1
|
Depintor TS, Freitas FCP, Hernandes N, Nunes FMF, Simões ZLP. Interactions of juvenile hormone, 20-hydroxyecdysone, developmental genes, and miRNAs during pupal development in Apis mellifera. Sci Rep 2025; 15:10354. [PMID: 40133508 PMCID: PMC11937373 DOI: 10.1038/s41598-025-93580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Insect development is primarily controlled by juvenile hormone (JH) and 20-hydroxyecdysone (20E), which regulate gene cascades leading to changes in phenotype, physiology, and behavior. Besides these hormones, microRNAs play a crucial role in insect development by regulating gene expression at the post-transcriptional level. To advance the molecular understanding of holometabolous developmental events, we investigate the pupal phase in the honeybee, Apis mellifera. In this study, we assessed the expression profiles of genes components of JH and 20E cascades - Usp, ftz-f1, EcR, Met, Chd64, InR-2, Kr-h1 and Tai - as well as the microRNAs miRNA-34 and miRNA-281 during pupal development of A. mellifera. We then analyzed the impact of JH and 20E treatments on the expression of these developmental genes and their putative regulators, the microRNAs. Overall, the selected genes and miRNAs remained stable or were downregulated following 20E treatment, while treatments with JH, upregulated most of our candidate developmental genes and microRNAs. Notably, the expression profile of Met, an intracellular receptor of JH, showed a strong correlation with fluctuations in 20E titers during pupal development. Furthermore, a computational analysis, followed by experimental assays, points to both miR-34 and miR-281 as potential regulators of pupal development in A. mellifera. This study paves the way for a better understanding of how JH and 20E hormones interact with developmental genes and microRNAs (miR-34 and miR-281) to regulate pupal development in honeybees, elucidating a piece of this complex network of interactions.
Collapse
Affiliation(s)
- T S Depintor
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - F C P Freitas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - N Hernandes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - F M F Nunes
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Genetics and Evolution, Center for Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Z L P Simões
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Yu X, Wang X, Ma K, Gao D, Deng Y, Zhou D, Ding W, Zhao Y, Liu Q, Zhou Z. Tai/NCOA2 suppresses the Hedgehog pathway by directly targeting the transcription factor Ci/GLI. Proc Natl Acad Sci U S A 2024; 121:e2409380121. [PMID: 39531503 PMCID: PMC11588115 DOI: 10.1073/pnas.2409380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
The Hedgehog (Hh) pathway plays diverse roles in cellular processes by activating the transcription factor Cubitus interruptus (Ci). Abnormal regulation of this pathway has been linked to various human diseases. While previous studies have focused on how Ci is regulated in the cytoplasm, the control of nuclear Ci remains poorly understood. In this study, we have found that the transcriptional cofactor Taiman (Tai) functions as an inhibitor of the Hh pathway. Tai interferes with the response of Hh signal, rather than Hh secretion. Our epistatic analyses reveal that Tai works in parallel with Ci to reduce its activity, thereby counteracting organ overgrowth and the activation of target genes caused by Ci overexpression. Specifically, Tai interacts with Ci to decrease its binding to target gene promoters. The Hh signal weakens the interaction between Ci and Tai, releasing the inhibition on Ci. Importantly, this regulatory mechanism is conserved from Drosophila to mammalian cells. Moreover, NCOA1-3 are the mammalian ortholog of Drosophila protein Tai, but only NCOA2 plays a similar role in inhibiting the Hh pathway. These findings reveal an additional way to modulate the transcriptional activity of nuclear Ci.
Collapse
Affiliation(s)
- Xuan Yu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Xinyu Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Kaize Ma
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Dongqing Gao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yanran Deng
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| | - Dafa Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Wenhao Ding
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yunhe Zhao
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
- Key Laboratory of Biodiversity Conservation and Bioresource Utilization of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang330022, China
| |
Collapse
|
3
|
Li N, Xu X, Li J, Hull JJ, Chen L, Liang G. A spray-induced gene silencing strategy for Spodoptera frugiperda oviposition inhibition using nanomaterial-encapsulated dsEcR. Int J Biol Macromol 2024; 281:136503. [PMID: 39395517 DOI: 10.1016/j.ijbiomac.2024.136503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Although RNAi-based pest management holds great potential as an alternative to traditional chemical control, its efficiency is restricted by dsRNA instability and limited cellular uptake. Using nanomaterials to facilitate dsRNA delivery has shown promise in solving these challenges. In this study, we firstly used RNAi to investigate the role of the juvenile hormone and ecdysteroid signaling pathways genes in reproduction of Spodoptera frugiperda, the fall armyworm. Females in knocked-down treatments of any of the Met, EcR, and USP genes had greatly reduced fertility with the most pronounced inhibitory effects on oviposition observed following EcR knockdown, and thus the dsEcR could be a candidate target for RNAi-based oviposition inhibitory agency. Then a combinatorial spray-induced and nanocarrier-delivered gene silencing (SI-NDGS) approach that targeted EcR was conducted. At 72 h post-spay, the transcript levels of EcR and the oviposition were successfully reduced and inhibited. These findings support the groundwork for further developing novel RNAi-based pest management strategies for S. frugiperda.
Collapse
Affiliation(s)
- Ningning Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaona Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Maricopa, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Dong S, Li K, Zang H, Song Y, Kang J, Chen Y, Du L, Wang N, Chen D, Luo Q, Yan T, Guo R, Qiu J. ame-miR-5119- Eth axis modulates larval-pupal transition of western honeybee worker. Front Physiol 2024; 15:1475306. [PMID: 39397857 PMCID: PMC11470490 DOI: 10.3389/fphys.2024.1475306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
The miRNA plays a key role in the regulation of hormone signaling in insects. The pathways by which miRNAs affect hormone levels are unclear in the honeybee (Apis mellifera), an indispensable pollinator in nature. In this study, ame-miR-5119 was overexpressed and knocked down in larvae by feeding mimics and inhibitors, respectively, and we determined that ame-miR-5119 regulates hormone signaling through the target gene ecdysis triggering hormone (Eth), which affects the larval-pupal transition of workers. The results showed that ame-miR-5119 with a length of 19 nt targets six genes related to the hormone pathway. We focused on Eth and found that ame-miR-5119 and Eth exhibited reverse expression patterns during the transition from larval to pupal stages in workers. Dual luciferase assay confirmed the negative regulatory between ame-miR-5119 and Eth. Overexpression of ame-miR-5119 decreased the mRNA level of Eth, and the Eth receptor (Ethr) expression was not significantly affected, but the expression levels of juvenile hormone (JH) pathway related genes juvenile hormone acid methyltransferase (Jhamt) and Krüppel homolog 1 (Kr-h1) were significantly reduced. In contrast, knockdown of ame-miR-5119 increased the mRNA level of Eth, and the expression of Ethr, Jhamt and Kr-h1 was significantly upregulated. ame-miR-5119 did not affect larval body weight. The number of larvae overexpressing ame-miR-5119 survived in the prepupal stage was lower than that in the control group, and the number of pupations reduced at 11-day-old. The number of larvae that knocked down ame-miR-5119 survived in the prepupal stage was significantly higher than that in the control group, and the number of pupations increased at 11-day-old. These results indicated that ame-miR-5119 negatively regulates the expression of Eth, indirectly inhibits the expression of Ethr, Jhamt, and Kr-h1, and affects the JH biosynthesis, thereby preventing the metamorphic transition from larva to pupa in worker bees. These findings provide evidence that the miRNA regulation of hormone levels in honey bees.
