1
|
Hidalgo S, Chiu JC. Integration of photoperiodic and temperature cues by the circadian clock to regulate insect seasonal adaptations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:585-599. [PMID: 37584703 PMCID: PMC11057393 DOI: 10.1007/s00359-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Organisms adapt to unfavorable seasonal conditions to survive. These seasonal adaptations rely on the correct interpretation of environmental cues such as photoperiod, and temperature. Genetic studies in several organisms, including the genetic powerhouse Drosophila melanogaster, indicate that circadian clock components, such as period and timeless, are involved in photoperiodic-dependent seasonal adaptations, but our understanding of this process is far from complete. In particular, the role of temperature as a key factor to complement photoperiodic response is not well understood. The development of new sequencing technologies has proven extremely useful in understanding the plastic changes that the clock and other cellular components undergo in different environmental conditions, including changes in gene expression and alternative splicing. This article discusses the integration of photoperiod and temperature for seasonal biology as well as downstream molecular and cellular pathways involved in the regulation of physiological adaptations that occur with changing seasons. We focus our discussion on the current understanding of the involvement of the molecular clock and the circadian clock neuronal circuits in these adaptations in D. melanogaster.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Hasebe M, Sato M, Ushioda S, Kusuhara W, Kominato K, Shiga S. Significance of the clock gene period in photoperiodism in larval development and production of diapause eggs in the silkworm Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104615. [PMID: 38237657 DOI: 10.1016/j.jinsphys.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Many insects living in seasonal environments sense seasonal changes from photoperiod and appropriately regulate their development and physiological activities. Genetic researches have indicated the importance of a circadian clock system in photoperiodic time-measurement for photoperiodic regulations. However, most previous studies have focused on the effects on a single photoperiodic phenotype, without elucidating whether the circadian clock is involved in the core photoperiodic mechanism or only in the production of one target phenotype, such as diapause. Here, we focused on two different phenotypes in a bivoltine Kosetsu strain of the silkworm Bombyx mori, namely, embryonic diapause and larval development, and examined their photoperiodic responses and relationship to the circadian clock gene period. Photoperiod during the larval stage clearly influenced the induction of embryonic diapause and duration of larval development in the Kosetsu strain; short-day exposure leaded to the production of diapause eggs and shortened the larval duration. Genetic knockout of period inhibited the short-day-induced embryonic diapause. Conversely, in the period-knockout silkworms, the larval duration was shortened, but the photoperiodic difference was maintained. In conclusion, our results indicate that the period gene is not causally involved in the photoperiodic response of larval development, while that is essential for the short-day-induced embryonic diapause.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Mizuka Sato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shoichiro Ushioda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Wakana Kusuhara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuki Kominato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Khatib L, Subasi BS, Fishman B, Kapun M, Tauber E. Unveiling Subtle Geographical Clines: Phenotypic Effects and Dynamics of Circadian Clock Gene Polymorphisms. BIOLOGY 2023; 12:858. [PMID: 37372143 DOI: 10.3390/biology12060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Our understanding of the gene regulatory network that constitutes the circadian clock has greatly increased in recent decades, notably due to the use of Drosophila as a model system. In contrast, the analysis of natural genetic variation that enables the robust function of the clock under a broad range of environments has developed more slowly. In the current study, we analyzed comprehensive genome sequencing data from wild European populations of Drosophila, which were densely sampled through time and space. We identified hundreds of single nucleotide polymorphisms (SNPs) in nine genes associated with the clock, 276 of which exhibited a latitudinal cline in their allele frequencies. While the effect sizes of these clinal patterns were small, indicating subtle adaptations driven by natural selection, they provided important insights into the genetic dynamics of circadian rhythms in natural populations. We selected nine SNPs in different genes and assessed their impact on circadian and seasonal phenotypes by reconstructing outbred populations fixed for either of the SNP alleles, from inbred DGRP strains. The circadian free-running period of the locomotor activity rhythm was affected by an SNP in doubletime (dbt) and eyes absent (Eya). The SNPs in Clock (Clk), Shaggy (Sgg), period (per), and timeless (tim) affected the acrophase. The alleles of the SNP in Eya conferred different levels of diapause and the chill coma recovery response.
Collapse
Affiliation(s)
- Loren Khatib
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Bengisu Sezen Subasi
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Bettina Fishman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Martin Kapun
- Natural History Museum Vienna, 1010 Vienna, Austria
- Department of Cell and Developmental Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Eran Tauber
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
4
|
Xia Q, Chen C, Dopman EB, Hahn DA. Divergence in cell cycle progression is associated with shifted phenology in a multivoltine moth: the European corn borer, Ostrinia nubilalis. J Exp Biol 2023; 226:jeb245244. [PMID: 37293992 PMCID: PMC10281267 DOI: 10.1242/jeb.245244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Evolutionary change in diapause timing can be an adaptive response to changing seasonality, and even result in ecological speciation. However, the molecular and cellular mechanisms regulating shifts in diapause timing remain poorly understood. One of the hallmarks of diapause is a massive slowdown in the cell cycle of target organs such as the brain and primordial imaginal structures, and resumption of cell cycle proliferation is an indication of diapause termination and resumption of development. Characterizing cell cycle parameters between lineages differing in diapause life history timing may help identify molecular mechanisms associated with alterations of diapause timing. We tested the extent to which progression of the cell cycle differs across diapause between two genetically distinct European corn borer strains that differ in their seasonal diapause timing. We show the cell cycle slows down during larval diapause with a significant decrease in the proportion of cells in S phase. Brain-subesophageal complex cells slow primarily in G0/G1 phase whereas most wing disc cells are in G2 phase. Diapausing larvae of the earlier emerging, bivoltine E-strain (BE) suppressed cell cycle progression less than the later emerging, univoltine Z-strain (UZ) individuals, with a greater proportion of cells in S phase across both tissues during diapause. Additionally, resumption of cell cycle proliferation occurred earlier in the BE strain than in the UZ strain after exposure to diapause-terminating conditions. We propose that regulation of cell cycle progression rates ultimately drives differences in larval diapause termination, and adult emergence timing, between early- and late-emerging European corn borer strains.
