1
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Dong Y, Wu X, Hao Y, Liu W, Hu X, Zhou J, Li X, Wang B. Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts. J Bone Miner Res 2025; 40:428-444. [PMID: 39862425 DOI: 10.1093/jbmr/zjaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis. Functionally, epiregulin promoted osteoblast differentiation while inhibiting adipocyte differentiation from mesenchymal progenitor cells. Epidermal growth factor receptor (EGFR), one of the two known receptors for epiregulin, exerted opposing effects compared to epiregulin. Intriguingly, silencing EGFR almost completely abolished the dysregulation of osteoblast and adipocyte differentiation induced by epiregulin, suggesting that EGFR is indispensable for mediating epiregulin function. Further mechanistic exploration indicated that epiregulin/EGFR signaled via the inactivation of mechanistic target of rapamycin complex 1 (mTORC1) pathway. Moreover, epiregulin downregulated RANKL expression in bone marrow stromal cells (BMSCs) and inhibited the differentiation of bone marrow osteoclast precursor cells into osteoclasts. Treatment of ovariectomized female mice with recombinant epiregulin increased osteoblasts and bone formation, decreased osteoclasts and bone resorption, and ameliorated cancellous bone loss. Consistently, epiregulin treatment improved the potential of BMSCs to differentiate into osteoblasts. Collectively, this study has identified a critical role of epiregulin in regulating osteoblast differentiation through EGFR-mediated inactivation of the mTORC1 pathway, as well as osteoclast differentiation via a mechanism associated with RANKL signaling. Additionally, it highlights the potential of epiregulin as a strategy for combating osteoporosis.
Collapse
Affiliation(s)
- Yuan Dong
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaowen Wu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yinglong Hao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Wei Liu
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xingli Hu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital, and Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
3
|
Shan L, Liao X, Yang X, Zhu E, Yuan H, Zhou J, Li X, Wang B. Naked cuticle homolog 2 controls the differentiation of osteoblasts and osteoclasts and ameliorates bone loss in ovariectomized mice. Genes Dis 2025; 12:101209. [PMID: 39552785 PMCID: PMC11567042 DOI: 10.1016/j.gendis.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 11/19/2024] Open
Abstract
Naked cuticle homolog 2 (NKD2) has been recognized as an antagonist of Wnt/β-catenin signaling and a tumor suppressor. The role of NKD2 in osteoblast and osteoclast differentiation and the mechanism are not fully understood. In this study, we identified the up-regulation of NKD2 during osteoblast and adipocyte differentiation. Functional experiments revealed that NKD2 stimulated osteoblast differentiation and suppressed adipocyte formation. Furthermore, NKD2 down-regulated the expression of receptor activator of nuclear factor-κB ligand in bone marrow mesenchymal stem cells and inhibited osteoclast formation from osteoclast precursor cells. Mechanistic investigations revealed that the regulation of osteoblast and adipocyte differentiation by NKD2 involved Wnt/β-catenin and tuberous sclerosis complex subunit 1 (TSC1)/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways. Unlike in undifferentiated mesenchymal cells where NKD2 promoted Dishevelled-1 degradation, in the cells differentiating toward osteoblasts or adipocytes NKD2 down-regulated secreted frizzled related protein 1/4 expression and failed to destabilize Dishevelled-1, thereby activating Wnt/β-catenin signaling. Moreover, NKD2 bound to TSC1 and inhibited mTORC1 signaling. Further investigation uncovered an interplay between TSC1/mTORC1 and Wnt/β-catenin signaling pathways. Finally, transplantation of NKD2-overexpressing bone marrow mesenchymal stem cells into the marrow of mice increased osteoblasts, reduced osteoclasts and marrow fat, and partially prevented bone loss in ovariectomized mice. This study provides evidence that NKD2 in mesenchymal stem/progenitor cells reciprocally regulates the differentiation of osteoblasts and adipocytes by modulating Wnt/β-catenin and mTORC1 pathways and inhibits osteoclast formation by down-regulating receptor activator of nuclear factor-κB ligand. It suggests that NKD2 up-regulation may ameliorate postmenopausal bone loss.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
4
|
Xia TS, Xu SY, Lai LY, Jiang YP, Wang NN, Xin HL. Bitter acids from Humulus lupulus L. alleviate D-galactose induced osteoblastic senescence and bone loss via regulating AKT/mTOR-mediated autophagy. J Food Drug Anal 2024; 32:506-519. [PMID: 39752859 PMCID: PMC11698591 DOI: 10.38212/2224-6614.3508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 01/07/2025] Open
Abstract
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study. Here we aimed to elucidate the anti-senior osteoporosis (SOP) effect of BA on osteoblasts and explore its underlying mechanism. In vitro SOP model was established by D-galactose (D-gal) injured osteoblasts, and the bone formation markers and apoptosis level were measured. mCherry-EGFP-LC3 adenovirus infection and autophagic markers including beclin1 and LC3 proteins were detected to investigate the autophagy level in osteoblasts. To further verify whether BA play the bone-protective role through regulating autophagy, the autophagy inhibitor 3-MA was used, and the cell proliferation, ALP activity, bone mineralization, apoptosis rate and SA-β-gal staining areas were measured. Finally, the protein expressions of AKT/mTOR signaling pathway were detected by Western blotting, and AKT agonist SC79 and mTOR agonist MHY1485 were used to further study the mechanism of BA on AKT/mTOR-mediated autophagy. The results showed that BA stimulated osteoblastic differentiation and inhibited apoptosis proteins Bcl-2/Bax in D-gal-treated osteoblasts. BA also increased the expression