Collapse
Affiliation(s)
- Shunan Dong
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kunze Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - He Zang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Yuxuan Song
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Kang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Liting Du
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ning Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dafu Chen
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Qingming Luo
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, China
| | - Tizhen Yan
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, China
| | - Rui Guo
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, Fujian, China
| | - Jianfeng Qiu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National and Local United Engineering Laboratory of Natural Biotoxin, Fuzhou, Fujian, China
- Apitherapy Research Institute of Fujian Province, Fuzhou, Fujian, China
| |
Collapse
|
5
|
He Q, Wang S, Chen S, Chen J. Juvenile hormone signal transducer hairy inhibits Krüppel homolog1 expression. Biochem Biophys Res Commun 2024; 726:150276. [PMID: 38908347 DOI: 10.1016/j.bbrc.2024.150276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Hairy and Krüppel homolog 1 (Kr-h1) are transcriptional repressors that act synergistically to mediate the gene-repressive action of juvenile hormone (JH). However, whether a regulatory relationship exists between Hairy and Kr-h1 remains unclear. In this study, an inhibitory effect of Hairy on Kr-h1 expression was found. Genetic studies in Drosophila have shown that the simultaneous overexpression of Hairy and Kr-h1 can rescue the defective phenotypes caused by the overexpression of a single factor. Reduced expression of Kr-h1 was observed in Hairy-overexpressing flies and cells, whereas the expression levels of Hairy were unaffected in cells with ectopic expression of Kr-h1. The inhibitory effect of Hairy on Kr-h1 expression was found to occur at the transcriptional level, as Hairy bound directly to the B-box within the Kr-h1 promoter via the bHLH motif and recruited the corepressors C-terminal binding protein (CtBP) and Groucho (Gro) through the PLSLV and WRPW motifs, respectively. Our findings revealed a regulatory relationship between two JH response factors, which advances our understanding of the molecular mechanism of JH signaling.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Silva RBV, Coelho Júnior VG, de Paula Mattos Júnior A, Julidori Garcia H, Siqueira Caixeta Nogueira E, Mazzoni TS, Ramos Martins J, Rosatto Moda LM, Barchuk AR. Farnesol, a component of plant-derived honeybee-collected resins, shows JH-like effects in Apis mellifera workers. JOURNAL OF INSECT PHYSIOLOGY 2024; 154:104627. [PMID: 38373613 DOI: 10.1016/j.jinsphys.2024.104627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Farnesol, a sesquiterpene found in all eukaryotes, precursor of juvenile hormone (JH) in insects, is involved in signalling, communication, and antimicrobial defence. Farnesol is a compound of floral volatiles, suggesting its importance in pollination and foraging behaviour. Farnesol is found in the resin of Baccharis dracunculifolia, from which honeybees elaborate the most worldwide marketable propolis. Bees use propolis to seal cracks in the walls, reinforce the wax combs, and as protection against bacteria and fungi. The introduction within a honeybee hive of a compound with potential hormonal activity can be a challenge to the colony survival, mainly because the transition from within-hive to outside activities of workers is controlled by JH. Here, we tested the hypothesis that exogenous farnesol alters the pacing of developing workers. The first assays showed that low doses of the JH precursor (0.1 and 0.01 µg) accelerate pharate-adult development, with high doses being toxic. The second assay was conducted in adult workers and demonstrated bees that received 0.2 µg farnesol showed more agitated behaviour than the control bees. If farnesol was used by corpora allata (CA) cells as a precursor of JH and this hormone was responsible for the observed behavioural alterations, these glands were expected to be larger after the treatment. Our results on CA measurements after 72 h of treatment showed bees that received farnesol had glands doubled in size compared to the control bees (p < 0.05). Additionally, we expected the expression of JH synthesis, JH degradation, and JH-response genes would be upregulated in the treated bees. Our results showed that indeed, the mean transcript levels of these genes were higher in the treated bees (significant for methyl farnesoate epoxidase and juvenile hormone esterase, p < 0.05). These results suggest farnesol is used in honeybees as a precursor of JH, leading to increasing JH titres, and thus modulating the pacing of workers development. This finding has behavioural and ecological implications, since alterations in the dynamics of the physiological changes associated to aging in young honeybees may significantly impact colony balance in nature.
Collapse
Affiliation(s)
- Raissa Bayker Vieira Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Valdeci Geraldo Coelho Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Adolfo de Paula Mattos Júnior
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Henrique Julidori Garcia
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Ester Siqueira Caixeta Nogueira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Talita Sarah Mazzoni
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Juliana Ramos Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Lívia Maria Rosatto Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - Angel Roberto Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Khong H, Hattley KB, Suzuki Y. The BTB transcription factor, Abrupt, acts cooperatively with Chronologically inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg regeneration. Dev Biol 2024; 509:70-84. [PMID: 38373692 DOI: 10.1016/j.ydbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.
Collapse
Affiliation(s)
- Hesper Khong
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Kayli B Hattley
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| |
Collapse
|
8
|
Truman JW, Riddiford LM, Konopova B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. eLife 2024; 12:RP92643. [PMID: 38568859 PMCID: PMC10994664 DOI: 10.7554/elife.92643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Barbora Konopova
- Department of Zoology, Faculty of Science, University of South BohemiaCeske BudejoviceCzech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of SciencesCeske BudejoviceCzech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and BSI, Florida International UniversityMiamiUnited States
- Department of Parasitology, Faculty of Science, University of South BohemiaCeské BudejoviceCzech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of WashingtonFriday HarborUnited States
| |
Collapse
|
9
|
Smykal V, Chodakova L, Hejnikova M, Briedikova K, Wu BCH, Vaneckova H, Chen P, Janovska A, Kyjakova P, Vacha M, Dolezel D. Steroid receptor coactivator TAIMAN is a new modulator of insect circadian clock. PLoS Genet 2023; 19:e1010924. [PMID: 37683015 PMCID: PMC10511111 DOI: 10.1371/journal.pgen.1010924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
TAIMAN (TAI), the only insect ortholog of mammalian Steroid Receptor Coactivators (SRCs), is a critical modulator of ecdysone and juvenile hormone (JH) signaling pathways, which govern insect development and reproduction. The modulatory effect is mediated by JH-dependent TAI's heterodimerization with JH receptor Methoprene-tolerant and association with the Ecdysone Receptor complex. Insect hormones regulate insect physiology and development in concert with abiotic cues, such as photo- and thermoperiod. Here we tested the effects of JH and ecdysone signaling on the circadian clock by a combination of microsurgical operations, application of hormones and hormone mimics, and gene knockdowns in the linden bug Pyrrhocoris apterus males. Silencing taiman by each of three non-overlapping double-strand RNA fragments dramatically slowed the free-running period (FRP) to 27-29 hours, contrasting to 24 hours in controls. To further corroborate TAIMAN's clock modulatory function in the insect circadian clock, we performed taiman knockdown in the cockroach Blattella germanica. Although Blattella and Pyrrhocoris lineages separated ~380 mya, B. germanica taiman silencing slowed the FRP by more than 2 hours, suggesting a conserved TAI clock function in (at least) some insect groups. Interestingly, the pace of the linden bug circadian clock was neither changed by blocking JH and ecdysone synthesis, by application of the hormones or their mimics nor by the knockdown of corresponding hormone receptors. Our results promote TAI as a new circadian clock modulator, a role described for the first time in insects. We speculate that TAI participation in the clock is congruent with the mammalian SRC-2 role in orchestrating metabolism and circadian rhythms, and that TAI/SRCs might be conserved components of the circadian clock in animals.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Lenka Chodakova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Marketa Hejnikova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | | | - Bulah Chia-Hsiang Wu
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Hana Vaneckova
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ping Chen
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Anna Janovska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavlina Kyjakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Vacha
- Faculty of Science, Masaryk University, Brno, Czech Republic
| | - David Dolezel
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
10
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
11
|
Palli SR. Juvenile hormone receptor Methoprene tolerant: Functions and applications. VITAMINS AND HORMONES 2023; 123:619-644. [PMID: 37718000 DOI: 10.1016/bs.vh.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
During the past 15years, after confirming Methoprene tolerant (Met) as a juvenile hormone (JH) receptor, tremendous progress has been made in understanding the function of Met in supporting JH signal transduction. Met role in JH regulation of development, including metamorphosis, reproduction, diapause, cast differentiation, behavior, im`munity, sleep and epigenetic modifications, have been elucidated. Met's Heterodimeric partners involved in performing some of these functions were discovered. The availability of JH response elements (JHRE) and JH receptor allowed the development of screening assays in cell lines and yeast. These screening assays facilitated the identification of new chemicals that function as JH agonists and antagonists. These new chemicals and others that will likely be discovered in the near future by using JH receptor and JHRE will lead to highly effective species-specific environmentally friendly insecticides for controlling pests and disease vectors.
Collapse
Affiliation(s)
- Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
12
|
Leyria J, Orchard I, Lange AB. Impact of JH Signaling on Reproductive Physiology of the Classical Insect Model, Rhodnius prolixus. Int J Mol Sci 2022; 23:ijms232213832. [PMID: 36430311 PMCID: PMC9692686 DOI: 10.3390/ijms232213832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
In adult females of several insect species, juvenile hormones (JHs) act as gonadotrophic hormones, regulating egg production. JH binds to its nuclear receptor, Methoprene tolerant (Met), triggering its dimerization with the protein Taiman (Tai). The resulting active complex induces transcription of JH response genes, such as Krüppel homolog 1 (Kr-h1). In this study we report for the first time the participation of the isoform JH III skipped bisepoxide (JHSB3) and its signaling pathway in the reproductive fitness of the classical insect model Rhodnius prolixus. The topical application of synthetic JHSB3 increases transcript and protein expression of yolk protein precursors (YPPs), mainly by the fat body but also by the ovaries, the second source of YPPs. These results are also confirmed by ex vivo assays. In contrast, when the JH signaling cascade is impaired via RNA interference by downregulating RhoprMet and RhoprTai mRNA, egg production is inhibited. Although RhoprKr-h1 transcript expression is highly dependent on JHSB3 signaling, it is not involved in egg production but rather in successful hatching. This research contributes missing pieces of JH action in the insect model in which JH was first postulated almost 100 years ago.
