1
|
Everitt T, Rönneburg T, Elsner D, Olsson A, Liu Y, Larva T, Korb J, Webster MT. Unexpectedly low recombination rates and presence of hotspots in termite genomes. Genome Res 2025; 35:1124-1137. [PMID: 40113265 PMCID: PMC12047536 DOI: 10.1101/gr.279180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Meiotic recombination is a fundamental evolutionary process that facilitates adaptation and the removal of deleterious genetic variation. Social Hymenoptera exhibit some of the highest recombination rates among metazoans, whereas high recombination rates have not been found among nonsocial species from this insect order. It is unknown whether elevated recombination rates are a ubiquitous feature of all social insects. In many metazoan taxa, recombination is mainly restricted to hotspots a few kilobases in length. However, little is known about the prevalence of recombination hotspots in insect genomes. Here we infer recombination rate and its fine-scale variation across the genomes of two social species from the insect order Blattodea: the termites Macrotermes bellicosus and Cryptotermes secundus We used linkage disequilibrium-based methods to infer recombination rate. We infer that recombination rates are close to 1 cM/Mb in both species, similar to the average metazoan rate. We also observe a highly punctate distribution of recombination in both termite genomes, indicative of the presence of recombination hotspots. We infer the presence of full-length PRDM9 genes in the genomes of both species, which suggests recombination hotspots in termites might be determined by PRDM9, as they are in mammals. We also find that recombination rates in genes are correlated with inferred levels of germline DNA methylation. The finding of low recombination rates in termites indicates that eusociality is not universally connected to elevated recombination rate. We speculate that the elevated recombination rates in social Hymenoptera are instead promoted by intense selection among haploid males.
Collapse
Affiliation(s)
- Turid Everitt
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tilman Rönneburg
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
| | - Anna Olsson
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yuanzhen Liu
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tuuli Larva
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, Casuarina NT 0909, Australia
| | - Matthew T Webster
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
2
|
Akopyan M, Tigano A, Jacobs A, Wilder AP, Therkildsen NO. Genetic Differentiation is Constrained to Chromosomal Inversions and Putative Centromeres in Locally Adapted Populations With Higher Gene Flow. Mol Biol Evol 2025; 42:msaf092. [PMID: 40247662 PMCID: PMC12046131 DOI: 10.1093/molbev/msaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025] Open
Abstract
The impact of genome structure on adaptation is a growing focus in evolutionary biology, revealing an important role for structural variation and recombination landscapes in shaping genetic diversity across genomes and among populations. This is particularly relevant when local adaptation occurs despite gene flow, where clustering of differentiated loci can maintain locally adapted variants by reducing recombination between them. However, the limited genomic resources for nonmodel species, including reference genomes and recombination maps, have constrained our understanding of these patterns. In this study, we leverage the Atlantic silverside-a nonmodel fish with extensive local adaptation across a steep latitudinal gradient-as an ideal system to explore how genome structure influences adaptation under varying levels of gene flow, using a newly available reference genome and multiple recombination maps. Analyzing 168 genomes from four populations, we found a continuum of genome-wide differentiation increasing from south to north, reflecting higher connectivity among southern populations and reduced gene flow at northern latitudes. With increasing gene flow, the number and clustering of FST outlier loci also increased, with differentiated loci found exclusively within large haploblocks harboring inversions and smaller peaks overlapping putative centromeric regions. Notably, sequence divergence was only evident in inversions, supporting their role in adaptive divergence with gene flow, whereas centromeric regions appeared differentiated because of low recombination and diversity, with no indication of elevated divergence. Our results support the hypothesis that clustered genomic architectures evolve with high gene flow and enhance our understanding of how inversions and centromeres are linked to different evolutionary processes.
Collapse
Affiliation(s)
- Maria Akopyan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Present affiliation: Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, USA
| | - Anna Tigano
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
- Present affiliation: Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Arne Jacobs
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
- Present affiliation: School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Aryn P Wilder
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
- Present affiliation: Conservation Science Wildlife Health, San Diego Zoo Wildlife Alliance, San Diego, CA, USA
| | - Nina O Therkildsen
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA
| |
Collapse
|
3
|
Bénitière F, Lefébure T, Duret L. Variation in the fitness impact of translationally optimal codons among animals. Genome Res 2025; 35:446-458. [PMID: 39929724 PMCID: PMC11960461 DOI: 10.1101/gr.279837.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
Early studies in invertebrate model organisms (fruit flies, nematodes) showed that their synonymous codon usage is under selective pressure to optimize translation efficiency in highly expressed genes (a process called translational selection). In contrast, mammals show little evidence of selection for translationally optimal codons. To understand this difference, we examined the use of synonymous codons in 223 metazoan species, covering a wide range of animal clades. For each species, we predicted the set of optimal codons based on the pool of tRNA genes present in its genome, and we analyzed how the frequency of optimal codons correlates with gene expression to quantify the intensity of translational selection (S). We observed that few metazoans show clear signs of translational selection. As predicted by the nearly neutral theory, the highest values of S are observed in species with large effective population sizes (N e). Overall, however, N e appears to be a poor predictor of the intensity of translational selection, suggesting important differences in the fitness effect of synonymous codon usage across taxa. We propose that the few animal taxa that are clearly affected by translational selection correspond to organisms with strong constraints for a very rapid growth rate.
Collapse
Affiliation(s)
- Florian Bénitière
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Tristan Lefébure
- Université Claude Bernard Lyon 1, LEHNA UMR 5023, CNRS, ENTPE, F-69622, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, Villeurbanne, France;
| |
Collapse
|
4
|
Tabatabaee Y, Zhang C, Arasti S, Mirarab S. Species tree branch length estimation despite incomplete lineage sorting, duplication, and loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639320. [PMID: 40027742 PMCID: PMC11870528 DOI: 10.1101/2025.02.20.639320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phylogenetic branch lengths are essential for many analyses, such as estimating divergence times, analyzing rate changes, and studying adaptation. However, true gene tree heterogeneity due to incomplete lineage sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT) can complicate the estimation of species tree branch lengths. While several tools exist for estimating the topology of a species tree addressing various causes of gene tree discordance, much less attention has been paid to branch length estimation on multi-locus datasets. For single-copy gene trees, some methods are available that summarize gene tree branch lengths onto a species tree, including coalescent-based methods that account for heterogeneity due to ILS. However, no such branch length estimation method exists for multi-copy gene family trees that have evolved with gene duplication and loss. To address this gap, we introduce the CASTLES-Pro algorithm for estimating species tree branch lengths while accounting for both GDL and ILS. CASTLES-Pro improves on the existing coalescent-based branch length estimation method CASTLES by increasing its accuracy for single-copy gene trees and extends it to handle multi-copy ones. Our simulation studies show that CASTLES-Pro is generally more accurate than alternatives, eliminating the systematic bias toward overestimating terminal branch lengths often observed when using concatenation. Moreover, while not theoretically designed for HGT, we show that CASTLES-Pro maintains relatively high accuracy under high rates of random HGT. Code availability CASTLES-Pro is implemented inside the software package ASTER, available at https://github.com/chaoszhang/ASTER . Data availability The datasets and scripts used in this study are available at https://github.com/ytabatabaee/CASTLES-Pro-paper .