of autophagic markers beclin1 and LC3-II/LC3-I in D-gal-treated osteoblasts. mCherry-EGFP-LC3 autophagic double fluorescent adenovirus showed BA promoted the generation of autolysosomes and autophagosomes in D-gal-injured osteoblasts, indicating that BA might prevent osteoblastic bone loss through activating autophagy. Autophagy inhibitor 3-MA was used to further verify whether BA played the bone-protective role via regulating autophagy. The results revealed the promotion effects of BA on proliferation, ALP activity, and mineralized nodule formation in D-gal-injured osteoblasts were eliminated after autophagy blocking with 3-MA, and the inhibitory effects of BA on apoptosis rate and SA-β-gal staining areas were also eliminated. Moreover, BA reduced the phosphorylation levels of AKT, mTOR, p70S6K, and 4EBP in AKT/mTOR pathway, and the promotion of BA on the autophagic markers was blocked after the activation of AKT and mTOR by SC79 and MHY1485. In conclusion, it was the first time to demonstrate that BA improved cell activities and bone formation in aging osteoblasts, and revealed the mechanism of BA against SOP in osteoblasts was activating AKT/mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Tian-Shuang Xia
- School of Pharmacy, Naval Medical University, Shanghai, 200433,
China
| | - Sheng-Yan Xu
- School of Pharmacy, Naval Medical University, Shanghai, 200433,
China
| | - Li-Yong Lai
- School of Pharmacy, Naval Medical University, Shanghai, 200433,
China
| | - Yi-Ping Jiang
- School of Pharmacy, Naval Medical University, Shanghai, 200433,
China
| | - Na-Ni Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007,
China
| | - Hai-Liang Xin
- School of Pharmacy, Naval Medical University, Shanghai, 200433,
China
| |
Collapse
|
5
|
Kuroda H, Khoo HM, Fujita Y, Tominaga K, Kagitani-Shimono K, Hosomi K, Tani N, Oshino S, Wataya-Kaneda M, Kishima H. Calvarial Thickening in Tuberous Sclerosis Complex. World Neurosurg 2024; 192:e460-e467. [PMID: 39366482 DOI: 10.1016/j.wneu.2024.09.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC)-related skeletal abnormalities are understudied. Awareness of skull thickening in patients with TSC is important from the surgical standpoint because a thick skull might complicate craniotomy. This study aimed to discover if patients with TSC are generally prone to skull thickening by retrospectively investigating the frequency and characteristics of skull thickening in these patients. METHODS Patients with TSC ages 10 to 60 years who underwent magnetic resonance imaging in the neurosurgery, dermatology, or pediatrics clinic between 2010 and 2021 were identified. Two control groups were used for comparison: one with patients with unruptured intracranial aneurysms to serve as control without antiseizure medication exposure and one with non-TSC epilepsy as control with antiseizure medication exposure. In all patients, thickness of frontal, parietal, temporal, and occipital bones was measured at a fixed location of each bone on T2-weighted axial images. RESULTS Inclusion criteria were fulfilled by 29 patients. Frontal and temporal bones of the TSC group were significantly thicker than those of either control group. Skull thickening was significantly associated with intracerebral calcification, but not with age, sex, or antiseizure medication exposure. Focal skull thickening was associated with the presence of a subcortical calcification. CONCLUSIONS Patients with TSC have skull thickening, which is often linked to intracerebral calcification. The presence of skull thickening may require modification of surgical approach during craniotomy. Skull thickening and the underlying intracerebral calcification likely share a common precipitating factor given their relationship. Future studies are warranted to clarify the genetic underpinnings of this relationship and even broader skeletal abnormalities in TSC.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuya Fujita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kuriko Kagitani-Shimono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
6
|
Li D, Cai D, Xie D, Wang L, Zhang Y, Ruan G, Zhang Q, Yan B, Zhang H, Lai P, Liao Z, Jiang Y, Yu D, Ding C, Yang C. Dynamic control of mTORC1 facilitates bone healing in mice. Bone 2024; 190:117285. [PMID: 39426581 DOI: 10.1016/j.bone.2024.117285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Bone healing requires well-orchestrated sequential actions of osteoblasts and osteoclasts. Previous studies have demonstrated that the mechanistic target of rapamycin complex 1 (mTORC1) plays a critical role in the metabolism of osteoblasts and osteoclasts. However, the role of mTORC1 in bone healing remains unclear. Here, we showed that a dynamic change in mTORC1 activity during the process was essential for proper healing and can be harnessed therapeutically for treatment of bone fractures. Low mTORC1 activity induced by osteoblastic Raptor knockout or rapamycin treatment promoted osteoblast-mediated osteogenesis, thus leading to better bone formation and shorter bone union time. Rapamycin treatment in vitro also revealed that low mTORC1 activity enhanced osteoblast differentiation and maturation. However, rapamycin treatment affected the recruitment of osteoclasts to new bone sites, thus resulting in delayed callus absorption in bone marrow cavity. Mechanistically, decreased mTORC1 activity inhibited the recruitment of osteoclast progenitor cells to healing sites through a decrease in osteoblastic expression of monocyte chemoattractant protein-1, thus inhibiting osteoclast-mediated remodeling. Therefore, normal mTORC1 activity was necessary for bone remodeling stage. Furthermore, through the use of sustained-release materials at the bone defect, we confirmed that localized application of rapamycin in early stages accelerated bone healing without affecting bone remodeling. Together, these findings revealed that the activity of mTORC1 continually changed during bone healing, and staged rapamycin treatment could be used to promote bone healing.