Collapse
|
13
|
Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proc Natl Acad Sci U S A 2022; 119:2114773119. [PMID: 35217609 PMCID: PMC8892354 DOI: 10.1073/pnas.2114773119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
As caterpillars metamorphose to butterflies, insects change their appearance dramatically through metamorphosis. Some insects have an immobile pupal stage for morphological remodeling (homometaboly). Other insects, such as cockroaches, have no pupal stage, and the juveniles and adults are morphologically similar (hemimetaboly). Notably, among the most-ancestral hemimetabolous insects, dragonflies drastically alter their appearance from aquatic nymphs to aerial adults. In dragonflies, we showed that transcription factors Kr-h1 and E93 are essential for regulating metamorphosis as in other insects, while broad, the master gene for pupation in holometabolous insects, regulates a number of both nymph-specific genes and adult-specific genes, providing insight into what evolutionary trajectory the key transcription factor broad has experienced before ending up with governing pupation and holometaboly. Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonata. E93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93. Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93. These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.
Collapse
|
14
|
Milacek M, Bittova L, Tumova S, Luksan O, Hanus R, Kyjakova P, Machara A, Marek A, Jindra M. Binding of de novo synthesized radiolabeled juvenile hormone (JH III) by JH receptors from the Cuban subterranean termite Prorhinotermes simplex and the German cockroach Blattella germanica. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103671. [PMID: 34656795 DOI: 10.1016/j.ibmb.2021.103671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Juvenile hormone (JH) controls insect reproduction and development through an intracellular receptor complex comprising two bHLH-PAS proteins, the JH-binding Methoprene-tolerant (Met) and its partner Taiman (Tai). Many hemimetabolous insects including cockroaches strictly depend on JH for stimulation of vitellogenesis. In termites, the eusocial hemimetabolans, JH also regulates the development of caste polyphenism. Studies addressing the agonist ligand binding to recombinant JH receptors currently include three species belonging to two holometabolous insect orders, but none that would represent any of the hemimetabolous orders. Here, we examined JH receptors in two representatives of Blattodea, the cockroach Blattella germanica and the termite Prorhinotermes simplex. To test the JH-binding capacity of Met proteins from these species, we performed chemical synthesis and tritium labeling of the natural blattodean JH homolog, JH III. Our improved protocol increased the yield and specific activity of [10-3H]JH III relative to formerly available preparations. Met proteins from both species specifically bound [3H]JH III with high affinity, whereas Met variants mutated at a critical position within the ligand-binding domain were incapable of such binding. Furthermore, JH III and the synthetic JH mimic fenoxycarb stimulated dimerization between Met and Tai components of the respective JH receptors of both species. These data present primary evidence for agonist binding by JH receptors in any hemimetabolous species and provide a molecular basis for JH action in cockroaches and termites.
Collapse
Affiliation(s)
- Matej Milacek
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 370 05, Czech Republic; Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, 370 05, Czech Republic
| | - Lenka Bittova
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 370 05, Czech Republic
| | - Sarka Tumova
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 370 05, Czech Republic
| | - Ondrej Luksan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Robert Hanus
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Pavlina Kyjakova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Ales Machara
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 166 10, Czech Republic
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, 166 10, Czech Republic.
| | - Marek Jindra
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, 370 05, Czech Republic; Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, 370 05, Czech Republic.
| |
Collapse
|
15
|
Jindra M, McKinstry WJ, Nebl T, Bittova L, Ren B, Shaw J, Phan T, Lu L, Low JKK, Mackay JP, Sparrow LG, Lovrecz GO, Hill RJ. Purification of an insect juvenile hormone receptor complex enables insights into its post-translational phosphorylation. J Biol Chem 2021; 297:101387. [PMID: 34758356 PMCID: PMC8683598 DOI: 10.1016/j.jbc.2021.101387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Juvenile hormone (JH) plays vital roles in insect reproduction, development, and in many aspects of physiology. JH primarily acts at the gene-regulatory level through interaction with an intracellular receptor (JH receptor [JHR]), a ligand-activated complex of transcription factors consisting of the JH-binding protein methoprene-tolerant (MET) and its partner taiman (TAI). Initial studies indicated significance of post-transcriptional phosphorylation, subunit assembly, and nucleocytoplasmic transport of JHR in JH signaling. However, our knowledge of JHR regulation at the protein level remains rudimentary, partly because of the difficulty of obtaining purified and functional JHR proteins. Here, we present a method for high-yield expression and purification of JHR complexes from two insect species, the beetle T. castaneum and the mosquito Aedes aegypti. Recombinant JHR subunits from each species were coexpressed in an insect cell line using a baculovirus system. MET–TAI complexes were purified through affinity chromatography and anion exchange columns to yield proteins capable of binding both the hormonal ligand (JH III) and DNA bearing cognate JH-response elements. We further examined the beetle JHR complex in greater detail. Biochemical analyses and MS confirmed that T. castaneum JHR was a 1:1 heterodimer consisting of MET and Taiman proteins, stabilized by the JHR agonist ligand methoprene. Phosphoproteomics uncovered multiple phosphorylation sites in the MET protein, some of which were induced by methoprene treatment. Finally, we report a functional bipartite nuclear localization signal, straddled by phosphorylated residues, within the disordered C-terminal region of MET. Our present characterization of the recombinant JHR is an initial step toward understanding JHR structure and function.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic.
| | | | - Thomas Nebl
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Lenka Bittova
- Biology Center, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Bin Ren
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Jan Shaw
- CSIRO Health and Biosecurity, CSIRO, North Ryde, New South Wales, Australia
| | - Tram Phan
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Louis Lu
- CSIRO Manufacturing, CSIRO, Parkville, Victoria, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Ronald J Hill
- CSIRO Health and Biosecurity, CSIRO, North Ryde, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Wu Z, Yang L, Li H, Zhou S. Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors. BMC Biol 2021; 19:222. [PMID: 34625063 PMCID: PMC8499471 DOI: 10.1186/s12915-021-01157-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background The zinc-finger transcription factor Krüppel-homolog 1 (Kr-h1) exerts a dual regulatory role during insect development by preventing precocious larval/nymphal metamorphosis and in stimulating aspects of adult reproduction such as vitellogenesis. However, how Kr-h1 functions both as a transcriptional repressor in juvenile metamorphosis and an activator in adult reproduction remains elusive. Here, we use the insect Locusta migratoria to dissect the molecular mechanism by which Kr-h1 functions as activator and repressor at these distinct developmental stages. Results We report that the kinase PKCα triggers Kr-h1 phosphorylation at the amino acid residue Ser154, a step essential for its dual functions. During juvenile stage, phosphorylated Kr-h1 recruits a corepressor, C-terminal binding protein (CtBP). The complex of phosphorylated Kr-h1 and CtBP represses the transcription of Ecdysone induced protein 93F (E93) and consequently prevents the juvenile-to-adult transition. In adult insects, phosphorylated Kr-h1 recruits a coactivator, CREB-binding protein (CBP), and promotes vitellogenesis by inducing the expression of Ribosomal protein L36. Furthermore, Kr-h1 phosphorylation with the concomitant inhibition of E93 transcription is evolutionarily conserved across insect orders. Conclusion Our results suggest that Kr-h1 phosphorylation is indispensable for the recruitment of transcriptional cofactors, and for its anti-metamorphic and vitellogenic actions in insects. Our data shed new light on the understanding of Kr-h1 regulation and function in JH-regulated insect metamorphosis and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01157-3.
