1
|
He M, Du B, Chen G, Lyu Y, Guo H, Jia X, Xia K. Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development. Autism Res 2025. [PMID: 39825710 DOI: 10.1002/aur.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive. By employing targeted sequencing on a large Chinese cohort affected by ASD and conducting an extensive literature review, we have compiled 64 distinct variants in the NAA15 gene identified among individuals with neurodevelopmental disorders. Our research demonstrates that loss of NAA15 leads to a substantial increase in neuronal count, potentially resulting in aberrant brain development and triggering repetitive as well as anxious behaviors in mice models. Furthermore, disorder-associated variants within NAA15 impair axon and synapse formation processes crucial for neural connectivity establishment. These findings shed light on the consequences of NAA15 deficiency along with its de novo mutations on brain development while unraveling the cellular mechanisms underlying NDDs.
Collapse
Affiliation(s)
- Mei He
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bing Du
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guodong Chen
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yongqing Lyu
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hui Guo
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. PLoS One 2024; 19:e0301328. [PMID: 38713657 PMCID: PMC11075865 DOI: 10.1371/journal.pone.0301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/14/2024] [Indexed: 05/09/2024] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, United States of America
| |
Collapse
|
3
|
Lyon GJ, Longo J, Garcia A, Inusa F, Marchi E, Shi D, Dörfel M, Arnesen T, Aldabe R, Lyons S, Nashat MA, Bolton D. Evaluating possible maternal effect lethality and genetic background effects in Naa10 knockout mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.27.538618. [PMID: 37163119 PMCID: PMC10168333 DOI: 10.1101/2023.04.27.538618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.
Collapse
Affiliation(s)
- Gholson J. Lyon
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Joseph Longo
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Andrew Garcia
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York, USA
| | - Fatima Inusa
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Elaine Marchi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Daniel Shi
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - Max Dörfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Rafael Aldabe
- Division of Gene Therapy and Regulation of Gene Expression, CIMA, University of Navarra, Pamplona, Spain
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, New York, USA
| | - Melissa A. Nashat
- Human Genetics Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| | - David Bolton
- Molecular Biology Department, New York State Institute for Basic Research (IBR) in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
4
|
Lyon GJ, Vedaie M, Beisheim T, Park A, Marchi E, Gottlieb L, Hsieh TC, Klinkhammer H, Sandomirsky K, Cheng H, Starr LJ, Preddy I, Tseng M, Li Q, Hu Y, Wang K, Carvalho A, Martinez F, Caro-Llopis A, Gavin M, Amble K, Krawitz P, Marmorstein R, Herr-Israel E. Expanding the phenotypic spectrum of NAA10-related neurodevelopmental syndrome and NAA15-related neurodevelopmental syndrome. Eur J Hum Genet 2023; 31:824-833. [PMID: 37130971 PMCID: PMC10325952 DOI: 10.1038/s41431-023-01368-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.
Collapse
Affiliation(s)
- Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
- Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA.
| | - Marall Vedaie
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Travis Beisheim
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Agnes Park
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Katherine Sandomirsky
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | | | - Lois J Starr
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Isabelle Preddy
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Marcellus Tseng
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, M5G2C1, Canada
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ana Carvalho
- Department of Medical Genetics, Pediatric Hospital, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Francisco Martinez
- Unidad de Genetica, Hospital Universitario y Politecnico La Fe, 46026, Valencia, Spain
| | - Alfonso Caro-Llopis
- Grupo de Investigacion Traslacional en Genetica, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Maureen Gavin
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Karen Amble
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Herr-Israel
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
5
|
Malinow RA, Zhu M, Jin Y, Kim KW. Forward genetic screening identifies novel roles for N-terminal acetyltransferase C and histone deacetylase in C. elegans development. Sci Rep 2022; 12:16438. [PMID: 36180459 PMCID: PMC9525577 DOI: 10.1038/s41598-022-20361-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023] Open
Abstract
Coordinating the balance between development and stress responses is critical for organismal survival. However, the cellular signaling controlling this mechanism is not well understood. In Caenorhabditis elegans, it has been hypothesized that a genetic network regulated by NIPI-3/Tibbles may control the balance between animal development and immune response. Using a nipi-3(0) lethality suppressor screen in C. elegans, we reveal a novel role for N-terminal acetyltransferase C complex natc-1/2/3 and histone deacetylase hda-4, in the control of animal development. These signaling proteins act, at least in part, through a PMK-1 p38 MAP kinase pathway (TIR-1-NSY-1-SEK-1-PMK-1), which plays a critical role in the innate immunity against infection. Additionally, using a transcriptional reporter of SEK-1, a signaling molecule within this p38 MAP kinase system that acts directly downstream of C/EBP bZip transcription factor CEBP-1, we find unexpected positive control of sek-1 transcription by SEK-1 along with several other p38 MAP kinase pathway components. Together, these data demonstrate a role for NIPI-3 regulators in animal development, operating, at least in part through a PMK-1 p38 MAPK pathway. Because the C. elegans p38 MAP kinase pathway is well known for its role in cellular stress responses, the novel biological components and mechanisms pertaining to development identified here may also contribute to the balance between stress response and development.
