1
|
Citron L, Brame BE, Bradley C. Nasal Planum Dermatoses of the Dog: Clinical Presentations and Diagnostic Approach. Vet Clin North Am Small Anim Pract 2025; 55:299-320. [PMID: 39757083 DOI: 10.1016/j.cvsm.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Nasal planum dermatoses in dogs can be infectious, immune-mediated, allergic, neoplastic, and metabolic in nature. Recognizing key lesions and features and knowing how and when to biopsy can help distinguish between similar diseases. The focus of this article is to review the most commonly encountered nasal planum dermatoses in dogs and to enable the veterinary practitioner to recognize and differentiate between them to obtain a diagnosis.
Collapse
Affiliation(s)
- Lindsey Citron
- Department of Dermatology, Friendship Hospital for Animals, Washington, DC, USA.
| | - Bailey E Brame
- Small Animal Clinical Sciences, Michigan State University, College of Veterinary Medicine, 784 Wilson Road, East Lansing, MI 48824, USA
| | - Charles Bradley
- Pathobiology University of Pennsylvania, School of Veterinary Medicine, 3900 Delancey Street, MJR VHUP, Room 4040, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
van Gisbergen MW, Rossel SVJ, Theunissen TEJ, Janssen R, Kaseke T, van der Smagt JJ, Steijlen PM, Vreeburg M, Gostynski AH, van Geel M. Expanding phenotypic insights of palmoplantar keratodermas based on novel FAM83G variants. Br J Dermatol 2025; 192:544-546. [PMID: 39449644 DOI: 10.1093/bjd/ljae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
We report two unrelated patients with new pathogenic variants in the FAM83G gene, supporting the causal link to previously identified families with recessive hereditary palmoplantar keratoderma. Although structural changes of the hairs are a key feature of FAM83G-associated disease, a complete loss of the gene, seen in one of the patients, shows normal hair and does not support this part of the clinical phenotype.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - S Vanya J Rossel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Tom E J Theunissen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Renske Janssen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Tariraishe Kaseke
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Jasper J van der Smagt
- Department of Clinical Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter M Steijlen
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Maaike Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Antoni H Gostynski
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
| | - Michel van Geel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW - Research Institute for Oncology & Reproduction, Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
3
|
Glennie L, Solà MC, Xunclà M, Español GA, Garcia-Arumí E, Tizzano EF, Wood NT, Macartney TJ, Lasa-Aranzasti A, Sapkota GP. A novel FAM83G variant from palmoplantar keratoderma patient disrupts WNT signalling via loss of FAM83G-CK1α interaction. Open Biol 2024; 14:240075. [PMID: 39043225 PMCID: PMC11265864 DOI: 10.1098/rsob.240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Palmoplantar keratoderma (PPK) is a multi-faceted skin disorder characterized by the thickening of the epidermis and abrasions on the palms and soles of the feet. Among the genetic causes, biallelic pathogenic variants in the FAM83G gene have been associated with PPK in dogs and humans. Here, a novel homozygous variant (c.794G>C, p.Arg265Pro) in the FAM83G gene, identified by whole exome sequencing in a 60-year-old female patient with PPK, is reported. The patient exhibited alterations in the skin of both hands and feet, dystrophic nails, thin, curly and sparse hair, long upper eyelid eyelashes, and poor dental enamel. FAM83G activates WNT signalling through association with ser/thr protein kinase CK1α. When expressed in FAM83G-/- DLD1 colorectal cancer cells, the FAM83GR265P variant displayed poor stability, a loss of interaction with CK1α and attenuated WNT signalling response. These defects persisted in skin fibroblast cells derived from the patient. Our findings imply that the loss of FAM83G-CK1α interaction and subsequent attenuation of WNT signalling underlie the pathogenesis of PPK caused by the FAM83GR265P variant.
Collapse
Affiliation(s)
- Lorraine Glennie
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Marta Codina Solà
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Xunclà
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | | | - Elena Garcia-Arumí
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Eduardo Fidel Tizzano
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Nicola T. Wood
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Barcelona, Spain
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| |
Collapse
|
4
|
Leeb T, Bannasch D, Schoenebeck JJ. Identification of Genetic Risk Factors for Monogenic and Complex Canine Diseases. Annu Rev Anim Biosci 2023; 11:183-205. [PMID: 36322969 DOI: 10.1146/annurev-animal-050622-055534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Advances in DNA sequencing and other technologies have greatly facilitated the identification of genetic risk factors for inherited diseases in dogs. We review recent technological developments based on selected examples from canine disease genetics. The identification of disease-causing variants in dogs with monogenic diseases may become a widely employed diagnostic approach in clinical veterinary medicine in the not-too-distant future. Diseases with complex modes of inheritance continue to pose challenges to researchers but have also become much more tangible than in the past. In addition to strategies for identifying genetic risk factors, we provide some thoughts on the interpretation of sequence variants that are largely inspired by developments in human clinical genetics.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland;
| | - Danika Bannasch
- Department of Population Health and Reproduction, University of California, Davis, California, USA;
| | - Jeffrey J Schoenebeck
- The Roslin Institute and Royal (Dick) School for Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom;
| |
Collapse
|
5
|
Donner J, Freyer J, Davison S, Anderson H, Blades M, Honkanen L, Inman L, Brookhart-Knox CA, Louviere A, Forman OP, Chodroff Foran R. Genetic prevalence and clinical relevance of canine Mendelian disease variants in over one million dogs. PLoS Genet 2023; 19:e1010651. [PMID: 36848397 PMCID: PMC9997962 DOI: 10.1371/journal.pgen.1010651] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/09/2023] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.
Collapse
Affiliation(s)
- Jonas Donner
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Jamie Freyer
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Stephen Davison
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Heidi Anderson
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Matthew Blades
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Leena Honkanen
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Helsinki, Finland
| | - Laura Inman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Casey A. Brookhart-Knox
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Annette Louviere
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| | - Oliver P. Forman
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Leicestershire, United Kingdom
| | - Rebecca Chodroff Foran
- Wisdom Panel Research Team, Wisdom Panel, Kinship, Portland, Oregon, United States of America
| |
Collapse
|
6
|
Inheritance of Monogenic Hereditary Skin Disease and Related Canine Breeds. Vet Sci 2022; 9:vetsci9080433. [PMID: 36006348 PMCID: PMC9412528 DOI: 10.3390/vetsci9080433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The plasticity of the genome is an evolutionary factor in all animal species, including canines, but it can also be the origin of diseases caused by hereditary genetic mutation. Genetic changes, or mutations, that give rise to a pathology in most cases result from recessive alleles that are normally found with minority allelic frequency. The use of genetic improvement increases the consanguinity within canine breeds and, on many occasions, also increases the frequency of these recessive alleles, increasing the prevalence of these pathologies. This prevalence has been known for a long time, but mutations differ according to the canine breed. These genetic diseases, including skin diseases, or genodermatosis, which is narrowly defined as monogenic hereditary dermatosis. In this review, we focus on genodermatosis sensu estricto, i.e., monogenic, and hereditary dermatosis, in addition to the clinical features, diagnosis, pathogeny, and treatment. Specifically, this review analyzes epidermolytic and non-epidermolytic ichthyosis, junctional epidermolysis bullosa, nasal parakeratosis, mucinosis, dermoid sinus, among others, in canine breeds, such as Golden Retriever, German Pointer, Australian Shepherd, American Bulldog, Great Dane, Jack Russell Terrier, Labrador Retriever, Shar-Pei, and Rhodesian Ridgeback.
