosynthesis throughout all developmental stages of O. fasciatus. Our study demonstrates that Vvl is a critical transcription factor involved in JH and ecdysteroid biosynthesis in both hemimetabolous and holometabolous insects.
Collapse
|
20
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
21
|
Tang X, Engström Y. Regulation of immune and tissue homeostasis by Drosophila POU factors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:24-30. [PMID: 30954681 DOI: 10.1016/j.ibmb.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
The innate immune system of insects deploys both cellular and humoral reactions in immunocompetent tissues for protection of insects against a variety of infections, including bacteria, fungi, and viruses. Transcriptional regulation of genes encoding antimicrobial peptides (AMPs), cytokines, and other immune effectors plays a pivotal role in maintenance of immune homeostasis both prior to and after infections. The POU/Oct transcription factor family is a subclass of the homeodomain proteins present in all metazoans. POU factors are involved in regulation of development, metabolism and immunity. Their role in regulation of immune functions has recently become evident, and involves control of tissue-specific, constitutive expression of immune effectors in barrier epithelia as well as positive and negative control of immune responses in gut and fat body. In addition, they have been shown to affect the composition of gut microbiota and play a role in regulation of intestinal stem cell activities. In this review, we summarize the current knowledge of how POU transcription factors control Drosophila immune homeostasis in healthy and infected insects. The role of POU factor isoform specific regulation of stem cell activities in Drosophila and mammals is also discussed.
Collapse
Affiliation(s)
- Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691, Stockholm, Sweden.
| |
Collapse
|
22
|
A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat Commun 2019; 10:1955. [PMID: 31028268 PMCID: PMC6486587 DOI: 10.1038/s41467-019-09943-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Organisms adapt their metabolism and growth to the availability of nutrients and oxygen, which are essential for development, yet the mechanisms by which this adaptation occurs are not fully understood. Here we describe an RNAi-based body-size screen in Drosophila to identify such mechanisms. Among the strongest hits is the fibroblast growth factor receptor homolog breathless necessary for proper development of the tracheal airway system. Breathless deficiency results in tissue hypoxia, sensed primarily in this context by the fat tissue through HIF-1a prolyl hydroxylase (Hph). The fat relays its hypoxic status through release of one or more HIF-1a-dependent humoral factors that inhibit insulin secretion from the brain, thereby restricting systemic growth. Independently of HIF-1a, Hph is also required for nutrient-dependent Target-of-rapamycin (Tor) activation. Our findings show that the fat tissue acts as the primary sensor of nutrient and oxygen levels, directing adaptation of organismal metabolism and growth to environmental conditions. The mechanisms by which organisms adapt their growth according to the availability of oxygen are incompletely understood. Here the authors identify the Drosophila fat body as a tissue regulating growth in response to oxygen sensing via a mechanism involving Hph inhibition, HIF1-a activation and insulin secretion.
Collapse
|
23
|
Texada MJ, Malita A, Christensen CF, Dall KB, Faergeman NJ, Nagy S, Halberg KA, Rewitz K. Autophagy-Mediated Cholesterol Trafficking Controls Steroid Production. Dev Cell 2019; 48:659-671.e4. [PMID: 30799225 DOI: 10.1016/j.devcel.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Steroid hormones are important signaling molecules that regulate growth and drive the development of many cancers. These factors act as long-range signals that systemically regulate the growth of the entire organism, whereas the Hippo/Warts tumor-suppressor pathway acts locally to limit organ growth. We show here that autophagy, a pathway that mediates the degradation of cellular components, also controls steroid production. This process is regulated by Warts (in mammals, LATS1/2) signaling, via its effector microRNA bantam, in response to nutrients. Specifically, autophagy-mediated mobilization and trafficking of the steroid precursor cholesterol from intracellular stores controls the production of the Drosophila steroid ecdysone. Furthermore, we also show that bantam regulates this process via the ecdysone receptor and Tor signaling, identifying pathways through which bantam regulates autophagy and growth. The Warts pathway thus promotes nutrient-dependent systemic growth during development by autophagy-dependent steroid hormone regulation (ASHR). These findings uncover an autophagic trafficking mechanism that regulates steroid production.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Kathrine B Dall
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Faergeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
A cell surface protein controls endocrine ring gland morphogenesis and steroid production. Dev Biol 2018; 445:16-28. [PMID: 30367846 DOI: 10.1016/j.ydbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.