Collapse
Affiliation(s)
- Rose Aria Malinow
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ming Zhu
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon, 24252, South Korea.
- Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
6
|
Kweon HY, Lee MN, Dorfel M, Seo S, Gottlieb L, PaPazyan T, McTiernan N, Ree R, Bolton D, Garcia A, Flory M, Crain J, Sebold A, Lyons S, Ismail A, Marchi E, Sonn SK, Jeong SJ, Jeon S, Ju S, Conway SJ, Kim T, Kim HS, Lee C, Roh TY, Arnesen T, Marmorstein R, Oh GT, Lyon GJ. Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway. eLife 2021; 10:e65952. [PMID: 34355692 PMCID: PMC8376253 DOI: 10.7554/elife.65952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.
Collapse
Affiliation(s)
- Hyae Yon Kweon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Mi-Ni Lee
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
- Laboratory Animal Resource Center Korea ResearchInstitute of Bioscience and BiotechnologyChungbukRepublic of Korea
| | - Max Dorfel
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Seungwoon Seo
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Leah Gottlieb
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Thomas PaPazyan
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Nina McTiernan
- Department of Biomedicine, University of BergenBergenNorway
| | - Rasmus Ree
- Department of Biomedicine, University of BergenBergenNorway
| | - David Bolton
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Andrew Garcia
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Michael Flory
- Research Design and Analysis Service, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Jonathan Crain
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Alison Sebold
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Scott Lyons
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Ahmed Ismail
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| | - Seong-keun Sonn
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Se-Jin Jeong
- Center for Cardiovascular Research, Washington University School of MedicineSaint LouisUnited States
| | - Sejin Jeon
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Shinyeong Ju
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
| | - Simon J Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of MedicineIndianapolisUnited States
| | - Taesoo Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hyun-Seok Kim
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and TechnologySeoulRepublic of Korea
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee UniversitySeoulRepublic of Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and TechnologyPohangRepublic of Korea
| | - Thomas Arnesen
- Department of Biomedicine, University of BergenBergenNorway
- Department of Biological Sciences, University of BergenBergenNorway
- Department of Surgery, Haukeland University HospitalBergenNorway
| | - Ronen Marmorstein
- Department of Chemistry, University of PennsylvaniaPhiladelphiaUnited States
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Goo Taeg Oh
- Department of Life Science and College of Natural Sciences, Ewha Womans UniversitySeoulRepublic of Korea
| | - Gholson J Lyon
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor LaboratoryWoodburyUnited States
- Department of Human Genetics, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
- Biology PhD Program, The Graduate Center, The City University of New YorkNew YorkUnited States
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUnited States
| |
Collapse
|
7
|
Rodpai R, Sanpool O, Thanchomnang T, Laoraksawong P, Sadaow L, Boonroumkaew P, Wangwiwatsin A, Wongkham C, Laummaunwai P, Ittiprasert W, Brindley PJ, Intapan PM, Maleewong W. Exposure to dexamethasone modifies transcriptomic responses of free-living stages of Strongyloides stercoralis. PLoS One 2021; 16:e0253701. [PMID: 34181669 PMCID: PMC8238218 DOI: 10.1371/journal.pone.0253701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinfection and disseminated infection by the parasitic nematode Strongyloides stercoralis can be induced by iatrogenic administration of steroids and immunosuppression and lead to an elevated risk of mortality. Responses of free-living stages of S. stercoralis to the therapeutic corticosteroid dexamethasone (DXM) were investigated using RNA-seq transcriptomes of DXM-treated female and male worms. A total of 17,950 genes representing the transcriptome of these free-living adult stages were obtained, among which 199 and 263 were differentially expressed between DXM-treated females and DXM-treated males, respectively, compared with controls. According to Gene Ontology analysis, differentially