Collapse
|
5
|
Fouks B, Miller KJ, Ross C, Jones C, Rueppell O. Alternative double strand break repair pathways shape the evolution of high recombination in the honey bee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2025; 34:185-202. [PMID: 39297191 PMCID: PMC11705527 DOI: 10.1111/imb.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 01/11/2025]
Abstract
Social insects, particularly honey bees, have exceptionally high genomic frequencies of genetic recombination. This phenomenon and underlying mechanisms are poorly understood. To characterise the patterns of crossovers and gene conversion in the honey bee genome, a recombination map of 187 honey bee brothers was generated by whole-genome resequencing. Recombination events were heterogeneously distributed without many true hotspots. The tract lengths between phase shifts were bimodally distributed, indicating distinct crossover and gene conversion events. While crossovers predominantly occurred in G/C-rich regions and seemed to cause G/C enrichment, the gene conversions were found predominantly in A/T-rich regions. The nucleotide composition of sequences involved in gene conversions that were associated with or distant from crossovers corresponded to the differences between crossovers and gene conversions. These combined results suggest two types of DNA double-strand break repair during honey bee meiosis: non-canonical homologous recombination, leading to gene conversion and A/T enrichment of the genome, and the canonical homologous recombination based on completed double Holliday Junctions, which can result in gene conversion or crossover and is associated with G/C bias. This G/C bias may be selected for to balance the A/T-rich base composition of eusocial hymenopteran genomes. The lack of evidence for a preference of the canonical homologous recombination for double-strand break repair suggests that the high genomic recombination rate of honey bees is mainly the consequence of a high rate of double-strand breaks, which could in turn result from the life history of honey bees and their A/T-rich genome.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
- CIRAD, UMR AGAP InstitutMontpellierFrance
| | - Katelyn J. Miller
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Smithers PDSGaithersburgMarylandUSA
| | - Caitlin Ross
- Department of Computer SciencesUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- KitwareMinneapolisMinnesotaUSA
| | - Corbin Jones
- Department of BiologyUniversity of North Carolina at Chapel Hill & Carolina Center for Genome SciencesChapel HillNorth CarolinaUSA
| | - Olav Rueppell
- Department of BiologyUniversity of North Carolina at GreensboroGreensboroNorth CarolinaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
6
|
Leroy T, Faux P, Basso B, Eynard S, Wragg D, Vignal A. Inferring Long-Term and Short-Term Determinants of Genetic Diversity in Honey Bees: Beekeeping Impact and Conservation Strategies. Mol Biol Evol 2024; 41:msae249. [PMID: 39692632 DOI: 10.1093/molbev/msae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Bees are vital pollinators in natural and agricultural landscapes around the globe, playing a key role in maintaining flowering plant biodiversity and ensuring food security. Among the honey bee species, the Western honey bee (Apis mellifera) is particularly significant, not only for its extensive crop pollination services but also for producing economically valuable products such as honey. Here, we analyzed whole-genome sequence data from four Apis species to explore how honey bee evolution has shaped current diversity patterns. Using Approximate Bayesian Computation, we first reconstructed the demographic history of A. mellifera in Europe, finding support for postglacial secondary contacts, therefore predating human-mediated transfers linked to modern beekeeping. However, our analysis of recent demographic changes reveals significant bottlenecks due to beekeeping practices, which have notably affected genetic diversity. Black honey bee populations from conservatories, particularly those on islands, exhibit considerable genetic loss, highlighting the need to evaluate the long-term effectiveness of current conservation strategies. Additionally, we observed a high degree of conservation in the genomic landscapes of nucleotide diversity across the four species, despite a divergence gradient spanning over 15 million years, consistent with a long-term conservation of the recombination landscapes. Taken together, our results provide the most comprehensive assessment of diversity patterns in honey bees to date and offer insights into the optimal management of resources to ensure the long-term persistence of honey bees and their invaluable pollination services.
Collapse
Affiliation(s)
- Thibault Leroy
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | | | - Sonia Eynard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - David Wragg
- Beebytes Analytics CIC, Roslin Innovation Centre, Easter Bush Campus, Midlothian, UK
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| |
Collapse
|
7
|
Law G, da Silva CRB, Vlasich‐Brennan I, Taylor BA, Harpur BA, Heard T, Nacko S, Riegler M, Dorey JB, Stevens MI, Lo N, Gloag R. Gene Flow Between Populations With Highly Divergent Mitogenomes in the Australian Stingless Bee, Tetragonula hockingsi. Ecol Evol 2024; 14:e70475. [PMID: 39539675 PMCID: PMC11560288 DOI: 10.1002/ece3.70475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Coadaptation of mitochondrial and nuclear genes is essential for proper cellular function. When populations become isolated, theory predicts that they should maintain mito-nuclear coadaptation in each population, even as they diverge in genotype. Mito-nuclear incompatibilities may therefore arise when individuals from populations with divergent co-evolved mito-nuclear gene sets are re-united and hybridise, contributing to selection against inter-population hybrids and, potentially, to speciation. Here, we explored genetic divergence and gene flow between populations of a stingless bee (Tetragonula hockingsi) that have highly divergent mitogenomes. We identified three distinct populations across the species' 2500 km range on the east coast of Queensland (Australia): 'Cape York', 'Northern', and 'Southern'. The mitogenomes of each population showed > 12% pairwise nucleotide divergence from each other, and > 7% pairwise amino acid divergence. Based on nuclear SNPs from reduced representation sequencing, we identified at least two zones of gene flow between populations: a narrow natural zone between Northern and Southern populations (coinciding with a biogeographic barrier, the Burdekin Gap), and an artificial zone at the southern edge of the species' distribution, where Cape York, Northern, and Southern mito-lineages have been brought together in recent decades due to beekeeping. In the artificial hybrid zone, we also confirmed that males of all three mito-lineages were attracted to the mating aggregations of Southern queens, consistent with inter-population hybridisation. Populations of T. hockingsi thus appear to be in the 'grey zone' of the speciation continuum, having strong genetic differentiation but incomplete reproductive isolation. Among the nuclear SNPs most differentiated between Northern and Southern populations, several were associated with genes involved in mitochondrial function, consistent with populations having co-diverged mito-nuclear gene sets. Our observations suggest that coadapted sets of mitochondrial and nuclear genes unique to each population of T. hockingsi may play a role in maintaining population boundaries, though more study is needed to confirm the fitness costs of mito-nuclear incompatibilities in hybrid individuals.
Collapse
Affiliation(s)
- Genevieve Law
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Carmen R. B. da Silva
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Inez Vlasich‐Brennan
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | | | - Brock A. Harpur
- Department of EntomologyPurdue UniversityWest LafayetteIndianaUSA
| | - Tim Heard
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Scott Nacko
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Markus Riegler
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - James B. Dorey
- School of Earth, Atmospheric, and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Mark I. Stevens
- Earth & Biological SciencesSouth Australian MuseumAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Rosalyn Gloag
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Glover AN, Sousa VC, Ridenbaugh RD, Sim SB, Geib SM, Linnen CR. Recurrent selection shapes the genomic landscape of differentiation between a pair of host-specialized haplodiploids that diverged with gene flow. Mol Ecol 2024; 33:e17509. [PMID: 39165007 DOI: 10.1111/mec.17509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
Understanding the genetics of adaptation and speciation is critical for a complete picture of how biodiversity is generated and maintained. Heterogeneous genomic differentiation between diverging taxa is commonly documented, with genomic regions of high differentiation interpreted as resulting from differential gene flow, linked selection and reduced recombination rates. Disentangling the roles of each of these non-exclusive processes in shaping genome-wide patterns of divergence is challenging but will enhance our knowledge of the repeatability of genomic landscapes across taxa. Here, we combine whole-genome resequencing and genome feature data to investigate the processes shaping the genomic landscape of differentiation for a sister-species pair of haplodiploid pine sawflies, Neodiprion lecontei and Neodiprion pinetum. We find genome-wide correlations between genome features and summary statistics are consistent with pervasive linked selection, with patterns of diversity and divergence more consistently predicted by exon density and recombination rate than the neutral mutation rate (approximated by dS). We also find that both global and local patterns of FST, dXY and π provide strong support for recurrent selection as the primary selective process shaping variation across pine sawfly genomes, with some contribution from balancing selection and lineage-specific linked selection. Because inheritance patterns for haplodiploid genomes are analogous to those of sex chromosomes, we hypothesize that haplodiploids may be especially prone to recurrent selection, even if gene flow occurred throughout divergence. Overall, our study helps fill an important taxonomic gap in the genomic landscape literature and contributes to our understanding of the processes that shape genome-wide patterns of genetic variation.
Collapse
Affiliation(s)
- Ashleigh N Glover
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Vitor C Sousa
- Department of Animal Biology, CE3C - Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, University of Lisbon, Lisbon, Lisboa, Portugal
| | - Ryan D Ridenbaugh
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Sheina B Sim
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | - Scott M Geib
- USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest Genetics and Molecular Biology Research Unit, Hilo, Hawaii, USA
| | | |
Collapse
|
9
|
Errbii M, Gadau J, Becker K, Schrader L, Oettler J. Causes and consequences of a complex recombinational landscape in the ant Cardiocondyla obscurior. Genome Res 2024; 34:863-876. [PMID: 38839375 PMCID: PMC11293551 DOI: 10.1101/gr.278392.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Eusocial Hymenoptera have the highest recombination rates among all multicellular animals studied so far, but it is unclear why this is and how this affects the biology of individual species. A high-resolution linkage map for the ant Cardiocondyla obscurior corroborates genome-wide high recombination rates reported for ants (8.1 cM/Mb). However, recombination is locally suppressed in regions that are enriched with TEs, that have strong haplotype divergence, or that show signatures of epistatic selection in C. obscurior The results do not support the hypotheses that high recombination rates are linked to phenotypic plasticity or to modulating selection efficiency. Instead, genetic diversity and the frequency of structural variants correlate positively with local recombination rates, potentially compensating for the low levels of genetic variation expected in haplodiploid social Hymenoptera with low effective population size. Ultimately, the data show that recombination contributes to within-population polymorphism and to the divergence of the lineages within C. obscurior.