Collapse
|
25
|
Shyamal S, Das S, Guruacharya A, Mykles DL, Durica DS. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci Rep 2018; 8:7307. [PMID: 29743490 PMCID: PMC5943448 DOI: 10.1038/s41598-018-25368-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The intermolt crustacean Y-organ (YO) maintains a basal state mediated by pulsatile release of molt inhibiting hormone (MIH), a neuropeptide produced in the eyestalk ganglia, inhibiting YO ecdysteroidogenesis. Reduction of MIH results in YO activation and the animal enters premolt. In the crab, Gecarcinus lateralis, molting was induced by eyestalk ablation (ESA). ESA animals were injected with either rapamycin, an mTOR inhibitor, or DMSO vehicle at Day 0. YOs were harvested at 1, 3, and 7 days post-ESA and processed for high throughput RNA sequencing. ESA-induced increases in mRNA levels of mTOR signaling genes (e.g., mTOR, Rheb, TSC1/2, Raptor, Akt, and S6 kinase) declined following rapamycin treatment. In concert with mTOR inhibition, mRNA levels of ecdysteroid biosynthesis genes (e.g., Nvd, Spo, Sad, Dib, and Phm) were decreased and accompanied by a decrease in hemolymph ecdysteroid titer. By contrast, rapamycin increased the mRNA level of FKBP12, the rapamycin-binding protein, as well as the mRNA levels of genes associated with Wnt and insulin-like growth factor signaling pathways. Many MIH and transforming growth factor-β signaling genes were down regulated in ESA animals. These results indicate that mTOR activity either directly or indirectly controls transcription of genes that drive activation of the YO.
Collapse
Affiliation(s)
- S Shyamal
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - S Das
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - A Guruacharya
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - D L Mykles
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - D S Durica
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
26
|
Shimell M, Pan X, Martin FA, Ghosh AC, Leopold P, O'Connor MB, Romero NM. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018; 145:dev.159699. [PMID: 29467242 DOI: 10.1242/dev.159699] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Adult size and fitness are controlled by a combination of genetics and environmental cues. In Drosophila, growth is confined to the larval phase and final body size is impacted by the duration of this phase, which is under neuroendocrine control. The neuropeptide prothoracicotropic hormone (PTTH) has been proposed to play a central role in controlling the length of the larval phase through regulation of ecdysone production, a steroid hormone that initiates larval molting and metamorphosis. Here, we test this by examining the consequences of null mutations in the Ptth gene for Drosophila development. Loss of Ptth causes several developmental defects, including a delay in developmental timing, increase in critical weight, loss of coordination between body and imaginal disc growth, and reduced adult survival in suboptimal environmental conditions such as nutritional deprivation or high population density. These defects are caused by a decrease in ecdysone production associated with altered transcription of ecdysone biosynthetic genes. Therefore, the PTTH signal contributes to coordination between environmental cues and the developmental program to ensure individual fitness and survival.
Collapse
Affiliation(s)
- MaryJane Shimell
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xueyang Pan
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Francisco A Martin
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.,Cajal Institute, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Arpan C Ghosh
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pierre Leopold
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Michael B O'Connor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nuria M Romero
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| |
Collapse
|
27
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
28
|
A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing. Dev Cell 2017; 37:558-70. [PMID: 27326933 DOI: 10.1016/j.devcel.2016.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms.