Collapse
Affiliation(s)
- Zhongxia Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huihui Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
17
|
Montañés JC, Rojano C, Ylla G, Piulachs MD, Maestro JL. siRNA enrichment in Argonaute 2-depleted Blattella germanica. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194704. [PMID: 33895310 DOI: 10.1016/j.bbagrm.2021.194704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND RNA interference (RNAi) is a cellular mechanism used to fight various threats, including transposons, aberrant RNAs, and some types of viruses. This mechanism relies on the detection of dsRNA molecules, which through a pathway involving Dicer-2 (Dcr-2) and Argonaute 2 (AGO2), produces small interfering RNAs (siRNAs) that bind to the complementary RNAs triggering their degradation. METHODS Using the cockroach Blattella germanica as a model, we examined AGO2 activity by depleting its mRNA using RNAi and analyzing the phenotypes produced. RESULTS Depleting AGO2 expression had no remarkable effect on nymphal development or reproduction. dsRNA treatment triggered an immediate and transitory increase in AGO2 expression, independently of Dcr-2 action. In addition, we analyzed the siRNAs generated after injecting a heterologous dsRNA in control and AGO2-depleted animals. The results revealed that obtained siRNAs mapped non-uniformly along the dsRNA sequence. In AGO2-depleted animals, the proportion of 22 nucleotide reads was higher and accumulations of reads appeared in areas less well-represented in the controls. We also detected a preference for cytosine as the first nucleotide in controls that was significantly attenuated in AGO2-depleted individuals. CONCLUSIONS/GENERAL SIGNIFICANCE The siRNAs produced from a dsRNA mapped heterogeneously along the length of the dsRNA and this arrangement depends on the dsRNA sequence. AGO2 exerts its role as nuclease on the siRNA duplexes independently of its action on the corresponding mRNA. This study sheds light on an extremely useful process for reverse genetics in laboratories, in addition to the design of more effective, specific, and eco-friendly pest-control strategies.
Collapse
Affiliation(s)
- José Carlos Montañés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Carlos Rojano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Maria Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - José Luis Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
18
|
Crucial Role of Juvenile Hormone Receptor Components Methoprene-Tolerant and Taiman in Sexual Maturation of Adult Male Desert Locusts. Biomolecules 2021; 11:biom11020244. [PMID: 33572050 PMCID: PMC7915749 DOI: 10.3390/biom11020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Currently (2020), Africa and Asia are experiencing the worst desert locust (Schistocerca gregaria) plague in decades. Exceptionally high rainfall in different regions caused favorable environmental conditions for very successful reproduction and population growth. To better understand the molecular mechanisms responsible for this remarkable reproductive capacity, as well as to fill existing knowledge gaps regarding the regulation of male reproductive physiology, we investigated the role of methoprene-tolerant (Scg-Met) and Taiman (Scg-Tai), responsible for transducing the juvenile hormone (JH) signal, in adult male locusts. We demonstrated that knockdown of these components by RNA interference strongly inhibits male sexual maturation, severely disrupting reproduction. This was evidenced by the inability to show mating behavior, the absence of a yellow-colored cuticle, the reduction of relative testes weight, and the drastically reduced phenylacetonitrile (PAN) pheromone levels of the treated males. We also observed a reduced relative weight, as well as relative protein content, of the male accessory glands in Scg-Met knockdown locusts. Interestingly, in these animals the size of the corpora allata (CA), the endocrine glands where JH is synthesized, was significantly increased, as well as the transcript level of JH acid methyltransferase (JHAMT), a rate-limiting enzyme in the JH biosynthesis pathway. Moreover, other endocrine pathways appeared to be affected by the knockdown, as evidenced by changes in the expression levels of the insulin-related peptide and two neuroparsins in the fat body. Our results demonstrate that JH signaling pathway components play a crucial role in male reproductive physiology, illustrating their potential as molecular targets for pest control.
Collapse
|
19
|
Huang X, Ma F, Zhang R, Dai X, Ren Q. Taiman negatively regulates the expression of antimicrobial peptides by promoting the transcription of cactus in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 105:152-163. [PMID: 32652297 DOI: 10.1016/j.fsi.2020.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
In insects, Taiman (Tai) participates in the juvenile hormone, 20-hydroxyecdysone, insulin, and Hippo signaling pathways. However, the role of Tai in crustacean innate immunity is less known. In this study, four Tai isoforms (MnTai-A, MnTai-B, MnTai-C, and MnTai-D) produced by alternative splicing were identified from Macrobrachium nipponense. The obtained genome sequences indicated that MnTai DNA has more than 20 exons and 19 introns. The second to last (-exon2) and the third to last (-exon3) exons can be alternatively spliced. The loss of -exon2 or -exon3 produces MnTai-B or MnTai-C, respectively. Both exons are absent in MnTai-D. The full-length cDNA of MnTai-A (including all exons) was 6894 bp with an open reading frame of 4998 bp that encoded a protein of 1665 amino acids. MnTaiA contains the conservative structure of the Tai family and clustered with nuclear receptor coactivator from shrimp. All these four isoforms were widely distributed in a variety of tissues with the highest expression level in the hepatopancreas except MnTaiC. The transcriptional levels of total Tai genes (designated as MnTaiT) in the hepatopancreas and gills were regulated by bacterial or viral challenge. Knockdown of MnTaiT increased the expression of anti-microbial peptides (AMPs) during Vibrio parahaemolyticus infection. Further study indicated that the negative regulation of AMP gene expression by prawn Tai was mediated through its positive regulation of cactus. Our research provides valuable information that prawn Tai isoforms are involved in innate immunity.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Futong Ma
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
20
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
21
|
Luo W, Veeran S, Wang J, Li S, Li K, Liu SN. Dual roles of juvenile hormone signaling during early oogenesis in Drosophila. INSECT SCIENCE 2020; 27:665-674. [PMID: 31207060 DOI: 10.1111/1744-7917.12698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Juvenile hormone (JH) signaling plays crucial roles in insect metamorphosis and reproduction. Function of JH signaling in germline stem cells (GSCs) remains largely unknown. Here, we found that the number of GSCs significantly declined in the ovaries of Met, Gce and JHAMT mutants. Then we inhibited JH signaling in selected cell types of ovaries by expressing Met and Gce or Kr-h1 double-stranded RNAs (dsRNAs) using different Gal4 drivers. Blocking of JH signaling in muscle cells has no effect on GSC numbers. Blocking of JH signaling in cap cells reduced GSCs cells. Inductive expression of Met and Gce dsRNA but not Kr-h1 by Nos-Gal4 increased GSC cells. These results indicate that JH signaling plays an important role in GSC maintenance.
Collapse
Affiliation(s)
- Wei Luo
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sethuraman Veeran
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
22
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
23
|
Jindra M, Bittova L. The juvenile hormone receptor as a target of juvenoid "insect growth regulators". ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21615. [PMID: 31502704 DOI: 10.1002/arch.21615] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/24/2023]
Abstract
Synthetic compounds that mimic the action of juvenile hormones (JHs) are founding members of a class of insecticides called insect growth regulators (IGRs). Like JHs, these juvenoids block metamorphosis of insect larvae to reproductive adults. Many biologically active juvenoids deviate in their chemical structure considerably from the sesquiterpenoid JHs, raising questions about the mode of action of such JH mimics. Despite the early deployment of juvenoid IGRs in the mid-1970s, their molecular effect could not be understood until recent discoveries of JH signaling through an intracellular JH receptor, namely the ligand-binding transcription factor Methoprene-tolerant (Met). Here, we briefly overview evidence defining three widely employed and chemically distinct juvenoid IGRs (methoprene, pyriproxyfen, and fenoxycarb), as agonist ligands of the JH receptor. We stress that knowledge of the target molecule is critical for using these compounds both as insecticides and as research tools.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Lenka Bittova
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| |
Collapse
|
24
|
Belles X. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21609. [PMID: 31385626 DOI: 10.1002/arch.21609] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect metamorphosis is regulated by two main hormones: ecdysone (20E), which promotes molting, and juvenile hormone (JH), which inhibits adult morphogenesis. The transduction mechanisms for the respective hormonal signals include the transcription factors Krüppel homolog 1 (Kr-h1) and E93, which are JH- and 20E-dependent, respectively. Kr-h1 is the main effector of the antimetamorphic action of JH, while E93 is a key promoter of metamorphosis. The ancestral regulatory axis of metamorphosis, which operates in insects with hemimetabolan (gradual) metamorphosis and is known as the MEKRE93 pathway, is based on Kr-h1 repression of E93. In the last juvenile stage, when the production of JH dramatically decreases, Kr-h1 expression is almost completely interrupted, E93 becomes upregulated and metamorphosis proceeds. The holometabolan (complete) metamorphosis mode of development includes the peculiar pupal stage, a sort of intermediate between the final larval instar and the adult stage. In holometabolan species, Broad-Complex (BR-C) transcription factors determine the pupal stage and E93 stimulates the expression of BR-C in the prepupa. The MEKRE93 pathway is conserved in holometabolan insects, which have added the E93/BR-C interaction loop to the ancestral (hemimetabolan) pathway during the evolution from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
25
|
Xu QY, Deng P, Mu LL, Fu KY, Guo WC, Li GQ. Silencing Taiman impairs larval development in Leptinotarsa decemlineata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:30-39. [PMID: 31519255 DOI: 10.1016/j.pestbp.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
An exploration of novel control strategies for Leptinotarsa decemlineata is becoming more pressing given rapid evolution of insecticide resistance and rise of production loss of potato. Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) is a promising alternative for management. An important first step is to uncover possible RNA-interference (RNAi)-target genes effective against both young and old larvae. Taiman (Tai) is a basic-helix-loop-helix/Per-Arnt-Sim transcription factor that is involved in the mediation of both juvenile hormone (JH) and 20-hydroxyecdysone (20E) signaling. In the present paper, we found that continuous ingestion of dsTai for three days by third (penultimate)-instar larvae caused approximately 20% larval mortality and 80% pupation failure. The larval lethality resulted from failed cuticle and tracheae shedding, which subsequently reduced foliage consumption and nutrient absorption, and depleted lipid stores. In contrast, pupation failure derived from disturbed JH and 20E signals, and disordered nutrient homeostasis including, among others, inhibition of trehalose metabolism and reduction of chitin content. Knockdown of LdTai caused similar larval lethality and pupation impairment in second and fourth (final) larval instars. Therefore, LdTai is among the most attractive candidate genes for RNAi to control L. decemlineata larvae.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Li-Li Mu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-western Oasis, Ministry of Agriculture, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang, Academy of Agricultural Science; Urumqi, 830091, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Li K, Jia QQ, Li S. Juvenile hormone signaling - a mini review. INSECT SCIENCE 2019; 26:600-606. [PMID: 29888456 DOI: 10.1111/1744-7917.12614] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone (20E). During the last decade, significant advances have been made regarding JH signaling. First, the bHLH-PAS transcription factor Met/Gce was identified as the JH intracellular receptor. In the presence of JH, with the assistance of Hsp83, and through physical association with a bHLH-PAS transcriptional co-activator, Met/Gce enters the nucleus and binds to E-box-like motifs in promoter regions of JH primary-response genes for inducing gene expression. Second, the zinc finger transcription factor Kr-h1 was identified as the anti-metamorphic factor which transduces JH signaling. Via Kr-h1 binding sites, Kr-h1 represses expression of 20E primary-response genes (i.e. Br, E93 and E75) to prevent 20E-induced metamorphosis. Third, through the intracellular signaling, JH promotes different aspects of female reproduction. Nevertheless, this action varies greatly from species to species. Last, a hypothetical JH membrane receptor has been predicted to be either a GPCR or a tyrosine kinase receptor. In future, it will be a great challenge to understand how the JH intracellular receptor Met/Gce and the yet unidentified JH membrane receptor coordinate to regulate metamorphosis and reproduction in insects.