Collapse
Affiliation(s)
- Delong Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Denghui Xie
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Liang Wang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Bo Yan
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Haiyan Zhang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Zhengquan Liao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dianbo Yu
- Department of Sports Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, Guangxi 533000, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China; Guangxi Health Commission Key Laboratory of Biomedical Materials Research, Baise, Guangxi 533000, China.
| |
Collapse
|
7
|
Niu Z, Zhou Y, Liang M, Su F, Guo Q, Jing J, Xie J, Zhang D, Liu X. Crosstalk between ALK3(BMPR1A) deficiency and autophagy signaling mitigates pathological bone loss in osteoporosis. Bone 2024; 182:117052. [PMID: 38408588 DOI: 10.1016/j.bone.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Postmenopausal osteoporosis is recognized to be one of the major skeleton diseases strongly associated with impaired bone formation. Previous reports have indicated that the importance of bone morphogenetic protein (BMP) signaling of osteoblast lineage in bone development via classical Smad signaling, however, its critical role in osteoporosis is still not well understood. In the current study, we aim to investigate the pathological role of BMPR1A, a key receptor of BMPs, in osteoporosis and its underlying mechanism. We first found that knockdown of BMPR1A by using Col1a1-creER in osteoblasts mitigated early bone loss of osteoporosis in mice, yet along with late bone maturation defects by reducing mineral adherence rate and bone formation rate in vivo. At the cellular level, we then observed that BMPR1A deficiency promoted the proliferation of pre-osteoblasts under osteoporotic conditions but hindered their late-stage mineralization. We finally elucidated that BMPR1A deficiency compensatorily triggered mTOR-autophagy perturbation by a higher level in early osteoporotic pre-osteoblasts thus resulting in the enhancement of transient cell proliferation but impairment of final mineralization. Taken together, this study indicated the significance of BMPR1A-mTOR/autophagy axis, as a double-edged sword, in osteoporotic bone formation and provided new cues for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan, China
| | - Muchun Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan, China
| | - Fuqiang Su
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Sichuan, China
| |
Collapse
|
8
|
Sheppard AJ, Delgado K, Barfield AM, Xu Q, Massey PA, Dong Y, Barton RS. Rapamycin Inhibits Senescence and Improves Immunomodulatory Function of Mesenchymal Stem Cells Through IL-8 and TGF-β Signaling. Stem Cell Rev Rep 2024; 20:816-826. [PMID: 38340274 PMCID: PMC10984889 DOI: 10.1007/s12015-024-10682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-β (TGF-β) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.
Collapse
Affiliation(s)
- Aaron J Sheppard
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Kristin Delgado
- School of Medicine, LSU Health Shreveport, Shreveport, LA, USA
| | | | - Qinqin Xu
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Patrick A Massey
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| | - Yufeng Dong
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA.