Collapse
Affiliation(s)
- Qinwen Xia
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Chao Chen
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Liu X, Cai L, Zhu L, Tian Z, Shen Z, Cheng J, Zhang S, Li Z, Liu X. Mutation of the clock gene timeless disturbs diapause induction and adult emergence rhythm in Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2023; 79:1876-1884. [PMID: 36654480 DOI: 10.1002/ps.7363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Circadian rhythms are physical and behavioral changes that follow the 24-h cycle of Earth's light and temperature and are regulated by clock genes. Timeless (Tim) has been identified as a canonical clock gene in some insects, however, its functions have been little studied in lepidopteran pests. RESULTS To investigate Tim (HaTim) gene function in Helicoverpa armigera, an important lepidopteran pest, we obtained the HaTim mutant using the CRISPR/Cas9 gene editing system. Our results showed that the transcript levels of HaTim rhythmically peaked at night in heads of the wild larvae and adult, and the diel expression of HaTim was sensitive to photoperiod and temperature. The expression rhythms of other clock genes, such as HaPer, HaCry1, HaCry2 and HaCwo, were disturbed in the HaTim mutant larvae, as that stage is a sensitivity period for diapause induction. Fifth-instar wild-type larvae could be induced to pupate in diapause under a short-day photoperiod and low temperature, however, fifth-instar HaTim mutant larvae could not be induced under the same conditions. In addition, the emergence of wild-type adults peaked early at night, but the rhythm was disturbed in the HaTim mutant with arrhythmic expression of some clock genes, such as HaPer, HaCry1 and HaCwo in adults. CONCLUSION Our results suggest that the clock gene Tim is involved in diapause induction and adult emergence in H. armigera, and is a potential target gene for controlling pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Limei Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lin Zhu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhiqiang Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Cheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Songdou Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Hidalgo S, Anguiano M, Tabuloc CA, Chiu JC. Seasonal cues act through the circadian clock and pigment-dispersing factor to control EYES ABSENT and downstream physiological changes. Curr Biol 2023; 33:675-687.e5. [PMID: 36708710 PMCID: PMC9992282 DOI: 10.1016/j.cub.2023.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023]
Abstract
Organisms adapt to seasonal changes in photoperiod and temperature to survive; however, the mechanisms by which these signals are integrated in the brain to alter seasonal biology are poorly understood. We previously reported that EYES ABSENT (EYA) shows higher levels in cold temperature or short photoperiod and promotes winter physiology in Drosophila. Nevertheless, how EYA senses seasonal cues is unclear. Pigment-dispersing factor (PDF) is a neuropeptide important for regulating circadian output rhythms. Interestingly, PDF has also been shown to regulate seasonality, suggesting that it may mediate the function of the circadian clock in modulating seasonal physiology. In this study, we investigated the role of EYA in mediating the function of PDF on seasonal biology. We observed that PDF abundance is lower on cold and short days as compared with warm and long days, contrary to what was previously observed for EYA. We observed that manipulating PDF signaling in eya+ fly brain neurons, where EYA and PDF receptor are co-expressed, modulates seasonal adaptations in daily activity rhythm and ovary development via EYA-dependent and EYA-independent mechanisms. At the molecular level, altering PDF signaling impacted EYA protein abundance. Specifically, we showed that protein kinase A (PKA), an effector of PDF signaling, phosphorylates EYA promoting its degradation, thus explaining the opposite responses of PDF and EYA abundance to changes in seasonal cues. In summary, our results support a model in which PDF signaling negatively modulates EYA levels to regulate seasonal physiology, linking the circadian clock to the modulation of seasonal adaptations.
Collapse
Affiliation(s)
- Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Maribel Anguiano
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine A Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Joanna C Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Andreatta G, Montagnese S, Costa R. Natural alleles of the clock gene timeless differentially affect life-history traits in Drosophila. Front Physiol 2023; 13:1092951. [PMID: 36703932 PMCID: PMC9871817 DOI: 10.3389/fphys.2022.1092951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Circadian clocks orchestrate a variety of physiological and behavioural functions within the 24-h day. These timekeeping systems have also been implicated in developmental and reproductive processes that span more (or less) than 24 h. Whether natural alleles of cardinal clock genes affect entire sets of life-history traits (i.e., reproductive arrest, developmental time, fecundity), thus providing a wider substrate for seasonal adaptation, remains unclear. Here we show that natural alleles of the timeless (tim) gene of Drosophila melanogaster, previously shown to modulate flies' propensity to enter reproductive dormancy, differentially affect correlated traits such as early-life fecundity and developmental time. Homozygous flies expressing the shorter TIM isoform (encoded by the s-tim allele) not only show a lower dormancy incidence compared to those homozygous for ls-tim (which produce both the short and an N-terminal additional 23-residues longer TIM isoform), but also higher fecundity in the first 12 days of adult life. Moreover, s-tim homozygous flies develop faster than ls-tim homozygous flies at both warm (25°C) and cold (15°C) temperatures, with the gap being larger at 15°C. In summary, this phenotypic analysis shows that natural variants of tim affect a set of life-history traits associated with reproductive dormancy in Drosophila. We speculate that this provides further adaptive advantage in temperate regions (with seasonal changes) and propose that the underlying mechanisms might not be exclusively dependent on photoperiod, as previously suggested.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Department of Biology, University of Padua, Padua, Italy,Max Perutz Laboratories, University of Vienna, Vienna, Austria,*Correspondence: Gabriele Andreatta, ; Rodolfo Costa,
| | - Sara Montagnese
- Department of Medicine, University of Padua, Padua, Italy,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom,Institute of Neuroscience, National Research Council (CNR), Padua, Italy,*Correspondence: Gabriele Andreatta, ; Rodolfo Costa,
| |
Collapse
|
9
|
Clock gene-dependent glutamate dynamics in the bean bug brain regulate photoperiodic reproduction. PLoS Biol 2022; 20:e3001734. [PMID: 36067166 PMCID: PMC9447885 DOI: 10.1371/journal.pbio.3001734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Animals adequately modulate their physiological status and behavior according to the season. Many animals sense photoperiod for seasonal adaptation, and the circadian clock is suggested to play an essential role in photoperiodic time measurement. However, circadian clock-driven neural signals in the brain that convey photoperiodic information remain unclear. Here, we focused on brain extracellular dynamics of a classical neurotransmitter glutamate, which is widely used for brain neurotransmission, and analyzed its involvement in photoperiodic responses using the bean bug Riptortus pedestris that shows clear photoperiodism in reproduction. Extracellular glutamate levels in the whole brain were significantly higher under short-day conditions, which cause a reproductive diapause, than those under long-day conditions. The photoperiodic change in glutamate levels was clearly abolished by knockdown of the clock gene period. We also demonstrated that genetic modulation of glutamate dynamics by knockdown of glutamate-metabolizing enzyme genes, glutamate oxaloacetate transaminase (got) and glutamine synthetase (gs), attenuated photoperiodic responses in reproduction. Further, we investigated glutamate-mediated photoperiodic modulations at a cellular level, focusing on the pars intercerebralis (PI) neurons that photoperiodically change their neural activity and promote oviposition. Electrophysiological analyses showed that L-Glutamate acts as an inhibitory signal to PI neurons via glutamate-gated chloride channel (GluCl). Additionally, combination of electrophysiology and genetics revealed that knockdown of got, gs, and glucl disrupted cellular photoperiodic responses of the PI neurons, in addition to reproductive phenotypes. Our results reveal that the extracellular glutamate dynamics are photoperiodically regulated depending on the clock gene and play an essential role in the photoperiodic control of reproduction via inhibitory pathways.