Collapse
Affiliation(s)
- Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiang-Qiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
27
|
Xu QY, Du JL, Mu LL, Guo WC, Li GQ. Importance of Taiman in Larval-Pupal Transition in Leptinotarsa decemlineata. Front Physiol 2019; 10:724. [PMID: 31263425 PMCID: PMC6584964 DOI: 10.3389/fphys.2019.00724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 02/01/2023] Open
Abstract
Insect Taiman (Tai) binds to methoprene-tolerant to form a heterodimeric complex, mediating juvenile hormone (JH) signaling to regulate larval development and to prevent premature metamorphosis. Tai also acts as a steroid receptor coactivator of 20-hydroxyecdysone (20E) receptor heterodimer, ecdysone receptor (EcR) and Ultraspiracle (USP), to control the differentiation of early germline cells and the migration of specific follicle cells and border cells in ovaries in several insect species. In holometabolous insects, however, whether Tai functions as the coactivator of EcR/USP to transduce 20E message during larval-pupal transition is unknown. In the present paper, we found that the LdTai mRNA levels were positively correlated with circulating JH and 20E titers in Leptinotarsa decemlineata; and ingestion of either JH or 20E stimulated the transcription of LdTai. Moreover, RNA interference (RNAi)-aided knockdown of LdTai at the fourth (final) instar stage repressed both JH and 20E signals, inhibited larval growth and shortened larval developing period. The knockdown caused 100% larval lethality due to failure of larval-pupal ecdysis. Under the apolysed larval cuticle, the LdTai RNAi prepupae possessed pupal thorax. In contrast, the process of tracheal ecdysis was uncompleted. Neither JH nor 20E rescued the aforementioned defectives in LdTai RNAi larvae. It appears that Tai mediates both JH and 20E signaling. Our results uncover a link between JH and 20E pathways during metamorphosis in L. decemlineata.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jun-Li Du
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li-Li Mu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China.,Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-Western Oasis, Ministry of Agriculture, Urumqi, China
| | - Guo-Qing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
De Loof A, Schoofs L. Mode of Action of Farnesol, the "Noble Unknown" in Particular in Ca 2+ Homeostasis, and Its Juvenile Hormone-Esters in Evolutionary Retrospect. Front Neurosci 2019; 13:141. [PMID: 30858798 PMCID: PMC6397838 DOI: 10.3389/fnins.2019.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Farnesol, the sesquiterpenoid precursor of insect juvenile hormones (JH) that itself has JH activity, existed already long before animals and their hormones came into being. Although it is omnipresent in all eukaryotes, this molecule remains a "noble unknown" in cell physiology. It is neither documented as a hormone nor as another type of signaling molecule. To date, its function as an intermediate in the synthesis of squalene-cholesterol-steroids in chordates/vertebrates, and of the insect/arthropod JHs, esters of farnesol, in the mevalonate biosynthetic pathway is assumed to be the only one. This assumption neglects that already two decades ago, farnesol has been shown to be a potent endogenous inhibitor of N-type voltage-gated Ca2+ channels in some mammalian cell types. The tandem mevalonate pathway and Ca2+ channels originated early in eukaryotic evolution, and has since been well conserved, "promoting" it as a ubiquitous player in Ca2+ homeostasis in all eukaryotes. This paper accentuates how this drastic change in thinking gained momentum after the discovery by Paroulek and Sláma that the huge amounts of JH I in male accessory glands of the Cecropia moth, are actually synthesized in these glands themselves and not in the corpora allata, the hitherto assumed unique synthesis site of such compounds. In addition, MAG-JHs have no hormonal- but an exocrine function. Here we hypothesize that MAG-JHs may function in protecting the spermatozoa against toxic Ca2+ concentrations, and in enabling their flagellum to undulate. They may do so by acting through membrane receptors. Our novel paradigm assigns to farnesol/JHs a function of flexible hydrophobic molecular valves for restricting untimely Ca2+-passage through some types of canonical Ca2+channels, using covalently bound farnesyl- or geranyl-geranyl group attachment as well as GPCRs-G proteins all containing a prenyl group. The high rotatable bond count, and their horseshoe-shape are instrumental to their valve function. In our paradigm, Met/Tai and Gce, to date generally thought to be the (only) functional (nuclear) receptors for JHs, are classified as probable Ca2+-sensitive transcription factors. Some theoretical and practical considerations for possible applications in a medical context will be discussed.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
30
|
Song J, Li W, Zhao H, Gao L, Fan Y, Zhou S. The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1. Development 2018; 145:dev.170670. [PMID: 30470705 DOI: 10.1242/dev.170670] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/14/2018] [Indexed: 01/07/2023]
Abstract
Krüppel-homolog 1 (Kr-h1), a zinc-finger transcription factor, inhibits larval metamorphosis and promotes adult reproduction by transducing juvenile hormone (JH). Although the transcriptional regulation of Kr-h1 has been extensively studied, little is known about its regulation at the post-transcriptional level. Using the migratory locust Locusta migratoria as a model system, we report here that the microRNAs let-7 and miR-278 bound to the Kr-h1 coding sequence and downregulated its expression. Application of let-7 and miR-278 mimics (agomiRs) significantly reduced the level of Kr-h1 transcripts, resulting in partially precocious metamorphosis in nymphs as well as markedly decreased yolk protein precursors, arrested ovarian development and blocked oocyte maturation in adults. Moreover, the expression of let-7 and miR-278 was repressed by JH, constituting a regulatory loop of JH signaling. This study thus reveals a previously unknown regulatory mechanism whereby JH suppresses the expression of let-7 and miR-278, which, together with JH induction of Kr-h1 transcription, prevents the precocious metamorphosis of nymphs and stimulates the reproduction of adult females. These results advance our understanding of the coordination of JH and miRNA regulation in insect development.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wanwan Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haihong Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lulu Gao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuning Fan
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
Juvenile hormone-regulated alternative splicing of the taiman gene primes the ecdysteroid response in adult mosquitoes. Proc Natl Acad Sci U S A 2018; 115:E7738-E7747. [PMID: 30061397 DOI: 10.1073/pnas.1808146115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Juvenile hormone (JH) regulates many aspects of insect development and reproduction. In some processes, JH plays a critical role in defining the action of the steroid hormone 20-hydroxyecdysone (20E). In Aedes aegypti mosquitoes, JH prepares newly emerged female adults to become competent to synthesize vitellogenin in response to 20E after blood ingestion. The molecular basis of this competence is still not well understood. Here, we report that JH regulates pre-mRNA splicing of the taiman gene, which encodes a key transcriptional regulator required for both JH- and 20E-controlled gene expression. JH stimulated the production of the Taiman isoforms A/B, while reducing the levels of the isoforms C/D, in the fat body after adult eclosion. The appearance of the A/B isoforms in maturing mosquitoes was accompanied by acquisition of the competence to respond to 20E. Depletion of the A/B isoforms, by inhibiting the alternative splicing or by isoform-specific RNA interference, considerably diminished the 20E-induced gene expression after a blood meal and substantially impaired oocyte development. In accordance with this observation, further studies indicated that in the presence of 20E, the Taiman A/B isoforms showed much stronger interactions with the 20E receptor complex than the Taiman C/D isoforms. In contrast, all four isoforms displayed similar capabilities of forming active JH receptor complexes with the methoprene-tolerant protein (Met). This study suggested that JH confers the competence to newly emerged female mosquitoes by regulating mRNA splicing to generate the Taiman isoforms that are essential for the vitellogenic 20E response.