Collapse
|
7
|
Genes of Congenital Dermatologic Disorders in Dogs—A Review. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
This article presents an overview of up-to-date identified genes responsible for congenital canine skin diseases of dogs and the characteristics of these diseases. Congenital skin diseases constitute a specific group of dermatologic disorders that plays an important role in breeding of purebred dogs. They include primary seborrhoea, ichthyosis, hereditary nasal parakeratosis, dermatomyositis, colour dilution alopecia, skin mucinosis, dermoid sinus, lethal acrodermatitis, acral mutilation syndrome, keratoconjunctivitis sicca, ichthyosiform dermatosis, bullous epidermolysis, exfoliative dermal lupus erythematosus, congenital footpad hyperkeratosis and sebaceous adenitis. In the majority of cases, their occurrence is linked to particular breeds. In more than half of these diseases a specific defective gene variant responsible for the disease has been identified. Genetic tests for identification of the relevant defective genes serve as an important tool in the diagnostics of diseases in veterinary practice and in breeding of purebred dogs.
Collapse
|
8
|
Cikota R, Åberg L, Karlstam E, Shokrai A, Åhman S. Nasal hyperkeratosis in Griffon breeds: Clinical, histopathological features and the prevalence in the Swedish population compared to a control group and other brachycephalic breeds. Vet Rec Open 2021; 8:e10. [PMID: 33981444 PMCID: PMC8110113 DOI: 10.1002/vro2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In the Griffon breeds (GB) nasal hyperkeratosis is common and develops already in early adulthood. Breed-related features and prevalence have not previously been documented. HYPOTHESIS/OBJECTIVES To describe clinical and histopathological features of nasal hyperkeratosis in GB and to document the prevalence. MATERIALS AND METHODS Seven GB dogs with nasal hyperkeratosis were examined. Three histopathological samples were analysed. Owners of 107 GB and 493 control dogs completed a questionnaire distributed via social media. RESULTS Typical features of nasal hyperkeratosis in GB included varying degrees of dry, firm, excessive proliferation of keratin, affecting the dorsal or dorsolateral aspect of the planum nasale. Histopathology was characterized by severe, lamellar orthokeratotic and focal parakeratotic hyperkeratosis and multiple small serum lakes. Thirty-four of 107 GB dogs (31.8%) and 65 of 493 (13.2%) control dogs had varying degree of nasal hyperkeratosis. No sex predisposition was noted. Median age of onset was 3 years for GB, similar to brachycephalic control dogs whereas non-brachycephalic control dogs had a significantly later age of onset (p = 0.0053). CONCLUSIONS AND CLINICAL IMPORTANCE Idiopathic nasal hyperkeratosis is very common in GB dogs and other brachycephalic breeds with nearly one third being affected, often already a young age.
Collapse
Affiliation(s)
| | | | - Erika Karlstam
- Department of PathologyNational Veterinary Institute of Sweden, SVAUppsalaSweden
| | - Arman Shokrai
- Department of PathologyNational Veterinary Institute of Sweden, SVAUppsalaSweden
| | | |
Collapse
|
9
|
Leeb T, Roosje P, Welle M. Genetics of inherited skin disorders in dogs. Vet J 2021; 279:105782. [PMID: 34861369 DOI: 10.1016/j.tvjl.2021.105782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
Canine genodermatoses represent a broad spectrum of diseases with diverse phenotypes. Modern genetic technology including whole genome sequencing has expedited the identification of novel genes and greatly simplified the establishment of genetic diagnoses in such heterogeneous disorders. The precise genetic diagnosis of a heritable skin disorder is essential for the appropriate counselling of owners regarding the course of the disease, prognosis and implications for breeding. Understanding the underlying pathophysiology is a prerequisite to developing specific, targeted or individualized therapeutic approaches. This review aims to create a comprehensive overview of canine genodermatoses and their respective genetic aetiology known to date. Raising awareness of genodermatoses in dogs is important and this review may help clinicians to apply modern genetics in daily clinical practice, so that a precise diagnoses can be established in suspected genodermatoses.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland.
| | - Petra Roosje
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Monika Welle
- Dermfocus, University of Bern, 3001 Bern, Switzerland; Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
10
|
Mauldin EA, Elias PM. Ichthyosis and hereditary cornification disorders in dogs. Vet Dermatol 2021; 32:567-e154. [PMID: 34796560 DOI: 10.1111/vde.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/16/2021] [Accepted: 07/17/2021] [Indexed: 12/14/2022]
Abstract
The stratum corneum (SC), the outermost layer of the epidermis, serves a crucial role in maintaining body hydration and protection from environmental insults. When the stratum corneum is injured or when the genetic blueprints are flawed, the body is at risk of dehydration, secondary infections and allergen sensitization. Advancements in veterinary dermatology have revealed a wide gamut of disease from relatively benign to lethal that specifically arise from flawed structural proteins, enzymes or lipids needed to create the corneocytes and lipid bilayers of the SC. Some conditions closely mimic their human counterparts while others are unique to the dog. This review will focus on forms of ichthyosis in the dog.
Collapse
Affiliation(s)
- Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancey St, Philadelphia, PA, 19104, USA
| | - Peter M Elias
- Veterans Affairs Medical Center San Francisco, California, Department of Dermatology, University of California San Francisco, San Franciso, California, 150 Clement Street, Dermatology MS 190, San Francisco, CA, 94121, USA
| |
Collapse
|
11
|
Insight into the Candidate Genes and Enriched Pathways Associated with Height, Length, Length to Height Ratio and Body-Weight of Korean Indigenous Breed, Jindo Dog Using Gene Set Enrichment-Based GWAS Analysis. Animals (Basel) 2021; 11:ani11113136. [PMID: 34827868 PMCID: PMC8614278 DOI: 10.3390/ani11113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.
Collapse
|
12
|
Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis. Genes (Basel) 2020; 11:genes11080884. [PMID: 32759649 PMCID: PMC7463739 DOI: 10.3390/genes11080884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction. The expression pattern of skin-associated genes in dogs is similar to humans. Differences in expression compared to mice and humans include BMP2 expression mainly in telogen and high KRT17 expression in the interfollicular epidermis of dogs. Our data provide the basis for the investigation of the structure and function of canine skin or skin disease and support the use of dogs as a model for human cutaneous disease by assigning gene expression to specific tissue states.