Collapse
|
10
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Mapping and quantification of cryptochrome expression in the brain of the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2022; 31:159-169. [PMID: 34743397 DOI: 10.1111/imb.12747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Aphids are paradigmatic photoperiodic animals often used to study the role of the circadian clock in the seasonal response. Previously, we described some elements of the circadian clock core (genes period and timeless) and output (melatonin, AANATs and PTTH) that could have a role in the regulation of the aphid seasonal response. More recently, we identified two opsins (C-ops and SWO4) as candidate input photoperiodic receptors. In the present report, we focus on the study of cryptochromes (cry) as photoreceptors of the circadian clock and discuss their involvement in the seasonal response. We analyse the expression of cry1 and cry2 genes in a circadian and seasonal context, and map their expression sites in the brain. We observe a robust rhythmic expression of cry2 peaking at dusk in phase with core clock genes period and timeless, while cry1 shows a weaker rhythm. Changes in cry1 and cry2 expression correlate with activation of the seasonal response, suggesting a possible link. Finally, we map the expression of cry1 and cry2 genes to clock neurons in the pars lateralis, a region essential for the photoperiodic response. Our results support a role for cry as elements of the aphid circadian clock and suggest a role in photoreception for cry1 and in clock repression for cry2.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| | | | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, Paterna, València, Spain
| |
Collapse
|
11
|
Gendron JM, Leung CC, Liu W. Energy as a seasonal signal for growth and reproduction. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102092. [PMID: 34461431 DOI: 10.1016/j.pbi.2021.102092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants measure photoperiod as a predictable signal for seasonal change. Recently, new connections between photoperiod measuring systems and metabolism in plants have been revealed. These studies explore historical observations of metabolism and photoperiod with modern tools and approaches, suggesting there is much more to learn about photoperiodism in plants.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
12
|
Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc Natl Acad Sci U S A 2021; 118:2018823118. [PMID: 33622784 DOI: 10.1073/pnas.2018823118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals show photoperiodic responses in physiology and behavior to adapt to seasonal changes. Recent genetic analyses have demonstrated the significance of circadian clock genes in these responses. However, the importance of clock genes in photoperiodic responses at the cellular level and the physiological roles of the cellular responses are poorly understood. The bean bug Riptortus pedestris shows a clear photoperiodic response in its reproduction. In the bug, the pars intercerebralis (PI) is an important brain region for promoting oviposition. Here, we analyzed the role of the photoperiodic neuronal response and its relationship with clock genes, focusing on PI neurons. Large PI neurons exhibited photoperiodic firing changes, and high firing activities were primarily found under photoperiodic conditions suitable for oviposition. RNA interference-mediated knockdown of the clock gene period abolished the photoperiodic response in PI neurons, as well as the response in ovarian development. To clarify whether the photoperiodic response in the PI was dependent on ovarian development, we performed an ovariectomy experiment. Ovariectomy did not have significant effects on the firing activity of PI neurons. Finally, we identified the output molecules of the PI neurons and analyzed the relevance of the output signals in oviposition. PI neurons express multiple neuropeptides-insulin-like peptides and diuretic hormone 44-and RNA interference of these neuropeptides reduced oviposition. Our results suggest that oviposition-promoting peptidergic neurons in the PI exhibit a circadian clock-dependent photoperiodic firing response, which contributes to the photoperiodic promotion of oviposition.
Collapse
|
13
|
Sailani MR, Metwally AA, Zhou W, Rose SMSF, Ahadi S, Contrepois K, Mishra T, Zhang MJ, Kidziński Ł, Chu TJ, Snyder MP. Deep longitudinal multiomics profiling reveals two biological seasonal patterns in California. Nat Commun 2020; 11:4933. [PMID: 33004787 PMCID: PMC7529769 DOI: 10.1038/s41467-020-18758-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The influence of seasons on biological processes is poorly understood. In order to identify biological seasonal patterns based on diverse molecular data, rather than calendar dates, we performed a deep longitudinal multiomics profiling of 105 individuals over 4 years. Here, we report more than 1000 seasonal variations in omics analytes and clinical measures. The different molecules group into two major seasonal patterns which correlate with peaks in late spring and late fall/early winter in California. The two patterns are enriched for molecules involved in human biological processes such as inflammation, immunity, cardiovascular health, as well as neurological and psychiatric conditions. Lastly, we identify molecules and microbes that demonstrate different seasonal patterns in insulin sensitive and insulin resistant individuals. The results of our study have important implications in healthcare and highlight the value of considering seasonality when assessing population wide health risk and management.
Collapse
Affiliation(s)
- M Reza Sailani
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Ahmed A Metwally
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Wenyu Zhou
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | | | - Sara Ahadi
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Contrepois
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Tejaswini Mishra
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Martin Jinye Zhang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Łukasz Kidziński
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Theodore J Chu
- Department of Pediatrics, Division of Allergy and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Merlin C, Iiams SE, Lugena AB. Monarch Butterfly Migration Moving into the Genetic Era. Trends Genet 2020; 36:689-701. [DOI: 10.1016/j.tig.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
|
15
|
Barberà M, Escrivá L, Collantes-Alegre JM, Meca G, Rosato E, Martínez-Torres D. Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. INSECT SCIENCE 2020; 27:224-238. [PMID: 30422395 DOI: 10.1111/1744-7917.12652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Aphids display life cycles largely determined by the photoperiod. During the warm long-day seasons, most aphid species reproduce by viviparous parthenogenesis. The shortening of the photoperiod in autumn induces a switch to sexual reproduction. Males and sexual females mate to produce overwintering resistant eggs. In addition to this full life cycle (holocycle), there are anholocyclic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis. The molecular or hormonal events that trigger the seasonal response (i.e., induction of the sexual phenotypes) are still unknown. Although circadian synthesis of melatonin is known to play a key role in vertebrate photoperiodism, the involvement of the circadian clock and/or of the hormone melatonin in insect seasonal responses is not so well established. Here we show that melatonin levels in the aphid Acyrthosiphon pisum are significantly higher in holocyclic aphids reared under short days than under long days, while no differences were found between anholocyclic aphids under the same conditions. We also found that melatonin is localized in the aphid suboesophageal ganglion (SOG) and in the thoracic ganglionic mass (TGM). In analogy to vertebrates, insect-type arylalkylamine N-acetyltransferases (i-AANATs) are thought to play a key role in melatonin synthesis. We measured the expression of four i-AANAT genes identified in A. pisum and localized two of them in situ in the insect central nervous systems (CNS). Levels of expression of these genes were compatible with the quantities of melatonin observed. Moreover, like melatonin, expression of these genes was found in the SOG and the TGM.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Laura Escrivá
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Burjassot, Spain
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980, Paterna, València, Spain
| |
Collapse
|
16
|
Wadsworth CB, Okada Y, Dopman EB. Phenology-dependent cold exposure and thermal performance of Ostrinia nubilalis ecotypes. BMC Evol Biol 2020; 20:34. [PMID: 32138649 PMCID: PMC7059338 DOI: 10.1186/s12862-020-1598-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
Background Understanding adaptation involves establishing connections between selective agents and beneficial population responses. However, relatively little attention has been paid to seasonal adaptation, in part, because it requires complex and integrative knowledge about seasonally fluctuating environmental factors, the effects of variable phenology on exposure to those factors, and evidence for temporal specialization. In the European corn borer moth, Ostrinia nubilalis, sympatric pheromone strains exploit the same host plant (Zea mays) but may genetically differ in phenology and be reproductively “isolated by time.” Z strain populations in eastern North America have been shown to have a prolonged larval diapause and produce one annual mating flight (July), whereas E strain populations complete an earlier (June) and a later (August) mating flight by shortening diapause duration. Here, we find evidence consistent with seasonal “adaptation by time” between these ecotypes. Results We use 12 years of field observation of adult seasonal abundance to estimate phenology of ecotype life cycles and to quantify life-stage specific climatic conditions. We find that the observed reduction of diapause duration in the E strain leads their non-diapausing, active life stages to experience a ~ 4 °C colder environment compared to the equivalent life stages in the Z strain. For a representative pair of populations under controlled laboratory conditions, we compare life-stage specific cold tolerance and find non-diapausing, active life stages in the E strain have as much as a 60% greater capacity to survive rapid cold shock. Enhanced cold hardiness appears unrelated to life-stage specific changes in the temperature at which tissues freeze. Conclusions Our results suggest that isolation by time and adaptation by time may both contribute to population divergence, and they argue for expanded study in this species of allochronic populations in nature experiencing the full spectrum of seasonal environments. Cyclical selective pressures are inherent properties of seasonal habitats. Diverse fluctuating selective agents across each year (temperature, predation, competition, precipitation, etc.) may therefore be underappreciated drivers of biological diversity.