| | - Richard S Barton
- Department of Orthopedic Surgery, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
9
|
Devine CC, Brown KC, Paton KO, Heveran CM, Martin SA. Rapamycin does not alter bone microarchitecture or material properties quality in young-adult and aged female C57BL/6 mice. JBMR Plus 2024; 8:ziae001. [PMID: 38505525 PMCID: PMC10945714 DOI: 10.1093/jbmrpl/ziae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024] Open
Abstract
Advancing age is the strongest risk factor for osteoporosis and skeletal fragility. Rapamycin is an FDA-approved immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) complex, extends lifespan, and protects against aging-related diseases in multiple species; however, the impact of rapamycin on skeletal tissue is incompletely understood. We evaluated the effects of a short-term, low-dosage, interval rapamycin treatment on bone microarchitecture and strength in young-adult (3 mo old) and aged female (20 mo old) C57BL/6 mice. Rapamycin (2 mg/kg body mass) was administered via intraperitoneal injection 1×/5 d for a duration of 8 wk; this treatment regimen has been shown to induce geroprotective effects while minimizing the side effects associated with higher rapamycin dosages and/or more frequent or prolonged delivery schedules. Aged femurs exhibited lower cancellous bone mineral density, volume, trabecular connectivity density and number, higher trabecular thickness and spacing, and lower cortical thickness compared to young-adult mice. Rapamycin had no impact on assessed microCT parameters. Flexural testing of the femur revealed that both yield strength and ultimate strength were lower in aged mice compared to young-adult mice. There were no effects of rapamycin on these or other measures of bone biomechanics. Age, but not rapamycin, altered local and global measures of bone turnover. These data demonstrate that short-term, low-dosage interval rapamycin treatment does not negatively or positively impact the skeleton of young-adult and aged mice.
Collapse
Affiliation(s)
- Connor C Devine
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Kenna C Brown
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Kat O Paton
- Translational Biomarkers Core Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
- Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
| | - Chelsea M Heveran
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Stephen A Martin
- Translational Biomarkers Core Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
- Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
| |
Collapse
|
10
|
Gao M, Du Z, Dong Q, Su S, Tian L. DAP1 regulates osteoblast autophagy via the ATG16L1-LC3 axis in Graves' disease-induced osteoporosis. J Orthop Surg Res 2023; 18:711. [PMID: 37735431 PMCID: PMC10512661 DOI: 10.1186/s13018-023-04171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE This study aimed to uncover a critical protein and its mechanisms in modulating autophagy in Graves' disease (GD)-induced osteoporosis (OP). METHODS We discovered the target protein, death-associated protein 1 (DAP1), using bone proteomics analysis. Furthermore, genetic overexpression and knockdown (KD) of DAP1 in bone and MC3T3-E1 cells revealed DAP1 effects on autophagy and osteogenic markers, and autophagic vacuoles in cells were detected using transmission electron microscopy and the microtubule-associated protein 1 light chain 3 alpha (MAP1LC3/LC3) dual fluorescence system. An autophagy polymerase chain reaction (PCR) array kit was used to identify the key molecules associated with DAP1-regulated autophagy. RESULTS DAP1 levels were significantly higher in the bone tissue of GD mice and MC3T3-E1 cells treated with triiodothyronine (T3). DAP1 overexpression reduced LC3 lipidation, autophagic vacuoles, RUNX family transcription factor 2 (RUNX2), and osteocalcin (OCN) expression in MC3T3-E1 cells, whereas DAP1 KD reversed these changes. In vivo experiments revealed that GD mice with DAP1 KD had greater bone mass than control mice. DAP1-overexpressing (OE) cells had lower levels of phosphorylated autophagy-related 16-like 1 (ATG16L1) and LC3 lipidation, whereas DAP1-KD cells had higher levels. CONCLUSIONS DAP1 was found to be a critical regulator of autophagy homeostasis in GD mouse bone tissue and T3-treated osteoblasts because it negatively regulated autophagy and osteogenesis in osteoblasts via the ATG16L1-LC3 axis.
Collapse
Affiliation(s)
- Mingdong Gao
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department Pediatrics, Gansu Provincial Hospital, Lanzhou, 730030, Gansu, China
- Clinical Research Center for Metabolic Diseases, Lanzhou, 730030, Gansu, China
| | - Zouxi Du
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qianqian Dong
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Shan Su
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Limin Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Clinical Research Center for Metabolic Diseases, Lanzhou, 730030, Gansu, China.