expressed genes from DXM-treated females participate in developmental process, multicellular organismal process, cell differentiation, carbohydrate metabolic process and embryonic morphogenesis. Others are involved in signaling and signal transduction, including cAMP, cGMP-dependent protein kinase pathway, endocrine system, and thyroid hormone pathway, as based on Kyoto Encyclopedia of Genes and Genomes analysis. The novel findings warrant deeper investigation of the influence of DXM on growth and other pathways in this neglected tropical disease pathogen, particularly in a setting of autoimmune and/or allergic disease, which may require the clinical use of steroid-like hormones during latent or covert strongyloidiasis.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pokkamol Laoraksawong
- School of Health Science, Sukhothai Thammathirat Open University, Nonthaburi, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
8
|
Qin W, Xie Z, Wang J, Ou G, Wang C, Chen X. Chemoproteomic Profiling of O-GlcNAcylation in Caenorhabditis elegans. Biochemistry 2019; 59:3129-3134. [DOI: 10.1021/acs.biochem.9b00622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Zhongyun Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | | | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
9
|
Eldeeb MA, Fahlman RP, Ragheb MA, Esmaili M. Does N‐Terminal Protein Acetylation Lead to Protein Degradation? Bioessays 2019; 41:e1800167. [DOI: 10.1002/bies.201800167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 08/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamed A. Eldeeb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill University Montreal Quebec H3A 2B4 Canada
| | - Richard P. Fahlman
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division)Faculty of ScienceCairo University Giza 12613 Egypt
| | - Mansoore Esmaili
- Department of BiochemistryUniversity of Alberta Edmonton Alberta T6G 2R3 Canada
| |
Collapse
|
10
|
Nguyen KT, Mun SH, Lee CS, Hwang CS. Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp Mol Med 2018; 50:1-8. [PMID: 30054456 PMCID: PMC6063864 DOI: 10.1038/s12276-018-0097-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed that Nt-acetylation has a significant impact on protein stability, activity, folding patterns, cellular localization, etc. In addition, Nt-acetylation marks specific proteins for degradation by a branch of the N-end rule pathway, a subset of the ubiquitin-mediated proteolytic system. The N-end rule associates a protein's in vivo half-life with its N-terminal residue or modifications on its N-terminus. This review provides a current understanding of intracellular proteolysis control by Nt-acetylation and the N-end rule pathway.
Collapse
Affiliation(s)
- Kha The Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sang-Hyeon Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
11
|
Lee MN, Kweon HY, Oh GT. N-α-acetyltransferase 10 (NAA10) in development: the role of NAA10. Exp Mol Med 2018; 50:1-11. [PMID: 30054454 PMCID: PMC6063908 DOI: 10.1038/s12276-018-0105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
N-α-acetyltransferase 10 (NAA10) is a subunit of Nα-terminal protein acetyltransferase that plays a role in many biological processes. Among the six N-α-acetyltransferases (NATs) in eukaryotes, the biological significance of the N-terminal acetyl-activity of Naa10 has been the most studied. Recent findings in a few species, including humans, indicate that loss of N-terminal acetylation by NAA10 is associated with developmental defects. However, very little is known about the role of NAA10, and more research is required in relation to the developmental process. This review summarizes recent studies to understand the function of NAA10 in the development of multicellular organisms. Further investigations are needed into the role of a key enzyme in biological development and its encoding gene. The enzyme N-α-acetyltransferase 10 (NAA10), encoded by the NAA10 gene, plays a role in multiple biological processes. While the function of NAA10 has been studied in cancer, less is known about the roles of the gene and the enzyme during development, according to a review by Goo Taeg Oh and co-workers at the Ewha Womans University in Seoul, South Korea. Mutations in NAA10 are found in patients with developmental delay, cardiac problems and skeletal abnormalities, while reduced enzyme activity is associated with developmental defects. Mouse studies suggest a role for NAA10 in neuronal development, bone formation and healthy sperm generation. The impact of variable NAA10 expression in different organs at different developmental stages needs clarification.