Collapse
Affiliation(s)
- Crista B Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155, USA. .,Current Affiliation: Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Drive, Rochester, NY, 14623, USA.
| | - Yuta Okada
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155, USA
| | - Erik B Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155, USA.
| |
Collapse
|
17
|
Ragland GJ, Armbruster PA, Meuti ME. Evolutionary and functional genetics of insect diapause: a call for greater integration. CURRENT OPINION IN INSECT SCIENCE 2019; 36:74-81. [PMID: 31539788 PMCID: PMC7212789 DOI: 10.1016/j.cois.2019.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Diapause in response to seasonality is an important model for rapid evolutionary adaptation that is highly genetically variable, and experiences strong natural selection. Forward genetic methods using various genomic and transcriptomic approaches have begun to characterize the genetic architecture and candidate genes underlying diapause evolution. Largely in parallel, reverse genetic studies have identified functional roles for candidate genes that may or may not be genetically variable. We illustrate the disconnect between the evolutionary and physiological literature using a suite of studies of the role of the circadian clock in diapause regulation. These extensive studies in two different disciplines provide excellent opportunities for integration, which should facilitate rapid progress in understanding both the regulation and evolution of diapause.
Collapse
Affiliation(s)
- Gregory J Ragland
- Department of Integrative Biology, University of Colorado, Denver, 1151 Arapahoe St., SI 2071, Denver, CO 80204, USA.
| | - Peter A Armbruster
- Department of Biology, Georgetown University, Reiss Science Building, Room 406 37th and O Streets, NW Washington DC 20057, USA
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 216 Kottman Hall 2021 Coffey Road, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci U S A 2019; 116:25214-25221. [PMID: 31767753 DOI: 10.1073/pnas.1913915116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.
Collapse
|
19
|
Kozak GM, Wadsworth CB, Kahne SC, Bogdanowicz SM, Harrison RG, Coates BS, Dopman EB. Genomic Basis of Circannual Rhythm in the European Corn Borer Moth. Curr Biol 2019; 29:3501-3509.e5. [DOI: 10.1016/j.cub.2019.08.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
|
20
|
Barberà M, Cañas-Cañas R, Martínez-Torres D. Insulin-like peptides involved in photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103185. [PMID: 31291597 DOI: 10.1016/j.ibmb.2019.103185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
Aphids were the first animals reported as photoperiodic as their life cycles are strongly determined by the photoperiod. During the favourable seasons (characterised by long days) aphid populations consist exclusively of viviparous parthenogenetic females (known as virginoparae). Shortening of the photoperiod in autumn is perceived by aphids as the signal that anticipates the harsh season, leading to a switch in the reproductive mode giving place to the sexual morphs (oviparae females and males) that mate and lay winter-resistant (diapause-like) eggs. The molecular and cellular basis governing the switch between the two reproductive modes are far from being understood. Classical experiments identified a group of neurosecretory cells in the pars intercerebralis of the aphid brain (the so called group I of neurosecretory cells) that were essential for the development of embryos as parthenogenetic females and were thus proposed to synthesise a parthenogenesis promoting substance that was termed "virginoparin". Since insulin-like peptides (ILPs) have been implicated in the control of diapause in other insects, we investigated their involvement in aphid photoperiodism. We compared the expression of two ILPs (ILP1 and ILP4) and an Insulin receptor coding genes in A. pisum aphids reared under long- and short-day conditions. The three genes showed higher expression in long-day reared aphids. In addition, we localised the site of expression of the two ILP genes in the aphid brain. Both genes were found to be expressed in the group I of neurosecretory cells. Altogether, our results suggest that ILP1 and ILP4 play an important role in the control of the aphid life-cycle by promoting the parthenogenetic development during long-day seasons while their repression by short days would activate the sexual development. Thus we propose these ILPs correspond to the so called "virginoparin" by early bibliography. A possible connection with the circadian system is also discussed.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - Rubén Cañas-Cañas
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna, València, Spain.
| |
Collapse
|
21
|
Kauranen H, Kinnunen J, Hiillos AL, Lankinen P, Hopkins D, Wiberg RAW, Ritchie MG, Hoikkala A. Selection for reproduction under short photoperiods changes diapause-associated traits and induces widespread genomic divergence. J Exp Biol 2019; 222:jeb.205831. [DOI: 10.1242/jeb.205831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022]
Abstract
The incidence of reproductive diapause is a critical aspect of life history in overwintering insects from temperate regions. Much has been learned about the timing, physiology and genetics of diapause in a range of insects, but how the multiple changes involved in this and other photoperiodically regulated traits are interrelated is not well understood. We performed quasinatural selection on reproduction under short photoperiods in a northern fly species, Drosophila montana, to trace the effects of photoperiodic selection on traits regulated by the photoperiodic timer and / or by a circadian clock system. Selection changed several traits associated with reproductive diapause, including the critical day length for diapause (CDL), the frequency of diapausing females under photoperiods that deviate from daily 24 h cycles and cold tolerance, towards the phenotypes typical of lower latitudes. However, selection had no effect on the period of free-running locomotor activity rhythm regulated by the circadian clock in fly brain. At a genomic level, selection induced extensive divergence between the selection and control line replicates in 16 gene clusters involved in signal transduction, membrane properties, immunologlobulins and development. These changes resembled ones detected between latitudinally divergent D. montana populations in the wild and involved SNP divergence associated with several genes linked with diapause induction. Overall, our study shows that photoperiodic selection for reproduction under short photoperiods affects diapause-associated traits without disrupting the central clock network generating circadian rhythms in fly locomor activity.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anna-Lotta Hiillos
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Lankinen
- Department of Biology, University of Oulu, Oulu, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - R. Axel W. Wiberg
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Michael G. Ritchie
- School of Biology, Dyers Brae House, University of St. Andrews, Fife, KY16 9TH, St. Andrews, UK
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
22
|
Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol 2018; 27:3613-3626. [PMID: 30105798 DOI: 10.1111/mec.14829] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/23/2023]
Abstract
Diapause is a life history strategy allowing individuals to arrest development until favourable conditions return, and it is commonly induced by shortened day length that is latitude specific for local populations. Although understanding the evolutionary dynamics of a threshold trait like diapause induction provides insights into the adaptive process and adaptive potential of populations, the genetic mechanism of variation in photoperiodic induction of diapause is not well understood. Here, we investigate genetic variation underlying latitudinal variation in diapause induction and the selection dynamics acting upon it. Using a genomewide scan for divergent regions between two populations of the butterfly Pararge aegeria that differ strongly in their induction thresholds, we identified and investigated the patterns of variation in those regions. We then tested the association of these regions with diapause induction using between-population crosses, finding significant SNP associations in four genes present in two chromosomal regions, one with the gene period, and the other with the genes kinesin, carnitine O-acetyltransferase and timeless. Patterns of allele frequencies in these two regions in population samples along a latitudinal cline suggest strong selection against heterozygotes at two genes within these loci (period, timeless). Evidence for additional loci modifying the diapause decision was found in patterns of allelic change in relation to induction thresholds over the cline, as well as in backcross analyses. Taken together, population-specific adaptations of diapause induction appear to be due to a combination of alleles of larger and smaller effect size, consistent with an exponential distribution of effect sizes involved in local adaption.