Collapse
|
29
|
Moeller ME, Nagy S, Gerlach SU, Soegaard KC, Danielsen ET, Texada MJ, Rewitz KF. Warts Signaling Controls Organ and Body Growth through Regulation of Ecdysone. Curr Biol 2017; 27:1652-1659.e4. [PMID: 28528906 DOI: 10.1016/j.cub.2017.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/27/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022]
Abstract
Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
Collapse
Affiliation(s)
- Morten E Moeller
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Stephan U Gerlach
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Karen C Soegaard
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kim F Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
30
|
Deep sequencing of the prothoracic gland transcriptome reveals new players in insect ecdysteroidogenesis. PLoS One 2017; 12:e0172951. [PMID: 28257485 PMCID: PMC5336252 DOI: 10.1371/journal.pone.0172951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Ecdysteroids are steroid hormones that induce molting and determine developmental timing in arthropods. In insect larva, the prothoracic gland (PG) is a major organ for ecdysone synthesis and release. Released ecdysone is converted into the active form, 20-hydroxyecdysone (20E) in the peripheral tissues. All processes from ecdysone synthesis and release from the PG to its conversion to 20E are called ecdysteroidogenesis and are under the regulation of numerous factors expressed in the PG and peripheral tissues. Classical genetic approaches and recent transcriptomic screening in the PG identified several genes responsible for ecdysone synthesis and release, whereas the regulatory mechanism remains largely unknown. We analyzed RNA-seq data of the silkworm Bombyx mori PG and employed the fruit fly Drosophila melanogaster GAL4/UAS binary RNAi system to comprehensively screen for genes involved in ecdysone synthesis and/or release. We found that the genes encoding δ-aminolevulinic acid synthase (CG3017/alas) and putative NAD kinase (CG33156) were highly expressed in the PG of both B. mori and D. melanogaster. Neither alas nor CG33156 RNAi-induced larvae could enter into the pupal stage, and they had a lower abundance of the active form ecdysteroids in their prolonged larval stage. These results demonstrated that alas and CG33156 are indispensable for ecdysteroidogenesis.
Collapse
|
31
|
Sun W, Wang CF, Zhang Z. Transcription factor E74A affects the ecdysone titer by regulating the expression of the EO gene in the silkworm, Bomby mori. Biochim Biophys Acta Gen Subj 2017; 1861:551-558. [DOI: 10.1016/j.bbagen.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/18/2023]
|
32
|
He Y, Deng H, Hu Q, Zhu Z, Liu L, Zheng S, Song Q, Feng Q. Identification of the binding domains and key amino acids for the interaction of the transcription factors BmPOUM2 and BmAbd-A in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:41-50. [PMID: 27986639 DOI: 10.1016/j.ibmb.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
The transcription factor BmPOUM2 interacted with another transcription factor BmAbd-A to regulate the expression of the wing cuticle protein gene BmWCP4 in Bombyx mori. In this study, the binding domains and amino acids for the interaction between BmPOUM2 and BmAbd-A were reported. Two isoforms of BmPOUM2 were identified. The short isoform (BmPOUM2-S) lacks a 114-amino acid sequence containing a POU-homeodomain and a nuclear localization signal peptide (NLS), as compared to the full-length isoform (BmPOUM2). Both BmPOUM2 and BmPOUM2-S proteins bound to the BmAbd-A through the POU-specific domain. When the six amino acids (Lys166, Gly173, Gln176, Ser192, Glu200 and Asn208) that are highly conserved in POU family genes were mutated, BmPOUM2 did not bind to BmAbd-A. BmAbd-A interacted with BmPOUM2 by the homeobox domain or the LCR2 (low complexity region) domain. When seven amino acids (Phe156/248, His158/250, Ala175/263, Cys180/265, Glu190/268, Trp196/274 and Val214/289) that are shared in the homeobox and LCR2 domains were mutated, BmAbd-A did not bind to BmPOUM2. Overexpression of either BmPOUM2 or BmAbd-A or both increased the activity of BmWCP4 promoter in CHO cells. ChIP assay and EMSA showed that BmAbd-A protein bound to the Hox cis-regulatory element in the BmWCP4 promoter, while the BmPOUM2 bound to the nearby POU CRE. A model for the interaction and action of BmPOUM2 and BmAbd-A in regulation of the BmWCP4 expression is proposed.
Collapse
Affiliation(s)
- Yong He
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Huimin Deng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Qihao Hu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zidan Zhu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lin Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Qili Feng
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
33
|
Abstract
Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing color patterns. Here, we used full genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around color pattern genes is highly modular, with narrow genomic intervals associated with specific differences in color and pattern. This modular architecture explains the diversity of color patterns and provides a flexible mechanism for rapid morphological diversification.
Collapse
|
34
|
Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens. G3-GENES GENOMES GENETICS 2016; 6:3419-3430. [PMID: 27527791 PMCID: PMC5068961 DOI: 10.1534/g3.116.032607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5′ intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming.
