1
|
Rida P, Baker S, Saidykhan A, Bown I, Jinna N. FOXM1 Transcriptionally Co-Upregulates Centrosome Amplification and Clustering Genes and Is a Biomarker for Poor Prognosis in Androgen Receptor-Low Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3191. [PMID: 39335162 PMCID: PMC11429756 DOI: 10.3390/cancers16183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
There are currently no approved targeted treatments for quadruple-negative breast cancer [QNBC; ER-/PR-/HER2-/androgen receptor (AR)-], a subtype of triple-negative breast cancer (TNBC). AR-low TNBC is more proliferative and clinically aggressive than AR-high TNBC. Centrosome amplification (CA), a cancer hallmark, is rampant in TNBC, where it induces spindle multipolarity-mediated cell death unless centrosome clustering pathways are co-upregulated to avert these sequelae. We recently showed that genes that confer CA and centrosome clustering are strongly overexpressed in AR-low TNBCs relative to AR-high TNBCs. However, the molecular mechanisms that index centrosome clustering to the levels of CA are undefined. We argue that FOXM1, a cell cycle-regulated oncogene, links the expression of genes that drive CA to the expression of genes that act at kinetochores and along microtubules to facilitate centrosome clustering. We provide compelling evidence that upregulation of the FOXM1-E2F1-ATAD2 oncogene triad in AR-low TNBC is accompanied by CA and the co-upregulation of centrosome clustering proteins such as KIFC1, AURKB, BIRC5, and CDCA8, conferring profound dysregulation of cell cycle controls. Targeting FOXM1 in AR-low TNBC may render cancer cells incapable of clustering their centrosomes and impair their ability to generate excess centrosomes. Hence, our review illuminates FOXM1 as a potential actionable target for AR-low TNBC.
Collapse
Affiliation(s)
- Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Sophia Baker
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Adam Saidykhan
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Isabelle Bown
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA; (P.R.)
| | - Nikita Jinna
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Li M, Gao X, Su Y, Shan S, Qian W, Zhang Z, Zhu D. FOXM1 transcriptional regulation. Biol Cell 2024; 116:e2400012. [PMID: 38963053 DOI: 10.1111/boc.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/05/2024]
Abstract
FOXM1 is a key transcriptional regulator involved in various biological processes in mammals, including carbohydrate and lipid metabolism, aging, immune regulation, development, and disease. Early studies have shown that FOXM1 acts as an oncogene by regulating cell proliferation, cell cycle, migration, metastasis, and apoptosis, as well as genes related to diagnosis, treatment, chemotherapy resistance, and prognosis. Researchers are increasingly focusing on FOXM1 functions in tumor microenvironment, epigenetics, and immune infiltration. However, researchers have not comprehensively described FOXM1's involvement in tumor microenvironment shaping, epigenetics, and immune cell infiltration. Here we review the role of FOXM1 in the formation and development of malignant tumors, and we will provide a comprehensive summary of the role of FOXM1 in transcriptional regulation, interacting proteins, tumor microenvironment, epigenetics, and immune infiltration, and suggest areas for further research.
Collapse
Affiliation(s)
- Mengxi Li
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Xuzheng Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Yanting Su
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Wenbin Qian
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Hubei University of Science and Technology, Xianning, Hubei Province, P. R. China
| |
Collapse
|
3
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
5
|
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The Promise of Combination Therapies with FOXM1 Inhibitors for Cancer Treatment. Cancers (Basel) 2024; 16:756. [PMID: 38398147 PMCID: PMC10886945 DOI: 10.3390/cancers16040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Nawal Merjaneh
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Mona Hajjar
- The Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA;
| | - Ying-Wei Lan
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Tanya V. Kalin
- Center for Cancer and Blood Disorders, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Department of Child Health, Division of Hematology and Oncology, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix Children’s Research Institute, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA; (Y.-W.L.)
| |
Collapse
|
6
|
Lee DY, Chun JN, So I, Jeon JH. Oncogenic role of FOXM1 in human prostate cancer (Review). Oncol Rep 2024; 51:15. [PMID: 38038123 PMCID: PMC10739992 DOI: 10.3892/or.2023.8674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Prostate cancer is the leading cause of cancer‑related mortality among men worldwide. In particular, castration‑resistant prostate cancer presents a formidable clinical challenge and emphasizes the need to develop novel therapeutic strategies. Forkhead box M1 (FOXM1) is a multifaceted transcription factor that is implicated in the acquisition of the multiple cancer hallmark capabilities in prostate cancer cells, including sustaining proliferative signaling, resisting cell death and the activation of invasion and metastasis. Elevated FOXM1 expression is frequently observed in prostate cancer, and in particular, FOXM1 overexpression is closely associated with poor clinical outcomes in patients with prostate cancer. In the present review, recent advances in the understanding of the oncogenic role of deregulated FOXM1 expression in prostate cancer were highlighted. In addition, the molecular mechanisms by which FOXM1 regulates prostate cancer development and progression were described, thereby providing knowledge and a conceptual framework for FOXM1. The present review also provided valuable insight into the inherent challenges associated with translating biomedical knowledge into effective therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer 2023; 1878:189015. [PMID: 37913940 DOI: 10.1016/j.bbcan.2023.189015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Forkhead box (FOX) protein M1 (FOXM1) is a critical proliferation-associated transcription factor (TF) that is aberrantly overexpressed in the majority of human cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in, cell proliferation, cell migration, invasion, angiogenesis and metastasis. The FOXM1 as a TF directly or indirectly regulates the expression of several target genes whose dysregulation is associated with almost all hallmarks of cancer. Moreover, FOXM1 expression is associated with chemoresistance to different anti-cancer drugs. Several studies have confirmed that suppression of FOXM1 enhanced the drug sensitivity of various types of cancer cells. Current data suggest that small molecule inhibitors targeting FOXM1 in combination with anticancer drugs may represent a novel therapeutic strategy for chemo-resistant cancers. In this review, we discuss the clinical utility of FOXM1, further, we summarize and discuss small-molecule inhibitors targeting FOXM1 and categorize them according to their mechanisms of targeting FOXM1. Despite great progress, small-molecule inhibitors targeting FOXM1 face many challenges, and we present here all small-molecule FOXM1 inhibitors in different stages of development. We discuss the current challenges and provide insights on the future application of FOXM1 inhibition to the clinic.
Collapse
Affiliation(s)
- Sanjeev Raghuwanshi
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | - Andrei L Gartel
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Vatanmakanian M, Steffan JJ, Koul S, Ochoa AC, Chaturvedi LS, Koul HK. Regulation of SPDEF expression by DNA methylation in advanced prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1156120. [PMID: 37900138 PMCID: PMC10600024 DOI: 10.3389/fendo.2023.1156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/13/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Prostate cancer (PCa) presents a significant health challenge in men, with a substantial number of deaths attributed to metastatic castration resistant PCa (mCRPC). Moreover, African American men experience disproportionately high mortality rates due to PCa. This study delves into the pivotal role of SPDEF, a prostate specific Ets transcription factor, and its regulation by DNA methylation in the context of PCa progression. Methods We performed Epigenetic reprogramming using daily treatment with non-toxic dose of 5Aza-2-deoxycytidine (5Aza-dC) for two weeks to assess its impact on PDEF expression in prostate cancer cells. Next, we conducted functional studies on reprogrammed cells, including cell migration (wound-healing assay), invasion (Boyden-Chamber test), and proliferation (MTT assay) to comprehensively evaluate the consequences of altered PDEF expression. We used bisulfite sequencing (BSP) to examine DNA methylation at SPDEF promoter. Simultaneously, we utilized siRNA-mediated targeting of key DNMTs (DNMT1, DNMT3A, and DNMT3B) to elucidate their specific role in regulating PDEF. We measured mRNA and protein expressions using qRT-PCR and immune-blotting techniques, respectively. Results In this report, we observed that: a) there is a gradual decrease in SPDEF expression with a concomitant increase in methylated CpG sites within the SPDEF gene during prostate cancer progression from lower to higher Gleason grade; b) Expression of DNMT's (DNMT1, 3a and 3b) is increased during prostate cancer progression, and there is an inverse correlation between SPDEF and DNMT expression; c) SPDEF levels are decreased in RC77/T, a line of PCa cells from African American origin similar to PC3 and DU145 cells (CRPC cells), as compared to LNCaP cells , a line of androgen dependent cells,; d) the 5' CpG island of SPDEF gene are hypermethylated in SPDEF-negative CRPC ( PC3, DU145 and RC77/T) cell lines but the same regions are hypomethylated in SPDEF-positive castrate sensitive (LNCaP) cell line ; (e) expression of SPDEF in PCa cells lacking SPDEF decreases cell migration and invasion, but has no significant effect on cell proliferation, and; (f) treatment with the demethylating agent, 5-aza-2'-deoxycytidine, or silencing of the DNMT's by siRNA, partially restores SPDEF expression in SPDEF-negative PCa cell lines, and decreases cell migration and invasion. Discussion These results indicate hypermethylation is a prevalent mechanism for decreasing SPDEF expression during prostate cancer progression. The data demonstrate that loss of SPDEF expression in prostate cancer cells, a critical step in cellular plasticity, results from a potentially reversible process of aberrant DNA methylation. These studies suggest DMNT activity as a potential therapeutic vulnerability that can be exploited for limiting cellular plasticity, tumor progression, and therapy resistance in prostate cancer.