Collapse
Affiliation(s)
- Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Lee D, Jang MK, Seo JH, Ryu SH, Kim JA, Chung YH. ARD1/NAA10 in hepatocellular carcinoma: pathways and clinical implications. Exp Mol Med 2018; 50:1-12. [PMID: 30054466 PMCID: PMC6063946 DOI: 10.1038/s12276-018-0106-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a representative example of a malignancy with a poor prognosis, is characterized by high mortality because it is typically in an advanced stage at diagnosis and leaves very little hepatic functional reserve. Despite advances in medical and surgical techniques, there is no omnipotent tool that can diagnose HCC early and then cure it medically or surgically. Several recent studies have shown that a variety of pathways are involved in the development, growth, and even metastasis of HCC. Among a variety of cytokines or molecules, some investigators have suggested that arrest-defective 1 (ARD1), an acetyltransferase, plays a key role in the development of malignancies. Although ARD1 is thought to be centrally involved in the cell cycle, cell migration, apoptosis, differentiation, and proliferation, the role of ARD1 and its potential mechanistic involvement in HCC remain unclear. Here, we review the present literature on ARD1. First, we provide an overview of the essential structure, functions, and molecular mechanisms or pathways of ARD1 in HCC. Next, we discuss potential clinical implications and perspectives. We hope that, by providing new insights into ARD1, this review will help to guide the next steps in the development of markers for the early detection and prognosis of HCC. A protein that is highly expressed in cancer with extensive blood vessel development may provide a potential biomarker for early-stage liver cancer. Liver cancer is often not diagnosed until it is advanced and is also hard to be cured despite of advances in treatment, meaning patients often die from the disease. No tools for early detection or prognosis prediction exist, and scientists are keen to find useful biomarker molecules. Young-Hwa Chung at the University of Ulsan College of Medicine, Asan Medical Center, Seoul, and co-workers in South Korea reviewed recent research into one possible cancer-related protein, arrest-defective 1 (ARD1), known to be highly expressed in certain cancers and possibly associated with poor prognosis. While ARD1 appears to regulate pathways critical to cancer progression and promote cancer cell invasiveness, further in-depth investigations are needed to clarify its specific role in liver cancer.
Collapse
Affiliation(s)
- Danbi Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul, Republic of Korea
| | | | - Young-Hwa Chung
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Varland S, Arnesen T. Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Res Notes 2018; 11:404. [PMID: 29929531 PMCID: PMC6013942 DOI: 10.1186/s13104-018-3513-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Objective N-terminal acetylation is a common protein modification that occurs preferentially co-translationally as the substrate N-terminus is emerging from the ribosome. The major N-terminal acetyltransferase complex A (NatA) is estimated to N-terminally acetylate more than 40% of the human proteome. To form a functional NatA complex the catalytic subunit NAA10 must bind the auxiliary subunit NAA15, which properly folds NAA10 for correct substrate acetylation as well as anchors the entire complex to the ribosome. Mutations in these two genes are associated with various neurodevelopmental disorders in humans. The aim of this study was to investigate the in vivo functionality of a Schizosaccharomyces pombe NAA15 mutant that is known to prevent NatA from associating with ribosomes, but retains NatA-specific activity in vitro. Results Here, we show that Schizosaccharomyces pombe NatA can functionally replace Saccharomyces cerevisiae NatA. We further demonstrate that the NatA ribosome-binding mutant Naa15 ΔN K6E is unable to rescue the temperature-sensitive growth phenotype of budding yeast lacking NatA. This finding indicates the in vivo importance of the co-translational nature of NatA-mediated N-terminal acetylation.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biological Sciences, University of Bergen, 5006, Bergen, Norway. .,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, 5006, Bergen, Norway.,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.,Department of Surgery, Haukeland University Hospital, 5021, Bergen, Norway