Collapse
|
35
|
The Lantibiotic NAI-107 Efficiently Rescues Drosophila melanogaster from Infection with Methicillin-Resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 2016; 60:5427-36. [PMID: 27381394 PMCID: PMC4997821 DOI: 10.1128/aac.02965-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 06/22/2016] [Indexed: 12/20/2022] Open
Abstract
We used the fruit fly Drosophila melanogaster as a cost-effective in vivo model to evaluate the efficacy of novel antibacterial peptides and peptoids for treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. A panel of peptides with known antibacterial activity in vitro and/or in vivo was tested in Drosophila Although most peptides and peptoids that were effective in vitro failed to rescue lethal effects of S. aureus infections in vivo, we found that two lantibiotics, nisin and NAI-107, rescued adult flies from fatal infections. Furthermore, NAI-107 rescued mortality of infection with the MRSA strain USA300 with an efficacy equivalent to that of vancomycin, a widely applied antibiotic for the treatment of serious MRSA infections. These results establish Drosophila as a useful model for in vivo drug evaluation of antibacterial peptides.
Collapse
|
36
|
Niwa YS, Niwa R. Ouija board: A transcription factor evolved for only one target in steroid hormone biosynthesis in the fruit fly Drosophila melanogaster. Transcription 2016; 7:196-202. [PMID: 27434771 PMCID: PMC5066509 DOI: 10.1080/21541264.2016.1210370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription factors generally regulate gene expression of multiple targets. In contrast, our recent finding suggests that the zinc finger protein Ouija board controls steroid hormone biosynthesis through specific regulation of only one gene spookier in Drosophila. It sheds light on a specialized but essential factor that evolved for one target.
Collapse
Affiliation(s)
- Yuko S Niwa
- a Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Ryusuke Niwa
- b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| |
Collapse
|
37
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
38
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2016; 58:94-105. [PMID: 26667894 PMCID: PMC11520982 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|
39
|
Valzania L, Ono H, Ignesti M, Cavaliere V, Bernardi F, Gamberi C, Lasko P, Gargiulo G. Drosophila 4EHP is essential for the larval-pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Dev Biol 2015; 410:14-23. [PMID: 26721418 DOI: 10.1016/j.ydbio.2015.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 10/25/2022]
Abstract
Maternal expression of the translational regulator 4EHP (eIF4E-Homologous Protein) has an established role in generating protein gradients essential for specifying the Drosophila embryonic pattern. We generated a null mutation of 4EHP, which revealed for the first time that it is essential for viability and for completion of development. In fact, 4EHP null larvae, and larvae ubiquitously expressing RNAi targeting 4EHP, are developmentally delayed, fail to grow and eventually die. In addition, we found that expressing RNAi that targets 4EHP specifically in the prothoracic gland disrupted ecdysone biosynthesis, causing a block of the transition from the larval to pupal stages. This phenotype can be rescued by dietary administration of ecdysone. Consistent with this, 4EHP is highly expressed in the prothoracic gland and it is required for wild type expression levels of steroidogenic enzymes. Taken together, these results uncover a novel essential function for 4EHP in regulating ecdysone biosynthesis.
Collapse
Affiliation(s)
- Luca Valzania
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Fabio Bernardi
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy
| | - Chiara Gamberi
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1; Department of Biology, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| | - Paul Lasko
- Department of Biology, McGill University, Montreal, Quebec, Canada H3G 0B1.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, Bologna, Italy.
| |
Collapse
|
40
|
Komura-Kawa T, Hirota K, Shimada-Niwa Y, Yamauchi R, Shimell M, Shinoda T, Fukamizu A, O’Connor MB, Niwa R. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLoS Genet 2015; 11:e1005712. [PMID: 26658797 PMCID: PMC4684333 DOI: 10.1371/journal.pgen.1005712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023] Open
Abstract
Steroid hormones are crucial for many biological events in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, which play essential roles in regulating molting and metamorphosis. During larval and pupal development, ecdysteroids are synthesized in the prothoracic gland (PG) from dietary cholesterol via a series of hydroxylation and oxidation steps. The expression of all but one of the known ecdysteroid biosynthetic enzymes is restricted to the PG, but the transcriptional regulatory networks responsible for generating such exquisite tissue-specific regulation is only beginning to be elucidated. Here, we report identification and characterization of the C2H2-type zinc finger transcription factor Ouija board (Ouib) necessary for ecdysteroid production in the PG in the fruit fly Drosophila melanogaster. Expression of ouib is predominantly limited to the PG, and genetic null mutants of ouib result in larval developmental arrest that can be rescued by administrating an active ecdysteroid. Interestingly, ouib mutant animals exhibit a strong reduction in the expression of one ecdysteroid biosynthetic enzyme, spookier. Using a cell culture-based luciferase reporter assay, Ouib protein stimulates transcription of spok by binding to a specific ~15 bp response element in the spok PG enhancer element. Most remarkable, the developmental arrest phenotype of ouib mutants is rescued by over-expression of a functionally-equivalent paralog of spookier. These observations imply that the main biological function of Ouib is to specifically regulate spookier transcription during Drosophila development. Steroid hormones are crucial for development and reproduction in multicellular organisms. The spatially-restricted expression of almost all steroid biosynthesis genes is key to the specialization of steroid producing cells. In the last decade, insects have become the focus for research on the biosynthesis of the principal steroid hormones, ecdysteroids. However, the transcriptional regulatory mechanisms controlling the ecdysteroid biosynthesis genes are largely unknown. Here we show that a novel zinc finger transcription factor Ouija board (Ouib) is essential for activating the expression of one ecdysteroid biosynthesis gene, spookier, in the ecdysteroid producing cells. Ouib is the first invertebrate transcription factor that is predominantly expressed in the steroidogenic organs and essential for development via inducing expression of the steroidogenic gene. In addition, this is the first report showing the catalytic step-specific control of steroid hormone biosynthesis through transcriptional regulation.