Collapse
Affiliation(s)
- Mousa Vatanmakanian
- Department of Biochemistry & Molecular Biology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- LSU-LCMC (Louisiana Children's Medical Center) Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Joshua J. Steffan
- Program in Urosciences, Division of Urology, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sweaty Koul
- LSU-LCMC (Louisiana Children's Medical Center) Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Urology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Augusto C. Ochoa
- Department of Biochemistry & Molecular Biology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- LSU-LCMC (Louisiana Children's Medical Center) Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lakshmi S. Chaturvedi
- LSU-LCMC (Louisiana Children's Medical Center) Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Urology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Hari K. Koul
- Department of Biochemistry & Molecular Biology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- LSU-LCMC (Louisiana Children's Medical Center) Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Urology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, United States
| |
Collapse
|
9
|
Shah BK, Singh B, Wang Y, Xie S, Wang C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediators Inflamm 2023; 2023:8840594. [PMID: 37457746 PMCID: PMC10344637 DOI: 10.1155/2023/8840594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Most patients diagnosed with chronic obstructive pulmonary disease (COPD) present with hallmark features of airway mucus hypersecretion, including cough and expectoration. Airway mucus function as a native immune system of the lung that severs to trap particulate matter and pathogens and allows them to clear from the lung via cough and ciliary transport. Chronic mucus hypersecretion (CMH) is the main factor contributing to the increased risk of morbidity and mortality in specific subsets of COPD patients. It is, therefore, primarily important to develop medications that suppress mucus hypersecretions in these patients. Although there have been some advances in COPD treatment, more work remains to be done to better understand the mechanism underlying airway mucus hypersecretion and seek more effective treatments. This review article discusses the structure and significance of mucus in the lungs focusing on gel-forming mucins and the impacts of CMH in the lungs. Furthermore, we summarize the article with pharmacological and nonpharmacological treatments as well as novel and interventional procedures to control CMH in COPD patients.
Collapse
Affiliation(s)
- Binay Kumar Shah
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University School of Medicine, Shanghai 200092, China
| | - Bivek Singh
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yukun Wang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
10
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
11
|
Cheng H, Yuan J, Pei C, Ouyang M, Bu H, Chen Y, Huang X, Zhang Z, Yu L, Tan Y. The development of an anti-cancer peptide M1-21 targeting transcription factor FOXM1. Cell Biosci 2023; 13:114. [PMID: 37344857 DOI: 10.1186/s13578-023-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Transcription factor FOXM1 is a potential target for anti-cancer drug development. An interfering peptide M1-21, targeting FOXM1 and FOXM1-interacting proteins, is developed and its anti-cancer efficacy is evaluated. METHODS FOXM1 C-terminus-binding peptides are screened by in silico protocols from the peptide library of FOXM1 (1-138aa) and confirmed by cellular experiments. The selected peptide is synthesized into its D-retro-inverso (DRI) form by fusing a TAT cell-penetrating sequence. Anti-cancer activities are evaluated in vitro and in vivo with tumor-grafted nude mice, spontaneous breast cancer mice, and wild-type metastasis-tracing mice. Anti-cancer mechanisms are analyzed. Distribution and safety profiles in mice are evaluated. RESULTS With improved stability and cell inhibitory activity compared to the parent peptide, M1-21 binds to multiple regions of FOXM1 and interferes with protein-protein interactions between FOXM1 and its various known partner proteins, including PLK1, LIN9 and B-MYB of the MuvB complex, and β-catenin. Consequently, M1-21 inhibits FOXM1-related transcriptional activities and FOXM1-mediated nuclear importation of β-catenin and β-catenin transcriptional activities. M1-21 inhibits multiple types of cancer (20 µM in vitro or 30 mg/kg in vivo) by preventing proliferation, migration, and WNT signaling. Distribution and safety profiles of M1-21 are favorable (broad distribution and > 15 h stability in mice) and the tested non-severely toxic dose reaches 200 mg/kg in mice. M1-21 also has low hemolytic toxicity and immunogenicity in mice. CONCLUSIONS M1-21 is a promising interfering peptide targeting FOXM1 for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Haojie Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China
| | - Zhenwang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
- Medicine Research Institute, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, 437000, Xianning, Hubei, China.
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, 410082, Changsha, Hunan, China.
| |
Collapse
|
12
|
Zhang Z, Li M, Sun T, Zhang Z, Liu C. FOXM1: Functional Roles of FOXM1 in Non-Malignant Diseases. Biomolecules 2023; 13:biom13050857. [PMID: 37238726 DOI: 10.3390/biom13050857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Forkhead box (FOX) proteins are a wing-like helix family of transcription factors in the DNA-binding region. By mediating the activation and inhibition of transcription and interactions with all kinds of transcriptional co-regulators (MuvB complexes, STAT3, β-catenin, etc.), they play significant roles in carbohydrate and fat metabolism, biological aging and immune regulation, development, and diseases in mammals. Recent studies have focused on translating these essential findings into clinical applications in order to improve quality of life, investigating areas such as diabetes, inflammation, and pulmonary fibrosis, and increase human lifespan. Early studies have shown that forkhead box M1 (FOXM1) functions as a key gene in pathological processes in multiple diseases by regulating genes related to proliferation, the cell cycle, migration, and apoptosis and genes related to diagnosis, therapy, and injury repair. Although FOXM1 has long been studied in relation to human diseases, its role needs to be elaborated on. FOXM1 expression is involved in the development or repair of multiple diseases, including pulmonary fibrosis, pneumonia, diabetes, liver injury repair, adrenal lesions, vascular diseases, brain diseases, arthritis, myasthenia gravis, and psoriasis. The complex mechanisms involve multiple signaling pathways, such as WNT/β-catenin, STAT3/FOXM1/GLUT1, c-Myc/FOXM1, FOXM1/SIRT4/NF-κB, and FOXM1/SEMA3C/NRP2/Hedgehog. This paper reviews the key roles and functions of FOXM1 in kidney, vascular, lung, brain, bone, heart, skin, and blood vessel diseases to elucidate the role of FOXM1 in the development and progression of human non-malignant diseases and makes suggestions for further research.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengxi Li
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Sun
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhengrong Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
13
|
Liu Z, Lei J, Wu T, Hu W, Zheng M, Wang Y, Song J, Ruan H, Xu L, Ren T, Xu W, Wen Z. Lipogenesis promotes mitochondrial fusion and maintains cancer stemness in human NSCLC. JCI Insight 2023; 8:158429. [PMID: 36809297 PMCID: PMC10070109 DOI: 10.1172/jci.insight.158429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer stem-like cells (CSCs) are critically involved in cancer metastasis and chemoresistance, acting as one major obstacle in clinical practice. While accumulating studies have implicated the metabolic reprogramming of CSCs, mitochondrial dynamics in such cells remain poorly understood. Here we pinpointed OPA1hi with mitochondrial fusion as a metabolic feature of human lung CSCs, licensing their stem-like properties. Specifically, human lung CSCs exerted enhanced lipogenesis, inducing OPA1 expression via transcription factor SAM Pointed Domain containing ETS transcription Factor (SPDEF). In consequence, OPA1hi promoted mitochondrial fusion and stemness of CSCs. Such lipogenesishi, SPDEFhi, and OPA1hi metabolic adaptions were verified with primary CSCs from lung cancer patients. Accordingly, blocking lipogenesis and mitochondrial fusion efficiently impeded CSC expansion and growth of organoids derived from patients with lung cancer. Together, lipogenesis regulates mitochondrial dynamics via OPA1 for controlling CSCs in human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaxin Lei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tong Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijie Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, Guizhou, China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Kohram F, Deng Z, Zhang Y, Al Reza A, Li E, Kolesnichenko OA, Shukla S, Ustiyan V, Gomez-Arroyo J, Acharya A, Shi D, Kalinichenko VV, Kenny AP. Demonstration of Safety in Wild Type Mice of npFOXF1, a Novel Nanoparticle-Based Gene Therapy for Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins. Biologics 2023; 17:43-55. [PMID: 36969329 PMCID: PMC10031269 DOI: 10.2147/btt.s400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Introduction Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture. The aim of the present study is to investigate the safety of intravenous administration of FOXF1-expressing PEI-PEG nanoparticles (npFOXF1), our pioneering treatment for ACDMPV. Methods npFOXF1 was constructed, validated, and subsequently administered in a single dose to postnatal day 14 (P14) mice via retro-orbital injection. Biochemical, serologic, and histologic safety were monitored at postnatal day 16 (P16) and postnatal day 21 (P21). Results With treatment we observed no lethality, and the general condition of mice revealed no obvious abnormalities. Serum chemistry, whole blood, and histologic toxicity was assayed on P16 and P21 and revealed no abnormality. Discussion In conclusion, npFOXF1 has a very good safety profile and combined with preceding studies showing therapeutic efficacy, npFOXF1 can be considered as a good candidate therapy for ACDMPV in human neonates.