Collapse
|
32
|
Shin SW, Jeon JH, Yun CS, Jeong SA, Kim JA, Park DS, Shin Y, Oh HW. Species-Specific Interactions between Plant Metabolites and Insect Juvenile Hormone Receptors. J Chem Ecol 2018; 44:1022-1029. [PMID: 30033491 DOI: 10.1007/s10886-018-1001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 11/26/2022]
Abstract
Because juvenile hormone (JH) controls insect development and its analogs are used as insecticides, juvenile hormone disruptors (JHDs) represent potential sources from which novel pesticides can be developed. Many plant species harbor JHD activity, which has previously been attributed plant secondary metabolites (i.e., diterpenes) that disrupt insect development by interfering with the JH-mediated heterodimer formation of insect juvenile receptor complexes. The results of the present study indicate that plant JHD activity is also concentrated in certain plant groups and families and that plant metabolites have insect group-specific activity. These findings suggest that reciprocal diversification has occurred between plants and insects through the evolution of the plant metabolites and JH receptors, respectively, and that plant metabolites could be developed into insect group-specific pesticides with limited effects on non-target species.
Collapse
Affiliation(s)
- Sang Woon Shin
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea.
| | - Jun Hyoung Jeon
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Chan-Seok Yun
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Seon Ah Jeong
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Ji-Ae Kim
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 580-185, Republic of Korea
| | - Yunhee Shin
- Department of Integrative Biology, University of California, Berkley, CA, 94720, USA
| | - Hyun-Woo Oh
- Core Facility Management Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea.
| |
Collapse
|
33
|
Jongepier E, Kemena C, Lopez-Ezquerra A, Belles X, Bornberg-Bauer E, Korb J. Remodeling of the juvenile hormone pathway through caste-biased gene expression and positive selection along a gradient of termite eusociality. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:296-304. [PMID: 29845724 DOI: 10.1002/jez.b.22805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Abstract
The evolution of division of labor between sterile and fertile individuals represents one of the major transitions in biological complexity. A fascinating gradient in eusociality evolved among the ancient hemimetabolous insects, ranging from noneusocial cockroaches through the primitively social lower termites-where workers retain the ability to reproduce-to the higher termites, characterized by lifetime commitment to worker sterility. Juvenile hormone (JH) is a prime candidate for the regulation of reproductive division of labor in termites, as it plays a key role in insect postembryonic development and reproduction. We compared the expression of JH pathway genes between workers and queens in two lower termites (Zootermopsis nevadensis and Cryptotermes secundus) and a higher termite (Macrotermes natalensis) to that of analogous nymphs and adult females of the noneusocial cockroach Blattella germanica. JH biosynthesis and metabolism genes ranged from reproductive female-biased expression in the cockroach to predominantly worker-biased expression in the lower termites. Remarkably, the expression profile of JH pathway genes sets the higher termite apart from the two lower termites, as well as the cockroach, indicating that JH signaling has undergone major changes in this eusocial termite. These changes go beyond mere shifts in gene expression between the different castes, as we find evidence for positive selection in several termite JH pathway genes. Thus, remodeling of the JH pathway may have played a major role in termite social evolution, representing a striking case of convergent molecular evolution between the termites and the distantly related social hymenoptera.
Collapse
Affiliation(s)
- Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Carsten Kemena
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Xavier Belles
- Institut de Biologia Evolutiva, CSIC-University Pompeu Fabra, Barcelona, Spain
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Huang JH, Liu Y, Lin YH, Belles X, Lee HJ. Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches. J Vis Exp 2018. [PMID: 29782022 DOI: 10.3791/57385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
RNA interference (RNAi) has been widely applied for uncovering the biological functions of numerous genes, and has been envisaged as a pest control tool operating by disruption of essential gene expression. Although different methods, such as injection, feeding, and soaking, have been reported for successful delivery of double-stranded RNA (dsRNA), the efficiency of RNAi through oral delivery of dsRNA is highly variable among different insect groups. The German cockroach, Blattella germanica, is highly sensitive to the injection of dsRNA, as shown by many studies published previously. The present study describes a method to demonstrate that the dsRNA encapsulated with liposome carriers is sufficient to retard the degradation of dsRNA by midgut juice. Notably, the continuous feeding of dsRNA encapsulated by liposomes significantly reduces the tubulin expression in the midgut, and led to the death of cockroaches. In conclusion, the formulation and utilization of dsRNA lipoplexes, which protect dsRNA against nucleases, could be a practical use of RNAi for insect pest control in the future.
Collapse
Affiliation(s)
| | - Yun Liu
- Department of Entomology, National Taiwan University
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University; Biology Centre, Institute of Entomology, Czech Academy of Sciences; Faculty of Science, University of South Bohemia
| | | | - How-Jing Lee
- Department of Entomology, National Taiwan University;
| |
Collapse
|
35
|
CREB-binding protein plays key roles in juvenile hormone action in the red flour beetle, Tribolium Castaneum. Sci Rep 2018; 8:1426. [PMID: 29362416 PMCID: PMC5780420 DOI: 10.1038/s41598-018-19667-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/05/2018] [Indexed: 12/23/2022] Open
Abstract
Juvenile hormones (JH) and ecdysteroids regulate many biological and metabolic processes. CREB-binding protein (CBP) is a transcriptional co-regulator with histone acetyltransferase (HAT) activity. Therefore, CBP is involved in activation of many transcription factors that regulate expression of genes associated with postembryonic development in insects. However, the function of CBP in JH action in insects is not well understood. Hence, we studied the role of CBP in JH action in the red flour beetle, Tribolium castaneum and the Tribolium cell line. CBP knockdown caused a decrease in JH induction of genes, Kr-h1, 4EBP and G13402 in T. castaneum larvae, adults and TcA cells whereas, Trichostatin A [TSA, a histone deacetylase (HDAC) inhibitor] induced the expression of these JH-response genes. Western blot analysis with specific antibodies revealed the requirement of CBP for the acetylation of H3K18 and H3K27 in both T. castaneum and TcA cells. Chromatin immunoprecipitation (Chip) assays showed the importance of CBP-mediated acetylation of H3K27 for JH induction of Kr-h1, 4EBP, and G13402 in TcA cells. These data suggest that CBP plays an important role in JH action in the model insect, T.castaneum.