Collapse
Affiliation(s)
- Tatsuya Komura-Kawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Hirota
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Shimada-Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rieko Yamauchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
41
|
Llorens JV, Metzendorf C, Missirlis F, Lind MI. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem 2015; 20:1229-38. [PMID: 26468126 DOI: 10.1007/s00775-015-1302-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Synthesis of ecdysone, the key hormone that signals the termination of larval growth and the initiation of metamorphosis in insects, is carried out in the prothoracic gland by an array of iron-containing cytochrome P450s, encoded by the halloween genes. Interference, either with iron-sulfur cluster biogenesis in the prothoracic gland or with the ferredoxins that supply electrons for steroidogenesis, causes a block in ecdysone synthesis and developmental arrest in the third instar larval stage. Here we show that mutants in Drosophila mitoferrin (dmfrn), the gene encoding a mitochondrial carrier protein implicated in mitochondrial iron import, fail to grow and initiate metamorphosis under dietary iron depletion or when ferritin function is partially compromised. In mutant dmfrn larvae reared under iron replete conditions, the expression of halloween genes is increased and 20-hydroxyecdysone (20E), the active form of ecdysone, is synthesized. In contrast, addition of an iron chelator to the diet of mutant dmfrn larvae disrupts 20E synthesis. Dietary addition of 20E has little effect on the growth defects, but enables approximately one-third of the iron-deprived dmfrn larvae to successfully turn into pupae and, in a smaller percentage, into adults. This partial rescue is not observed with dietary supply of ecdysone's precursor 7-dehydrocholesterol, a precursor in the ecdysone biosynthetic pathway. The findings reported here support the notion that a physiological supply of mitochondrial iron for the synthesis of iron-sulfur clusters and heme is required in the prothoracic glands of insect larvae for steroidogenesis. Furthermore, mitochondrial iron is also essential for normal larval growth.
Collapse
Affiliation(s)
- Jose V Llorens
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden
| | - Christoph Metzendorf
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Av. IPN 2508, Mexico City, Mexico.
| | - Maria I Lind
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, Uppsala, Sweden.
| |
Collapse
|
42
|
Meng M, Cheng DJ, Peng J, Qian WL, Li JR, Dai DD, Zhang TL, Xia QY. The homeodomain transcription factors antennapedia and POU-M2 regulate the transcription of the steroidogenic enzyme gene Phantom in the silkworm. J Biol Chem 2015; 290:24438-52. [PMID: 26253172 DOI: 10.1074/jbc.m115.651810] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
The steroid hormone ecdysone, which controls insect molting and metamorphosis, is synthesized in the prothoracic gland (PG), and several steroidogenic enzymes that are expressed specifically in the PG are involved in ecdysteroidogenesis. In this study, we identified new regulators that are involved in the transcriptional control of the silkworm steroidogenic enzyme genes. In silico analysis predicted several potential cis-regulatory elements (CREs) for the homeodomain transcription factors Antennapedia (Antp) and POU-M2 in the proximal promoters of steroidogenic enzyme genes. Antp and POU-M2 are expressed dynamically in the PG during larval development, and their overexpression in silkworm embryo-derived (BmE) cells induced the expression of steroidogenic enzyme genes. Importantly, luciferase reporter analyses, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Antp and POU-M2 promote the transcription of the silkworm steroidogenic enzyme gene Phantom (Phm) by binding directly to specific motifs within overlapping CREs in the Phm promoter. Mutations of these CREs in the Phm promoter suppressed the transcriptional activities of both Antp and POU-M2 in BmE cells and decreased the activities of mutated Phm promoters in the silkworm PG. In addition, pulldown and co-immunoprecipitation assays demonstrated that Antp can interact with POU-M2. Moreover, RNA interference-mediated down-regulation of either Antp or POU-M2 during silkworm wandering not only decreased the ecdysone titer but also led to the failure of metamorphosis. In summary, our results suggest that Antp and POU-M2 coordinate the transcription of the silkworm Phm gene directly, indicating new roles for homeodomain proteins in regulating insect ecdysteroidogenesis.