Collapse
Affiliation(s)
- Fatemeh Kohram
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Abid Al Reza
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Enhong Li
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Olena A Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Samriddhi Shukla
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jose Gomez-Arroyo
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Acharya
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alan P Kenny
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Donovan J, Deng Z, Bian F, Shukla S, Gomez-Arroyo J, Shi D, Kalinichenko VV, Kalin TV. Improving anti-tumor efficacy of low-dose Vincristine in rhabdomyosarcoma via the combination therapy with FOXM1 inhibitor RCM1. Front Oncol 2023; 13:1112859. [PMID: 36816948 PMCID: PMC9933126 DOI: 10.3389/fonc.2023.1112859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly metastatic soft-tissue sarcoma that often develops resistance to current therapies, including vincristine. Since the existing treatments have not significantly improved survival, there is a critical need for new therapeutic approaches for RMS patients. FOXM1, a known oncogene, is highly expressed in RMS, and is associated with the worst prognosis in RMS patients. In the present study, we found that the combination treatment with specific FOXM1 inhibitor RCM1 and low doses of vincristine is more effective in increasing apoptosis and decreasing RMS cell proliferation in vitro compared to single drugs alone. Since RCM1 is highly hydrophobic, we developed innovative nanoparticle delivery system containing poly-beta-amino-esters and folic acid (NPFA), which efficiently delivers RCM1 to mouse RMS tumors in vivo. The combination of low doses of vincristine together with intravenous administration of NPFA nanoparticles containing RCM1 effectively reduced RMS tumor volumes, increased tumor cell death and decreased tumor cell proliferation in RMS tumors compared to RCM1 or vincristine alone. The combination therapy was non-toxic as demonstrated by liver metabolic panels using peripheral blood serum. Using RNA-seq of dissected RMS tumors, we identified Chac1 as a uniquely downregulated gene after the combination treatment. Knockdown of Chac1 in RMS cells in vitro recapitulated the effects of the combination therapy. Altogether, combination treatment with low doses of vincristine and nanoparticle delivery of FOXM1 inhibitor RCM1 in a pre-clinical model of RMS has superior anti-tumor effects and decreases CHAC1 while reducing vincristine toxicity.
Collapse
Affiliation(s)
- Johnny Donovan
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Zicheng Deng
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Fenghua Bian
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Samriddhi Shukla
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose Gomez-Arroyo
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Pulmonary and Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,*Correspondence: Tanya V. Kalin,
| |
Collapse
|
16
|
Manzar N, Ganguly P, Khan UK, Ateeq B. Transcription networks rewire gene repertoire to coordinate cellular reprograming in prostate cancer. Semin Cancer Biol 2023; 89:76-91. [PMID: 36702449 DOI: 10.1016/j.semcancer.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Transcription factors (TFs) represent the most commonly deregulated DNA-binding class of proteins associated with multiple human cancers. They can act as transcriptional activators or repressors that rewire the cistrome, resulting in cellular reprogramming during cancer progression. Deregulation of TFs is associated with the onset and maintenance of various cancer types including prostate cancer. An emerging subset of TFs has been implicated in the regulation of multiple cancer hallmarks during tumorigenesis. Here, we discuss the role of key TFs which modulate transcriptional cicuitries involved in the development and progression of prostate cancer. We further highlight the role of TFs associated with key cancer hallmarks, including, chromatin remodeling, genome instability, DNA repair, invasion, and metastasis. We also discuss the pluripotent function of TFs in conferring lineage plasticity, that aids in disease progression to neuroendocrine prostate cancer. At the end, we summarize the current understanding and approaches employed for the therapeutic targeting of TFs and their cofactors in the clinical setups to prevent disease progression.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Promit Ganguly
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
17
|
Choi MR, Cho S, Kim DJ, Choi JS, Jin YB, Kim M, Chang HJ, Jeon SH, Yang YD, Lee SR. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int J Mol Sci 2022; 23:ijms23137294. [PMID: 35806296 PMCID: PMC9267046 DOI: 10.3390/ijms23137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive use of alcohol can induce neurobiological and neuropathological alterations in the brain, including the hippocampus and forebrain, through changes in neurotransmitter systems, hormonal systems, and neuroimmune processes. We aimed to investigate the effects of ethanol on the expression of coding and noncoding RNAs in a brain-derived cell line exposed to ethanol. After exposing Neuro2a cells, a neuroblastoma cell line, to ethanol for 24 and 72 h, we observed cell proliferation and analyzed up- and downregulated mRNAs and long noncoding RNAs (lncRNAs) using total RNA-Seq technology. We validated the differential expression of some mRNAs and lncRNAs by RT-qPCR and analyzed the expression of Cebpd and Rnu3a through knock-down of Cebpd. Cell proliferation was significantly reduced in cells exposed to 100 mM ethanol for 72 h, with 1773 transcripts up- or downregulated by greater than three-fold in ethanol-treated cells compared to controls. Of these, 514 were identified as lncRNAs. Differentially expressed mRNAs and lncRNAs were mainly observed in cells exposed to ethanol for 72 h, in which Atm and Cnr1 decreased, but Trib3, Cebpd, and Spdef increased. On the other hand, lncRNAs Kcnq1ot1, Tug1, and Xist were changed by ethanol, and Rnu3a in particular was greatly increased by chronic ethanol treatment through inhibition of Cebpd. Our results increase the understanding of cellular and molecular mechanisms related to coding and noncoding RNAs in an in vitro model of acute and chronic exposure to ethanol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sinyoung Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Seoul 06351, Korea;
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| |
Collapse
|
18
|
Reddy J, Fonseca MAS, Corona RI, Nameki R, Segato Dezem F, Klein IA, Chang H, Chaves-Moreira D, Afeyan LK, Malta TM, Lin X, Abbasi F, Font-Tello A, Sabedot T, Cejas P, Rodríguez-Malavé N, Seo JH, Lin DC, Matulonis U, Karlan BY, Gayther SA, Pasaniuc B, Gusev A, Noushmehr H, Long H, Freedman ML, Drapkin R, Young RA, Abraham BJ, Lawrenson K. Predicting master transcription factors from pan-cancer expression data. SCIENCE ADVANCES 2021; 7:eabf6123. [PMID: 34818047 PMCID: PMC8612691 DOI: 10.1126/sciadv.abf6123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
Collapse
Affiliation(s)
- Jessica Reddy
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Marcos A. S. Fonseca
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Rosario I. Corona
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robbin Nameki
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Felipe Segato Dezem
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Isaac A. Klein
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
| | - Heidi Chang
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | | | - Lena K. Afeyan
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of
Technology, Cambridge, MA, USA
| | | | - Xianzhi Lin
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Forough Abbasi
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | | | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - Norma Rodríguez-Malavé
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Ursula Matulonis
- Division of Gynecologic Oncology, Dana Farber
Cancer Institute, Boston, MA, USA
| | - Beth Y. Karlan
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Cancer Population Genetics, Jonsson Comprehensive
Cancer Center, David Geffen School of Medicine, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Bioinformatics Interdepartmental Program,
University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School
of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine,
David Geffen School of Medicine, University of California, Los Angeles, Los
Angeles, CA, USA
- Department of Computational Medicine, David Geffen
School of Medicine, University of California, Los Angeles, Los Angeles, CA,
USA
| | - Alexander Gusev
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
- McGraw/Patterson Center for Population Sciences,
Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer
Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber
Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge,
MA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of
Pennsylvania, Philadelphia, PA, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research,
Cambridge, MA, USA
- Department of Biology, M.I.T., Cambridge, MA,
USA
| | - Brian J. Abraham
- Department of Computational Biology, St. Jude
Children’s Research Hospital, Memphis, TN, USA
- Corresponding author.
(B.J.A.);
(K.L.)
| | - Kate Lawrenson
- Women’s Cancer Research Program at the Samuel
Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles,
CA, USA
- Division of Gynecologic Oncology, Department of
Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA,
USA
- Center for Bioinformatics and Functional Genomics,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Corresponding author.