Collapse
|
36
|
Roy S, Saha TT, Zou Z, Raikhel AS. Regulatory Pathways Controlling Female Insect Reproduction. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:489-511. [PMID: 29058980 DOI: 10.1146/annurev-ento-020117-043258] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The synthesis of vitellogenin and its uptake by maturing oocytes during egg maturation are essential for successful female reproduction. These events are regulated by the juvenile hormones and ecdysteroids and by the nutritional signaling pathway regulated by neuropeptides. Juvenile hormones act as gonadotropins, regulating vitellogenesis in most insects, but ecdysteroids control this process in Diptera and some Hymenoptera and Lepidoptera. The complex crosstalk between the juvenile hormones, ecdysteroids, and nutritional signaling pathways differs distinctly depending on the reproductive strategies adopted by various insects. Molecular studies within the past decade have revealed much about the relationships among, and the role of, these pathways with respect to regulation of insect reproduction. Here, we review the role of juvenile hormones, ecdysteroids, and nutritional signaling, along with that of microRNAs, in regulating female insect reproduction at the molecular level.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Tusar T Saha
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Alexander S Raikhel
- Department of Entomology, Institute for Integrative Genome Biology, and Center for Disease Vector Research, University of California, Riverside, California 92521, USA; , ,
| |
Collapse
|
37
|
Roy A, George S, Palli SR. Multiple functions of CREB-binding protein during postembryonic development: identification of target genes. BMC Genomics 2017; 18:996. [PMID: 29284404 PMCID: PMC5747157 DOI: 10.1186/s12864-017-4373-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Background Juvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect. Results CBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc. Conclusion These data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest. Electronic supplementary material The online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.,Present address, Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21, Suchdol, Czech Republic
| | - Smitha George
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
38
|
Korb J, Belles X. Juvenile hormone and hemimetabolan eusociality: a comparison of cockroaches with termites. CURRENT OPINION IN INSECT SCIENCE 2017; 22:109-116. [PMID: 28805632 DOI: 10.1016/j.cois.2017.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/17/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Termites are social Dictyoptera that evolved eusociality independently from social Hymenoptera. They are characterized by unique developmental plasticity that is the basis of caste differentiation and social organization. As developmental plasticity is a result of endocrine regulation, in order to understand the evolution of termite sociality it is helpful to compare the endocrine underpinning of development between termites and cockroaches. Nijhout and Wheeler (1982) proposed that varying JH titers determine caste differentiation in termites. Based on current results, we extend this model by adding the importance of social interactions. High JH titers in the presence of soldiers lead to regressive development (decrease in body size, apparent regression in development), while an absence of soldiers induces (pre-)soldier differentiation. On the opposite side, low JH titers in colonies headed by reproductives result in progressive molts toward adults, while an absence of reproductives induces development of replacement reproductives. In cockroaches, transcription factors involved in JH signaling, including the adult specifier E93 (the co-called MEKRE93 pathway) regulate the morphogenetic transition between the nymph and the adult. In termites, we speculate that castes might be determined by social effects playing a modulatory action of JH in the MEKRE93 pathway.
Collapse
Affiliation(s)
- Judith Korb
- Evolutionary Biology & Ecology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany.
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| |
Collapse
|
39
|
Liu H, Li HM, Yue Y, Song ZH, Wang JJ, Dou W. The alternative splicing of BdTai and its involvement in the development of Bactrocera dorsalis (Hendel). JOURNAL OF INSECT PHYSIOLOGY 2017; 101:132-141. [PMID: 28750998 DOI: 10.1016/j.jinsphys.2017.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
Interest in insect metamorphosis has primarily focused on juvenile hormone (JH) and ecdysone. Compared to ecdysone signaling, the molecular action of JH is less well established because Methoprene-tolerant (Met) as the JH receptor has been identified until recently. In vitro studies have indicated that Met forms an active JH-dependent complex with one partner protein, Taiman (Tai). However, the related studies on Tai's role in insect metamorphosis are very limited. In this study, five Tai isoforms differing in C-terminal region are identified from the oriental fruit fly Bactrocera dorsalis, an important worldwide pest infesting fruits and vegetables. The spatiotemporal expression pattern analysis indicates that BdTai-A and BdTai-B are highly expressed in early larvae while BdTai-D is more abundant in middle-late larvae. Meanwhile, in vivo methoprene stress leads to dramatic expression pattern fluctuation of BdTai isoforms. The subsequent reverse genetic study reveal that all Tai isoforms (denoted as "Tai-core") depletion in larvae stage of B. dorsalis produce precocious larvae-pupae development, i.e. shortened pupation process and miniature pupae. Further knockdown of individual Tai isoform show that silence of BdTai-E causes the same phenotype as of BdTai-core RNAi. The current data suggest that BdTai-E is involved in transducing the JH signal that represses metamorphosis. Besides, isoforms should be considered when studying Tai functions.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hui-Min Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhong-Hao Song
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
40
|
Wang Z, Yang L, Song J, Kang L, Zhou S. An isoform of Taiman that contains a PRD-repeat motif is indispensable for transducing the vitellogenic juvenile hormone signal in Locusta migratoria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:31-40. [PMID: 28137505 DOI: 10.1016/j.ibmb.2017.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Taiman (Tai) has been recently identified as the dimerizing partner of juvenile hormone (JH) receptor, Methoprene-tolerant (Met). However, the role of Tai isoforms in transducing vitellogenic signal of JH has not been determined. In this study, we show that the migratory locust Locusta migratoria has two Tai isoforms, which differ in an INDEL-1 domain with the PRD-repeat motif rich in histidine and proline at the C-terminus. Tai-A with the INDEL-1 is expressed at levels about 50-fold higher than Tai-B without the INDEL-1 in the fat body of vitellogenic adult females. Knockdown of Tai-A but not Tai-B results in a substantial reduction of vitellogenin expression in the fat body accompanied by the arrest of ovarian development and oocyte maturation, similar to that caused by depletion of both Tai isoforms. Either Tai-A or Tai-B combined with Met can induce target gene transcription in response to JH, but Tai-A appears to mediate a significantly higher transactivation. Our data suggest that the INDEL-1 domain plays a critical role in Tai function during reproduction as Tai-A appears be more active than Tai-B in transducing the vitellogenic JH signal in L. migratoria.
Collapse
Affiliation(s)
- Zhiming Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiasheng Song
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
41
|
Hejnikova M, Paroulek M, Hodkova M. Decrease in Methoprene tolerant and Taiman expression reduces juvenile hormone effects and enhances the levels of juvenile hormone circulating in males of the linden bug Pyrrhocoris apterus. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:72-80. [PMID: 27570150 DOI: 10.1016/j.jinsphys.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Juvenile hormone (JH) produced by the corpus allatum (CA) stimulates vitellogenesis and reduces the synthesis of hexamerin proteins in adult females of Pyrrhocoris apterus. At present it is unknown whether the signaling pathway involving the JH receptor gene Methoprene tolerant (Met) and its binding partner Taiman (Tai), regulates the synthesis of accessory gland proteins (ACPs) and hexamerin proteins or effects male survival. Knockdown of genes by injecting Met dsRNA or Tai dsRNA, reduced the amount of ACPs whilst enhancing the amount of hexamerin mRNA in the fat body and the release of hexamerin proteins into haemolymph, as occurs after the ablation of CA. Lifespan was enhanced by injecting Met but not Tai dsRNA. Diapause associated with the natural absence of JH had a stronger effect on all these parameters than the ablation of CA or the knockdown of genes. This indicates there is an additional regulating agent. Both Met and Tai dsRNA induced a several fold increase in JH (JH III skiped bisepoxide) but a concurrent loss of Met or Tai disabled its function. This supports the view that the Met/Tai complex functions as a JH receptor in the regulation of ACPs and hexamerins.
Collapse
Affiliation(s)
- Marketa Hejnikova
- Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Michal Paroulek
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Magdalena Hodkova
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
42
|
Santos CG, Fernandez-Nicolas A, Belles X. Smads and insect hemimetabolan metamorphosis. Dev Biol 2016; 417:104-13. [PMID: 27452629 DOI: 10.1016/j.ydbio.2016.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
In contrast with Drosophila melanogaster, practically nothing is known about the involvement of the TGF-β signaling pathway in the metamorphosis of hemimetabolan insects. To partially fill this gap, we have studied the role of Smad factors in the metamorphosis of the German cockroach, Blattella germanica. In D. melanogaster, Mad is the canonical R-Smad of the BMP branch of the TGF-β signaling pathway, Smox is the canonical R-Smad of the TGF-β/Activin branch and Medea participates in both branches. In insects, metamorphosis is regulated by the MEKRE93 pathway, which starts with juvenile hormone (JH), whose signal is transduced by Methoprene-tolerant (Met), which stimulates the expression of Krüppel homolog 1 (Kr-h1) that acts to repress E93, the metamorphosis trigger. In B. germanica, metamorphosis is determined at the beginning of the sixth (final) nymphal instar (N6), when JH production ceases, the expression of Kr-h1 declines, and the transcription of E93 begins to increase. The RNAi of Mad, Smox and Medea in N6 of B. germanica reveals that the BMP branch of the TGF-β signaling pathway regulates adult ecdysis and wing extension, mainly through regulating the expression of bursicon, whereas the TGF-β/Activin branch contributes to increasing E93 and decreasing Kr-h1 at the beginning of N6, crucial for triggering adult morphogenesis, as well as to regulating the imaginal molt timing.