Collapse
Affiliation(s)
- Mohammed Errbii
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Jan Oettler
- Lehrstuhl für Zoologie/Evolutionsbiologie, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Eynard SE, Klopp C, Canale-Tabet K, Marande W, Vandecasteele C, Roques C, Donnadieu C, Boone Q, Servin B, Vignal A. The black honey bee genome: insights on specific structural elements and a first step towards pangenomes. Genet Sel Evol 2024; 56:51. [PMID: 38943059 PMCID: PMC11212449 DOI: 10.1186/s12711-024-00917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND The honey bee reference genome, HAv3.1, was produced from a commercial line sample that was thought to have a largely dominant Apis mellifera ligustica genetic background. Apis mellifera mellifera, often referred to as the black bee, has a separate evolutionary history and is the original type in western and northern Europe. Growing interest in this subspecies for conservation and non-professional apicultural practices, together with the necessity of deciphering genome backgrounds in hybrids, triggered the necessity for a specific genome assembly. Moreover, having several high-quality genomes is becoming key for taking structural variations into account in pangenome analyses. RESULTS Pacific Bioscience technology long reads were produced from a single haploid black bee drone. Scaffolding contigs into chromosomes was done using a high-density genetic map. This allowed for re-estimation of the recombination rate, which was over-estimated in some previous studies due to mis-assemblies, which resulted in spurious inversions in the older reference genomes. The sequence continuity obtained was very high and the only limit towards continuous chromosome-wide sequences seemed to be due to tandem repeat arrays that were usually longer than 10 kb and that belonged to two main families, the 371 and 91 bp repeats, causing problems in the assembly process due to high internal sequence similarity. Our assembly was used together with the reference genome to genotype two structural variants by a pangenome graph approach with Graphtyper2. Genotypes obtained were either correct or missing, when compared to an approach based on sequencing depth analysis, and genotyping rates were 89 and 76% for the two variants. CONCLUSIONS Our new assembly for the Apis mellifera mellifera honey bee subspecies demonstrates the utility of multiple high-quality genomes for the genotyping of structural variants, with a test case on two insertions and deletions. It will therefore be an invaluable resource for future studies, for instance by including structural variants in GWAS. Having used a single haploid drone for sequencing allowed a refined analysis of very large tandem repeat arrays, raising the question of their function in the genome. High quality genome assemblies for multiple subspecies such as presented here, are crucial for emerging projects using pangenomes.
Collapse
Affiliation(s)
- Sonia E Eynard
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | - Kamila Canale-Tabet
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | | | | | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Quentin Boone
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
- Sigenae, MIAT, INRAE, Castanet Tolosan, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
| | - Alain Vignal
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France.
| |
Collapse
|
11
|
Joseph J, Prentout D, Laverré A, Tricou T, Duret L. High prevalence of PRDM9-independent recombination hotspots in placental mammals. Proc Natl Acad Sci U S A 2024; 121:e2401973121. [PMID: 38809707 PMCID: PMC11161765 DOI: 10.1073/pnas.2401973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.
Collapse
Affiliation(s)
- Julien Joseph
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Djivan Prentout
- Department of Biological Sciences, Columbia University, New York, NY10027
| | - Alexandre Laverré
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
- Swiss Institute of Bioinformatics, LausanneCH-1015, Switzerland
| | - Théo Tricou
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne69100, France
| |
Collapse
|
12
|
Kotari I, Kosiol C, Borges R. The Patterns of Codon Usage between Chordates and Arthropods are Different but Co-evolving with Mutational Biases. Mol Biol Evol 2024; 41:msae080. [PMID: 38667829 PMCID: PMC11108087 DOI: 10.1093/molbev/msae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
Different frequencies amongst codons that encode the same amino acid (i.e. synonymous codons) have been observed in multiple species. Studies focused on uncovering the forces that drive such codon usage showed that a combined effect of mutational biases and translational selection works to produce different frequencies of synonymous codons. However, only few have been able to measure and distinguish between these forces that may leave similar traces on the coding regions. Here, we have developed a codon model that allows the disentangling of mutation, selection on amino acids and synonymous codons, and GC-biased gene conversion (gBGC) which we employed on an extensive dataset of 415 chordates and 191 arthropods. We found that chordates need 15 more synonymous codon categories than arthropods to explain the empirical codon frequencies, which suggests that the extent of codon usage can vary greatly between animal phyla. Moreover, methylation at CpG sites seems to partially explain these patterns of codon usage in chordates but not in arthropods. Despite the differences between the two phyla, our findings demonstrate that in both, GC-rich codons are disfavored when mutations are GC-biased, and the opposite is true when mutations are AT-biased. This indicates that selection on the genomic coding regions might act primarily to stabilize its GC/AT content on a genome-wide level. Our study shows that the degree of synonymous codon usage varies considerably among animals, but is likely governed by a common underlying dynamic.
Collapse
Affiliation(s)
- Ioanna Kotari
- Institut für Populationsgenetik, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Carolin Kosiol
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Rui Borges
- Institut für Populationsgenetik, University of Veterinary Medicine, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
13
|
Dogantzis KA, Raffiudin R, Putra RE, Shaleh I, Conflitti IM, Pepinelli M, Roberts J, Holmes M, Oldroyd BP, Zayed A, Gloag R. Post-invasion selection acts on standing genetic variation despite a severe founding bottleneck. Curr Biol 2024; 34:1349-1356.e4. [PMID: 38428415 DOI: 10.1016/j.cub.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Rika Raffiudin
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ramadhani Eka Putra
- Bandung Institute of Technology, School of Life Sciences and Technology, Bandung 40132, West Java, Indonesia
| | - Ismail Shaleh
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - John Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Michael Holmes
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rosalyn Gloag
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| |
Collapse
|
14
|
Everitt T, Wallberg A, Christmas MJ, Olsson A, Hoffmann W, Neumann P, Webster MT. The Genomic Basis of Adaptation to High Elevations in Africanized Honey Bees. Genome Biol Evol 2023; 15:evad157. [PMID: 37625795 PMCID: PMC10484329 DOI: 10.1093/gbe/evad157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
A range of different genetic architectures underpin local adaptation in nature. Honey bees (Apis mellifera) in the Eastern African Mountains harbor high frequencies of two chromosomal inversions that likely govern adaptation to this high-elevation habitat. In the Americas, honey bees are hybrids of European and African ancestries and adaptation to latitudinal variation in climate correlates with the proportion of these ancestries across the genome. It is unknown which, if either, of these forms of genetic variation governs adaptation in honey bees living at high elevations in the Americas. Here, we performed whole-genome sequencing of 29 honey bees from both high- and low-elevation populations in Colombia. Analysis of genetic ancestry indicated that both populations were predominantly of African ancestry, but the East African inversions were not detected. However, individuals in the higher elevation population had significantly higher proportions of European ancestry, likely reflecting local adaptation. Several genomic regions exhibited particularly high differentiation between highland and lowland bees, containing candidate loci for local adaptation. Genes that were highly differentiated between highland and lowland populations were enriched for functions related to reproduction and sperm competition. Furthermore, variation in levels of European ancestry across the genome was correlated between populations of honey bees in the highland population and populations at higher latitudes in South America. The results are consistent with the hypothesis that adaptation to both latitude and elevation in these hybrid honey bees are mediated by variation in ancestry at many loci across the genome.
Collapse
Affiliation(s)
- Turid Everitt
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Olsson
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hoffmann
- Grupo de Biocalorimetría, Universidad de Pamplona, Pamplona, Colombia
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Matthew T Webster
- Department Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Palahí I Torres A, Höök L, Näsvall K, Shipilina D, Wiklund C, Vila R, Pruisscher P, Backström N. The fine-scale recombination rate variation and associations with genomic features in a butterfly. Genome Res 2023; 33:810-823. [PMID: 37308293 PMCID: PMC10317125 DOI: 10.1101/gr.277414.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.