(B.J.A.);
(K.L.)
| |
Collapse
|
19
|
SPDEF suppresses head and neck squamous cell carcinoma progression by transcriptionally activating NR4A1. Int J Oral Sci 2021; 13:33. [PMID: 34667150 PMCID: PMC8526567 DOI: 10.1038/s41368-021-00138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
SAM pointed domain containing E26 transformation-specific transcription factor (SPDEF) plays dual roles in the initiation and development of human malignancies. However, the biological role of SPDEF in head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the expression level of SPDEF and its correlation with the clinical parameters of patients with HNSCC were determined using TCGA-HNSC, GSE65858, and our own clinical cohorts. CCK8, colony formation, cell cycle analysis, and a xenograft tumor growth model were used to determine the molecular functions of SPDEF in HNSCC. ChIP-qPCR, dual luciferase reporter assay, and rescue experiments were conducted to explore the potential molecular mechanism of SPDEF in HNSCC. Compared with normal epithelial tissues, SPDEF was significantly downregulated in HNSCC tissues. Patients with HNSCC with low SPDEF mRNA levels exhibited poor clinical outcomes. Restoring SPDEF inhibited HNSCC cell viability and colony formation and induced G0/G1 cell cycle arrest, while silencing SPDEF promoted cell proliferation in vitro. The xenograft tumor growth model showed that tumors with SPDEF overexpression had slower growth rates, smaller volumes, and lower weights. SPDEF could directly bind to the promoter region of NR4A1 and promoted its transcription, inducing the suppression of AKT, MAPK, and NF-κB signaling pathways. Moreover, silencing NR4A1 blocked the suppressive effect of SPDEF in HNSCC cells. Here, we demonstrate that SPDEF acts as a tumor suppressor by transcriptionally activating NR4A1 in HNSCC. Our findings provide novel insights into the molecular mechanism of SPDEF in tumorigenesis and a novel potential therapeutic target for HNSCC.
Collapse
|
20
|
Exosomes and prostate cancer management. Semin Cancer Biol 2021; 86:101-111. [PMID: 34384877 DOI: 10.1016/j.semcancer.2021.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022]
Abstract
Exosomes (and other extracellular vesicles) are now part of the cancer research landscape, involved both as players in pathophysiological mechanisms, as biomarkers of the cancer process and as therapeutic tools. One step they have yet to take is to move into routine clinical practice and management of prostate cancer is an example of this necessary maturation. More than for many other cancers and because a possible alternative is active surveillance (neither removal nor destruction), the diagnosis of prostate cancer does not only involve the detection of cancerous cells but also the determination of its true aggressiveness. By measuring TRMPRSS2:ERG fusion and PCA3 transcripts in urine exosomes, the EPI assay seems able to help prostate biopsy decision. Results from clinical studies showed that it can reduce the proportion of unnecessary biopsies while missing only a minimal proportion of clinically significant cancers. In metastatic prostate cancer, after failure of a first step androgen deprivation therapy, when a choice has to be made between a second-generation androgen receptor (AR) signaling inhibitor and taxane-based chemotherapy, detection of the AR splicing variant AR-V7 in circulating tumor cells (CTCs) has appeared promising. Whether exosomes could be a better material (simpler to isolate from the bloodstream than CTCs?) to detect AR-V7 has been suggested by some studies and remains to be confirmed. At last, a couple of exploratory studies either targeted or used exosomes to treat prostate cancer, by respectively inhibiting their secretion (to prevent exosome-mediated transfer of biologically active oncogenic actors), or loading them with immunogenic cancer-specific proteins (to generate anticancer vaccine) or with pharmacologic agents. Overall efforts are however still needed to confirm these results and generalize exosome-based diagnostic, prognostic or therapeutic strategies in prostate cancer management.
Collapse
|
21
|
Liu C, Barger CJ, Karpf AR. FOXM1: A Multifunctional Oncoprotein and Emerging Therapeutic Target in Ovarian Cancer. Cancers (Basel) 2021; 13:3065. [PMID: 34205406 PMCID: PMC8235333 DOI: 10.3390/cancers13123065] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Forkhead box M1 (FOXM1) is a member of the conserved forkhead box (FOX) transcription factor family. Over the last two decades, FOXM1 has emerged as a multifunctional oncoprotein and a robust biomarker of poor prognosis in many human malignancies. In this review article, we address the current knowledge regarding the mechanisms of regulation and oncogenic functions of FOXM1, particularly in the context of ovarian cancer. FOXM1 and its associated oncogenic transcriptional signature are enriched in >85% of ovarian cancer cases and FOXM1 expression and activity can be enhanced by a plethora of genomic, transcriptional, post-transcriptional, and post-translational mechanisms. As a master transcriptional regulator, FOXM1 promotes critical oncogenic phenotypes in ovarian cancer, including: (1) cell proliferation, (2) invasion and metastasis, (3) chemotherapy resistance, (4) cancer stem cell (CSC) properties, (5) genomic instability, and (6) altered cellular metabolism. We additionally discuss the evidence for FOXM1 as a cancer biomarker, describe the rationale for FOXM1 as a cancer therapeutic target, and provide an overview of therapeutic strategies used to target FOXM1 for cancer treatment.
Collapse
Affiliation(s)
| | | | - Adam R. Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68918-6805, USA; (C.L.); (C.J.B.)
| |
Collapse
|
22
|
FOXF1 is required for the oncogenic properties of PAX3-FOXO1 in rhabdomyosarcoma. Oncogene 2021; 40:2182-2199. [PMID: 33627785 PMCID: PMC8005492 DOI: 10.1038/s41388-021-01694-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.
Collapse
|
23
|
Wen B, Li E, Ustiyan V, Wang G, Guo M, Na CL, Kalin GT, Galvan V, Xu Y, Weaver TE, Kalin TV, Whitsett JA, Kalinichenko VV. In Vivo Generation of Lung and Thyroid Tissues from Embryonic Stem Cells Using Blastocyst Complementation. Am J Respir Crit Care Med 2021; 203:471-483. [PMID: 32877203 PMCID: PMC7885842 DOI: 10.1164/rccm.201909-1836oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.Objectives: To determine whether ESCs are capable of generating lung tissue in Nkx2-1-/- mouse embryos with lung agenesis.Methods: Blastocyst complementation was used to produce chimeras from normal mouse ESCs and Nkx2-1-/- embryos, which lack pulmonary tissues. Nkx2-1-/- chimeras were examined using immunostaining, transmission electronic microscopy, fluorescence-activated cell sorter analysis, and single-cell RNA sequencing.Measurements and Main Results: Although peripheral pulmonary and thyroid tissues are entirely lacking in Nkx2-1 gene-deleted embryos, pulmonary and thyroid structures in Nkx2-1-/- chimeras were restored after ESC complementation. Respiratory epithelial cell lineages in restored lungs of Nkx2-1-/- chimeras were derived almost entirely from ESCs, whereas endothelial, immune, and stromal cells were mosaic. ESC-derived cells from multiple respiratory cell lineages were highly differentiated and indistinguishable from endogenous cells based on morphology, ultrastructure, gene expression signatures, and cell surface proteins used to identify cell types by fluorescence-activated cell sorter.Conclusions: Lung and thyroid tissues were generated in vivo from ESCs by blastocyst complementation. Nkx2-1-/- chimeras can be used as "bioreactors" for in vivo differentiation and functional studies of ESC-derived progenitor cells.
Collapse
Affiliation(s)
- Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute
| | | | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute
| | - Minzhe Guo
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | | | | | - Veronica Galvan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Yan Xu
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Timothy E. Weaver
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Tanya V. Kalin
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Vladimir V. Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Research Foundation, Cincinnati, Ohio
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
24
|
Li Y, Gao J, Kamran M, Harmacek L, Danhorn T, Leach SM, O'Connor BP, Hagman JR, Huang H. GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat Commun 2021; 12:494. [PMID: 33479210 PMCID: PMC7820599 DOI: 10.1038/s41467-020-20766-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage-determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes.
Collapse
Affiliation(s)
- Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Mohammad Kamran
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Laura Harmacek
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Thomas Danhorn
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Sonia M Leach
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Brian P O'Connor
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
25
|
A review of current clinical biomarkers for prostate cancer: towards personalised and targeted therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Prostate cancer is the most commonly diagnosed cancer in men and it is responsible for about 10% of all cancer mortality in Canadian men. The current ‘gold standard’ for the diagnosis of prostate cancer is a prostate biopsy and the decision on when to biopsy a patient with non-suspicious Digital Rectal Examination (DRE) result and total prostate specific antigen (tPSA) of 4–10 ng/ml can be challenging. In order to shift the treatment paradigm of prostate cancer toward more personalised and targeted therapy, there is the need for a clear system that makes its detection binary so as to decrease the rate of inaccurate detections. Therefore in recent years, there have been several investigations into the development of various biomarkers with high sensitivity and specificity for screening, early detection and personalised patient-specific targeted medicine from diagnosis to treatment of the disease.
Materials and methods:
This paper reports on nine currently available clinical biomarkers used in screening for early detection and diagnosis, to reduce the number of unnecessary biopsies, in risk assessment of aggressive disease and in monitoring treatment response of prostate cancer.
Conclusion:
Current clinical prostate cancer biomarkers have the potential for a personalised risk assessment of aggressive disease and the risk of developing distant metastatic disease and have been proven to be useful tools to guide clinicians in personalised patient-specific targeted treatment and in the shared decision making between patients and their physicians regarding prostate biopsy and treatment. Using biomarkers to select patients with a significant probability of aggressive prostate cancer would potentially avoid premature death from the disease, while at the same time would safely preclude patients who do not require unnecessary invasive intervention.