- Department of Endocrinology, Gansu Provincial Hospital, No. 204 West Donggang Road, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
11
|
Luo X, Feng W, Huang S, Miao S, Jiang T, Lei Q, Yin J, Zhang S, Bai X, Hao C, Li W, Ma D. Odontoblasts release exosomes to regulate the odontoblastic differentiation of dental pulp stem cells. Stem Cell Res Ther 2023; 14:176. [PMID: 37422687 PMCID: PMC10329399 DOI: 10.1186/s13287-023-03401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 06/09/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) play a crucial role in dentin-pulp complex regeneration. Further understanding of the mechanism by which DPSCs remain in a quiescent state could contribute to improvements in the dentin-pulp complex and dentinogenesis. METHODS TSC1 conditional knockout (DMP1-Cre+; TSC1f/f, hereafter CKO) mice were generated to increase the activity of mechanistic target of rapamycin complex 1 (mTORC1). H&E staining, immunofluorescence and micro-CT analysis were performed with these CKO mice and littermate controls. In vitro, exosomes were collected from the supernatants of MDPC23 cells with different levels of mTORC1 activity and then characterized by transmission electron microscopy and nanoparticle tracking analysis. DPSCs were cocultured with MDPC23 cells and MDPC23 cell-derived exosomes. Alizarin Red S staining, ALP staining, qRT‒PCR, western blotting analysis and micro-RNA sequencing were performed. RESULTS Our study showed that mTORC1 activation in odontoblasts resulted in thicker dentin and higher dentin volume/tooth volume of molars, and it increased the expression levels of the exosome markers CD63 and Alix. In vitro, when DPSCs were cocultured with MDPC23 cells, odontoblastic differentiation was inhibited. However, the inhibition of odontoblastic differentiation was reversed when DPSCs were cocultured with MDPC23 cells with mTORC1 overactivation. To further study the effects of mTORC1 on exosome release from odontoblasts, MDPC23 cells were treated with rapamycin or shRNA-TSC1 to inactivate or activate mTORC1, respectively. The results revealed that exosome release from odontoblasts was negatively correlated with mTORC1 activity. Moreover, exosomes derived from MDPC23 cells with active or inactive mTORC1 inhibited the odontoblastic differentiation of DPSCs at the same concentration. miRNA sequencing analysis of exosomes that were derived from shTSC1-transfected MDPC23 cells, rapamycin-treated MDPC23 cells or nontreated MDPC23 cells revealed that the majority of the miRNAs were similar among these groups. In addition, exosomes derived from odontoblasts inhibited the odontoblastic differentiation of DPSCs, and the inhibitory effect was positively correlated with exosome concentration. CONCLUSION mTORC1 regulates exosome release from odontoblasts to inhibit the odontoblastic differentiation of DPSCs, but it does not alter exosomal contents. These findings might provide a new understanding of dental pulp complex regeneration.
Collapse
Affiliation(s)
- Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, 510280, Guangdong, China
| | - Weiqing Feng
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Shijiang Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Shenghong Miao
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, 510280, Guangdong, China
| | - Qian Lei
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, 510280, Guangdong, China
| | - Jingyao Yin
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Weizhong Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, No.1838 North Guangzhou Avenue, Guangzhou, People's Republic of China.
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
12
|
Wang H, Su J, Yu M, Xia Y, Wei Y. PGC-1α in osteoarthritic chondrocytes: From mechanism to target of action. Front Pharmacol 2023; 14:1169019. [PMID: 37089944 PMCID: PMC10117990 DOI: 10.3389/fphar.2023.1169019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases, often involving the entire joint. The degeneration of articular cartilage is an important feature of OA, and there is growing evidence that the mitochondrial biogenesis master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) exert a chondroprotective effect. PGC-1α delays the development and progression of OA by affecting mitochondrial biogenesis, oxidative stress, mitophagy and mitochondrial DNA (mtDNA) replication in chondrocytes. In addition, PGC-1α can regulate the metabolic abnormalities of OA chondrocytes and inhibit chondrocyte apoptosis. In this paper, we review the regulatory mechanisms of PGC-1α and its effects on OA chondrocytes, and introduce potential drugs and novel nanohybrid for the treatment of OA which act by affecting the activity of PGC-1α. This information will help to further elucidate the pathogenesis of OA and provide new ideas for the development of therapeutic strategies for OA.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yang Xia, ; Yingliang Wei,
| |
Collapse
|
13
|
Kumamoto M, Hamada K, Ohbayashi C, Tamaki S, Muro S. Difficulties in Differentiating Osteosclerosis in Patients With Multifocal Micronodular Pneumocyte Hyperplasia and Cancer. Cureus 2023; 15:e35659. [PMID: 37009387 PMCID: PMC10065850 DOI: 10.7759/cureus.35659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
A 52-year-old woman with multifocal micronodular pneumocyte hyperplasia in bilateral lungs and multiple sclerotic bone lesions (SBLs) visited our hospital. Tuberous sclerosis complex (TSC) was suspected but did not meet the diagnostic criteria. Ten years later, at age 62, the patient developed ureteral cancer. Cisplatin-containing chemotherapy ameliorated ureteral tumor, concomitant with exacerbation of SBLs. It was difficult to distinguish whether the exacerbation of SBLs was due to exacerbation of TSC or bone metastasis of cancer. The administration of cisplatin made the diagnosis even more difficult because its molecular biological effects can exacerbate the complications of TSC.