Collapse
Affiliation(s)
- Aleix Palahí I Torres
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Roger Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
| | - Peter Pruisscher
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
16
|
Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, Faircloth BC, Glenn TC, Karim S. A draft of the genome of the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis 2023; 14:102090. [PMID: 36446165 PMCID: PMC9898150 DOI: 10.1016/j.ttbdis.2022.102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The Gulf Coast tick, Amblyomma maculatum, inhabits the Southeastern states of the USA bordering the Gulf of Mexico, Mexico, and other Central and South American countries. More recently, its U.S. range has extended West to Arizona and Northeast to New York state and Connecticut. It is a vector of Rickettsia parkeri and Hepatozoon americanum. This tick species has become a model to study tick/Rickettsia interactions. To increase our knowledge of the basic biology of A. maculatum we report here a draft genome of this tick and an extensive functional classification of its proteome. The DNA from a single male tick was used as a genomic source, and a 10X genomics protocol determined 28,460 scaffolds having equal or more than 10 Kb, totaling 1.98 Gb. The N50 scaffold size was 19,849 Kb. The BRAKER pipeline was used to find the protein-coding gene boundaries on the assembled A. maculatum genome, discovering 237,921 CDS. After trimming and classifying the transposable elements, bacterial contaminants, and truncated genes, a set of 25,702 were annotated and classified as the core gene products. A BUSCO analysis revealed 83.4% complete BUSCOs. A hyperlinked spreadsheet is provided, allowing browsing of the individual gene products and their matches to several databases.
Collapse
Affiliation(s)
- Jose M C Ribeiro
- NIAID NIH Laboratory of Malaria and Vector Research, Bethesda, MD 20892-8132, USA.
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Khemraj Budachetri
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Deepak Kumar
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Julia Catherine Frederick
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Faizan Tahir
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Brant C Faircloth
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
17
|
Dutreux F, Dutta A, Peltier E, Bibi-Triki S, Friedrich A, Llorente B, Schacherer J. Lessons from the meiotic recombination landscape of the ZMM deficient budding yeast Lachancea waltii. PLoS Genet 2023; 19:e1010592. [PMID: 36608114 PMCID: PMC9851511 DOI: 10.1371/journal.pgen.1010592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/19/2023] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.
Collapse
Affiliation(s)
- Fabien Dutreux
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Emilien Peltier
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | | | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Bertrand Llorente
- CNRS UMR7258, INSERM U1068, Aix Marseille Université UM105, Institut Paoli-Calmettes, CRCM, Marseille, France,* E-mail: (BL); (JS)
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France,Institut Universitaire de France (IUF), Paris, France,* E-mail: (BL); (JS)
| |
Collapse
|
18
|
Wragg D, Eynard SE, Basso B, Canale‐Tabet K, Labarthe E, Bouchez O, Bienefeld K, Bieńkowska M, Costa C, Gregorc A, Kryger P, Parejo M, Pinto MA, Bidanel J, Servin B, Le Conte Y, Vignal A. Complex population structure and haplotype patterns in the Western European honey bee from sequencing a large panel of haploid drones. Mol Ecol Resour 2022; 22:3068-3086. [PMID: 35689802 PMCID: PMC9796960 DOI: 10.1111/1755-0998.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Honey bee subspecies originate from specific geographical areas in Africa, Europe and the Middle East, and beekeepers interested in specific phenotypes have imported genetic material to regions outside of the bees' original range for use either in pure lines or controlled crosses. Moreover, imported drones are present in the environment and mate naturally with queens from the local subspecies. The resulting admixture complicates population genetics analyses, and population stratification can be a major problem for association studies. To better understand Western European honey bee populations, we produced a whole genome sequence and single nucleotide polymorphism (SNP) genotype data set from 870 haploid drones and demonstrate its utility for the identification of nine genetic backgrounds and various degrees of admixture in a subset of 629 samples. Five backgrounds identified correspond to subspecies, two to isolated populations on islands and two to managed populations. We also highlight several large haplotype blocks, some of which coincide with the position of centromeres. The largest is 3.6 Mb long and represents 21% of chromosome 11, with two major haplotypes corresponding to the two dominant genetic backgrounds identified. This large naturally phased data set is available as a single vcf file that can now serve as a reference for subsequent populations genomics studies in the honey bee, such as (i) selecting individuals of verified homogeneous genetic backgrounds as references, (ii) imputing genotypes from a lower-density data set generated by an SNP-chip or by low-pass sequencing, or (iii) selecting SNPs compatible with the requirements of genotyping chips.
Collapse
Affiliation(s)
- David Wragg
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
- Roslin InstituteUniversity of EdinburghMidlothianUK
| | - Sonia E. Eynard
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Benjamin Basso
- Institut de l'abeille (ITSAP), UMT PrADEAvignonFrance
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | | | | | | | | | | | - Cecilia Costa
- CREA Research Centre for Agriculture and EnvironmentBolognaItaly
| | - Aleš Gregorc
- Faculty of Agriculture and Life SciencesUniversity of MariborPivolaSlovenia
| | - Per Kryger
- Department of Agroecology, Science and TechnologyAarhus UniversitySlagelseDenmark
| | - Melanie Parejo
- Agroscope, Swiss Bee Research CentreBernSwitzerland
- Applied Genomics and Bioinformatics, Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque CountryLeioaSpain
| | - M. Alice Pinto
- Centro de Investigação de Montanha (CIMO)Instituto Politécnico de BragançaBragançaPortugal
| | | | - Bertrand Servin
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environment, UMT PrADEAvignonFrance
| | - Alain Vignal
- GenPhySEUniversité de Toulouse, INRAE, INPT, INP‐ENVTCastanet TolosanFrance
| |
Collapse
|
19
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Many species have separate haploid and diploid phases. Theory predicts that each phase should experience the effects of evolutionary forces (like selection) differently. In the haploid phase, all fitness-affecting alleles are exposed to selection, whereas in the diploid phase, those same alleles can be masked by homologous alleles. This predicts that selection acting on genes expressed in haploids should be more effective than diploid-biased genes. Unfortunately, in arrhenotokous species, this prediction can be confounded with the effects of sex-specific expression, as haploids are usually reproductive males. Theory posits that, when accounting for ploidal- and sex-specific expression, selection should be equally efficient on haploid- and diploid-biased genes relative to constitutive genes. Here, we used a multiomic approach in honey bees to quantify the evolutionary rates of haploid-biased genes and test the relative effects of sexual- and haploid-expression on molecular evolution. We found that 16% of the honey bee’s protein-coding genome is highly expressed in haploid tissue. When accounting for ploidy and sex, haploid- and diploid-biased genes evolve at a lower rate than expected, indicating that they experience strong negative selection. However, the rate of molecular evolution of haploid-biased genes was higher than diploid-based genes. Genes associated with sperm storage are a clear exception to this trend with evidence of strong positive selection. Our results provide an important empirical test of theory outlining how selection acts on genes expressed in arrhenotokous species. We propose the haploid life history stage affects genome-wide patterns of diversity and divergence because of both sexual and haploid selection.
Collapse
Affiliation(s)
| | - Amy L. Dapper
- Department of Biological Sciences, Mississippi State University, 219 Harned Hall, 295 Lee Blvd, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
21
|
DNA Methyltransferases and DNA Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:349-361. [DOI: 10.1007/978-3-031-11454-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Tiwari T, Zayed A. Practical Applications of Genomics in Managing Honey bee Health. Vet Clin North Am Food Anim Pract 2021; 37:535-543. [PMID: 34689919 DOI: 10.1016/j.cvfa.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The honey bee Apis mellifera is a model organism for sociogenomics and one of the most important managed pollinators. High mortalities experienced by honey bee colonies over the past several decades are expected to have a substantive effect on crop pollination and global food security. These threats and the availability of a growing number of genomic resources for the honey bee have motivated research on how genetics and genomics can be practically applied to manage bee health. The authors review 3 such applications: (1) Certification of bee lineages using single-polymorphism markers; (2) breeding bees using marker-assisted selection; (3) diagnosing honey bee stressors using biomarkers.
Collapse
Affiliation(s)
- Tanushree Tiwari
- Department of Biology, York University, 208 Lumbers Building, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Amro Zayed
- Department of Biology, York University, 208 Lumbers Building, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
23
|
Waiker P, de Abreu FCP, Luna-Lucena D, Freitas FCP, Simões ZLP, Rueppell O. Recombination mapping of the Brazilian stingless bee Frieseomelitta varia confirms high recombination rates in social hymenoptera. BMC Genomics 2021; 22:673. [PMID: 34536998 PMCID: PMC8449902 DOI: 10.1186/s12864-021-07987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Background Meiotic recombination is a fundamental genetic process that shuffles allele combinations and promotes accurate segregation of chromosomes. Analyses of the ubiquitous variation of recombination rates within and across species suggest that recombination is evolving adaptively. All studied insects with advanced eusociality have shown exceptionally high recombination rates, which may represent a prominent case of adaptive evolution of recombination. However, our understanding of the relationship between social evolution and recombination rates is incomplete, partly due to lacking empirical data. Here, we present a linkage map of the monandrous, advanced eusocial Brazilian stingless bee, Frieseomelitta varia, providing the first recombination analysis in the diverse Meliponini (Hymenoptera, Apidae). Results Our linkage map includes 1417 markers in 19 linkage groups. This map spans approximately 2580 centimorgans, and comparisons to the physical genome assembly indicate that it covers more than 75 % of the 275 Megabasepairs (Mbp) F. varia genome. Thus, our study results in a genome-wide recombination rate estimate of 9.3–12.5 centimorgan per Mbp. This value is higher than estimates from nonsocial insects and comparable to other highly social species, although it does not support our prediction that monandry and strong queen-worker caste divergence of F. varia lead to even higher recombination rates than other advanced eusocial species. Conclusions Our study expands the association between elevated recombination and sociality in the order Hymenoptera and strengthens the support for the hypothesis that advanced social evolution in hymenopteran insects invariably selects for high genomic recombination rates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07987-3.