Collapse
|
26
|
Li J, Ye Z. The Potential Role and Regulatory Mechanisms of MUC5AC in Chronic Obstructive Pulmonary Disease. Molecules 2020; 25:molecules25194437. [PMID: 32992527 PMCID: PMC7582261 DOI: 10.3390/molecules25194437] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with high morbidity and mortality globally. Studies show that airway mucus hypersecretion strongly compromises lung function, leading to frequent hospitalization and mortality, highlighting an urgent need for effective COPD treatments. MUC5AC is known to contribute to severe muco-obstructive lung diseases, worsening COPD pathogenesis. Various pathways are implicated in the aberrant MUC5AC production and secretion MUC5AC. These include signaling pathways associated with mucus-secreting cell differentiation [nuclear factor-κB (NF-κB)and IL-13-STAT6- SAM pointed domain containing E26 transformation-specific transcription factor (SPDEF), as well as epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR)], and signaling pathways related to mucus transport and excretion-ciliary beat frequency (CBF). Various inhibitors of mucus hypersecretion are in clinical use but have had limited benefits against COPD. Thus, novel therapies targeting airway mucus hypersecretion should be developed for effective management of muco-obstructive lung disease. Here, we systematically review the mechanisms and pathogenesis of airway mucus hypersecretion, with emphasis on multi-target and multi-link intervention strategies for the elucidation of novel inhibitors of airway mucus hypersecretion.
Collapse
Affiliation(s)
- Jingyuan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Zuguang Ye
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: ; Tel./Fax: +86-10-8425-2805
| |
Collapse
|
27
|
McKiernan J, Noerholm M, Tadigotla V, Kumar S, Torkler P, Sant G, Alter J, Donovan MJ, Skog J. A urine-based Exosomal gene expression test stratifies risk of high-grade prostate Cancer in men with prior negative prostate biopsy undergoing repeat biopsy. BMC Urol 2020; 20:138. [PMID: 32873277 PMCID: PMC7466797 DOI: 10.1186/s12894-020-00712-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Initial prostate biopsy often fails to identify prostate cancer resulting in patient anxiety, especially when clinical features such as prostate specific antigen (PSA) remain elevated, leading to the need for repeat biopsies. Prostate biomarker tests, such as the ExoDx™ Prostate (IntelliScore), or EPI test, have been shown to provide individualized risk assessment of clinically significant prostate cancer at initial biopsy; however, the performance in the repeat biopsy setting is not well established. Methods As part of a previous prospective clinical validation study evaluating the performance of the EPI test, we collected first-catch, non-DRE urine samples across 22 sites from men with at least one prior negative biopsy scheduled to undergo a repeat prostate biopsy to rule out prostate cancer. All men were 50 years or older with a PSA 2–10 ng/mL. Exosomal mRNA was extracted and expression of three genomic markers, PCA3, ERG and SPDEF was measured. The resulting EPI score was correlated with biopsy results. Results 229 men with a prior negative biopsy underwent repeat biopsies. ExoDx Prostate demonstrated good performance ruling out high-grade (Grade group 2, GG2, or higher) prostate cancer (HGPCa) using the previously validated 15.6 cut point in the initial biopsy setting. The EPI test yielded an NPV of 92% independent of other clinical features and would have avoided 26% of unnecessary biopsies while missing only five patients with HGPCa (2.1%). Furthermore, the EPI test provided additional information at a cut-point of 20 and 29.6 with an NPV of 94%, potentially delaying 35 and 61% of unnecessary biopsies, respectively. AUC curves and Net Health Benefit Analyses demonstrated superior performance of ExoDx Prostate over PSA and clinical only risk calculators, i.e. ERSPC. Conclusions The EPI test provided good performance using the 15.6 cut-point for ruling out HGPCa / GG2 or higher in men undergoing a repeat prostate biopsy with a PSA of 2–10 ng/ml. Furthermore, the test utilizes gene expression data independent of clinical features to predict the likelihood of HGPCa / GG2 on a subsequent needle biopsy.
Collapse
Affiliation(s)
| | | | | | - Sonia Kumar
- Exosome Diagnostics, a Bio-Techne Brand, Waltham, MA, USA
| | | | - Grannum Sant
- Exosome Diagnostics, a Bio-Techne Brand, Waltham, MA, USA
| | - Jason Alter
- Exosome Diagnostics, a Bio-Techne Brand, Waltham, MA, USA
| | - Michael J Donovan
- Exosome Diagnostics, a Bio-Techne Brand, Waltham, MA, USA. .,Icahn School of Medicine at Mt. Sinai, New York City, NY, USA.
| | - Johan Skog
- Exosome Diagnostics, a Bio-Techne Brand, Waltham, MA, USA
| |
Collapse
|
28
|
Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, Kolesnichenko OA, Deng Z, Zhang Y, Shi D, Greenberg JM, Jobe AH, Kalin TV, Kalinichenko VV. Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia. Am J Respir Crit Care Med 2020; 202:100-111. [PMID: 32240596 PMCID: PMC7328311 DOI: 10.1164/rccm.201906-1232oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/02/2020] [Indexed: 01/03/2023] Open
Abstract
Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Xiaomeng Ren
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Andrew W. Dunn
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Arun Pradhan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Olena A. Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Donglu Shi
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - James M. Greenberg
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Alan H. Jobe
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Tanya V. Kalin
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
29
|
Bajkowska K, Sumardika IW, Tomonobu N, Chen Y, Yamamoto KI, Kinoshita R, Murata H, Gede Yoni Komalasari NL, Jiang F, Yamauchi A, Winarsa Ruma IM, Kasano-Camones CI, Inoue Y, Sakaguchi M. Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility. Biochem Biophys Rep 2020; 22:100768. [PMID: 32490214 PMCID: PMC7261704 DOI: 10.1016/j.bbrep.2020.100768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Karolina Bajkowska
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- University of Surrey, 11 Osterley Court, London TW7 4PX, England, UK
| | - I. Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama 701-0192, Japan
| | | | - Carlos Ichiro Kasano-Camones
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
30
|
Black M, Arumugam P, Shukla S, Pradhan A, Ustiyan V, Milewski D, Kalinichenko VV, Kalin TV. FOXM1 nuclear transcription factor translocates into mitochondria and inhibits oxidative phosphorylation. Mol Biol Cell 2020; 31:1411-1424. [PMID: 32348194 PMCID: PMC7353143 DOI: 10.1091/mbc.e19-07-0413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Forkhead box M1 (FOXM1), a nuclear transcription factor that activates cell cycle regulatory genes, is highly expressed in a majority of human cancers. The function of FOXM1 independent of nuclear transcription is unknown. In the present study, we found the FOXM1 protein inside the mitochondria. Using site-directed mutagenesis, we generated FOXM1 mutant proteins that localized to distinct cellular compartments, uncoupling the nuclear and mitochondrial functions of FOXM1. Directing FOXM1 into the mitochondria decreased mitochondrial mass, membrane potential, respiration, and electron transport chain (ETC) activity. In mitochondria, the FOXM1 directly bound to and increased the pentatricopeptide repeat domain 1 (PTCD1) protein, a mitochondrial leucine-specific tRNA binding protein that inhibits leucine-rich ETC complexes. Mitochondrial FOXM1 did not change cellular proliferation. Thus, FOXM1 translocates into mitochondria and inhibits mitochondrial respiration by increasing PTCD1. We identify a new paradigm that FOXM1 regulates mitochondrial homeostasis in a process independent of nuclear transcription.
Collapse
Affiliation(s)
- Markaisa Black
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Paritha Arumugam
- Translational Pulmonary Science Center and Division of Pulmonary Biology, Cincinnati, OH 45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Samriddhi Shukla
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Arun Pradhan
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Vladimir Ustiyan
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Milewski
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
| | - Vladimir V. Kalinichenko
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Tanya V. Kalin
- Perinatal Institute and Division of Neonatology, Perinatal and Pulmonary Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
31
|
Goda C, Balli D, Black M, Milewski D, Le T, Ustiyan V, Ren X, Kalinichenko VV, Kalin TV. Loss of FOXM1 in macrophages promotes pulmonary fibrosis by activating p38 MAPK signaling pathway. PLoS Genet 2020; 16:e1008692. [PMID: 32271749 PMCID: PMC7173935 DOI: 10.1371/journal.pgen.1008692] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/21/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease with high mortality and is refractory to treatment. Pulmonary macrophages can both promote and repress fibrosis, however molecular mechanisms regulating macrophage functions during fibrosis remain poorly understood. FOXM1 is a transcription factor and is not expressed in quiescent lungs. Herein, we show that FOXM1 is highly expressed in pulmonary macrophages within fibrotic lungs of IPF patients and mouse fibrotic lungs. Macrophage-specific deletion of Foxm1 in mice (myFoxm1-/-) exacerbated pulmonary fibrosis. Inactivation of FOXM1 in vivo and in vitro increased p38 MAPK signaling in macrophages and decreased DUSP1, a negative regulator of p38 MAPK pathway. FOXM1 directly activated Dusp1 promoter. Overexpression of DUSP1 in FOXM1-deficient macrophages prevented activation of p38 MAPK pathway. Adoptive transfer of wild-type monocytes to myFoxm1-/- mice alleviated bleomycin-induced fibrosis. Altogether, contrary to known pro-fibrotic activities in lung epithelium and fibroblasts, FOXM1 has anti-fibrotic function in macrophages by regulating p38 MAPK.