Collapse
|
13
|
Okada J, Sunaga N, Yamada E, Saito T, Ozawa A, Nakajima Y, Okada K, Pessin JE, Okada S, Yamada M. FAM83G Is a Novel Inducer of Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25122810. [PMID: 32570757 PMCID: PMC7356855 DOI: 10.3390/molecules25122810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023]
Abstract
The family with sequence similarity 83 (FAM83) protein family G (FAM83G) possesses a predicted consensus phosphorylation motif for serine/threonine-protein kinase D1/protein kinase C mu (PKD1/PKCμ) at serine residue 356 (S356). In this study, overexpressed wild-type FAM83G coimmunoprecipitated with PKD1/PKCμ in Chinese hamster ovary (CHO) cells inhibited heat shock protein 27 (HSP27) phosphorylation at S82 and reduced the living cell number. The expression of a FAM83G phosphorylation-resistant mutant (S356A-FAM83G) had no effect on the living cell number or the induction of spontaneous apoptosis. By contrast, the introduction of a synthetic peptide encompassing FAM83G S356 into HCT116 and HepG2 cells decreased HSP27 S15 and S82 phosphorylation and induced spontaneous apoptosis. On the other hand, the introduction of FAM83G phosphorylation-resistant mutant synthesized peptides (S356A-AF-956 and S356A-AG-066) did not reduce the living cell number or induce spontaneous apoptosis. The endogenous expression of HSP27 and FAM83G was apparently greater in HCT116 and HepG2 cells compared with in CHO cells. In various types of lung cancer cell lines, the FAM83G messenger RNA (mRNA) level in non-small lung cancer cells was at a similar level to that in non-cancerous cells. However, the FAM83G mRNA level in the small cell lung cancer cell lines was variable, and the HSP27 mRNA level in FAM83G mRNA-rich types was greater than that in FAM83G mRNA-normal range types. Taken together, these data demonstrate that FAM83G S356 phosphorylation modulates HSP27 phosphorylation and apoptosis regulation and that HSP27 is a counterpart of FAM83G.
Collapse
Affiliation(s)
- Junichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| | - Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan;
| | - Eijiro Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| | - Tsugumichi Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| | - Atsushi Ozawa
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| | - Yasuyo Nakajima
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| | - Kazuya Okada
- Omagari Kosei Medical Center, 8-65 Omagaritori-machi, Daisen 014-0027, Japan;
| | - Jeffrey E. Pessin
- Department of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Shuichi Okada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
- Correspondence: ; Tel.: +81-27-220-8501; Fax: +81-27-220-8136
| | - Masanobu Yamada
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi 371-8511, Japan; (J.O.); (E.Y.); (T.S.); (A.O.); (Y.N.); (M.Y.)
| |
Collapse
|
14
|
Hiltpold M, Niu G, Kadri NK, Crysnanto D, Fang ZH, Spengeler M, Schmitz-Hsu F, Fuerst C, Schwarzenbacher H, Seefried FR, Seehusen F, Witschi U, Schnieke A, Fries R, Bollwein H, Flisikowski K, Pausch H. Activation of cryptic splicing in bovine WDR19 is associated with reduced semen quality and male fertility. PLoS Genet 2020; 16:e1008804. [PMID: 32407316 PMCID: PMC7252675 DOI: 10.1371/journal.pgen.1008804] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Cattle are ideally suited to investigate the genetics of male reproduction, because semen quality and fertility are recorded for all ejaculates of artificial insemination bulls. We analysed 26,090 ejaculates of 794 Brown Swiss bulls to assess ejaculate volume, sperm concentration, sperm motility, sperm head and tail anomalies and insemination success. The heritability of the six semen traits was between 0 and 0.26. Genome-wide association testing on 607,511 SNPs revealed a QTL on bovine chromosome 6 that was associated with sperm motility (P = 2.5 x 10−27), head (P = 2.0 x 10−44) and tail anomalies (P = 7.2 x 10−49) and insemination success (P = 9.9 x 10−13). The QTL harbors a recessive allele that compromises semen quality and male fertility. We replicated the effect of the QTL on fertility (P = 7.1 x 10−32) in an independent cohort of 2481 Brown Swiss bulls. The analysis of whole-genome sequencing data revealed that a synonymous variant (BTA6:58373887C>T, rs474302732) in WDR19 encoding WD repeat-containing protein 19 was in linkage disequilibrium with the fertility-associated haplotype. WD repeat-containing protein 19 is a constituent of the intraflagellar transport complex that is essential for the physiological function of motile cilia and flagella. Bioinformatic and transcription analyses revealed that the BTA6:58373887 T-allele activates a cryptic exonic splice site that eliminates three evolutionarily conserved amino acids from WDR19. Western blot analysis demonstrated that the BTA6:58373887 T-allele decreases protein expression. We make the remarkable observation that, in spite of negative effects on semen quality and bull fertility, the BTA6:58373887 T-allele has a frequency of 24% in the Brown Swiss population. Our findings are the first to uncover a variant that is associated with quantitative variation in semen quality and male fertility in cattle. In cattle farming, artificial insemination is the most common method of breeding. To ensure high fertilization rates, ejaculate quality and insemination success are closely monitored in artificial insemination bulls. We analyse semen quality, insemination success and microarray-called genotypes at more than 600,000 genome-wide SNP markers of 794 bulls to identify a recessive allele that compromises semen quality. We take advantage of whole-genome sequencing to pinpoint a variant in the coding sequence of WDR19 encoding WD repeat-containing protein 19 that activates a novel exonic splice site. Our results indicate that cryptic splicing in WDR19 is associated with reduced male reproductive performance. This is the first report of a variant that contributes to quantitative variation in bovine semen quality.
Collapse
Affiliation(s)
| | - Guanglin Niu
- Livestock Biotechnology, TU München, Freising, Germany
| | | | | | - Zih-Hua Fang
- Animal Genomics, ETH Zürich, Lindau, Switzerland
| | | | | | | | | | | | - Frauke Seehusen
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | | | - Ruedi Fries
- Animal Breeding, TU München, Freising, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, University of Zurich, Zürich, Switzerland
| | | | - Hubert Pausch
- Animal Genomics, ETH Zürich, Lindau, Switzerland
- * E-mail:
| |
Collapse
|
15
|
A DSG1 Frameshift Variant in a Rottweiler Dog with Footpad Hyperkeratosis. Genes (Basel) 2020; 11:genes11040469. [PMID: 32344723 PMCID: PMC7230267 DOI: 10.3390/genes11040469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
A single male Rottweiler dog with severe footpad hyperkeratosis starting at an age of eight weeks was investigated. The hyperkeratosis was initially restricted to the footpads. The footpad lesions caused severe discomfort to the dog and had to be trimmed under anesthesia every 8–10 weeks. Histologically, the epidermis showed papillated villous projections of dense keratin in the stratum corneum. Starting at eight months of age, the patient additionally developed signs consistent with atopic dermatitis and recurrent bacterial skin and ear infections. Crusted hyperkeratotic plaques developed at sites of infection. We sequenced the genome of the affected dog and compared the data to 655 control genomes. A search for variants in 32 candidate genes associated with human palmoplantar keratoderma (PPK) revealed a single private protein-changing variant in the affected dog. This was located in the DSG1 gene encoding desmoglein 1. Heterozygous monoallelic DSG1 variants have been reported in human patients with striate palmoplantar keratoderma I (SPPK1), while biallelic DSG1 loss of function variants in humans lead to a more pronounced condition termed severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome. The identified canine variant, DSG1:c.2541_2545delGGGCT, leads to a frameshift and truncates about 20% of the coding sequence. The affected dog was homozygous for the mutant allele. The comparative data on desmoglein 1 function in humans suggest that the identified DSG1 variant may have caused the footpad hyperkeratosis and predisposition for allergies and skin infections in the affected dog.