Collapse
|
14
|
Csukasi F, Bosakova M, Barta T, Martin JH, Arcedo J, Barad M, Rico-Llanos GA, Zieba J, Becerra J, Krejci P, Duran I, Krakow D. Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR. Front Cell Dev Biol 2023; 10:963389. [PMID: 36726589 PMCID: PMC9885499 DOI: 10.3389/fcell.2022.963389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jesus Arcedo
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Gustavo A. Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jose Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Chen Q, Fan K, Song G, Wang X, Zhang J, Chen H, Qin X, Lu Y, Qi W. Rapamycin regulates osteogenic differentiation through Parkin-mediated mitophagy in rheumatoid arthritis. Int Immunopharmacol 2022; 113:109407. [PMID: 36379150 DOI: 10.1016/j.intimp.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Varying degrees of bone destruction and bone loss occur in the development of rheumatoid arthritis (RA). Nevertheless, the mechanism underlying osteoporosis in the development of RA is not completely elucidated. Recent evidence indicates that mitophagy may play a vital role in regulating the differentiation and function of preosteoblast. Parkin is associated with mitophagy and various inflammatory diseases, but the precise role of Parkin in the treatment of osteoporosis in RA is unclear. In the present study, we found that the abnormal bone metabolism of RA is related to the activation of the mechanistic targets of mTORC1 pathway, and chronic inflammation which regulates the differentiation of preosteoblast through mitophagy. In this study, we found that Parkin was upregulated, and the mitochondrion was damaged in tumor necrosis factor alpha (TNF-α) stimulated preosteoblasts. Rapamycin (RAPA, an mTORC1 pathway blocker) upregulation of Parkin-mediated mitophagy tends to attenuate mitochondrial impairment caused by TNF-α in preosteoblasts. Theexperimentinvivo demonstrated that the combination therapy with TNF-α neutralizing antibody and RAPA significantly reduced osteoporosis in AIA mice. Drug inhibition of this pathway can be a potential treatment for osteoporosis in patients with RA.
Collapse
Affiliation(s)
- Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Kai Fan
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Guangbao Song
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xinqiong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jinwei Zhang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huan Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xuan Qin
- Department of Stomatology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, Guangdong, China
| | - Yao Lu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou 510010, Guangdong, China.
| | - Weizhong Qi
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
16
|
Fu J, Zhang J, Jiang T, Ao X, Li P, Lian Z, Li C, Zhang X, Liu J, Huang M, Zhang Z, Wang L. mTORC1 coordinates NF-κB signaling pathway to promote chondrogenic differentiation of tendon cells in heterotopic ossification. Bone 2022; 163:116507. [PMID: 35908648 DOI: 10.1016/j.bone.2022.116507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation based on endochondral ossification distinguished by ossification within muscles, tendons, or other soft tissues. There has been growing studies focusing on the treatment with rapamycin to inhibit HO, but the mechanism of mTORC1 on HO remains unclear. Tendon cells (TDs) are the first cells to form during tendon heterotopic ossification. Here, we used an in vivo model of HO and an in vitro model of chondrogenesis induction to elucidate the effect and underlying mechanism of mTORC1 in HO. The current study highlights the effect of rapamycin on murine Achilles tenotomy-induced HO and the role of mTORC1 signaling pathway on TDs. Our result showed that mTORC1 was activation in the early stage of HO, whereas the mTORC1 maintained low expression in the mature ectopic cartilage tissue and the ectopic bone formation sites. The use of mTORC1-specific inhibitor (rapamycin) immediately after Achilles tendon injury could suppress the formation of HO; once ectopic cartilage and bone had formed, treatment with rapamycin could not significantly inhibit the progression of HO. Mechanistically, mTORC1 stimulation by silencing of TSC1 promoted the expression of the chondrogenic markers in TDs. In TDs, treated with mTORC1 stimulation by silencing of TSC1, mTORC1 increased the activation of the NF-κB signaling pathway. NF-κB selective inhibitor BAY11-7082 significantly suppressed the chondrogenesis of TDs that treated with mTORC1 stimulation by silencing of TSC1. Together, our findings demonstrated that mTORC1 promoted HO by regulating TDs chondrogenesis partly through the NF-κB signaling pathway; and rapamycin could be a viable HO therapeutic regimen.
Collapse
Affiliation(s)
- Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengnan Lian
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xibing Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China; Academy of Orthopaedics, Guangdong Province, Guangzhou 510630, China.