Collapse
Affiliation(s)
- Chinmayee Goda
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Balli
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Markaisa Black
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - David Milewski
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tien Le
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir Ustiyan
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaomeng Ren
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Vladimir V. Kalinichenko
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
- Center for Lung Regenerative Medicine, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Tanya V. Kalin
- Division of Pulmonary Biology, the Perinatal Institute of Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| |
Collapse
|
32
|
Abstract
Introduction: FOXM1 is one of the most frequently overexpressed proteins in human solid cancers. Here, we discuss novel direct targets of FOXM1 as well as new pathways involving FOXM1, through which this protein exerts its oncogenic activity.Areas covered: We give a detailed review of FOXM1 transcriptional targets involved in 16 different types of human cancer as published in the literature in the last 5 years. We also discuss a novel positive feedback loop between FOXM1 and AKT - both well-established master regulators of cancer.Expert opinion: Despite the discovery of several FOXM1 inhibitors over the years (by our team and others), their therapeutic use is limited by their adverse off-target effects.Newly-discovered proteins regulated by FOXM1 present a promising alternative approach to target its pro-cancer activity. In addition, targeting regulating proteins that take part in the positive feedback loop between FOXM1/AKT has the double advantage of suppressing both, and can lead to developing novel anti-cancer drugs.
Collapse
Affiliation(s)
- Soheila Borhani
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Tang JH, Yang L, Chen JX, Li QR, Zhu LR, Xu QF, Huang GH, Zhang ZX, Xiang Y, Du L, Zhou Z, Lv SQ. Bortezomib inhibits growth and sensitizes glioma to temozolomide (TMZ) via down-regulating the FOXM1-Survivin axis. Cancer Commun (Lond) 2019; 39:81. [PMID: 31796105 PMCID: PMC6892143 DOI: 10.1186/s40880-019-0424-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background High-grade glioma (HGG) is a fatal human cancer. Bortezomib, a proteasome inhibitor, has been approved for the treatment of multiple myeloma but its use in glioma awaits further investigation. This study aimed to explore the chemotherapeutic effect and the underlying mechanism of bortezomib on gliomas. Methods U251 and U87 cell viability and proliferation were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, tumor cell spheroid growth, and colony formation assay. Cell apoptosis and cell cycle were detected by flow cytometry. Temozolomide (TMZ)-insensitive cell lines were induced by long-term TMZ treatment, and cells with stem cell characteristics were enriched with stem cell culture medium. The mRNA levels of interested genes were measured via reverse transcription-quantitative polymerase chain reaction, and protein levels were determined via Western blotting/immunofluorescent staining in cell lines and immunohistochemical staining in paraffin-embedded sections. Via inoculating U87 cells subcutaneously, glioma xenograft models in nude mice were established for drug experiments. Patient survival data were analyzed using the Kaplan–Meier method. Results Bortezomib inhibited the viability and proliferation of U251 and U87 cells in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest. Bortezomib also significantly inhibited the spheroid growth, colony formation, and stem-like cell proliferation of U251 and U87 cells. When administrated in combination, bortezomib showed synergistic effect with TMZ in vitro and sensitized glioma to TMZ treatment both in vitro and in vivo. Bortezomib reduced both the mRNA and protein levels of Forkhead Box M1 (FOXM1) and its target gene Survivin. The FOXM1–Survivin axis was markedly up-regulated in established TMZ-insensitive glioma cell lines and HGG patients. Expression levels of FOXM1 and Survivin were positively correlated with each other and both related to poor prognosis in glioma patients. Conclusions Bortezomib was found to inhibit glioma growth and improved TMZ chemotherapy efficacy, probably via down-regulating the FOXM1–Survivin axis. Bortezomib might be a promising agent for treating malignant glioma, alone or in combination with TMZ.
Collapse
Affiliation(s)
- Jun-Hai Tang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Lin Yang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Ju-Xiang Chen
- Department of Neurosurgery, Changzheng Hospital and Shanghai Institute of Neurosurgery, Second Military Medical University, Shanghai, 200003, P. R. China
| | - Qing-Rui Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Li-Rong Zhu
- Department of Ultrasound, Children Hospital, Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qing-Fu Xu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Yan Xiang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Lei Du
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China
| | - Zheng Zhou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, P. R. China.
| |
Collapse
|
34
|
Pradhan A, Dunn A, Ustiyan V, Bolte C, Wang G, Whitsett JA, Zhang Y, Porollo A, Hu YC, Xiao R, Szafranski P, Shi D, Stankiewicz P, Kalin TV, Kalinichenko VV. The S52F FOXF1 Mutation Inhibits STAT3 Signaling and Causes Alveolar Capillary Dysplasia. Am J Respir Crit Care Med 2019; 200:1045-1056. [PMID: 31199666 PMCID: PMC6794119 DOI: 10.1164/rccm.201810-1897oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.
Collapse
Affiliation(s)
- Arun Pradhan
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Andrew Dunn
- Department of Pediatrics
- Center for Lung Regenerative Medicine
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | | | - Craig Bolte
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | | | - Yufang Zhang
- Department of Pediatrics
- Center for Lung Regenerative Medicine
| | - Alexey Porollo
- Department of Pediatrics
- Center for Autoimmune Genomics and Etiology, and
| | - Yueh-Chiang Hu
- Department of Pediatrics
- Transgenic Animal and Genome Editing Core Facility, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Rui Xiao
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donglu Shi
- The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Pawel Stankiewicz
- Baylor Genetics, Houston, Texas; and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
35
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
36
|
FOXF1 Inhibits Pulmonary Fibrosis by Preventing CDH2-CDH11 Cadherin Switch in Myofibroblasts. Cell Rep 2019; 23:442-458. [PMID: 29642003 PMCID: PMC5947867 DOI: 10.1016/j.celrep.2018.03.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant accumulation of collagen-secreting myofibroblasts. Development of effective therapies is limited due to incomplete understanding of molecular mechanisms regulating myofibroblast expansion. FOXF1 transcription factor is expressed in resident lung fibroblasts, but its role in lung fibrosis remains unknown due to the lack of genetic mouse models. Through comprehensive analysis of human IPF genomics data, lung biopsies, and transgenic mice with fibroblast-specific inactivation of FOXF1, we show that FOXF1 inhibits pulmonary fibrosis. FOXF1 deletion increases myofibroblast invasion and collagen secretion and promotes a switch from N-cadherin (CDH2) to Cadherin-11 (CDH11), which is a critical step in the acquisition of the pro-fibrotic phenotype. FOXF1 directly binds to Cdh2 and Cdh11 promoters and differentially regulates transcription of these genes. Re-expression of CDH2 or inhibition of CDH11 in FOXF1-deficient cells reduces myofibroblast invasion in vitro. FOXF1 inhibits pulmonary fibrosis by regulating a switch from CDH2 to CDH11 in lung myofibroblasts.
Collapse
|
37
|
Kongsema M, Wongkhieo S, Khongkow M, Lam EWF, Boonnoy P, Vongsangnak W, Wong-Ekkabut J. Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells. Oncol Rep 2019; 42:953-962. [PMID: 31322278 PMCID: PMC6667886 DOI: 10.3892/or.2019.7225] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common type of malignancies in women worldwide, and genotoxic chemotherapeutic drugs are effective by causing DNA damage in cancer cells. However, >90% of patients with metastatic cancer are resistant to chemotherapy. The Forkhead box M1 (FOXM1) transcription factor plays a pivotal role in the resistance of breast cancer cells to chemotherapy by promoting DNA damage repair following genotoxic drug treatment. The aim of the present study was to investigate the inhibition of the FOXM1 protein by thiostrepton, a natural antibiotic produced by the Streptomyces species. Experimental studies were designed to examine the effectiveness of thiostrepton in downregulating FOXM1 mRNA expression and activity, leading to senescence and apoptosis of breast cancer cells. The cytotoxicity of thiostrepton in breast cancer was determined using cell viability assay. Additionally, thiostrepton treatment decreased the mRNA expression of cyclin B1 (CCNB1), a downstream target of FOXM1. The present results indicated that thiostrepton inhibited FOXM1 mRNA expression and its effect on CCNB1. Molecular dynamic simulations were performed to study the interactions between FOXM1-DNA and thiostrepton after molecular docking. The results revealed that the possible mechanism underlying the inhibitory effect of thiostrepton on FOXM1 function was by forming a tight complex with the DNA and FOXM1 via its binding domain. Collectively, these results indicated that thiostrepton is a specific and direct inhibitor of the FOXM1 protein in breast cancer. The findings of the present study may lead to the development of novel therapeutic strategies for breast cancer and help overcome resistance to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Mesayamas Kongsema
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Sudtirak Wongkhieo
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Phansiri Boonnoy
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jirasak Wong-Ekkabut
- Computational Biomodelling Laboratory for Agricultural Science and Technology (CBLAST), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
38
|
Sumardika IW, Chen Y, Tomonobu N, Kinoshita R, Ruma IMW, Sato H, Kondo E, Inoue Y, Yamauchi A, Murata H, Yamamoto KI, Tomida S, Shien K, Yamamoto H, Soh J, Futami J, Putranto EW, Hibino T, Nishibori M, Toyooka S, Sakaguchi M. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression. Mol Carcinog 2019; 58:980-995. [PMID: 30720226 DOI: 10.1002/mc.22987] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-β (NPTNβ), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion. Interestingly, our expression profiling of NPTNβ showed significantly high expression levels in lung cancer cell lines in a consistent manner. We hence aimed to determine the significance of NPTNβ as an S100A8/A9 receptor in lung cancer. Our results showed that NPTNβ has strong ability to induce cancer-related cellular events, including anchorage-independent growth, motility and invasiveness, in lung cancer cells in response to extracellular S100A8/A9, eventually leading to the expression of a cancer disseminative phenotype in lung tissue in vivo. Mechanistic investigation revealed that binding of S100A8/A9 to NPTNβ mediates activation of NFIA and NFIB and following SPDEF transcription factors through orchestrated upstream signals from TRAF2 and RAS, which is linked to anchorage-independent growth, motility and invasiveness. Overall, our results indicate the importance of the S100A8/A9-NPTNβ axis in lung cancer disseminative progression and reveal a pivotal role of its newly identified downstream signaling, TRAF2/RAS-NFIA/NFIB-SPDEF, in linking to the aggressive development of lung cancers.