Collapse
|
16
|
Momozawa Y, Merveille AC, Battaille G, Wiberg M, Koch J, Willesen JL, Proschowsky HF, Gouni V, Chetboul V, Tiret L, Fredholm M, Seppälä EH, Lohi H, Georges M, Lequarré AS. Genome wide association study of 40 clinical measurements in eight dog breeds. Sci Rep 2020; 10:6520. [PMID: 32300138 PMCID: PMC7162946 DOI: 10.1038/s41598-020-63457-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
The domestic dog represents an ideal model for identifying susceptibility genes, many of which are shared with humans. In this study, we investigated the genetic contribution to individual differences in 40 clinically important measurements by a genome-wide association study (GWAS) in a multinational cohort of 472 healthy dogs from eight breeds. Meta-analysis using the binary effects model after breed-specific GWAS, identified 13 genome-wide significant associations, three of them showed experimental-wide significant associations. We detected a signal at chromosome 13 for the serum concentration of alanine aminotransferase (ALT) in which we detected four breed-specific signals. A large proportion of the variance of ALT (18.1–47.7%) was explained by this locus. Similarly, a single SNP was also responsible for a large proportion of the variance (6.8–78.4%) for other measurements such as fructosamine, stress during physical exam, glucose, and morphometric measurements. The genetic contribution of single variant was much larger than in humans. These findings illustrate the importance of performing meta-analysis after breed-specific GWAS to reveal the genetic contribution to individual differences in clinically important measurements, which would lead to improvement of veterinary medicine.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium. .,Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, 230-0045, Japan.
| | - Anne-Christine Merveille
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Géraldine Battaille
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maria Wiberg
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jørgen Koch
- Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Jakob Lundgren Willesen
- Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | | | - Vassiliki Gouni
- U955 - IMRB Inserm and Unité de Cardiologie d'Alfort (UCA), Université Paris-Est, École Nationale Vétérinaire d'Alfort, UPEC, 7 avenue du général de Gaulle, Maisons-Alfort, F-94700, France
| | - Valérie Chetboul
- U955 - IMRB Inserm and Unité de Cardiologie d'Alfort (UCA), Université Paris-Est, École Nationale Vétérinaire d'Alfort, UPEC, 7 avenue du général de Gaulle, Maisons-Alfort, F-94700, France
| | - Laurent Tiret
- U955 - IMRB, Biology of the neuromuscular system, Inserm, National Veterinary School of Alfort (ENVA), Maisons-Alfort, France
| | - Merete Fredholm
- Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg C, Denmark
| | - Eija H Seppälä
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki, Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, University of Helsinki, Folkhälsan Research Center, Helsinki, Finland
| | - Michel Georges
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anne-Sophie Lequarré
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium. .,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
17
|
Jagannathan V, Drögemüller C, Leeb T. A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 2019; 50:695-704. [PMID: 31486122 PMCID: PMC6842318 DOI: 10.1111/age.12834] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/16/2022]
Abstract
The domestic dog serves as an excellent model to investigate the genetic basis of disease. More than 400 heritable traits analogous to human diseases have been described in dogs. To further canine medical genetics research, we established the Dog Biomedical Variant Database Consortium (DBVDC) and present a comprehensive list of functionally annotated genome variants that were identified with whole genome sequencing of 582 dogs from 126 breeds and eight wolves. The genomes used in the study have a minimum coverage of 10× and an average coverage of ~24×. In total, we identified 23 133 692 single-nucleotide variants (SNVs) and 10 048 038 short indels, including 93% undescribed variants. On average, each individual dog genome carried ∼4.1 million single-nucleotide and ~1.4 million short-indel variants with respect to the reference genome assembly. About 2% of the variants were located in coding regions of annotated genes and loci. Variant effect classification showed 247 141 SNVs and 99 562 short indels having moderate or high impact on 11 267 protein-coding genes. On average, each genome contained heterozygous loss-of-function variants in 30 potentially embryonic lethal genes and 97 genes associated with developmental disorders. More than 50 inherited disorders and traits have been unravelled using the DBVDC variant catalogue, enabling genetic testing for breeding and diagnostics. This resource of annotated variants and their corresponding genotype frequencies constitutes a highly useful tool for the identification of potential variants causative for rare inherited disorders in dogs.
Collapse
Affiliation(s)
- V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019. [PMID: 31656861 DOI: 10.12688/wellcomeopenres.15403.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
19
|
Segert JH, Seidel JM, Wurzer WJ, Geretschlaeger AM. vWDI is inherited in an autosomal dominant manner with incomplete penetrance, in the Kromfohrländer breed. Canine Genet Epidemiol 2019; 6:3. [PMID: 31131110 PMCID: PMC6521421 DOI: 10.1186/s40575-019-0073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022] Open
Abstract
Background Von Willebrand disorder type I (vWDI) is known as an inherited bleeding disorder in different dog breeds following an autosomal recessive inheritance. The Kromfohrländer is a rare dog breed with an increased incidence of unclear bleeding episodes and prolonged coagulation time during/after surgery or injuries, indicating a defect in one or more critical proteins of the coagulation cascade. Objective The objective of this study was to determine whether the c.7437G > A mutation in the VWF gene previously shown to cause von Willebrand disorder type I in Doberman Pinscher is also linked to this disease in the Kromfohrländer breed and to serum concentrations of vWF. Furthermore, establish a possible link between bleeding phenotype, vWF serum concentrations and VWF mutation status. Results Eighty-seven Kromfohrländer were genotyped for the G > A von Willebrand type I mutation. For detection of the associated mutation we used an endpoint genotyping method. We identified the G > A von Willebrand type I mutation in 80.5% of our study population. 65.5% were heterozygous (WT/MUT) and 15.0% were homozygous for the mutation (MUT/MUT). 21% of the overall study population exhibited bleeding symptoms. 45.5% of all homozygous dogs (MUT/MUT) showed bleeding symptoms. In contrast, wild-type homozygotes exhibited no bleeding symptoms, whereas 23.2% of the heterozygotes did. VWF serum concentrations varied from 28 to 137% in wild-type dogs while in heterozygous and homozygous dogs the concentration ranged from 3 to 77% and 1 to 23%, respectively (p < 0.05) Conclusion Based on our data, we found the G > A mutation in the VWF gene in the Kromfohrländer breed and the subsequent vWDI as the underlying cause for the bleeding episodes and delayed coagulation in heterozygous and homozygous dogs. Since both, heterozygotes and homozygotes show reduced vWF serum concentrations and exhibit to a certain percentage the vWD syndrome phenotype, we postulate that, in contrast to most other vWDI affected breeds, inheritance follows an autosomal dominant mode with incomplete penetrance.