| |
Collapse
|
17
|
Wang W, Lu J, Song Y, Zeng C, Wang Y, Yang C, Huang B, Dai Y, Yang J, Lai L, Wang L, Cai D, Bai X. Repair of bone defects in rhesus monkeys with α1,3-galactosyltransferase-knockout pig cancellous bone. Front Bioeng Biotechnol 2022; 10:990769. [PMID: 36172016 PMCID: PMC9510634 DOI: 10.3389/fbioe.2022.990769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction: Since xenografts offer a wide range of incomparable advantages, they can be a better option than allografts but only if the possibility of immunological rejection can be eliminated. In this study, we investigated the ability of α1,3-galactosyltransferase (α1,3-GT) gene knockout (GTKO) pig cancellous bone to promote the repair of a femoral condyle bone defect and its influence on heterologous immune rejection. Materials and methods: Cylindrical bone defects created in a rhesus monkey model were transplanted with GTKO bone, WT bone or left empty. For immunological evaluation, T lymphocyte subsets CD4+ and CD8+ in peripheral blood were assayed by flow cytometry, and the IL-2 and IFN-γ contents of peripheral blood serum were analyzed by ELISA at 2, 5, 7, 10, and 14 days post-surgery. Micro-CT scans and histological assessment were conducted at 4 and 8 weeks after implantation. Results: Compared with WT-pig bone, the heterologous immunogenicity of GTKO-pig bone was reduced. The defect filled with fresh GTKO-pig bone was tightly integrated with the graft. Histological analysis showed that GTKO-pig cancellous bone showed better osseointegration and an appropriate rate of resorption. Osteoblast phenotype progression in the GTKO group was not affected, which revealed that GTKO-pig bone could not only fill and maintain the bone defect, but also promote new bone formation. Conclusion: GTKO-pig cancellous bone decreased the ratio of CD4+ to CD8+ T cells and cytokines (IFN-γ and IL-2) to inhibit xenotransplant rejection. Moreover, GTKO group increased more bone formation by micro-CT analysis and osteoblastic markers (Runx2, OSX and OCN). Together, GTKO-pig cancellous bone showed better bone repair than WT-pig cancellous bone.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Jiansen Lu
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Song
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Chun Zeng
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongkui Wang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Yang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Liping Wang
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Daozhang Cai, ; Xiaochun Bai,
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- *Correspondence: Daozhang Cai, ; Xiaochun Bai,
| |
Collapse
|
18
|
Hou X, Tian F. STAT3-mediated osteogenesis and osteoclastogenesis in osteoporosis. Cell Commun Signal 2022; 20:112. [PMID: 35879773 PMCID: PMC9310501 DOI: 10.1186/s12964-022-00924-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis is a common skeletal disease with marked bone loss, deterioration of the bone microstructure and bone fragility. An abnormal bone remodelling cycle with relatively increased bone resorption is the crucial pathophysiological mechanism. Bone remodelling is predominantly controlled by osteoblasts and osteoclasts, which are specialized cell types that are regulated by a variety of osteogenic and osteoclastic factors, including cytokines expressed within the bone microenvironment under local or systemic inflammatory conditions. Signal transducer and activator of transcription 3 (STAT3) plays a prominent role in the communication between cytokines and kinases by binding downstream gene promotors and is involved in a wide range of biological or pathological processes. Emerging evidence suggests that STAT3 and its network participate in bone remodelling and the development of osteoporosis, and this factor may be a potent target for osteoporosis treatment. This review focuses on the role and molecular mechanism of the STAT3 signalling pathway in osteogenesis, osteoclastogenesis and osteoporosis, particularly the bone-related cytokines that regulate the osteoblastic differentiation of bone marrow stromal cells and the osteoclastic differentiation of bone marrow macrophages by initiating STAT3 signalling. This review also examines the cellular interactions among immune cells, haematopoietic cells and osteoblastic/osteoclastic cells. Video abstract
Collapse
Affiliation(s)
- Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Caofeidian Dis, Bohai Road 21, Tangshan, 063210, People's Republic of China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Caofeidian Dis, Bohai Road 21, Tangshan, 063210, People's Republic of China.
| |
Collapse
|
19
|
Yang J, Zhang W, Lai E, Liu W, Lai P, Zou Z, Wang W, Bai X. Deletion of Rheb1 in Osteocytes Leads to Osteopenia Characterized by Reduced Bone Formation and Enhanced Bone Resorption. DNA Cell Biol 2022; 41:683-690. [PMID: 35687365 DOI: 10.1089/dna.2021.0874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.
Collapse
Affiliation(s)
- Jun Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Eryong Lai
- Oncology Department of the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wen Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiaochun Bai
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Ouyang Z, Kang D, Li K, Liang G, Liu Z, Mai Q, Chen Q, Yao C, Wei R, Tan X, Bai X, Huang B, Li Q. DEPTOR exacerbates bone-fat imbalance in osteoporosis by transcriptionally modulating BMSC differentiation. Biomed Pharmacother 2022; 151:113164. [PMID: 35609371 DOI: 10.1016/j.biopha.2022.113164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) tend to differentiate into adipocytes rather than osteoblasts in osteoporosis and other pathological conditions. Understanding the mechanisms underlying the adipo-osteogenic imbalance greatly contributes to the ability to induce specific MSC differentiation for clinical applications. This study aimed to explore whether DEP-domain containing mTOR-interacting protein (DEPTOR) regulated MSC fate and bone-fat switch, which was indicated to be a key player in bone homeostasis. We found that DEPTOR expression decreased during the osteogenesis of BMSCs but increased during adipogenesis and the shift of cell lineage commitment of BMSCs to adipocytes in mice with osteoporosis. DEPTOR facilitated adipogenic differentiation while preventing the osteogenic differentiation of BMSCs. Deptor ablation in BMSCs alleviated bone loss and reduced marrow fat accumulation in mice with osteoporosis. Mechanistically, DEPTOR binds transcriptional coactivator with a PDZ-binding motif (TAZ) and inhibits its transactivation properties, thereby repressing the transcriptional activity of RUNX2 and elevating gene transcription by peroxisome-proliferator-activated receptor-gamma. TAZ knockdown in BMSCs abolished the beneficial role of Deptor ablation in bone-fat balance in mice. Together, our data indicate that DEPTOR is a molecular rheostat that modulates BMSC differentiation and bone-fat balance, and may represent a potential therapeutic target for age-related bone loss.