Collapse
Affiliation(s)
- I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Hiroki Sato
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata-shi, Niigata, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu-shi, Gunma, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki-shi, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Hiromasa Yamamoto
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichi Soh
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, Kita-ku, Okayama, Japan
| | - Endy Widya Putranto
- Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shinichi Toyooka
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| |
Collapse
|
39
|
Barger CJ, Branick C, Chee L, Karpf AR. Pan-Cancer Analyses Reveal Genomic Features of FOXM1 Overexpression in Cancer. Cancers (Basel) 2019; 11:cancers11020251. [PMID: 30795624 PMCID: PMC6406812 DOI: 10.3390/cancers11020251] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 01/22/2023] Open
Abstract
FOXM1 is frequently overexpressed in cancer, but this has not been studied in a comprehensive manner. We utilized genotype-tissue expression (GTEx) normal and The Cancer Genome Atlas (TCGA) tumor data to define FOXM1 expression, including its isoforms, and to determine the genetic alterations that promote FOXM1 expression in cancer. Additionally, we used human fallopian tube epithelial (FTE) cells to dissect the role of Retinoblastoma (Rb)-E2F and Cyclin E1 in FOXM1 regulation, and a novel human embryonic kidney cell (HEK293T) CRISPR FOXM1 knockout model to define isoform-specific transcriptional programs. FOXM1 expression, at the mRNA and protein level, was significantly elevated in tumors with FOXM1 amplification, p53 inactivation, and Rb-E2F deregulation. FOXM1 expression was remarkably high in testicular germ cell tumors (TGCT), high-grade serous ovarian cancer (HGSC), and basal breast cancer (BBC). FOXM1 expression in cancer was associated with genomic instability, as measured using aneuploidy signatures. FTE models confirmed a role for Rb-E2F signaling in FOXM1 regulation and in particular identified Cyclin E1 as a novel inducer of FOXM1 expression. Among the three FOXM1 isoforms, FOXM1c showed the highest expression in normal and tumor tissues and cancer cell lines. The CRISPR knockout model demonstrated that FOXM1b and FOXM1c are transcriptionally active, while FOXM1a is not. Finally, we were unable to confirm the existence of a FOXM1 auto-regulatory loop. This study provides significant and novel information regarding the frequency, causes, and consequences of elevated FOXM1 expression in human cancer.
Collapse
Affiliation(s)
- Carter J Barger
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Connor Branick
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Linda Chee
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Adam R Karpf
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
40
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
41
|
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism. Proc Natl Acad Sci U S A 2018; 115:E11128-E11137. [PMID: 30385632 DOI: 10.1073/pnas.1814044115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival. Systems-level analyses identified that expression of SFRP2 increases during LFS OS development and can induce angiogenesis. Ectopic SFRP2 overexpression in normal osteoblast precursors is sufficient to suppress normal osteoblast differentiation and to promote OS phenotypes through induction of oncogenic molecules such as FOXM1 and CYR61 in a β-catenin-independent manner. Conversely, inhibition of SFRP2, FOXM1, or CYR61 represses the tumorigenic potential. In summary, these findings demonstrate the oncogenic role of SFRP2 in the development of p53 mutation-associated OS and that inhibition of SFRP2 is a potential therapeutic strategy.
Collapse
|
42
|
Madison BJ, Clark KA, Bhachech N, Hollenhorst PC, Graves BJ, Currie SL. Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN-FOS at composite DNA sites. J Biol Chem 2018; 293:18624-18635. [PMID: 30315111 DOI: 10.1074/jbc.ra118.003352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Many different transcription factors (TFs) regulate gene expression in a combinatorial fashion, often by binding in close proximity to each other on composite cis-regulatory DNA elements. Here, we investigated how ETS TFs bind with the AP1 TFs JUN-FOS at composite DNA-binding sites. DNA-binding ability with JUN-FOS correlated with the phenotype of ETS proteins in prostate cancer. We found that the oncogenic ETS-related gene (ERG) and ETS variant (ETV) 1/4/5 subfamilies co-occupy ETS-AP1 sites with JUN-FOS in vitro, whereas JUN-FOS robustly inhibited DNA binding by the tumor suppressors ETS homologous factor (EHF) and SAM pointed domain-containing ETS TF (SPDEF). EHF bound ETS-AP1 DNA with tighter affinity than ERG in the absence of JUN-FOS, possibly enabling EHF to compete with ERG and JUN-FOS for binding to ETS-AP1 sites. Genome-wide mapping of EHF- and ERG-binding sites in prostate epithelial cells revealed that EHF is preferentially excluded from closely spaced ETS-AP1 DNA sequences. Structural modeling and mutational analyses indicated that adjacent positively charged surfaces from EHF and JUN-FOS use electrostatic repulsion to disfavor simultaneous DNA binding. Conservation of positive residues on the JUN-FOS interface identified E74-like ETS TF 1 (ELF1) as an additional ETS TF exhibiting anticooperative DNA binding with JUN-FOS, and we found that ELF1 is frequently down-regulated in prostate cancer. In summary, divergent electrostatic features of ETS TFs at their JUN-FOS interface enable distinct binding events at ETS-AP1 DNA sites, which may drive specific targeting of ETS TFs to facilitate distinct transcriptional programs.
Collapse
Affiliation(s)
- Bethany J Madison
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Kathleen A Clark
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Niraja Bhachech
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Peter C Hollenhorst
- the Medical Sciences program, Indiana University School of Medicine, Bloomington, Indiana 47405, and
| | - Barbara J Graves
- From the Department of Oncological Sciences and .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112.,the Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Simon L Currie
- From the Department of Oncological Sciences and.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
43
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY. Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 2018; 16:57. [PMID: 30208972 PMCID: PMC6134757 DOI: 10.1186/s12964-018-0266-6] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023] Open
Abstract
FOXM1 (forkhead box protein M1) is a critical proliferation-associated transcription factor that is widely spatiotemporally expressed during the cell cycle. It is closely involved with the processes of cell proliferation, self-renewal, and tumorigenesis. In most human cancers, FOXM1 is overexpressed, and this indicates a poor prognosis for cancer patients. FOXM1 maintains cancer hallmarks by regulating the expression of target genes at the transcriptional level. Due to its potential role as molecular target in cancer therapy, FOXM1 was named the Molecule of the Year in 2010. However, the mechanism of FOXM1 dysregulation remains indistinct. A comprehensive understanding of FOXM1 regulation will provide novel insight for cancer and other diseases in which FOXM1 plays a major role. Here, we summarize the transcriptional regulation, post-transcriptional regulation and post-translational modifications of FOXM1, which will provide extremely important implications for novel strategies targeting FOXM1.