Collapse
Affiliation(s)
| | | | - Walter J Wurzer
- Speciality Pharma Service Austria e.U, Altenmarkt/Triesting, Austria
| | | |
Collapse
|
20
|
Canine neuropathies: powerful spontaneous models for human hereditary sensory neuropathies. Hum Genet 2019; 138:455-466. [PMID: 30955094 DOI: 10.1007/s00439-019-02003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
In humans, hereditary sensory neuropathies (HSN), also known as hereditary sensory and autonomic neuropathies (HSAN), constitute a clinically and genetically heterogeneous group of disorders characterized by progressive sensory loss, often accompanied by chronic skin ulcerations and nail dystrophic changes. To date, although around 20 genes have already been discovered, they do not explain the genetic causes of all patients. In dogs, similar neuropathies are also diagnosed, several breeds being predisposed to specific forms of the disease. Indeed, the breed specificity of most canine genetic diseases is due to the small numbers of founders and high levels of inbreeding. Recent knowledge and tools developed to study the canine genome efficiently allows deciphering the genetic bases of such diseases. To date, a dozen breeds are recognized to develop specific HSN. For the Border collie and hunting dog breeds, the genes involved have recently been discovered. Other affected breeds thus constitute potential genetic models, with new genes to be found in dogs that can be considered as candidate genes for human HSAN/HSN. Here, we review the different forms of human and canine HSAN/HSN and we present a novel form in Fox terrier cases, highlighting the advantages of the dog model for such rare human diseases.
Collapse
|
21
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019; 4:133. [PMID: 31656861 PMCID: PMC6798324 DOI: 10.12688/wellcomeopenres.15403.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
Balmer P, Fellay AK, Sayar BS, Hariton WVJ, Wiener DJ, Galichet A, Müller EJ, Roosje PJ. FAM83G/Fam83g genetic variants affect canine and murine hair formation. Exp Dermatol 2018; 28:350-354. [PMID: 29963719 DOI: 10.1111/exd.13729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 01/30/2023]
Abstract
FAM83G/Fam83g genetic variants have been described in dogs, mice and recently also in humans. They are associated with palmoplantar keratoderma and altered hair or coat phenotype, reported as wooly phenotype in mice. FAM83G/Fam83g is an unexplored effector of temporally and spatially coordinated Wnt and BMP signalling which are key pathways in pre- and postnatal hair follicle morphogenesis and differentiation. The aim of this study was to unravel phenotypic consequences of FAM83G/Fam83g variants on hair coat formation in dogs and mice. Our results show differences in hair types and hair shaft structures in both species. Additionally, mice exhibit deregulated hair cycle progression which timely correlates with defective Wnt signalling (Axin2) and Bmp2/4 expression. These results affirm the involvement of FAM83G in hair morphogenesis, hair follicle differentiation and cycling.
Collapse
Affiliation(s)
- Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Auxanne K Fellay
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza S Sayar
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
| | - William V J Hariton
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
| | - Dominique J Wiener
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Arnaud Galichet
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Clinic for Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Eliane J Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Clinic for Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Petra J Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Lee CM, Han JI, Kang MH, Kim SG, Park HM. Polymorphism in the serotonin transporter protein gene in Maltese dogs with degenerative mitral valve disease. J Vet Sci 2018; 19:129-135. [PMID: 28693307 PMCID: PMC5799389 DOI: 10.4142/jvs.2018.19.1.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/29/2017] [Accepted: 06/21/2017] [Indexed: 11/20/2022] Open
Abstract
Degenerative mitral valve disease (DMVD) is the most commonly acquired cardiac disease in dogs. This study evaluated the relationship between genetic variations in the serotonin transporter (SERT) gene of Maltese dogs and DMVD. Genomic DNA was extracted from blood samples collected from 20 client-owned DMVD Maltese dogs and 10 healthy control dogs, and each exon of the SERT gene was amplified via polymerase chain reaction. The resulting genetic sequences were aligned and analyzed for variations by comparing with reference sequences; the predicted secondary structures of these variations were modeled and cross-verified by applying computational methods. Genetic variations, including five nonsynonymous genetic variations, were detected in five exons. Protein structure and function of the five nonsynonymous genetic variations were predicted. Three of the five polymorphisms were predicted to be probable causes of damage to protein function and confirmed by protein structure model verification. This study identified six polymorphisms of the SERT gene in Maltese dogs with DMVD, suggesting an association between the SERT gene and canine DMVD. This is the first study of SERT mutation in Maltese dogs with DMVD and is considered a pilot study into clinical genetic examination for early DMVD diagnosis.
Collapse
Affiliation(s)
- Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Jae-Ik Han
- Laboratory of Wildlife Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Min-Hee Kang
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Seung-Gon Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| | - Hee-Myung Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05030, Korea
| |
Collapse
|
24
|
The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms. Biochem Soc Trans 2018; 46:761-771. [PMID: 29871876 PMCID: PMC6008594 DOI: 10.1042/bst20160277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
The eight members of the FAM83 (FAMily with sequence similarity 83) family of poorly characterised proteins are only present in vertebrates and are defined by the presence of the conserved DUF1669 domain of unknown function at their N-termini. The DUF1669 domain consists of a conserved phospholipase D (PLD)-like catalytic motif. However, the FAM83 proteins display no PLD catalytic (PLDc) activity, and the pseudo-PLDc motif present in each FAM83 member lacks the crucial elements of the native PLDc motif. In the absence of catalytic activity, it is likely that the DUF1669 domain has evolved to espouse novel function(s) in biology. Recent studies have indicated that the DUF1669 domain mediates the interaction with different isoforms of the CK1 (casein kinase 1) family of Ser/Thr protein kinases. In turn, different FAM83 proteins, which exhibit unique amino acid sequences outside the DUF1669 domain, deliver CK1 isoforms to unique subcellular compartments. One of the first protein kinases to be discovered, the CK1 isoforms are thought to be constitutively active and are known to control a plethora of biological processes. Yet, their regulation of kinase activity, substrate selectivity and subcellular localisation has remained a mystery. The emerging evidence now supports a central role for the DUF1669 domain, and the FAM83 proteins, in the regulation of CK1 biology.
Collapse
|
25
|
Donner J, Anderson H, Davison S, Hughes AM, Bouirmane J, Lindqvist J, Lytle KM, Ganesan B, Ottka C, Ruotanen P, Kaukonen M, Forman OP, Fretwell N, Cole CA, Lohi H. Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet 2018; 14:e1007361. [PMID: 29708978 PMCID: PMC5945203 DOI: 10.1371/journal.pgen.1007361] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/10/2018] [Accepted: 04/11/2018] [Indexed: 11/18/2022] Open
Abstract
Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare. Like any human, dogs may suffer from or pass on a variety of inherited disorders. Knowledge of how likely a typical dog is to carry an inherited disorder in its genome, and which disorders are the most common and relevant ones across dog breeds, is valuable for both veterinary care and breeding of healthy dogs. We have explored the largest global dog study sample collected to date, consisting of more than 100,000 mixed breed and purebred dogs, to advance research on this subject. We found that mixed breed dogs and purebred dogs potentially suffer from many of the same inherited disorders, and that around two in five dogs carried at least one of the conditions that we screened for. A dog carrying an inherited disorder is not a “bad dog”–but we humans responsible for breeding selections do need to make sustainable decisions avoiding inbreeding, i.e. mating of dogs that are close relatives. The disease prevalence information we generated during this study is made available online (www.mybreeddata.com), as a free tool for breed and kennel clubs, breeders, as well as the veterinary and scientific community.