Collapse
Affiliation(s)
- Prashant Waiker
- Biology Department, University of North Carolina at Greensboro, 321 McIver St, Greensboro, NC, 27412, USA.
| | - Fabiano Carlos Pinto de Abreu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Ribeirão Preto, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Cristina Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Ribeirão Preto, Brazil
| | - Olav Rueppell
- Biology Department, University of North Carolina at Greensboro, 321 McIver St, Greensboro, NC, 27412, USA.,Department of Biological Sciences, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| |
Collapse
|
24
|
Oldroyd BP, Yagound B, Allsopp MH, Holmes MJ, Buchmann G, Zayed A, Beekman M. Adaptive, caste-specific changes to recombination rates in a thelytokous honeybee population. Proc Biol Sci 2021; 288:20210729. [PMID: 34102886 PMCID: PMC8187994 DOI: 10.1098/rspb.2021.0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination. LoH in haplo-diploid insects can be highly deleterious because female sex determination often relies on heterozygosity at sex-determining loci. The two female castes of the Cape honeybee, Apis mellifera capensis, differ in their mode of reproduction. While workers always reproduce thelytokously, queens always mate and reproduce sexually. For workers, it is important to reduce the frequency of recombination so as to not produce offspring that are homozygous. Here, we ask whether recombination rates differ between Cape workers and Cape queens that we experimentally manipulated to reproduce thelytokously. We tested our hypothesis that Cape workers have evolved mechanisms that restrain genetic recombination, whereas queens have no need for such mechanisms because they reproduce sexually. Using a combination of microsatellite genotyping and whole-genome sequencing we find that a reduction in recombination is confined to workers only.
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Michael H. Allsopp
- Michael H Allsopp, Honeybee Research Section, ARC-Plant Protection Research Institute, Stellenbosch 7600, South Africa
| | - Michael J. Holmes
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Gabrielle Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Amro Zayed
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
25
|
Boman J, Mugal CF, Backström N. The Effects of GC-Biased Gene Conversion on Patterns of Genetic Diversity among and across Butterfly Genomes. Genome Biol Evol 2021; 13:evab064. [PMID: 33760095 PMCID: PMC8175052 DOI: 10.1093/gbe/evab064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/28/2022] Open
Abstract
Recombination reshuffles the alleles of a population through crossover and gene conversion. These mechanisms have considerable consequences on the evolution and maintenance of genetic diversity. Crossover, for example, can increase genetic diversity by breaking the linkage between selected and nearby neutral variants. Bias in favor of G or C alleles during gene conversion may instead promote the fixation of one allele over the other, thus decreasing diversity. Mutation bias from G or C to A and T opposes GC-biased gene conversion (gBGC). Less recognized is that these two processes may-when balanced-promote genetic diversity. Here, we investigate how gBGC and mutation bias shape genetic diversity patterns in wood white butterflies (Leptidea sp.). This constitutes the first in-depth investigation of gBGC in butterflies. Using 60 resequenced genomes from six populations of three species, we find substantial variation in the strength of gBGC across lineages. When modeling the balance of gBGC and mutation bias and comparing analytical results with empirical data, we reject gBGC as the main determinant of genetic diversity in these butterfly species. As alternatives, we consider linked selection and GC content. We find evidence that high values of both reduce diversity. We also show that the joint effects of gBGC and mutation bias can give rise to a diversity pattern which resembles the signature of linked selection. Consequently, gBGC should be considered when interpreting the effects of linked selection on levels of genetic diversity.
Collapse
Affiliation(s)
- Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Sweden
| | - Carina F Mugal
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, Sweden
| |
Collapse
|
26
|
Claeys Boúúaert D, Van Poucke M, De Smet L, Verbeke W, de Graaf DC, Peelman L. qPCR assays with dual-labeled probes for genotyping honey bee variants associated with varroa resistance. BMC Vet Res 2021; 17:179. [PMID: 33931072 PMCID: PMC8086294 DOI: 10.1186/s12917-021-02886-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/21/2021] [Indexed: 11/28/2022] Open
Abstract
Background The varroa mite is one of the main causes of honey bee mortality. An important mechanism by which honey bees increase their resistance against this mite is the expression of suppressed mite reproduction. This trait describes the physiological inability of mites to produce viable offspring and was found associated with eight genomic variants in previous research. Results This paper presents the development and validation of high-throughput qPCR assays with dual-labeled probes for discriminating these eight single-nucleotide variants. Amplicon sequences used for assay validation revealed additional variants in the primer/probe binding sites in four out of the eight assays. As for two of these the additional variants interfered with the genotyping outcome supplementary primers and/or probes were developed. Inclusion of these primers and probes in the assay mixes allowed for the correct genotyping of all eight variants of interest within our bee population. Conclusion These outcomes underline the importance of checking for interfering variants in designing qPCR assays. Ultimately, the availability of this assay allows genotyping for the suppressed mite reproduction trait and paves the way for marker assisted selection in breeding programs.
Collapse
Affiliation(s)
- David Claeys Boúúaert
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium.
| | - Mario Van Poucke
- Animal Genetics Laboratory, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
| | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Wim Verbeke
- Department of Agricultural Economics, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
| | - Luc Peelman
- Animal Genetics Laboratory, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium
| |
Collapse
|
27
|
Whittle CA, Kulkarni A, Chung N, Extavour CG. Adaptation of codon and amino acid use for translational functions in highly expressed cricket genes. BMC Genomics 2021; 22:234. [PMID: 33823803 PMCID: PMC8022432 DOI: 10.1186/s12864-021-07411-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND For multicellular organisms, much remains unknown about the dynamics of synonymous codon and amino acid use in highly expressed genes, including whether their use varies with expression in different tissue types and sexes. Moreover, specific codons and amino acids may have translational functions in highly transcribed genes, that largely depend on their relationships to tRNA gene copies in the genome. However, these relationships and putative functions are poorly understood, particularly in multicellular systems. RESULTS Here, we studied codon and amino acid use in highly expressed genes from reproductive and nervous system tissues (male and female gonad, somatic reproductive system, brain and ventral nerve cord, and male accessory glands) in the cricket Gryllus bimaculatus. We report an optimal codon, defined as the codon preferentially used in highly expressed genes, for each of the 18 amino acids with synonymous codons in this organism. The optimal codons were mostly shared among tissue types and both sexes. However, the frequency of optimal codons was highest in gonadal genes. Concordant with translational selection, a majority of the optimal codons had abundant matching tRNA gene copies in the genome, but sometimes obligately required wobble tRNAs. We suggest the latter may comprise a mechanism for slowing translation of abundant transcripts, particularly for cell-cycle genes. Non-optimal codons, defined as those least commonly used in highly transcribed genes, intriguingly often had abundant tRNAs, and had elevated use in a subset of genes with specialized functions (gametic and apoptosis genes), suggesting their use promotes the translational upregulation of particular mRNAs. In terms of amino acids, we found evidence suggesting that amino acid frequency, tRNA gene copy number, and amino acid biosynthetic costs (size/complexity) had all interdependently evolved in this insect model, potentially for translational optimization. CONCLUSIONS Collectively, the results suggest a model whereby codon use in highly expressed genes, including optimal, wobble, and non-optimal codons, and their tRNA abundances, as well as amino acid use, have been influenced by adaptation for various functional roles in translation within this cricket. The effects of expression in different tissue types and the two sexes are discussed.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Nina Chung
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, 02138, MA, USA.