Collapse
Affiliation(s)
- Guo-Bin Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Xin-Zhe Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shuo Zeng
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Cheng Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Chang-Jiang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| | - Jian-Ying Bai
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037 China
| |
Collapse
|
44
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
45
|
Ustiyan V, Bolte C, Zhang Y, Han L, Xu Y, Yutzey KE, Zorn AM, Kalin TV, Shannon JM, Kalinichenko VV. FOXF1 transcription factor promotes lung morphogenesis by inducing cellular proliferation in fetal lung mesenchyme. Dev Biol 2018; 443:50-63. [PMID: 30153454 DOI: 10.1016/j.ydbio.2018.08.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022]
Abstract
Organogenesis is regulated by mesenchymal-epithelial signaling events that induce expression of cell-type specific transcription factors critical for cellular proliferation, differentiation and appropriate tissue patterning. While mesenchymal transcription factors play a key role in mesenchymal-epithelial interactions, transcriptional networks in septum transversum and splanchnic mesenchyme remain poorly characterized. Forkhead Box F1 (FOXF1) transcription factor is expressed in mesenchymal cell lineages; however, its role in organogenesis remains uncharacterized due to early embryonic lethality of Foxf1-/- mice. In the present study, we generated mesenchyme-specific Foxf1 knockout mice (Dermo1-Cre Foxf1-/-) and demonstrated that FOXF1 is required for development of respiratory, cardiovascular and gastrointestinal organ systems. Deletion of Foxf1 from mesenchyme caused embryonic lethality in the middle of gestation due to multiple developmental defects in the heart, lung, liver and esophagus. Deletion of Foxf1 inhibited mesenchyme proliferation and delayed branching lung morphogenesis. Gene expression profiling of micro-dissected distal lung mesenchyme and ChIP sequencing of fetal lung tissue identified multiple target genes activated by FOXF1, including Wnt2, Wnt11, Wnt5A and Hoxb7. FOXF1 decreased expression of the Wnt inhibitor Wif1 through direct transcriptional repression. Furthermore, using a global Foxf1 knockout mouse line (Foxf1-/-) we demonstrated that FOXF1-deficiency disrupts the formation of the lung bud in foregut tissue explants. Finally, deletion of Foxf1 from smooth muscle cell lineage (smMHC-Cre Foxf1-/-) caused hyper-extension of esophagus and trachea, loss of tracheal and esophageal muscle, mispatterning of esophageal epithelium and decreased proliferation of smooth muscle cells. Altogether, FOXF1 promotes lung morphogenesis by regulating mesenchymal-epithelial signaling and stimulating cellular proliferation in fetal lung mesenchyme.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Craig Bolte
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Lu Han
- Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Yan Xu
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Katherine E Yutzey
- Molecular Cardiovascular Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Aaron M Zorn
- Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Tanya V Kalin
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - John M Shannon
- Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Divisions of Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Pulmonary Biology, Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States; Developmental Biology and Cincinnati Children's Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, United States.
| |
Collapse
|
46
|
Wu J, Qin W, Wang Y, Sadik A, Liu J, Wang Y, Song P, Wang X, Sun K, Zeng J, Wang L. SPDEF is overexpressed in gastric cancer and triggers cell proliferation by forming a positive regulation loop with FoxM1. J Cell Biochem 2018; 119:9042-9054. [PMID: 30076647 DOI: 10.1002/jcb.27161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
The SAM-pointed domain-containing ETS transcription factor (SPDEF) is an epithelial-specific transcription factor of the E26 transformation-specific (ETS) family, which binds the target gene through the high-affinity sequence of GGAT. It is suggested that SPDEF targets the promoter activity of Forkhead Box M1 (FoxM1), which has been proven to be highly expressed in gastric cancer. We found that SPDEF was overexpressed both at the messenger RNA (mRNA) and at the protein level in human gastric cancer species. The gastric cancer cells transfected with the SPDEF expression plasmid or SPDEF small interfering RNA (siRNA) led to observations on the clone genetics assay that indicated the promotion or the inhibition of gastric cancer cell proliferation, respectively. Both mRNA and protein levels of FoxM1 were regulated by SPDEF in gastric cancer cells and FoxM1 was also overexpressed in the corresponding human gastric cancer species. The overexpression and inhibition of FoxM1 could upregulate and downregulate the mRNA and protein levels of SPDEF expression, respectively. The recovery experiments verified that the overexpression of FoxM1 could at least partially revert both the expression of SPDEF and the proliferation of the cell lines even with the siRNA inhibition of SPDEF. The result of the dual luciferase activity assay showed that SPDEF bound to the promoter of FoxM1 and activated it. FoxM1 might also bind to the promoter of SPDEF to affect its expression. The results were checked in vivo. In conclusion, SPDEF is overexpressed in gastric cancer, which can form a positive regulation loop with FoxM1 to promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wen Qin
- Department of Medical Administration, Shandong University Hospital, Shandong University, Jinan, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Arsil Sadik
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jilan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yangyang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ping Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaoyun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kaiyue Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lixiang Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
47
|
Prostate-Derived Ets Factor (PDEF) Inhibits Metastasis by Inducing Epithelial/Luminal Phenotype in Prostate Cancer Cells. Mol Cancer Res 2018; 16:1430-1440. [DOI: 10.1158/1541-7786.mcr-18-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
|
48
|
Tsai YC, Chen WY, Abou-Kheir W, Zeng T, Yin JJ, Bahmad H, Lee YC, Liu YN. Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1717-1727. [PMID: 29477409 DOI: 10.1016/j.bbadis.2018.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The chemokine CC motif ligand 2 (CCL2) is important in recruiting tumor-associated macrophages and is involved in the development of castration-resistance prostate cancer (CRPC) after androgen-deprivation therapy (ADT); however, the underlying mechanism remains unclear. We found that inactivation of the androgen receptor (AR) reduces a transcriptional repressor (SAM pointed domain-containing ETS transcription factor, SPDEF) of CCL2, which mediates epithelial-to-mesenchymal transition (EMT) of prostate tumor cells. Cell lines derived from a prostate-specific Pten/Trp53-null mouse and capable of a spontaneous EMT were utilized for identification of CCL2, and showed that reduced SPDEF expression was associated with an elevated CCL2-activated EMT. AR signaling inhibits CCL2 through a SPDEF-mediated mechanism in that the SPDEF recognizes the CCL2 promoter and transcriptionally represses its activity. Ectopically expressed SPDEF reduced the EMT and rescued expression of CCL2 in SPDEF-expressing cells, which induced the EMT and promotes malignant functions of prostate cancer cells. In tissues from prostate cancer patients with ADT, low SPDEF levels were correlated with high CCL2 expression compared to patients without ADT. We present a novel mechanism that contributes to the EMT and metastatic phenotype observed in a subset of ADT-resistant prostate cancer, where the CCL2 is stimulated through the inactivated of AR-mediated SPDEF.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tao Zeng
- Department of Urology, The People's Hospital of Jiangxi Province, Nanchang, People's Republic of China
| | - Juan Juan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Halasi M, Hitchinson B, Shah BN, Váraljai R, Khan I, Benevolenskaya EV, Gaponenko V, Arbiser JL, Gartel AL. Honokiol is a FOXM1 antagonist. Cell Death Dis 2018; 9:84. [PMID: 29367668 PMCID: PMC5833612 DOI: 10.1038/s41419-017-0156-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022]
Abstract
Honokiol is a natural product and an emerging drug for a wide variety of malignancies, including hematopoietic malignancies, sarcomas, and common epithelial tumors. The broad range of activity of honokiol against numerous malignancies with diverse genetic backgrounds suggests that honokiol is inhibiting an activity that is common to multiple malignancies. Oncogenic transcription factor FOXM1 is one of the most overexpressed oncoproteins in human cancer. Here we found that honokiol inhibits FOXM1-mediated transcription and FOXM1 protein expression. More importantly, we found that honokiol’s inhibitory effect on FOXM1 is a result of binding of honokiol to FOXM1. This binding is specific to honokiol, a dimerized allylphenol, and was not observed in compounds that either were monomeric allylphenols or un-substituted dihydroxy phenols. This indicates that both substitution and dimerization of allylphenols are required for physical interaction with FOXM1. We thus demonstrate a novel and specific mechanism for FOXM1 inhibition by honokiol, which partially may explain its anticancer activity in cancer cells.
Collapse
Affiliation(s)
- Marianna Halasi
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Ben Hitchinson
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Binal N Shah
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | - Renáta Váraljai
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Irum Khan
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Atlanta, Georgia, USA
| | - Andrei L Gartel
- Department of Medicine, University of Illinois, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
50
|
Bolte C, Whitsett JA, Kalin TV, Kalinichenko VV. Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 228:1-20. [PMID: 29288383 DOI: 10.1007/978-3-319-68483-3_1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lung morphogenesis is a highly orchestrated process beginning with the appearance of lung buds on approximately embryonic day 9.5 in the mouse. Endodermally derived epithelial cells of the primitive lung buds undergo branching morphogenesis to generate the tree-like network of epithelial-lined tubules. The pulmonary vasculature develops in close proximity to epithelial progenitor cells in a process that is regulated by interactions between the developing epithelium and underlying mesenchyme. Studies in transgenic and knockout mouse models demonstrate that normal lung morphogenesis requires coordinated interactions between cells lining the tubules, which end in peripheral saccules, juxtaposed to an extensive network of capillaries. Multiple growth factors, microRNAs, transcription factors, and their associated signaling cascades regulate cellular proliferation, migration, survival, and differentiation during formation of the peripheral lung. Dysregulation of signaling events caused by gene mutations, teratogens, or premature birth causes severe congenital and acquired lung diseases in which normal alveolar architecture and the pulmonary capillary network are disrupted. Herein, we review scientific progress regarding signaling and transcriptional mechanisms regulating the development of pulmonary vasculature during lung morphogenesis.
Collapse
Affiliation(s)
- Craig Bolte
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Tanya V Kalin
- Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Pulmonary Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA. .,Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| |
Collapse
|