Collapse
Affiliation(s)
| | - Sören Nylin
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
23
|
Christie AE, Yu A, Pascual MG, Roncalli V, Cieslak MC, Warner AN, Lameyer TJ, Stanhope ME, Dickinson PS, Joe Hull J. Circadian signaling in Homarus americanus: Region-specific de novo assembled transcriptomes show that both the brain and eyestalk ganglia possess the molecular components of a putative clock system. Mar Genomics 2018; 40:25-44. [PMID: 29655930 DOI: 10.1016/j.margen.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/24/2022]
Abstract
Essentially all organisms exhibit recurring patterns of physiology/behavior that oscillate with a period of ~24-h and are synchronized to the solar day. Crustaceans are no exception, with robust circadian rhythms having been documented in many members of this arthropod subphylum. However, little is known about the molecular underpinnings of their circadian rhythmicity. Moreover, the location of the crustacean central clock has not been firmly established, although both the brain and eyestalk ganglia have been hypothesized as loci. The American lobster, Homarus americanus, is known to exhibit multiple circadian rhythms, and immunodetection data suggest that its central clock is located within the eyestalk ganglia rather than in the brain. Here, brain- and eyestalk ganglia-specific transcriptomes were generated and used to assess the presence/absence of transcripts encoding the commonly recognized protein components of arthropod circadian signaling systems in these two regions of the lobster central nervous system. Transcripts encoding putative homologs of the core clock proteins clock, cryptochrome 2, cycle, period and timeless were found in both the brain and eyestalk ganglia assemblies, as were transcripts encoding similar complements of putative clock-associated, clock input pathway and clock output pathway proteins. The presence and identity of transcripts encoding core clock proteins in both regions were confirmed using PCR. These findings suggest that both the brain and eyestalk ganglia possess all of the molecular components needed for the establishment of a circadian signaling system. Whether the brain and eyestalk clocks are independent of one another or represent a single timekeeping system remains to be determined. Interestingly, while most of the proteins deduced from the identified transcripts are shared by both the brain and eyestalk ganglia, assembly-specific isoforms were also identified, e.g., several period variants, suggesting the possibility of region-specific variation in clock function, especially if the brain and eyestalk clocks represent independent oscillators.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Andy Yu
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Matthew C Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Amanda N Warner
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Tess J Lameyer
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Meredith E Stanhope
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04672, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
24
|
Teets NM, Hahn DA. Genetic variation in the shape of cold‐survival curves in a single fly population suggests potential for selection from climate variability. J Evol Biol 2018; 31:543-555. [DOI: 10.1111/jeb.13244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/27/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
Affiliation(s)
- N. M. Teets
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - D. A. Hahn
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| |
Collapse
|
25
|
Nagy D, Andreatta G, Bastianello S, Martín Anduaga A, Mazzotta G, Kyriacou CP, Costa R. A Semi-natural Approach for Studying Seasonal Diapause in Drosophila melanogaster Reveals Robust Photoperiodicity. J Biol Rhythms 2018; 33:117-125. [PMID: 29415605 DOI: 10.1177/0748730417754116] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fruit fly Drosophila melanogaster survives thermally stressful conditions in a state of reproductive dormancy (diapause), manifested by reduced metabolic activity and arrested ovarian development in females. Unlike insects that rely primarily on photoperiodic stimuli to initiate the diapause program, in this species dormancy is regulated by low temperature and enhanced by shorter photoperiods. Overwintering phenotypes are usually studied under simple laboratory conditions, where animals are exposed to rectangular light-dark (LD) cycles at a constant temperature. We sought to adopt more realistic diapause protocols by generating LD profiles that better mimic outdoor conditions. Experimental flies were subjected to semi-natural late autumn and summer days, while control females received the same amounts of light but in rectangular LD cycles (LD 8:16 and LD 15:9, respectively). We observed that semi-natural autumnal days induced a higher proportion of females to enter dormancy, while females in semi-natural summer days showed reduced diapause compared with their corresponding rectangular controls, generating an impressive photoperiodic response. In contrast, under rectangular light regimes, the diapause of Drosophila field lines exhibited minimal photoperiodicity. Our semi-natural method reveals that D. melanogaster diapause is considerably more photoperiodic than previously believed and suggests that this seasonal response is best studied under simulated natural lighting conditions.
Collapse
Affiliation(s)
- Dóra Nagy
- Department of Biology, University of Padova, Padova, Italy
| | | | | | - Ane Martín Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Anduaga AM, Nagy D, Costa R, Kyriacou CP. Diapause in Drosophila melanogaster - Photoperiodicity, cold tolerance and metabolites. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:46-53. [PMID: 29339232 DOI: 10.1016/j.jinsphys.2018.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Unlike many insects where photoperiod per se induces diapause, reproductive arrest in Drosophila melanogaster adult females is observed at colder temperatures and can be enhanced by shorter photoperiods. Traditional experimental protocols raise flies at 25 °C from the larval stage and then the adults are placed at 12 °C for between 12 and 28 days. After 12 days diapause levels are usually higher than at 28 days, suggesting that the flies are in a cold induced quiescence, rather than a true diapause. By raising flies at more realistic lower temperatures, we observe quite dramatic and counter-intuitive effects on diapause, whose levels nevertheless correlate with various indices of cryoprotectant metabolites as well as resistance to chill shock. We also observe that photoperiodic effects are minimised when very small temperature oscillations associated with the light-dark incubator cycles are neutralised. Our results suggest that the reported photoperiodic component of fly diapause, at least in these strains, is mostly due to thermoperiodic rather than photoperiodic stimuli. In addition, the metabolite and chill shock analyses reveal that even by 12 days, flies are entering a state that is resistant to environmental stresses.
Collapse
Affiliation(s)
- Ane Martin Anduaga
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dora Nagy
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova 35131, Italy
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
27
|
Triozzi PM, Ramos-Sánchez JM, Hernández-Verdeja T, Moreno-Cortés A, Allona I, Perales M. Photoperiodic Regulation of Shoot Apical Growth in Poplar. FRONTIERS IN PLANT SCIENCE 2018; 9:1030. [PMID: 30057588 PMCID: PMC6053638 DOI: 10.3389/fpls.2018.01030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 05/19/2023]
Abstract
Woody perennials adapt their genetic traits to local climate conditions. Day length plays an essential role in the seasonal growth of poplar trees. When photoperiod falls below a given critical day length, poplars undergo growth cessation and bud set. A leaf-localized mechanism of photoperiod measurement triggers the transcriptional modulation of a long distance signaling molecule, FLOWERING LOCUS T (FT). This molecule targets meristem function giving rise to these seasonal responses. Studies over the past decade have identified conserved orthologous genes involved in photoperiodic flowering in Arabidopsis that regulate poplar vegetative growth. However, phenological and molecular examination of key photoperiod signaling molecules reveals functional differences between these two plant model systems suggesting alternative components and/or regulatory mechanisms operating during poplar vegetative growth. Here, we review current knowledge and provide new data regarding the molecular components of the photoperiod measuring mechanism that regulates annual growth in poplar focusing on main achievements and new perspectives.
Collapse
Affiliation(s)
- Paolo M. Triozzi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - José M. Ramos-Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Tamara Hernández-Verdeja
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Alicia Moreno-Cortés
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Isabel Allona
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Mariano Perales
| |
Collapse
|
28
|
Collantes-Alegre JM, Mattenberger F, Barberà M, Martínez-Torres D. Characterisation, analysis of expression and localisation of the opsin gene repertoire from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2018; 104:48-59. [PMID: 29203177 DOI: 10.1016/j.jinsphys.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Organisms exhibit a wide range of seasonal responses as adaptions to predictable annual changes in their environment. These changes are originally caused by the effect of the Earth's cycles around the sun and its axial tilt. Examples of seasonal responses include floration, migration, reproduction and diapause. In temperate climate zones, the most robust variable to predict seasons is the length of the day (i.e. the photoperiod). The first step to trigger photoperiodic driven responses involves measuring the duration of the light-dark phases, but the molecular clockwork performing this task is poorly characterized. Photopigments such as opsins are known to participate in light perception, being part of the machinery in charge of providing information about the luminous state of the surroundings. Aphids (Hemiptera: Aphididae) are paradigmatic photoperiodic insects, exhibiting a strong induction to diapause when the light regime mimics autumn conditions. The availability of the pea aphid (Acyrthosiphon pisum) genome has facilitated molecular approaches to understand the effect of light stimulus in the photoperiodic induction process. We have identified, experimentally validated and characterized the expression of the full opsin gene repertoire in the pea aphid. Among identified opsin genes in A. pisum, arthropsin is absent in most insects sequenced to date (except for dragonflies and two other hemipterans) but also present in a crustacean, an onychophoran and chelicerates. We have quantified the expression of these genes in aphids exposed to different photoperiodic conditions and at different times of the day and localized their transcripts in the aphid brain. Clear differences in expression patterns were found, thus relating opsin expression with the photoperiodic response.