| |
Collapse
|
28
|
Disentangling Ethiopian Honey Bee ( Apis mellifera) Populations Based on Standard Morphometric and Genetic Analyses. INSECTS 2021; 12:insects12030193. [PMID: 33668715 PMCID: PMC7996220 DOI: 10.3390/insects12030193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary We conducted this population study of Ethiopian honey bees, using morphometric and genetic methods, to decipher their controversial classification. These honey bees are highly diverse and showed differentiation based on size and genetic information according to prevailing agro-ecological conditions, demonstrating morphological and molecular signatures of local adaptation. The results of both morphometric and genetic analyses suggest that Ethiopian honey bees differ from populations in the neighboring geographic regions and are characterized by extensive gene flow within the country, enhanced by honey bee colony trade. Consequently, future research that includes studying traits of vitality, behavior and colony performance of honey bees in remaining pocket areas of highland agro-ecological zones could contribute to the development of appropriate conservation management. Abstract The diversity and local differentiation of honey bees are subjects of broad general interest. In particular, the classification of Ethiopian honey bees has been a subject of debate for decades. Here, we conducted an integrated analysis based on classical morphometrics and a putative nuclear marker (denoted r7-frag) for elevational adaptation to classify and characterize these honey bees. Therefore, 660 worker bees were collected out of 66 colonies from highland, midland and lowland agro-ecological zones (AEZs) and were analyzed in reference to populations from neighboring countries. Multivariate morphometric analyses show that our Ethiopian samples are separate from Apis mellifera scutellata, A. m. jemenitica, A. m. litorea and A. m. monticola, but are closely related to A. m. simensis reference. Linear discriminant analysis showed differentiation according to AEZs in the form of highland, midland and lowland ecotypes. Moreover, size was positively correlated with elevation. Similarly, our Ethiopian samples were differentiated from A. m. monticola and A. m. scutellata based on r7-frag. There was a low tendency towards genetic differentiation between the Ethiopian samples, likely impacted by increased gene flow. However, the differentiation slightly increased with increasing elevational differences, demonstrated by the highland bees that showed higher differentiation from the lowland bees (FST = 0.024) compared to the midland bees (FST = 0.015). An allelic length polymorphism was detected (denoted as d) within r7-frag, showing a patterned distribution strongly associated with AEZ (X2 = 11.84, p < 0.01) and found predominantly in highland and midland bees of some pocket areas. In conclusion, the Ethiopian honey bees represented in this study are characterized by high gene flow that suppresses differentiation.
Collapse
|
29
|
Almeida P, Sandkam BA, Morris J, Darolti I, Breden F, Mank JE. Divergence and Remarkable Diversity of the Y Chromosome in Guppies. Mol Biol Evol 2021; 38:619-633. [PMID: 33022040 PMCID: PMC7826173 DOI: 10.1093/molbev/msaa257] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The guppy sex chromosomes show an extraordinary diversity in divergence across populations and closely related species. In order to understand the dynamics of the guppy Y chromosome, we used linked-read sequencing to assess Y chromosome evolution and diversity across upstream and downstream population pairs that vary in predator and food abundance in three replicate watersheds. Based on our population-specific genome assemblies, we first confirmed and extended earlier reports of two strata on the guppy sex chromosomes. Stratum I shows significant accumulation of male-specific sequence, consistent with Y divergence, and predates the colonization of Trinidad. In contrast, Stratum II shows divergence from the X, but no Y-specific sequence, and this divergence is greater in three replicate upstream populations compared with their downstream pair. Despite longstanding assumptions that sex chromosome recombination suppression is achieved through inversions, we find no evidence of inversions associated with either Stratum I or Stratum II. Instead, we observe a remarkable diversity in Y chromosome haplotypes within each population, even in the ancestral Stratum I. This diversity is likely due to gradual mechanisms of recombination suppression, which, unlike an inversion, allow for the maintenance of multiple haplotypes. In addition, we show that this Y diversity is dominated by low-frequency haplotypes segregating in the population, suggesting a link between haplotype diversity and female preference for rare Y-linked color variation. Our results reveal the complex interplay between recombination suppression and Y chromosome divergence at the earliest stages of sex chromosome divergence.
Collapse
Affiliation(s)
- Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Benjamin A Sandkam
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Jake Morris
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
31
|
Pannebakker BA, Cook N, van den Heuvel J, van de Zande L, Shuker DM. Genomics of sex allocation in the parasitoid wasp Nasonia vitripennis. BMC Genomics 2020; 21:499. [PMID: 32689940 PMCID: PMC7372847 DOI: 10.1186/s12864-020-06904-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Whilst adaptive facultative sex allocation has been widely studied at the phenotypic level across a broad range of organisms, we still know remarkably little about its genetic architecture. Here, we explore the genome-wide basis of sex ratio variation in the parasitoid wasp Nasonia vitripennis, perhaps the best studied organism in terms of sex allocation, and well known for its response to local mate competition. RESULTS We performed a genome-wide association study (GWAS) for single foundress sex ratios using iso-female lines derived from the recently developed outbred N. vitripennis laboratory strain HVRx. The iso-female lines capture a sample of the genetic variation in HVRx and we present them as the first iteration of the Nasonia vitripennis Genome Reference Panel (NVGRP 1.0). This panel provides an assessment of the standing genetic variation for sex ratio in the study population. Using the NVGRP, we discovered a cluster of 18 linked SNPs, encompassing 9 annotated loci associated with sex ratio variation. Furthermore, we found evidence that sex ratio has a shared genetic basis with clutch size on three different chromosomes. CONCLUSIONS Our approach provides a thorough description of the quantitative genetic basis of sex ratio variation in Nasonia at the genome level and reveals a number of inter-related candidate loci underlying sex allocation regulation.
Collapse
Affiliation(s)
- Bart A Pannebakker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands.
| | - Nicola Cook
- School of Biology, University of St Andrews, Fife, UK
| | - Joost van den Heuvel
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Louis van de Zande
- Evolutionary Genetics, Development and Behaviour, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
32
|
Hämälä T, Tiffin P. Biased Gene Conversion Constrains Adaptation in Arabidopsis thaliana. Genetics 2020; 215:831-846. [PMID: 32414868 PMCID: PMC7337087 DOI: 10.1534/genetics.120.303335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 02/01/2023] Open
Abstract
Reduction of fitness due to deleterious mutations imposes a limit to adaptive evolution. By characterizing features that influence this genetic load we may better understand constraints on responses to both natural and human-mediated selection. Here, using whole-genome, transcriptome, and methylome data from >600 Arabidopsis thaliana individuals, we set out to identify important features influencing selective constraint. Our analyses reveal that multiple factors underlie the accumulation of maladaptive mutations, including gene expression level, gene network connectivity, and gene-body methylation. We then focus on a feature with major effect, nucleotide composition. The ancestral vs. derived status of segregating alleles suggests that GC-biased gene conversion, a recombination-associated process that increases the frequency of G and C nucleotides regardless of their fitness effects, shapes sequence patterns in A. thaliana Through estimation of mutational effects, we present evidence that biased gene conversion hinders the purging of deleterious mutations and contributes to a genome-wide signal of decreased efficacy of selection. By comparing these results to two outcrossing relatives, Arabidopsis lyrata and Capsella grandiflora, we find that protein evolution in A. thaliana is as strongly affected by biased gene conversion as in the outcrossing species. Last, we perform simulations to show that natural levels of outcrossing in A. thaliana are sufficient to facilitate biased gene conversion despite increased homozygosity due to selfing. Together, our results show that even predominantly selfing taxa are susceptible to biased gene conversion, suggesting that it may constitute an important constraint to adaptation among plant species.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
33
|
A Single Gene Causes Thelytokous Parthenogenesis, the Defining Feature of the Cape Honeybee Apis mellifera capensis. Curr Biol 2020; 30:2248-2259.e6. [DOI: 10.1016/j.cub.2020.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
34
|
Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. Int J Parasitol 2020; 50:433-447. [PMID: 32380096 DOI: 10.1016/j.ijpara.2020.03.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.
Collapse
|
35
|
DeLory T, Funderburk K, Miller K, Smith WZ, McPherson S, Pirk CW, Costa C, Teixeira ÉW, Dahle B, Rueppell O. Local Variation in Recombination Rates of the Honey Bee ( Apis mellifera) Genome among Samples from Six Disparate Populations. INSECTES SOCIAUX 2020; 67:127-138. [PMID: 33311731 PMCID: PMC7732154 DOI: 10.1007/s00040-019-00736-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.