| |
Collapse
|
14
|
Magin RS, Deng S, Zhang H, Cooperman B, Marmorstein R. Probing the interaction between NatA and the ribosome for co-translational protein acetylation. PLoS One 2017; 12:e0186278. [PMID: 29016658 PMCID: PMC5634638 DOI: 10.1371/journal.pone.0186278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023] Open
Abstract
N-terminal acetylation is among the most abundant protein modifications in eukaryotic cells. Over the last decade, significant progress has been made in elucidating the function of N-terminal acetylation for a number of diverse systems, involved in a wide variety of biological processes. The enzymes responsible for the modification are the N-terminal acetyltransferases (NATs). The NATs are a highly conserved group of enzymes in eukaryotes, which are responsible for acetylating over 80% of the soluble proteome in human cells. Importantly, many of these NATs act co-translationally; they interact with the ribosome near the exit tunnel and acetylate the nascent protein chain as it is being translated. While the structures of many of the NATs have been determined, the molecular basis for the interaction with ribosome is not known. Here, using purified ribosomes and NatA, a very well-studied NAT, we show that NatA forms a stable complex with the ribosome in the absence of other stabilizing factors and through two conserved regions; primarily through an N-terminal domain and an internal basic helix. These regions may orient the active site of the NatA to face the peptide emerging from the exit tunnel. This work provides a framework for understanding how NatA and potentially other NATs interact with the ribosome for co-translational protein acetylation and sets the foundation for future studies to decouple N-terminal acetyltransferase activity from ribosome association.
Collapse
Affiliation(s)
- Robert S. Magin
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Graduate Group in Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sunbin Deng
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Barry Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Lee CC, Peng SH, Shen L, Lee CF, Du TH, Kang ML, Xu GL, Upadhyay AK, Cheng X, Yan YT, Zhang Y, Juan LJ. The Role of N-α-acetyltransferase 10 Protein in DNA Methylation and Genomic Imprinting. Mol Cell 2017; 68:89-103.e7. [PMID: 28943313 DOI: 10.1016/j.molcel.2017.08.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/13/2017] [Accepted: 08/24/2017] [Indexed: 01/21/2023]
Abstract
Genomic imprinting is an allelic gene expression phenomenon primarily controlled by allele-specific DNA methylation at the imprinting control region (ICR), but the underlying mechanism remains largely unclear. N-α-acetyltransferase 10 protein (Naa10p) catalyzes N-α-acetylation of nascent proteins, and mutation of human Naa10p is linked to severe developmental delays. Here we report that Naa10-null mice display partial embryonic lethality, growth retardation, brain disorders, and maternal effect lethality, phenotypes commonly observed in defective genomic imprinting. Genome-wide analyses further revealed global DNA hypomethylation and enriched dysregulation of imprinted genes in Naa10p-knockout embryos and embryonic stem cells. Mechanistically, Naa10p facilitates binding of DNA methyltransferase 1 (Dnmt1) to DNA substrates, including the ICRs of the imprinted allele during S phase. Moreover, the lethal Ogden syndrome-associated mutation of human Naa10p disrupts its binding to the ICR of H19 and Dnmt1 recruitment. Our study thus links Naa10p mutation-associated Ogden syndrome to defective DNA methylation and genomic imprinting.
Collapse
Affiliation(s)
- Chen-Cheng Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Shih-Huan Peng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC; Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan, ROC
| | - Li Shen
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chung-Fan Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ting-Huei Du
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Ming-Lun Kang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Guo-Liang Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Anup K Upadhyay
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Li-Jung Juan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan, ROC.