Collapse
Affiliation(s)
- Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Florian Mattenberger
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain; Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Miquel Barberà
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Científic Universitat de València, C/Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
29
|
Stevenson TJ. Epigenetic Regulation of Biological Rhythms: An Evolutionary Ancient Molecular Timer. Trends Genet 2017; 34:90-100. [PMID: 29221677 DOI: 10.1016/j.tig.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 01/12/2023]
Abstract
Biological rhythms are pervasive in nature, yet our understanding of the molecular mechanisms that govern timing is far from complete. The rapidly emerging research focus on epigenetic plasticity has revealed a system that is highly dynamic and reversible. In this Opinion, I propose an epigenetic clock model that outlines how molecular modifications, such as DNA methylation, are integral components for timing endogenous biological rhythms. The hypothesis proposed is that an epigenetic clock serves to maintain the period of molecular rhythms via control over the phase of gene transcription and this timing mechanism resides in all cells, from unicellular to complex organisms. The model also provides a novel framework for the timing of epigenetic modifications during the lifespan and transgenerational inheritance of an organism.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
30
|
Kistenpfennig C, Nakayama M, Nihara R, Tomioka K, Helfrich-Förster C, Yoshii T. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster. J Biol Rhythms 2017; 33:24-34. [PMID: 29179610 DOI: 10.1177/0748730417738612] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In many animals, the circadian clock plays a role in adapting to the coming season by measuring day length. The mechanism for measuring day length and its neuronal circuits remains elusive, however. Under laboratory conditions, the fruit fly, Drosophila melanogaster, displays 2 activity peaks: one in the morning and one in the evening. These peaks appear to be regulated by 2 separate circadian oscillators (the morning and evening oscillators) that reside in different subsets of pacemaker clock neurons in the brain. The morning and evening activity peaks can flexibly change their phases to adapt to different photoperiods by tracking dawn and dusk, respectively. In this study, we found that cryptochrome (CRY) in the evening oscillators (the fifth small ventral lateral neuron [5th s-LNv] and the dorsal lateral neurons [LNds]) limits the ability of the evening peak to track dusk during long days. In contrast, light signaling from the external photoreceptors (compound eyes, ocelli, and Hofbauer-Buchner eyelets) increases the ability of the evening peak to track dusk. At the molecular level, CRY signaling dampens the amplitude of PAR-domain protein 1 (PDP1) oscillations in most clock neurons during long days, whereas signaling from the visual system increases these amplitudes. Thus, our results suggest that light inputs from the two major circadian photoreceptors, CRY and the visual system, have opposite effects on day length adaptation. Their tug-of-war appears to determine the precise phase adjustment of evening activity.
Collapse
Affiliation(s)
- Christa Kistenpfennig
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.,Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany.,2. Oxitec Ltd, 71 Innovation Drive, Milton Park, Abingdon, OX14 4RQ, UK
| | - Mayumi Nakayama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Ruri Nihara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Kenji Tomioka
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
31
|
Barberà M, Martínez-Torres D. Identification of the prothoracicotropic hormone (Ptth) coding gene and localization of its site of expression in the pea aphid Acyrthosiphon pisum. INSECT MOLECULAR BIOLOGY 2017; 26:654-664. [PMID: 28677913 DOI: 10.1111/imb.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insect hormones control essential aspects of physiology, behaviour and development in insects. The majority of insect hormones are peptide hormones that perform a highly diverse catalogue of functions. Prothoracicotropic hormone (PTTH) is a brain neuropeptide hormone whose main function is to stimulate the secretion of ecdysone (the moulting hormone) by the prothoracic glands in insect larvae thus playing a key role in the control of moulting and metamorphosis. Moreover, both PTTH release or blockade have been reported to act as a switch to terminate or initiate larval and pupal diapauses. In insects, diapause is a prevalent response often regulated by the photoperiod. It has been shown that PTTH participates as an output of the circadian clock and a role in photoperiodic processes is suggested in some insect species. Aphids (Hemiptera: Aphididae) reproduce by cyclical parthenogenesis with a sexual phase, induced by short photoperiods, that leads to the production of diapausing eggs. With the availability of the pea aphid (Acyrthosiphon pisum) genome, efforts to identify and characterize genes relevant to essential aspects of aphid biology have multiplied. In spite of its relevance, several genomic and transcriptomic studies on aphid neuropeptides failed to detect aphid PTTH amongst them. Here we report on the first identification of the aphid PTTH coding gene and the neuroanatomical localization of its expression in the aphid brain.
Collapse
Affiliation(s)
- M Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, Paterna, València, Spain
| | - D Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, Paterna, València, Spain
| |
Collapse
|
32
|
Hunt BJ, Özkaya Ö, Davies NJ, Gaten E, Seear P, Kyriacou CP, Tarling G, Rosato E. The Euphausia superba transcriptome database, SuperbaSE: An online, open resource for researchers. Ecol Evol 2017; 7:6060-6077. [PMID: 30094004 PMCID: PMC6077532 DOI: 10.1002/ece3.3168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 11/13/2022] Open
Abstract
Antarctic krill (Euphausia superba) is a crucial component of the Southern Ocean ecosystem, acting as the major link between primary production and higher trophic levels with an annual predator demand of up to 470 million tonnes. It also acts as an ecosystem engineer, affecting carbon sequestration and recycling iron and nitrogen, and has increasing importance as a commercial product in the aquaculture and health industries. Here we describe the creation of a de novo assembled head transcriptome for E. superba. As an example of its potential as a molecular resource, we relate its exploitation in identifying and characterizing numerous genes related to the circadian clock in E. superba, including the major components of the central feedback loop. We have made the transcriptome openly accessible for a wider audience of ecologists, molecular biologists, evolutionary geneticists, and others in a user-friendly format at SuperbaSE, hosted at http://www.krill.le.ac.uk.
Collapse
Affiliation(s)
- Benjamin J. Hunt
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Özge Özkaya
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Nathaniel J. Davies
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Edward Gaten
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Paul Seear
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Charalambos P. Kyriacou
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| | - Geraint Tarling
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Ezio Rosato
- Department of GeneticsCollege of MedicineBiological Sciences and Psychology University of LeicesterUniversity RoadLeicesterUK
| |
Collapse
|
33
|
Zajączkowska U, Barlow PW. The effect of lunisolar tidal acceleration on stem elongation growth, nutations and leaf movements in peppermint (Mentha × piperita L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:630-642. [PMID: 28258604 DOI: 10.1111/plb.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Orbital movement of the Moon generates a system of gravitational fields that periodically alter the gravitational force on Earth. This lunar tidal acceleration (Etide) is known to act as an external environmental factor affecting many growth and developmental phenomena in plants. Our study focused on the lunar tidal influence on stem elongation growth, nutations and leaf movements of peppermint. Plants were continuously recorded with time-lapse photography under constant illumination as well in constant illumination following 5 days of alternating dark-light cycles. Time courses of shoot movements were correlated with contemporaneous time courses of the Etide estimates. Optical microscopy and SEM were used in anatomical studies. All plant shoot movements were synchronised with changes in the lunisolar acceleration. Using a periodogram, wavelet analysis and local correlation index, a convergence was found between the rhythms of lunisolar acceleration and the rhythms of shoot growth. Also observed were cyclical changes in the direction of rotation of stem apices when gravitational dynamics were at their greatest. After contrasting dark-light cycle experiments, nutational rhythms converged to an identical phase relationship with the Etide and almost immediately their renewed movements commenced. Amplitudes of leaf movements decreased during leaf growth up to the stage when the leaf was fully developed; the periodicity of leaf movements correlated with the Etide rhythms. For the fist time, it was documented that lunisolar acceleration is an independent rhythmic environmental signal capable of influencing the dynamics of plant stem elongation. This phenomenon is synchronised with the known effects of Etide on nutations and leaf movements.