Collapse
Affiliation(s)
- Timothy DeLory
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, USA
| | - Karen Funderburk
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Applied Mathematics for the Life & Social Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Katelyn Miller
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | | | - Samantha McPherson
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Current address: NCSU Department of Entomology & Plant Pathology, Campus Box 7613, 100 Derieux Place, Raleigh, NC, USA
| | - Christian W. Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, South Africa
| | - Cecilia Costa
- Consiglio per la Ricerca in Agricolturae l’Analisi dell’Economia Agraria, Via Po, 14 - 00198 Rome, Italy
| | - Érica Weinstein Teixeira
- Honey Bee Health Specialized Laboratory, Biological Institute, São Paulo State Agribusiness Technology Agency, Av. Prof. Manoel César Ribeiro, 1920, Pindamonhangaba, São Paulo 12411-010, Brazil
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Corresponding author: 312 Eberhart Bldg, 321 McIver Street, Greensboro NC 27403, USA. Phone: (+1) 336-2562591,
| |
Collapse
|
36
|
Yunusbaev UB, Kaskinova MD, Ilyasov RA, Gaifullina LR, Saltykova ES, Nikolenko AG. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541906019x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlöf M, Webster MT. Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics 2019; 212:1101-1119. [PMID: 31152071 PMCID: PMC6707477 DOI: 10.1534/genetics.119.302008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 752 36, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, United Kingdom
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Dimitry Wintermantel
- INRA, UE 1255 APIS, Le Magneraud, 17700 Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS and Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Mike Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, 7608, South Africa
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| |
Collapse
|
38
|
A century of bias in genetics and evolution. Heredity (Edinb) 2019; 123:33-43. [PMID: 31189901 DOI: 10.1038/s41437-019-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Mendel proposed that the heritable material is particulate and that transmission of alleles is unbiased. An assumption of unbiased transmission was necessary to show how variation can be preserved in the absence of selection, so overturning an early objection to Darwinism. In the second half of the twentieth century, it was widely recognised that even strongly deleterious alleles can invade if they have strongly biased transmission (i.e. strong segregation distortion). The spread of alleles with distorted segregation can explain many curiosities. More recently, the selectionist-neutralist duopoly was broken by the realisation that biased gene conversion can explain phenomena such as mammalian isochore structures. An initial focus on unbiased transmission in 1919, has thus given way to an interest in biased transmission in 2019. A focus on very weak bias is now possible owing to technological advances, although technical biases may put a limit on resolving power. To understand the relevance of weak bias we could profit from having the concept of the effectively Mendelian allele, a companion to the effectively neutral allele. Understanding the implications of unbiased and biased transmission may, I suggest, be a good way to teach evolution so as to avoid psychological biases.
Collapse
|
39
|
Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT. Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee. Mol Biol Evol 2019; 36:2277-2291. [DOI: 10.1093/molbev/msz130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Social insect genomes exhibit the highest rates of crossing over observed in plants and animals. The evolutionary causes of these extreme rates are unknown. Insight can be gained by comparing recombination rate variation across the genomes of related social and solitary insects. Here, we compare the genomic recombination landscape of the highly social honey bee, Apis mellifera, with the solitary alfalfa leafcutter bee, Megachile rotundata, by analyzing patterns of linkage disequilibrium in population-scale genome sequencing data. We infer that average recombination rates are extremely elevated in A. mellifera compared with M. rotundata. However, our results indicate that similar factors control the distribution of crossovers in the genomes of both species. Recombination rate is significantly reduced in coding regions in both species, with genes inferred to be germline methylated having particularly low rates. Genes with worker-biased patterns of expression in A. mellifera and their orthologs in M. rotundata have higher than average recombination rates in both species, suggesting that selection for higher diversity in genes involved in worker caste functions in social taxa is not the explanation for these elevated rates. Furthermore, we find no evidence that recombination has modulated the efficacy of selection among genes during bee evolution, which does not support the hypothesis that high recombination rates facilitated positive selection for new functions in social insects. Our results indicate that the evolution of sociality in insects likely entailed selection on modifiers that increased recombination rates genome wide, but that the genomic recombination landscape is determined by the same factors.
Collapse
Affiliation(s)
- Julia C Jones
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Wallberg A, Bunikis I, Pettersson OV, Mosbech MB, Childers AK, Evans JD, Mikheyev AS, Robertson HM, Robinson GE, Webster MT. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genomics 2019; 20:275. [PMID: 30961563 PMCID: PMC6454739 DOI: 10.1186/s12864-019-5642-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/24/2019] [Indexed: 01/27/2023] Open
Abstract
Background The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map. Results Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor > 98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features. Conclusions The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics. Electronic supplementary material The online version of this article (10.1186/s12864-019-5642-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mai-Britt Mosbech
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna K Childers
- USDA-ARS Insect Genetics and Biochemistry Research Unit, Fargo, ND, USA.,USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | - Jay D Evans
- USDA-ARS Bee Research Lab, Beltsville, MD, USA
| | | | - Hugh M Robertson
- Department of Entomology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Department of Entomology and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Galtier N, Roux C, Rousselle M, Romiguier J, Figuet E, Glémin S, Bierne N, Duret L. Codon Usage Bias in Animals: Disentangling the Effects of Natural Selection, Effective Population Size, and GC-Biased Gene Conversion. Mol Biol Evol 2019; 35:1092-1103. [PMID: 29390090 DOI: 10.1093/molbev/msy015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selection on codon usage bias is well documented in a number of microorganisms. Whether codon usage is also generally shaped by natural selection in large organisms, despite their relatively small effective population size (Ne), is unclear. In animals, the population genetics of codon usage bias has only been studied in a handful of model organisms so far, and can be affected by confounding, nonadaptive processes such as GC-biased gene conversion and experimental artefacts. Using population transcriptomics data, we analyzed the relationship between codon usage, gene expression, allele frequency distribution, and recombination rate in 30 nonmodel species of animals, each from a different family, covering a wide range of effective population sizes. We disentangled the effects of translational selection and GC-biased gene conversion on codon usage by separately analyzing GC-conservative and GC-changing mutations. We report evidence for effective translational selection on codon usage in large-Ne species of animals, but not in small-Ne ones, in agreement with the nearly neutral theory of molecular evolution. C- and T-ending codons tend to be preferred over synonymous G- and A-ending ones, for reasons that remain to be determined. In contrast, we uncovered a conspicuous effect of GC-biased gene conversion, which is widespread in animals and the main force determining the fate of AT↔GC mutations. Intriguingly, the strength of its effect was uncorrelated with Ne.
Collapse
Affiliation(s)
- Nicolas Galtier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Roux
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,UMR 8198 - Evo-Eco-Paleo, CNRS, Université de Lille-Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marjolaine Rousselle
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Emeric Figuet
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Glémin
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Nicolas Bierne
- UMR5554, Institut des Sciences de l'Evolution, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
42
|
Bohlin J, Pettersson JHO. Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals. Comput Struct Biotechnol J 2019; 17:362-370. [PMID: 30949307 PMCID: PMC6429543 DOI: 10.1016/j.csbj.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Whole genome sequencing (WGS) of thousands of microbial genomes has provided considerable insight into evolutionary mechanisms in the microbial world. While substantially fewer eukaryotic genomes are available for analyses the number is rapidly increasing. This mini-review summarizes broadly evolutionary dynamics of base composition in the different domains of life from the perspective of prokaryotes. Common and different evolutionary mechanisms influencing genomic base composition in eukaryotes and prokaryotes are discussed. The conclusion from the data currently available suggests that while there are similarities there are also striking differences in how genomic base composition has evolved within prokaryotes and eukaryotes. For instance, homologous recombination appears to increase GC content locally in eukaryotes due to a non-selective process termed GC-biased gene conversion (gBGC). For prokaryotes on the other hand, increase in genomic GC content seems to be driven by the environment and selection. We find that similar phenomena observed for some organisms in each respective domain may be caused by very different mechanisms: while gBGC and recombination rates appear to explain the negative correlation between GC3 (GC content based on the third codon nucleotides) and genome size in some eukaryotes uptake of AT rich DNA sequences is the main reason for a similar negative correlation observed in prokaryotes. We provide further examples that indicate that base composition in prokaryotes and eukaryotes have evolved under very different constraints.