Collapse
Affiliation(s)
- Jonas Donner
- Genoscoper Laboratories, Helsinki, Finland
- * E-mail:
| | | | - Stephen Davison
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | | | | | - Johan Lindqvist
- Genoscoper Laboratories, Helsinki, Finland
- MediSapiens Ltd., Helsinki, Finland
| | | | | | | | | | - Maria Kaukonen
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Oliver P. Forman
- Wisdom Health, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Neale Fretwell
- Wisdom Health, Vancouver, Washington, United States of America
| | - Cynthia A. Cole
- Wisdom Health, Vancouver, Washington, United States of America
| | - Hannes Lohi
- Genoscoper Laboratories, Helsinki, Finland
- Research Programs Unit—Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
26
|
Bozatzi P, Dingwell KS, Wu KZ, Cooper F, Cummins TD, Hutchinson LD, Vogt J, Wood NT, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Smith JC, Sapkota GP. PAWS1 controls Wnt signalling through association with casein kinase 1α. EMBO Rep 2018; 19:e44807. [PMID: 29514862 PMCID: PMC5891436 DOI: 10.15252/embr.201744807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.
Collapse
Affiliation(s)
- Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Kevin Zl Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Luke D Hutchinson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Janis Vogt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| |
Collapse
|
27
|
Recessive Mutation in FAM83G Associated with Palmoplantar Keratoderma and Exuberant Scalp Hair. J Invest Dermatol 2017; 138:984-987. [PMID: 29138053 PMCID: PMC5869049 DOI: 10.1016/j.jid.2017.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
28
|
Murphy JM, Farhan H, Eyers PA. Bio-Zombie: the rise of pseudoenzymes in biology. Biochem Soc Trans 2017; 45:537-544. [PMID: 28408493 DOI: 10.1042/bst20160400] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/17/2022]
Abstract
Pseudoenzymes are catalytically dead counterparts of enzymes. Despite their first description some 50 years ago, the importance and functional diversity of these 'fit-for-purpose' polypeptides is only now being appreciated. Pseudoenzymes have been identified throughout all the kingdoms of life and, owing to predicted deficits in enzyme activity due to the absence of catalytic residues, have been variously referred to as pseudoenzymes, non-enzymes, dead enzymes, prozymes or 'zombie' proteins. An important goal of the recent Biochemical Society Pseudoenzymes-focused meeting was to explore the functional and evolutionary diversity of pseudoenzymes and to begin to evaluate their functions in biology, including cell signalling and metabolism. Here, we summarise the impressive breadth of enzyme classes that are known to have pseudoenzyme counterparts and present examples of known cellular functions. We predict that the next decades will represent golden years for the analysis of pseudoenzymes.
Collapse
Affiliation(s)
- James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
29
|
Plassais J, Rimbault M, Williams FJ, Davis BW, Schoenebeck JJ, Ostrander EA. Analysis of large versus small dogs reveals three genes on the canine X chromosome associated with body weight, muscling and back fat thickness. PLoS Genet 2017; 13:e1006661. [PMID: 28257443 PMCID: PMC5357063 DOI: 10.1371/journal.pgen.1006661] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 02/26/2017] [Indexed: 12/21/2022] Open
Abstract
Domestic dog breeds display significant diversity in both body mass and skeletal size, resulting from intensive selective pressure during the formation and maintenance of modern breeds. While previous studies focused on the identification of alleles that contribute to small skeletal size, little is known about the underlying genetics controlling large size. We first performed a genome-wide association study (GWAS) using the Illumina Canine HD 170,000 single nucleotide polymorphism (SNP) array which compared 165 large-breed dogs from 19 breeds (defined as having a Standard Breed Weight (SBW) >41 kg [90 lb]) to 690 dogs from 69 small breeds (SBW ≤41 kg). We identified two loci on the canine X chromosome that were strongly associated with large body size at 82-84 megabases (Mb) and 101-104 Mb. Analyses of whole genome sequencing (WGS) data from 163 dogs revealed two indels in the Insulin Receptor Substrate 4 (IRS4) gene at 82.2 Mb and two additional mutations, one SNP and one deletion of a single codon, in Immunoglobulin Superfamily member 1 gene (IGSF1) at 102.3 Mb. IRS4 and IGSF1 are members of the GH/IGF1 and thyroid pathways whose roles include determination of body size. We also found one highly associated SNP in the 5'UTR of Acyl-CoA Synthetase Long-chain family member 4 (ACSL4) at 82.9 Mb, a gene which controls the traits of muscling and back fat thickness. We show by analysis of sequencing data from 26 wolves and 959 dogs representing 102 domestic dog breeds that skeletal size and body mass in large dog breeds are strongly associated with variants within IRS4, ACSL4 and IGSF1.
Collapse
Affiliation(s)
- Jocelyn Plassais
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maud Rimbault
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Falina J. Williams
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian W. Davis
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey J. Schoenebeck
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
30
|
Evaluation of the genetic basis of primary hypoadrenocorticism in Standard Poodles using SNP array genotyping and whole-genome sequencing. Mamm Genome 2016; 28:56-65. [PMID: 27864587 DOI: 10.1007/s00335-016-9671-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
Primary hypoadrenocorticism, also known as Addison's disease, is an autoimmune disorder leading to the destruction of the adrenal cortex and subsequent loss of glucocorticoid and mineralocorticoid hormones. The disease is prevalent in Standard Poodles and is believed to be highly heritable in the breed. Using genotypes derived from the Illumina Canine HD SNP array, we performed a genome-wide association study of 133 carefully phenotyped Standard Poodles (61 affected, 72 unaffected) and found no markers significantly associated with the disease. We also sequenced the entire genomes of 20 Standard Poodles (13 affected, 7 unaffected) and analyzed the data to identify common variants (including SNPs, indels, structural variants, and copy number variants) across affected dogs and variants segregating within a single pedigree of highly affected dogs. We identified several candidate genes that may be fixed in both Standard Poodles and a small population of dogs of related breeds. Further studies are required to confirm these findings more broadly, as well as additional gene-mapping efforts aimed at fully understanding the genetic basis of what is likely a complex inherited disorder.
Collapse
|
31
|
A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype. G3-GENES GENOMES GENETICS 2016; 6:2949-54. [PMID: 27449516 PMCID: PMC5015951 DOI: 10.1534/g3.116.033225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns.