| |
Collapse
|
16
|
Aksnes H, Drazic A, Marie M, Arnesen T. First Things First: Vital Protein Marks by N-Terminal Acetyltransferases. Trends Biochem Sci 2016; 41:746-760. [PMID: 27498224 DOI: 10.1016/j.tibs.2016.07.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/01/2016] [Accepted: 07/08/2016] [Indexed: 11/28/2022]
Abstract
N-terminal (Nt) acetylation is known to be a highly abundant co-translational protein modification, but the recent discovery of Golgi- and chloroplast-resident N-terminal acetyltransferases (NATs) revealed that it can also be added post-translationally. Nt-acetylation may act as a degradation signal in a novel branch of the N-end rule pathway, whose functions include the regulation of human blood pressure. Nt-acetylation also modulates protein interactions, targeting, and folding. In plants, Nt-acetylation plays a role in the control of resistance to drought and in regulation of immune responses. Mutations of specific human NATs that decrease their activity can cause either the lethal Ogden syndrome or severe intellectual disability and cardiovascular defects. In sum, recent advances highlight Nt-acetylation as a key factor in many biological pathways.
Collapse
Affiliation(s)
- Henriette Aksnes
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Adrian Drazic
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Michaël Marie
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, 5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
17
|
Fluorescent Beads Are a Versatile Tool for Staging Caenorhabditis elegans in Different Life Histories. G3-GENES GENOMES GENETICS 2016; 6:1923-33. [PMID: 27172224 PMCID: PMC4938646 DOI: 10.1534/g3.116.030163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Precise staging of Caenorhabditis elegans is essential for developmental studies in different environmental conditions. In favorable conditions, larvae develop continuously through four larval stages separated by molting periods. Distinguishing molting from intermolt larvae has been achieved using transgenes with molting reporters, therefore requiring strain constructions, or careful observation of individuals for pharyngeal pumping or behavioral quiescence. In unfavorable conditions, larvae can enter the stress-resistant and developmentally arrested dauer larva stage. Identifying dauer larvae has been based on their ability to withstand detergent selection, precluding identification of recovering animals or of mutants with defects in dauer morphogenesis. Here, we describe a simple method to distinguish molting larvae or dauer larvae from intermolt larvae that bypasses the limitations of current methods. Fluorescent latex beads are mixed with the bacterial food source and ingested by intermolt larvae and adults. Molting and dauer larvae do not feed, and therefore lack beads in their digestive tract. The presence of beads can be determined using a dissecting microscope at magnifications as low as 100 ×, or by using a wormsorter for high-throughput experiments. We find that continuously developing bead-lacking larvae display hallmarks of molting, including expression of the mlt-10::gfp molting marker and a lack of pharyngeal pumping. Furthermore, wild-type and mutant dauer larvae produced by any of three common methods are accurately identified by a lack of beads. Importantly, this method is effective in SDS-sensitive mutant backgrounds and can identify recovering dauer larvae, a stage for which there is no other method of positive selection.
Collapse
|
18
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
19
|
Warnhoff K, Kornfeld K. New links between protein N-terminal acetylation, dauer diapause, and the insulin/IGF-1 signaling pathway in Caenorhabditis elegans. WORM 2015; 4:e1023498. [PMID: 26435887 PMCID: PMC4589988 DOI: 10.1080/21624054.2015.1023498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Protein N-terminal acetylation is a widespread posttranslational modification in eukaryotes that is catalyzed by N-terminal acetyltransferases (NATs). The biochemical activity of NATs has been characterized extensively, whereas the biological function of NATs is only beginning to be defined. Here we comment on recent progress in understanding the function of NAT activity in C. elegans based on the characterization of natc-1 by Warnhoff et al. (2014) and daf-31 by Chen et al. (2014).(1,2) natc-1 encodes an auxiliary subunit of the NatC complex and modulates stress tolerance, dauer entry, and adult lifespan. daf-31 encodes the catalytic subunit of the NatA complex and affects dauer entry, dauer formation, and adult lifespan. The analysis of these genes and genetic studies of NATs in other organisms suggests protein N-terminal acetylation plays an evolutionarily conserved role in promoting growth and development and inhibiting stress resistance. Furthermore, we propose that NATs may regulate growth and development in response to external cues such as nutrient deprivation and other physiologic stresses.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, MO USA
| | - Kerry Kornfeld
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, MO USA
| |
Collapse
|
20
|
Molecular, Cellular, and Physiological Significance of N-Terminal Acetylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:267-305. [DOI: 10.1016/bs.ircmb.2015.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|