Collapse
Affiliation(s)
- Carolina G Santos
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Ana Fernandez-Nicolas
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
43
|
Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. PEST MANAGEMENT SCIENCE 2016; 72:1231-1241. [PMID: 26299648 DOI: 10.1002/ps.4103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Juvenile hormone (JH) plays a critical role in the regulation of metamorphosis in Leptinotarsa decemlineata, a notorious defoliator of potato. JH acid methyltransferase (JHAMT) is involved in one of the final steps of JH biosynthesis. RESULTS A putative JHAMT cDNA (LdJHAMT) was cloned. Two double-stranded RNAs (dsRNAs) (dsJHAMT1 and dsJHAMT2) against LdJHAMT were constructed and bacterially expressed. Experiments were conducted to investigate the effectiveness of RNAi in both second- and fourth-instar larvae. Dietary introduction of dsJHAMT1 and dsJHAMT2 successfully knocked down the target gene, lowered JH titre in the haemolymph and reduced the transcript of Krüppel homologue 1 gene. Ingestion of dsJHAMT caused larval death and weight loss, shortened larval developmental period and impaired pupation. Moreover, the dsJHAMT-fed pupae exhibited lower adult emergence rates. The resulting adults weighed an average of 50 mg less than the control group, and the females did not deposit eggs. Application of pyriproxyfen to the dsJHAMT-fed insects rescued all the negative effects. CONCLUSIONS LdJHAMT expresses functional JHAMT enzyme. The RNAi targeting LdJHAMT could be used for control of L. decemlineata. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say). Gene 2016; 584:136-47. [DOI: 10.1016/j.gene.2016.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 11/17/2022]
|
45
|
Vea IM, Tanaka S, Shiotsuki T, Jouraku A, Tanaka T, Minakuchi C. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS One 2016; 11:e0149459. [PMID: 26894583 PMCID: PMC4760703 DOI: 10.1371/journal.pone.0149459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Sayumi Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiharu Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
46
|
Kayukawa T, Nagamine K, Ito Y, Nishita Y, Ishikawa Y, Shinoda T. Krüppel Homolog 1 Inhibits Insect Metamorphosis via Direct Transcriptional Repression of Broad-Complex, a Pupal Specifier Gene. J Biol Chem 2015; 291:1751-1762. [PMID: 26518872 DOI: 10.1074/jbc.m115.686121] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 01/13/2023] Open
Abstract
The Broad-Complex gene (BR-C) encodes transcription factors that dictate larval-pupal metamorphosis in insects. The expression of BR-C is induced by molting hormone (20-hydroxyecdysone (20E)), and this induction is repressed by juvenile hormone (JH), which exists during the premature larval stage. Krüppel homolog 1 gene (Kr-h1) has been known as a JH-early inducible gene responsible for repression of metamorphosis; however, the functional relationship between Kr-h1 and repression of BR-C has remained unclear. To elucidate this relationship, we analyzed cis- and trans elements involved in the repression of BR-C using a Bombyx mori cell line. In the cells, as observed in larvae, JH induced the expression of Kr-h1 and concurrently suppressed 20E-induced expression of BR-C. Forced expression of Kr-h1 repressed the 20E-dependent activation of the BR-C promoter in the absence of JH, and Kr-h1 RNAi inhibited the JH-mediated repression, suggesting that Kr-h1 controlled the repression of BR-C. A survey of the upstream sequence of BR-C gene revealed a Kr-h1 binding site (KBS) in the BR-C promoter. When KBS was deleted from the promoter, the repression of BR-C was abolished. Electrophoresis mobility shift demonstrated that two Kr-h1 molecules bound to KBS in the BR-C promoter. Based on these results, we conclude that Kr-h1 protein molecules directly bind to the KBS sequence in the BR-C promoter and thereby repress 20E-dependent activation of the pupal specifier, BR-C. This study has revealed a considerable portion of the picture of JH signaling pathways from the reception of JH to the repression of metamorphosis.
Collapse
Affiliation(s)
- Takumi Kayukawa
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,.
| | - Keisuke Nagamine
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan,; Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Yuka Ito
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshinori Nishita
- Department of Biological Science and Center for Genome Dynamics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yukio Ishikawa
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan, and
| | - Tetsuro Shinoda
- From the Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
47
|
Jindra M, Bellés X, Shinoda T. Molecular basis of juvenile hormone signaling. CURRENT OPINION IN INSECT SCIENCE 2015; 11:39-46. [PMID: 28285758 DOI: 10.1016/j.cois.2015.08.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 05/23/2023]
Abstract
Despite important roles played by juvenile hormone (JH) in insects, the mechanisms underlying its action were until recently unknown. A breakthrough has been the demonstration that the bHLH-PAS protein Met is an intracellular receptor for JH. Binding of JH to Met triggers dimerization of Met with its partner protein Tai, and the resulting complex induces transcription of target genes. In addition, JH can potentiate this response by phosphorylating Met and Tai via cell membrane, second-messenger signaling. An important gene induced by the JH-Met-Tai complex is Kr-h1, which inhibits metamorphosis. Kr-h1 represses an 'adult specifier' gene E93. The action of this JH-activated pathway in maintaining the juvenile status is dispensable during early postembryonic development when larvae/nymphs lack competence to metamorphose.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| | - Xavier Bellés
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
48
|
Ylla G, Belles X. Towards understanding the molecular basis of cockroach tergal gland morphogenesis. A transcriptomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:104-112. [PMID: 26086932 DOI: 10.1016/j.ibmb.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 06/04/2023]
Abstract
The tergal gland is a structure exclusive of adult male cockroaches that produces substances attractive to the female and facilitates mating. It is formed de novo in tergites 7 and 8 during the transition from the last nymphal instar to the adult. Thus, the tergal gland can afford a suitable case study to investigate the molecular basis of a morphogenetic process occurring during metamorphosis. Using Blattella germanica as model, we constructed transcriptomes from male tergites 7-8 in non-metamorphosing specimens, and from the same tergites in metamorphosing specimens. We performed a de novo assembly all available transcriptomes to construct a reference transcriptome and we identified transcripts by homology. Finally we mapped all reads into the reference transcriptome in order to perform analysis of differentially expressed genes and a GO-enrichment test. A total of 5622 contigs appeared to be overrepresented in the transcriptome of metamorphosing specimens with respect to those specimens that did not metamorphose. Among these genes, there were six GO-terms with a p-value lower than 0.05 and among them GO: 0003676 ("nucleic acid binding") was especially interesting since it included transcription factors (TFs). Examination of TF-Pfam-motifs revealed that the transcriptome of metamorphosing specimens contains the highest diversity of these motifs, with 29 different types (seven of them exclusively expressed in this stage) compared with that of non-metamorphosing specimens, which contained 24 motif types. Transcriptome comparisons suggest that TFs are important drivers of the process of tergal gland formation during metamorphosis.
Collapse
Affiliation(s)
- Guillem Ylla
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
49
|
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor. PLoS Genet 2015; 11:e1005394. [PMID: 26161662 PMCID: PMC4498814 DOI: 10.1371/journal.pgen.1005394] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/26/2015] [Indexed: 12/31/2022] Open
Abstract
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Philippe Charles
- Centre des Sciences du Gout et de l’Alimentation (CSGA), CNRS 6265, INRA 1324, Université Bourgogne-Franche-Comté, Dijon, France
| | - Vlastimil Smykal
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ronald J. Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| |
Collapse
|
50
|
Juvenile hormone-activated phospholipase C pathway enhances transcriptional activation by the methoprene-tolerant protein. Proc Natl Acad Sci U S A 2015; 112:E1871-9. [PMID: 25825754 DOI: 10.1073/pnas.1423204112] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Juvenile hormone (JH) is a key regulator of a wide diversity of developmental and physiological events in insects. Although the intracellular JH receptor methoprene-tolerant protein (MET) functions in the nucleus as a transcriptional activator for specific JH-regulated genes, some JH responses are mediated by signaling pathways that are initiated by proteins associated with plasma membrane. It is unknown whether the JH-regulated gene expression depends on the membrane-mediated signal transduction. In Aedes aegypti mosquitoes, we found that JH activated the phospholipase C (PLC) pathway and quickly increased the levels of inositol 1,4,5-trisphosphate, diacylglycerol, and intracellular calcium, leading to activation and autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). When abdomens from newly emerged mosquitoes were cultured in vitro, the JH-activated gene expression was repressed substantially if specific inhibitors of PLC or CaMKII were added to the medium together with JH. In newly emerged female mosquitoes, RNAi-mediated depletion of PLC or CaMKII considerably reduced the expression of JH-responsive genes, including the Krüppel homolog 1 gene (AaKr-h1) and the early trypsin gene (AaET). JH-induced loading of MET to the promoters of AaKr-h1 and AaET was weakened drastically when either PLC or CaMKII was inactivated in the cultured tissues. Therefore, the results suggest that the membrane-initiated signaling pathway modifies the DNA-binding activity of MET via phosphorylation and thus facilitates the genomic responses to JH. In summary, this study reveals an interplay of genomic and nongenomic signaling mechanisms of JH.
Collapse
|