Collapse
|
32
|
An Intronic MBTPS2 Variant Results in a Splicing Defect in Horses with Brindle Coat Texture. G3-GENES GENOMES GENETICS 2016; 6:2963-70. [PMID: 27449517 PMCID: PMC5015953 DOI: 10.1534/g3.116.032433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated a family of horses exhibiting irregular vertical stripes in their hair coat texture along the neck, back, hindquarters, and upper legs. This phenotype is termed “brindle” by horse breeders. We propose the term “brindle 1 (BR1)” for this specific form of brindle. In some BR1 horses, the stripes were also differentially pigmented. Pedigree analyses were suggestive of a monogenic X-chromosomal semidominant mode of inheritance. Haplotype analyses identified a 5 Mb candidate region on chromosome X. Whole genome sequencing of four BR1 and 60 nonbrindle horses identified 61 private variants in the critical interval, none of them located in an exon of an annotated gene. However, one of the private variants was close to an exon/intron boundary in intron 10 of the MBTPS2 gene encoding the membrane bound transcription factor peptidase, site 2 (c.1437+4T>C). Different coding variants in this gene lead to three related genodermatoses in human patients. We therefore analyzed MBTPS2 transcripts in skin, and identified an aberrant transcript in a BR1 horse, which lacked the entire exon 10 and parts of exon 11. The MBTPS2:c1437+4T>C variant showed perfect cosegregation with the brindle phenotype in the investigated family, and was absent from 457 control horses of diverse breeds. Altogether, our genetic data, and previous knowledge on MBTPS2 function in the skin, suggest that the identified MBTPS2 intronic variant leads to partial exon skipping, and causes the BR1 phenotype in horses.
Collapse
|
33
|
Leeb T, Müller EJ, Roosje P, Welle M. Genetic testing in veterinary dermatology. Vet Dermatol 2016; 28:4-e1. [PMID: 27425028 DOI: 10.1111/vde.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecular genetics has made significant advances in the analysis of hereditary dermatoses during the last several years. OBJECTIVES To provide an update on currently available genetic tests for skin diseases of dogs, cats and horses, and to aid the veterinary clinician in the appropriate selection and applications of genetic tests. METHODS The scientific literature on the topic was critically reviewed. The list of known causative variants for genodermatoses and hair morphology traits was compiled by searching the Online Mendelian Inheritance in Animals (OMIA) database. RESULTS Genetic testing has become an important diagnostic method in veterinary medicine. Genetic tests can help to establish the correct diagnosis in some diseases with relatively nonspecific signs. Genetic tests are also essential for sustainable breeding programmes and to help minimize the frequency of animals with hereditary diseases. Advances in genetic methodology and bioinformatics already allow genome-wide screening for potential disease causing mutations for research purposes. It is anticipated that this will become a routine process in clinical practice in the future. CONCLUSION AND CLINICAL IMPORTANCE As specific DNA tests and broad genome-wide analyses come into more common use, it is critical that clinicians understand the proper application and interpretation of these test results.
Collapse
Affiliation(s)
- Tosso Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland
| | - Eliane J Müller
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland.,Department of Dermatology, Inselspital, University of Bern, Freiburgstrasse, Bern, 3010, Switzerland
| | - Petra Roosje
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, Bern, 3001, Switzerland
| | - Monika Welle
- DermFocus, University of Bern, Bremgartenstrasse 109a, Bern, 3001, Switzerland.,Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, Bern, 3001, Switzerland
| |
Collapse
|
34
|
Schwarzenbacher H, Burgstaller J, Seefried FR, Wurmser C, Hilbe M, Jung S, Fuerst C, Dinhopl N, Weissenböck H, Fuerst-Waltl B, Dolezal M, Winkler R, Grueter O, Bleul U, Wittek T, Fries R, Pausch H. A missense mutation in TUBD1 is associated with high juvenile mortality in Braunvieh and Fleckvieh cattle. BMC Genomics 2016; 17:400. [PMID: 27225349 PMCID: PMC4880872 DOI: 10.1186/s12864-016-2742-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/14/2016] [Indexed: 12/04/2022] Open
Abstract
Background Haplotypes with reduced or missing homozygosity may harbor deleterious alleles that compromise juvenile survival. A scan for homozygous haplotype deficiency revealed a short segment on bovine chromosome 19 (Braunvieh haplotype 2, BH2) that was associated with high juvenile mortality in Braunvieh cattle. However, the molecular genetic underpinnings and the pathophysiology of BH2 remain to be elucidated. Results The frequency of BH2 was 6.5 % in 8,446 Braunvieh animals from the national bovine genome databases. Both perinatal and juvenile mortality of BH2 homozygous calves were higher than the average in Braunvieh cattle resulting in a depletion of BH2 homozygous adult animals (P = 9.3x10−12). The analysis of whole-genome sequence data from 54 Braunvieh animals uncovered a missense mutation in TUBD1 (rs383232842, p.H210R) that was compatible with recessive inheritance of BH2. The availability of sequence data of 236 animals from diverse bovine populations revealed that the missense mutation also segregated at a low frequency (1.7 %) in the Fleckvieh breed. A validation study in 37,314 Fleckvieh animals confirmed high juvenile mortality of homozygous calves (P = 2.2x10−15). Our findings show that the putative disease allele is located on an ancestral haplotype that segregates in Braunvieh and Fleckvieh cattle. To unravel the pathophysiology of BH2, six homozygous animals were examined at the animal clinic. Clinical and pathological findings revealed that homozygous calves suffered from chronic airway disease possibly resulting from defective cilia in the respiratory tract. Conclusions A missense mutation in TUBD1 is associated with high perinatal and juvenile mortality in Braunvieh and Fleckvieh cattle. The mutation is located on a common haplotype likely originating from an ancient ancestor of Braunvieh and Fleckvieh cattle. Our findings demonstrate for the first time that deleterious alleles may segregate across closed cattle breeds without recent admixture. Homozygous calves suffer from chronic airway disease resulting in poor growth performance and high juvenile mortality. The respiratory manifestations resemble key features of diseases resulting from impaired function of airway cilia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2742-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Johann Burgstaller
- Clinic for Ruminants, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | | | - Christine Wurmser
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, 85354, Germany
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University Zurich, Zurich, 8057, Switzerland
| | - Simone Jung
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, 85354, Germany
| | | | - Nora Dinhopl
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Birgit Fuerst-Waltl
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marlies Dolezal
- Platform Bioinformatics and Statistics, University of Veterinary Medicine, Vienna, Austria
| | | | | | - Ulrich Bleul
- Clinic of Reproductive Medicine, Department of Farm Animals, Vetsuisse-Faculty, University Zurich, Zurich, 8057, Switzerland
| | - Thomas Wittek
- Clinic for Ruminants, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Ruedi Fries
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, 85354, Germany
| | - Hubert Pausch
- Lehrstuhl fuer Tierzucht, Technische Universitaet Muenchen, Freising, 85354, Germany.
| |
Collapse
|
35
|
Hytönen MK, Arumilli M, Lappalainen AK, Owczarek-Lipska M, Jagannathan V, Hundi S, Salmela E, Venta P, Sarkiala E, Jokinen T, Gorgas D, Kere J, Nieminen P, Drögemüller C, Lohi H. Molecular Characterization of Three Canine Models of Human Rare Bone Diseases: Caffey, van den Ende-Gupta, and Raine Syndromes. PLoS Genet 2016; 12:e1006037. [PMID: 27187611 PMCID: PMC4871343 DOI: 10.1371/journal.pgen.1006037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 12/03/2022] Open
Abstract
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions. Rare developmental disorders make a major contribution to pediatric hospital admissions and mortality. There is a growing interest in the development of therapeutics for these conditions, but that requires understanding of the genetic cause and pathology. Research can be facilitated by physiologically relevant models, such as dogs with corresponding disorders. We have characterized the clinical features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified mutations in the canine SLC37A2, SCARF2 and FAM20C genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease) for which SLC37A2 is a new candidate gene. SLC37A2 is a glucose-phosphate transporter in osteoclasts, and its defect suggests an impaired glucose homeostasis in developing bone, leading to hyperostosis. Mutations in the SCARF2 and FAM20C genes have been associated with the human van den Ende-Gupta and Raine syndromes. Our study provides molecular identity for the canine conditions and presents three novel physiologically relevant models of human rare diseases.