Collapse
Affiliation(s)
- U Zajączkowska
- Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, Warsaw, Poland
| | - P W Barlow
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
Lim ASP, Klein HU, Yu L, Chibnik LB, Ali S, Xu J, Bennett DA, De Jager PL. Diurnal and seasonal molecular rhythms in human neocortex and their relation to Alzheimer's disease. Nat Commun 2017; 8:14931. [PMID: 28368004 PMCID: PMC5382268 DOI: 10.1038/ncomms14931] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Circadian and seasonal rhythms are seen in many species, modulate several aspects of human physiology, including brain functions such as mood and cognition, and influence many neurological and psychiatric illnesses. However, there are few data regarding the genome-scale molecular correlates underlying these rhythms, especially in the human brain. Here, we report widespread, site-specific and interrelated diurnal and seasonal rhythms of gene expression in the human brain, and show their relationship with parallel rhythms of epigenetic modification including histone acetylation, and DNA methylation. We also identify transcription factor-binding sites that may drive these effects. Further, we demonstrate that Alzheimer's disease pathology disrupts these rhythms. These data suggest that interrelated diurnal and seasonal epigenetic and transcriptional rhythms may be an important feature of human brain biology, and perhaps human biology more broadly, and that changes in such rhythms may be consequences of, or contributors to, diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew S. P. Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room M1-600, Toronto M4N1X2, Ontario, Canada
| | - Hans-Ulrich Klein
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, Illinois 60612, USA
| | - Lori B. Chibnik
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - Sanam Ali
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room M1-600, Toronto M4N1X2, Ontario, Canada
| | - Jishu Xu
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, 600 South Paulina Street, Chicago, Illinois 60612, USA
| | - Philip L. De Jager
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 168c, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, 415 Main Street, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
35
|
Barberà M, Collantes-Alegre JM, Martínez-Torres D. Characterisation, analysis of expression and localisation of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:54-67. [PMID: 28235563 DOI: 10.1016/j.ibmb.2017.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Aphids are typical photoperiodic insects that switch from viviparous parthenogenetic reproduction typical of long day seasons to oviparous sexual reproduction triggered by the shortening of photoperiod in autumn yielding an overwintering egg in which an embryonic diapause takes place. While the involvement of the circadian clock genes in photoperiodism in mammals is well established, there is still some controversy on their participation in insects. The availability of the genome of the pea aphid Acyrthosiphon pisum places this species as an excellent model to investigate the involvement of the circadian system in the aphid seasonal response. In the present report, we have advanced in the characterisation of the circadian clock genes and showed that these genes display extensive alternative splicing. Moreover, the expression of circadian clock genes, analysed at different moments of the day, showed a robust cycling of central clock genes period and timeless. Furthermore, the rhythmic expression of these genes was shown to be rapidly dampened under DD (continuous darkness conditions), thus supporting the model of a seasonal response based on a heavily dampened circadian oscillator. Additionally, increased expression of some of the circadian clock genes under short-day conditions suggest their involvement in the induction of the aphid seasonal response. Finally, in situ localisation of transcripts of genes period and timeless in the aphid brain revealed the site of clock neurons for the first time in aphids. Two groups of clock cells were identified: the Dorsal Neurons (DN) and the Lateral Neurons (LN), both in the protocerebrum.
Collapse
Affiliation(s)
- Miquel Barberà
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - Jorge Mariano Collantes-Alegre
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes & Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Parc Cientific Universitat de Valencia, C/ Catedrático José Beltrán n° 2, 46980 Paterna, València, Spain.
| |
Collapse
|
36
|
Mathur V, Schmidt PS. Adaptive patterns of phenotypic plasticity in laboratory and field environments in Drosophila melanogaster. Evolution 2016; 71:465-474. [PMID: 27925178 DOI: 10.1111/evo.13144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/08/2016] [Accepted: 11/13/2016] [Indexed: 01/19/2023]
Abstract
Identifying mechanisms of adaptation to variable environments is essential in developing a comprehensive understanding of evolutionary dynamics in natural populations. Phenotypic plasticity allows for phenotypic change in response to changes in the environment, and as such may play a major role in adaptation to environmental heterogeneity. Here, the plasticity of stress response in Drosophila melanogaster originating from two distinct geographic regions and ecological habitats was examined. Adults were given a short-term, 5-day exposure to combinations of temperature and photoperiod to elicit a plastic response for three fundamental aspects of stress tolerance that vary adaptively with geography. This was replicated both in the laboratory and in outdoor enclosures in the field. In the laboratory, geographic origin was the primary determinant of the stress response. Temperature and the interaction between temperature and photoperiod also significantly affected stress resistance. In the outdoor enclosures, plasticity was distinct among traits and between geographic regions. These results demonstrate that short-term exposure of adults to ecologically relevant environmental cues results in predictable effects on multiple aspects of fitness. These patterns of plasticity vary among traits and are highly distinct between the two examined geographic regions, consistent with patterns of local adaptation to climate and associated environmental parameters.
Collapse
Affiliation(s)
- Vinayak Mathur
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, Pennsylvania, 19104.,Current Address: Department of Biology, Georgetown University, Washington, District of Columbia, 20057
| | - Paul S Schmidt
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
37
|
Paolucci S, Salis L, Vermeulen CJ, Beukeboom LW, van de Zande L. QTL analysis of the photoperiodic response and clinal distribution ofperiodalleles inNasonia vitripennis. Mol Ecol 2016; 25:4805-17. [DOI: 10.1111/mec.13802] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/14/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Paolucci
- Department of Ecology and Evolution; University of Lausanne; UNIL-Sorge CH-1015 Lausanne Switzerland
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Lucia Salis
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); PO Box 50 6700 AB Wageningen The Netherlands
| | - Cornelis J. Vermeulen
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
- Department of Pulmonary Diseases; University Medical Center Groningen; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; Nijenborgh 7 9747 AG Groningen The Netherlands
| |
Collapse
|
38
|
Omura S, Numata H, Goto SG. Circadian clock regulates photoperiodic responses governed by distinct output pathways in the bean bug, Riptortus pedestris. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1212515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shigeki Omura
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Shin G. Goto
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
39
|
Goto SG. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects. J Comp Physiol B 2016; 186:969-984. [PMID: 27424162 DOI: 10.1007/s00360-016-1018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
Photoperiodism is an adaptive, seasonal timing system that enables organisms to coordinate their development and physiology to annual changes in the environment using day length (photoperiod) as a cue. This review summarizes our knowledge of the physiological mechanisms underlying photoperiodism in spider mites. In particular, the two-spotted spider mite Tetranychus urticae is focussed, which has long been used as a model species for studying photoperiodism. Photoperiodism is established by several physiological modules, such as the photoreceptor, photoperiodic time measurement system, counter system, and endocrine effector. It is now clear that retinal photoreception through the ocelli is indispensable for the function of photoperiodism, at least in T. urticae. Visual pigment, which comprised opsin protein and a vitamin A-based pigment, is involved in photoreception. The physiological basis of the photoperiodic time measurement system is still under debate, and we have controversial evidence for the hourglass-based time measurement and the oscillator-based time measurement. Less attention has been centred on the counter system in insects and mites. Mite reproduction is possibly regulated by the ecdysteroid, ponasterone A. Prior physiological knowledge has laid the foundation for the next steps essential for the elucidation of the molecular mechanisms driving photoperiodism.