Collapse
Affiliation(s)
- Meng Meng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dao-Jun Cheng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Wen-Liang Qian
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia-Rui Li
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan-Dan Dai
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Tian-Lei Zhang
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Qing-You Xia
- From the State Key Laboratory of Silkworm Genome Biology and the Key Sericultural Laboratory of the Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
43
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Hentze JL, Carlsson MA, Kondo S, Nässel DR, Rewitz KF. The Neuropeptide Allatostatin A Regulates Metabolism and Feeding Decisions in Drosophila. Sci Rep 2015; 5:11680. [PMID: 26123697 PMCID: PMC4485031 DOI: 10.1038/srep11680] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 06/03/2015] [Indexed: 01/23/2023] Open
Abstract
Coordinating metabolism and feeding is important to avoid obesity and metabolic diseases, yet the underlying mechanisms, balancing nutrient intake and metabolic expenditure, are poorly understood. Several mechanisms controlling these processes are conserved in Drosophila, where homeostasis and energy mobilization are regulated by the glucagon-related adipokinetic hormone (AKH) and the Drosophila insulin-like peptides (DILPs). Here, we provide evidence that the Drosophila neuropeptide Allatostatin A (AstA) regulates AKH and DILP signaling. The AstA receptor gene, Dar-2, is expressed in both the insulin and AKH producing cells. Silencing of Dar-2 in these cells results in changes in gene expression and physiology associated with reduced DILP and AKH signaling and animals lacking AstA accumulate high lipid levels. This suggests that AstA is regulating the balance between DILP and AKH, believed to be important for the maintenance of nutrient homeostasis in response to changing ratios of dietary sugar and protein. Furthermore, AstA and Dar-2 are regulated differentially by dietary carbohydrates and protein and AstA-neuronal activity modulates feeding choices between these types of nutrients. Our results suggest that AstA is involved in assigning value to these nutrients to coordinate metabolic and feeding decisions, responses that are important to balance food intake according to metabolic needs.
Collapse
Affiliation(s)
- Julie L. Hentze
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Mikael A. Carlsson
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 106 91, Sweden
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, Stockholm 106 91, Sweden
| | - Kim F. Rewitz
- Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen 2100, Denmark
| |
Collapse
|
45
|
Fresán U, Cuartero S, O'Connor MB, Espinàs ML. The insulator protein CTCF regulates Drosophila steroidogenesis. Biol Open 2015; 4:852-7. [PMID: 25979705 PMCID: PMC4571099 DOI: 10.1242/bio.012344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The steroid hormone ecdysone is a central regulator of insect development. In this report we show that CTCF expression in the prothoracic gland is required for full transcriptional activation of the Halloween genes spookier, shadow and noppera-bo, which encode ecdysone biosynthetic enzymes, and for proper timing of ecdysone-responsive gene expression. Loss of CTCF results in delayed and less synchronized larval development that can only be rescued by feeding larvae with both, the steroid hormone 20-hydroxyecdysone and cholesterol. Moreover, CTCF-knockdown in prothoracic gland cells leads to increased lipid accumulation. In conclusion, the insulator protein CTCF is required for Halloween gene expression and cholesterol homeostasis in ecdysone-producing cells controlling steroidogenesis.
Collapse
Affiliation(s)
- Ujué Fresán
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Sergi Cuartero
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - M Lluisa Espinàs
- Institute of Molecular Biology of Barcelona, IBMB-CSIC, and Institute for Research in Biomedicine IRB, Barcelona 08028, Spain Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|