Collapse
Affiliation(s)
- Jon Bohlin
- Norwegian Institute of Public Health, Division of Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Lovisenberggata 8, 0456 Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, PO-Box 222 Skøyen, N-0213 Oslo, Norway.,Norwegian University of Life Sciences, Faculty of Veterinary Sciences, Production Animal Clinical Sciences, Ullevålsveien 72, 0454 Oslo, Norway
| | - John H-O Pettersson
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School the University of Sydney, New South Wales 2006, Australia.,Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Public Health Agency of Sweden, Nobels vg 18, SE-171 82 Solna, Sweden
| |
Collapse
|
43
|
Plate M, Bernstein R, Hoppe A, Bienefeld K. Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees. PLoS One 2019; 14:e0213270. [PMID: 30840680 PMCID: PMC6402681 DOI: 10.1371/journal.pone.0213270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
Stochastic simulation studies of animal breeding have mostly relied on either the infinitesimal genetic model or finite polygenic models. In this study, we investigated the long-term effects of the chosen model on honeybee breeding schemes. We implemented the infinitesimal model, as well as finite locus models, with 200 and 400 gene loci and simulated populations of 300 and 1000 colonies per year over the course of 100 years. The selection was of a directly and maternally influenced trait with maternal heritability of [Formula: see text], direct heritability of [Formula: see text], and a negative correlation between the effects of rmd = - 0.18. Another set of simulations was run with parameters [Formula: see text], [Formula: see text], and rmd = - 0.53. All models showed similar behavior for the first 20 years. Throughout the study, we observed a higher genetic gain in the direct than in the maternal effects and a smaller gain with a stronger negative covariance. In the long-term, however, only the infinitesimal model predicted sustainable linear genetic progress, while the finite locus models showed sublinear behavior and, after 100 years, only reached between 58% and 62% of the mean breeding values in the infinitesimal model. While the infinitesimal model suggested a reduction of genetic variance by 33% to 49% after 100 years, the finite locus models saw a more drastic loss of 76% to 92%. When designing sustainable breeding strategies, one should, therefore, not blindly trust the infinitesimal model as the predictions may be overly optimistic. Instead, the more conservative choice of the finite locus model should be favored.
Collapse
Affiliation(s)
- Manuel Plate
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Richard Bernstein
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Andreas Hoppe
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| | - Kaspar Bienefeld
- Institute for Bee Research Hohen Neuendorf, Hohen Neuendorf, Germany
| |
Collapse
|
44
|
Dogantzis KA, Zayed A. Recent advances in population and quantitative genomics of honey bees. CURRENT OPINION IN INSECT SCIENCE 2019; 31:93-98. [PMID: 31109680 DOI: 10.1016/j.cois.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The increase in the availability of individual Apis mellifera genomes has resulted in significant progress toward understanding the evolution and adaptation of the honey bee. These efforts have identified new subspecies, evolutionary lineages, and a significant number of genes involved with adaptations and colony-level quantitative traits. Many studies have also developed genetic assays that are being used to monitor the movement and admixture of honey bee populations. These resources are valuable for conservation and breeding programs that seek to improve the economic value of colonies or preserve locally adapted populations and subspecies. This review provides a brief discussion on how population and quantitative genomic studies has improved our understanding of the honey bee.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Smith NMA, Wade C, Allsopp MH, Harpur BA, Zayed A, Rose SA, Engelstädter J, Chapman NC, Yagound B, Oldroyd BP. Strikingly high levels of heterozygosity despite 20 years of inbreeding in a clonal honey bee. J Evol Biol 2018; 32:144-152. [DOI: 10.1111/jeb.13397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nicholas M. A. Smith
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Claire Wade
- Faculty of Veterinary Science The University of Sydney Sydney New South Wales Australia
| | - Michael H. Allsopp
- Honey Bee Research Section ARC‐Plant Protection Research Institute Stellenbosch South Africa
| | - Brock A. Harpur
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Amro Zayed
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Stephen A. Rose
- Department of Biology Faculty of Science York University Toronto Ontario Canada
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Nadine C. Chapman
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Boris Yagound
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| | - Benjamin P. Oldroyd
- Behaviour and Genetics of Social Insects Laboratory The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
46
|
Cossu RM, Casola C, Giacomello S, Vidalis A, Scofield DG, Zuccolo A. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes. Genome Biol Evol 2018; 9:3449-3462. [PMID: 29228262 PMCID: PMC5751070 DOI: 10.1093/gbe/evx260] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 12/29/2022] Open
Abstract
The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
Collapse
Affiliation(s)
- Rosa Maria Cossu
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Amaryllis Vidalis
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Section of Population Epigenetics and Epigenomics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Sweden.,Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Sweden
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Istituto di Genomica Applicata, Udine, Italy
| |
Collapse
|
47
|
Corcoran P, Gossmann TI, Barton HJ, Slate J, Zeng K. Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two Passerine Species. Genome Biol Evol 2018; 9:2987-3007. [PMID: 29045655 PMCID: PMC5714183 DOI: 10.1093/gbe/evx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Population genetic theory predicts that selection should be more effective when the effective population size (Ne) is larger, and that the efficacy of selection should correlate positively with recombination rate. Here, we analyzed the genomes of ten great tits and ten zebra finches. Nucleotide diversity at 4-fold degenerate sites indicates that zebra finches have a 2.83-fold larger Ne. We obtained clear evidence that purifying selection is more effective in zebra finches. The proportion of substitutions at 0-fold degenerate sites fixed by positive selection (α) is high in both species (great tit 48%; zebra finch 64%) and is significantly higher in zebra finches. When α was estimated on GC-conservative changes (i.e., between A and T and between G and C), the estimates reduced in both species (great tit 22%; zebra finch 53%). A theoretical model presented herein suggests that failing to control for the effects of GC-biased gene conversion (gBGC) is potentially a contributor to the overestimation of α, and that this effect cannot be alleviated by first fitting a demographic model to neutral variants. We present the first estimates in birds for α in the untranslated regions, and found evidence for substantial adaptive changes. Finally, although purifying selection is stronger in high-recombination regions, we obtained mixed evidence for α increasing with recombination rate, especially after accounting for gBGC. These results highlight that it is important to consider the potential confounding effects of gBGC when quantifying selection and that our understanding of what determines the efficacy of selection is incomplete.
Collapse
Affiliation(s)
- Pádraic Corcoran
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | | | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
48
|
Henriques D, Parejo M, Vignal A, Wragg D, Wallberg A, Webster MT, Pinto MA. Developing reduced SNP assays from whole-genome sequence data to estimate introgression in an organism with complex genetic patterns, the Iberian honeybee ( Apis mellifera iberiensis). Evol Appl 2018; 11:1270-1282. [PMID: 30151039 PMCID: PMC6099811 DOI: 10.1111/eva.12623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/11/2018] [Indexed: 01/01/2023] Open
Abstract
The most important managed pollinator, the honeybee (Apis mellifera L.), has been subject to a growing number of threats. In western Europe, one such threat is large-scale introductions of commercial strains (C-lineage ancestry), which is leading to introgressive hybridization and even the local extinction of native honeybee populations (M-lineage ancestry). Here, we developed reduced assays of highly informative SNPs from 176 whole genomes to estimate C-lineage introgression in the most diverse and evolutionarily complex subspecies in Europe, the Iberian honeybee (Apis mellifera iberiensis). We started by evaluating the effects of sample size and sampling a geographically restricted area on the number of highly informative SNPs. We demonstrated that a bias in the number of fixed SNPs (FST = 1) is introduced when the sample size is small (N ≤ 10) and when sampling only captures a small fraction of a population's genetic diversity. These results underscore the importance of having a representative sample when developing reliable reduced SNP assays for organisms with complex genetic patterns. We used a training data set to design four independent SNP assays selected from pairwise FST between the Iberian and C-lineage honeybees. The designed assays, which were validated in holdout and simulated hybrid data sets, proved to be highly accurate and can be readily used for monitoring populations not only in the native range of A. m. iberiensis in Iberia but also in the introduced range in the Balearic islands, Macaronesia and South America, in a time- and cost-effective manner. While our approach used the Iberian honeybee as model system, it has a high value in a wide range of scenarios for the monitoring and conservation of potentially hybridized domestic and wildlife populations.
Collapse
Affiliation(s)
- Dora Henriques
- Mountain Research Centre (CIMO)Polytechnic Institute of BragançaBragançaPortugal
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Melanie Parejo
- AgroscopeSwiss Bee Research CentreBernSwitzerland
- Institute of Bee HealthVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Alain Vignal
- GenPhySEUniversité de ToulouseINRAINPTINP‐ENVTCastanet TolosanFrance
| | - David Wragg
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Andreas Wallberg
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Matthew T. Webster
- Department of Medical Biochemistry and MicrobiologyScience for Life LaboratoryUppsala UniversityUppsalaSweden
| | - M. Alice Pinto
- Mountain Research Centre (CIMO)Polytechnic Institute of BragançaBragançaPortugal
| |
Collapse
|
49
|
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0455. [PMID: 29109219 PMCID: PMC5698618 DOI: 10.1098/rstb.2016.0455] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/04/2023] Open
Abstract
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Jessica Stapley
- Centre for Adaptation to a Changing Environment, IBZ, ETH Zürich, 8092 Zürich, Switzerland
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JY, UK
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Carole M Smadja
- Institut des Sciences de l'Evolution UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, 3095 Montpellier cedex 05, France
| |
Collapse
|
50
|
Abstract
Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution.
Collapse
|