Collapse
Affiliation(s)
- Shin G Goto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
40
|
Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster. Genetics 2016; 203:1871-83. [PMID: 27235308 DOI: 10.1534/genetics.116.187161] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/19/2016] [Indexed: 01/28/2023] Open
Abstract
Predicting individual quantitative trait phenotypes from high-resolution genomic polymorphism data is important for personalized medicine in humans, plant and animal breeding, and adaptive evolution. However, this is difficult for populations of unrelated individuals when the number of causal variants is low relative to the total number of polymorphisms and causal variants individually have small effects on the traits. We hypothesized that mapping molecular polymorphisms to genomic features such as genes and their gene ontology categories could increase the accuracy of genomic prediction models. We developed a genomic feature best linear unbiased prediction (GFBLUP) model that implements this strategy and applied it to three quantitative traits (startle response, starvation resistance, and chill coma recovery) in the unrelated, sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel. Our results indicate that subsetting markers based on genomic features increases the predictive ability relative to the standard genomic best linear unbiased prediction (GBLUP) model. Both models use all markers, but GFBLUP allows differential weighting of the individual genetic marker relationships, whereas GBLUP weighs the genetic marker relationships equally. Simulation studies show that it is possible to further increase the accuracy of genomic prediction for complex traits using this model, provided the genomic features are enriched for causal variants. Our GFBLUP model using prior information on genomic features enriched for causal variants can increase the accuracy of genomic predictions in populations of unrelated individuals and provides a formal statistical framework for leveraging and evaluating information across multiple experimental studies to provide novel insights into the genetic architecture of complex traits.
Collapse
|
41
|
Brown M, Hablützel P, Friberg IM, Thomason AG, Stewart A, Pachebat JA, Jackson JA. Seasonal immunoregulation in a naturally-occurring vertebrate. BMC Genomics 2016; 17:369. [PMID: 27189372 PMCID: PMC4870750 DOI: 10.1186/s12864-016-2701-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Fishes show seasonal patterns of immunity, but such phenomena are imperfectly understood in vertebrates generally, even in humans and mice. As these seasonal patterns may link to infectious disease risk and individual condition, the nature of their control has real practical implications. Here we characterize seasonal dynamics in the expression of conserved vertebrate immunity genes in a naturally-occurring piscine model, the three-spined stickleback. Results We made genome-wide measurements (RNAseq) of whole-fish mRNA pools (n = 36) at the end of summer and winter in contrasting habitats (riverine and lacustrine) and focussed on common trends to filter habitat-specific from overarching temporal responses. We corroborated this analysis with targeted year-round whole-fish gene expression (Q-PCR) studies in a different year (n = 478). We also considered seasonal tissue-specific expression (6 tissues) (n = 15) at a third contrasting (euryhaline) locality by Q-PCR, further validating the generality of the patterns seen in whole fish analyses. Extremes of season were the dominant predictor of immune expression (compared to sex, ontogeny or habitat). Signatures of adaptive immunity were elevated in late summer. In contrast, late winter was accompanied by signatures of innate immunity (including IL-1 signalling and non-classical complement activity) and modulated toll-like receptor signalling. Negative regulators of T-cell activity were prominent amongst winter-biased genes, suggesting that adaptive immunity is actively down-regulated during winter rather than passively tracking ambient temperature. Network analyses identified a small set of immune genes that might lie close to a regulatory axis. These genes acted as hubs linking summer-biased adaptive pathways, winter-biased innate pathways and other organismal processes, including growth, metabolic dynamics and responses to stress and temperature. Seasonal change was most pronounced in the gill, which contains a considerable concentration of T-cell activity in the stickleback. Conclusions Our results suggest major and predictable seasonal re-adjustments of immunity. Further consideration should be given to the effects of such responses in seasonally-occurring disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2701-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martha Brown
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | | | - Ida M Friberg
- School of Environment and Life sciences, University of Salford, Salford, M5 4WT, UK
| | - Anna G Thomason
- School of Environment and Life sciences, University of Salford, Salford, M5 4WT, UK
| | - Alexander Stewart
- Cardiff School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, UK
| | | | - Joseph A Jackson
- School of Environment and Life sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
42
|
Zhao X, Bergland AO, Behrman EL, Gregory BD, Petrov DA, Schmidt PS. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster. Mol Biol Evol 2016; 33:707-20. [PMID: 26568616 PMCID: PMC5009998 DOI: 10.1093/molbev/msv263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.
Collapse
Affiliation(s)
- Xiaqing Zhao
- Department of Biology, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
43
|
Lehmann P, Lyytinen A, Piiroinen S, Lindström L. Is a change in juvenile hormone sensitivity involved in range expansion in an invasive beetle? Front Zool 2015; 12:20. [PMID: 26366187 PMCID: PMC4566194 DOI: 10.1186/s12983-015-0113-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/15/2015] [Indexed: 11/23/2022] Open
Abstract
Introduction It has been suggested that rapid range expansion could proceed through evolution in the endocrinological machinery controlling life-history switches. Based on this we tested whether the Colorado potato beetle, Leptinotarsa decemlineata, which has rapidly expanded its range across latitudinal regions in Europe, and shows photoperiodic adaptation in overwintering initiation, has different sensitivities to juvenile hormone (JH) manipulation along a latitudinal gradient. Results A factorial experiment where beetles were reared either under a long or short day photoperiod was performed. Hormone levels were manipulated by topical applications. An allatostatin mimic, H17, was used to decrease and a juvenile hormone III analogue, pyriproxyfen, was used to increase the hormone levels. The effects of photoperiod and hormone manipulations on fecundity and overwintering related burrowing were monitored. Application of H17 decreased fecundity but did not induce overwintering related burrowing. Manipulation with pyriproxyfen increased fecundity and delayed burrowing. While small population-dependent differences in responsiveness to the topical application treatments were observed in fecundity, none were seen in overwintering related burrowing. Conclusions The results indicate that the rapid photoperiodic adaptation manifested in several life-history and physiological traits in L. decemlineata in Europe is unlikely a result of population dependent differences in JH III sensitivity. While other endocrine factors cannot be ruled out, more likely mechanisms could be genetic changes in upstream elements, such as the photoperiodic clock or the insulin signaling pathway.
Collapse
Affiliation(s)
- Philipp Lehmann
- Department of Zoology, University of Stockholm, Stockholm, Sweden ; Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Lyytinen
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Saija Piiroinen
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland ; School of Life Sciences, University of Sussex, Sussex, UK
| | - Leena Lindström
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
44
|
Numata H, Miyazaki Y, Ikeno T. Common features in diverse insect clocks. ZOOLOGICAL LETTERS 2015; 1:10. [PMID: 26605055 PMCID: PMC4604113 DOI: 10.1186/s40851-014-0003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/23/2014] [Indexed: 06/05/2023]
Abstract
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Collapse
Affiliation(s)
- Hideharu Numata
- />Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yosuke Miyazaki
- />Graduate School of Education, Ashiya University, Ashiya, 659-8511 Japan
| | - Tomoko Ikeno
- />Department of Psychology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|