Collapse
Affiliation(s)
- Marjo K. Hytönen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Anu K. Lappalainen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sruthi Hundi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Elina Salmela
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Patrick Venta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Eva Sarkiala
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Jokinen
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Daniela Gorgas
- Division of Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Juha Kere
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pekka Nieminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- The Folkhälsan Institute of Genetics, Helsinki, Finland
- * E-mail:
| |
Collapse
|
36
|
Karli P, Oevermann A, Bauer A, Jagannathan V, Leeb T. MFSD8 single-base pair deletion in a Chihuahua with neuronal ceroid lipofuscinosis. Anim Genet 2016; 47:631. [PMID: 27145727 DOI: 10.1111/age.12449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Philemon Karli
- Small Animal Referral Clinic, VET Zentrum AG, Riedäckerstrasse 7, 8422, Pfungen, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Anina Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, 3001, Switzerland.
| |
Collapse
|
37
|
Whole-Genome Sequencing of a Canine Family Trio Reveals a FAM83G Variant Associated with Hereditary Footpad Hyperkeratosis. G3-GENES GENOMES GENETICS 2016; 6:521-7. [PMID: 26747202 PMCID: PMC4777115 DOI: 10.1534/g3.115.025643] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10–20 cases and 10–20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted resequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrländer dogs. To our knowledge, this is the first time this family trio WGS-approach has been used successfully to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrländer dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences, and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G > C (p.R52P) was found to be concordant in eight additional cases, and 16 healthy Kromfohrländer dogs.
Collapse
|
38
|
A RAB3GAP1 SINE Insertion in Alaskan Huskies with Polyneuropathy, Ocular Abnormalities, and Neuronal Vacuolation (POANV) Resembling Human Warburg Micro Syndrome 1 (WARBM1). G3-GENES GENOMES GENETICS 2015; 6:255-62. [PMID: 26596647 PMCID: PMC4751546 DOI: 10.1534/g3.115.022707] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We observed a hereditary phenotype in Alaskan Huskies that was characterized by polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV). The affected dogs developed a progressive severe ataxia, which led to euthanasia between 8 and 16 months of age. The pedigrees were consistent with a monogenic autosomal recessive inheritance. We localized the causative genetic defect to a 4 Mb interval on chromosome 19 by a combined linkage and homozygosity mapping approach. Whole genome sequencing of one affected dog, an obligate carrier, and an unrelated control revealed a 218-bp SINE insertion into exon 7 of the RAB3GAP1 gene. The SINE insertion was perfectly associated with the disease phenotype in a cohort of 43 Alaskan Huskies, and it was absent from 541 control dogs of diverse other breeds. The SINE insertion induced aberrant splicing and led to a transcript with a greatly altered exon 7. RAB3GAP1 loss-of-function variants in humans cause Warburg Micro Syndrome 1 (WARBM1), which is characterized by additional developmental defects compared to canine POANV, whereas Rab3gap1-deficient mice have a much milder phenotype than either humans or dogs. Thus, the RAB3GAP1 mutant Alaskan Huskies provide an interesting intermediate phenotype that may help to better understand the function of RAB3GAP1 in development. Furthermore, the identification of the presumed causative genetic variant will enable genetic testing to avoid the nonintentional breeding of affected dogs.
Collapse
|
39
|
Viluma A, Sayyab S, Mikko S, Andersson G, Bergström TF. Evaluation of whole-genome sequencing of four Chinese crested dogs for variant detection using the ion proton system. Canine Genet Epidemiol 2015; 2:16. [PMID: 26457193 PMCID: PMC4599337 DOI: 10.1186/s40575-015-0029-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Next generation sequencing (NGS) has traditionally been performed by large genome centers, but in recent years, the costs for whole-genome sequencing (WGS) have decreased substantially. With the introduction of smaller and less expensive “desktop” systems, NGS is now moving into the general laboratory. To evaluate the Ion Proton system for WGS we sequenced four Chinese Crested dogs and analyzed the data quality in terms of genome and exome coverage, the number of detected single nucleotide variants (SNVs) and insertions and deletions (INDELs) and the genotype concordance with the Illumina HD canine SNP array. For each of the four dogs, a 200 bp fragment library was constructed from genomic DNA and sequenced on two Ion PI chips per dog to reach mean coverage of 6–8x of the canine genome (genome size ≈ 2.4 Gb). Results On average, each Ion PI chip yielded approximately 73.3 million reads with a mean read length of 130 bp (~9.5 Gb sequence data) of which 98.5 % could be aligned to the canine reference genome (CanFam3.1). By sequencing a single dog using one fragment library and two Ion PI chips, on average 80 % of the genome and 77 % exome was covered by at least four reads. After removing duplicate reads (20.7 %) the mean coverage across the whole genome was 6x. Using sequence data from all four individuals (four fragment libraries and eight Ion PI chips) the genome and exome coverage could be further increased to 97.2 and 94.3 %, respectively. We detected 4.83 million unique SNPs and 6.10 million unique INDEL positions across all individuals. A comparison between SNP genotypes detected with the WGS and the 170 K Illumina HD canine SNP array showed 90 % concordance. Conclusions We have evaluated whole-genome sequencing on the Ion Proton system for genetic variant detection in four Chinese crested dogs. Even though INDEL calling with Ion Proton data is challenging due to specific platform errors, in case of SNP calling it can serve as an alternative to other next-generation sequencing platforms and SNP genotyping arrays, in studies aiming to identify causative mutations for rare monogenic diseases. In addition, we have identified new genetic variants of the Chinese Crested dog that will contribute to further whole-genome sequencing studies aimed to identify mutations associated with monogenic diseases with autosomal recessive inheritance. Electronic supplementary material The online version of this article (doi:10.1186/s40575-015-0029-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agnese Viluma
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
40
|
Müller EJ, Galichet A, Wiener D, Marti E, Drögemüller C, Welle M, Roosje P, Leeb T, Suter MM. Keratinocyte biology and pathology. Vet Dermatol 2014; 25:236-8. [PMID: 25124172 DOI: 10.1111/vde.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eliane J Müller
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|