Collapse
Affiliation(s)
- Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Orthopedics, Dazhou Second People's Hospital of Sichuan Province, Dazhou 635000, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Guojun Liang
- Department of Orthopedics, Guangzhou Huaxin Orthopaedic Hospital of Shantou University, Guangzhou 510507, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qiguang Mai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Chenfeng Yao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Ruiming Wei
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xianchun Tan
- Department of Orthopedics, Dazhou Second People's Hospital of Sichuan Province, Dazhou 635000, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|
21
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
22
|
Pagel CN, Kularathna PK, Sanaei R, Young ND, Hooper JD, Mackie EJ. Protease-activated receptor-2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate 2022; 82:723-739. [PMID: 35167724 DOI: 10.1002/pros.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Metastatic prostate cancer lesions in the skeleton are frequently characterized by excessive formation of bone. Prostate cancer cells secrete factors, including serine proteases, that are capable of influencing the behavior of surrounding cells. Some of these proteases activate protease-activated receptor-2 (PAR2 ), which is expressed by osteoblasts (bone-forming cells) and precursors of osteoclasts (bone-resorbing cells). The aim of the current study was to investigate a possible role for PAR2 in regulating the behavior of bone cells exposed to metastatic prostate cancer cells. METHODS The effect of medium conditioned by the PC3, DU145, and MDA-PCa-2b prostate cancer cell lines was investigated in assays of bone cell function using cells isolated from wildtype and PAR2 -null mice. Osteoclast differentiation was assessed by counting tartrate-resistant acid phosphatase-positive multinucleate cells in bone marrow cultured in osteoclastogenic medium. Osteoblasts were isolated from calvariae of neonatal mice, and BrdU incorporation was used to assess their proliferation. Assays of alkaline phosphatase activity and quantitative PCR analysis of osteoblastic gene expression were used to assess osteoblast differentiation. Responses of osteoblasts to medium conditioned by MDA-PCa-2b cells were analyzed by RNAseq. RESULTS Conditioned medium (CM) from all three cell lines inhibited osteoclast differentiation independently of PAR2 . Media from PC3 and DU145 cells had no effect on assays of osteoblast function. Medium conditioned by MDA-PCa-2b cells stimulated BrdU incorporation in both wildtype and PAR2 -null osteoblasts but increased alkaline phosphatase activity and Runx2 and Col1a1 expression in wildtype but not PAR2 -null cells. Functional enrichment analysis of RNAseq data identified enrichment of multiple gene ontology terms associated with lysosomal function in both wildtype and PAR2 -null cells in response to MDA-PCa-2b-CM. Analysis of individual genes identified osteogenesis-associated genes that were either upregulated by MDA-PCa-2b-CM selectively in wildtype cells or downregulated selectively in PAR2 -null cells. CONCLUSIONS Factors secreted by prostate cancer cells influence bone cell behavior through both PAR2 -dependent and -independent mechanisms. Both PAR2 -independent suppression of osteoclast differentiation and PAR2 -dependent stimulation of osteogenesis are likely to determine the nature of prostate cancer metastases in bone.
Collapse
Affiliation(s)
- Charles N Pagel
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pamu K Kularathna
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Sanaei
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - John D Hooper
- Mater Research Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Eleanor J Mackie
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Chen A, Jin J, Cheng S, Liu Z, Yang C, Chen Q, Liang W, Li K, Kang D, Ouyang Z, Yao C, Bai X, Li Q, Jin D, Huang B. mTORC1 induces plasma membrane depolarization and promotes preosteoblast senescence by regulating the sodium channel Scn1a. Bone Res 2022; 10:25. [PMID: 35256591 PMCID: PMC8901653 DOI: 10.1038/s41413-022-00204-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Senescence impairs preosteoblast expansion and differentiation into functional osteoblasts, blunts their responses to bone formation-stimulating factors and stimulates their secretion of osteoclast-activating factors. Due to these adverse effects, preosteoblast senescence is a crucial target for the treatment of age-related bone loss; however, the underlying mechanism remains unclear. We found that mTORC1 accelerated preosteoblast senescence in vitro and in a mouse model. Mechanistically, mTORC1 induced a change in the membrane potential from polarization to depolarization, thus promoting cell senescence by increasing Ca2+ influx and activating downstream NFAT/ATF3/p53 signaling. We further identified the sodium channel Scn1a as a mediator of membrane depolarization in senescent preosteoblasts. Scn1a expression was found to be positively regulated by mTORC1 upstream of C/EBPα, whereas its permeability to Na+ was found to be gated by protein kinase A (PKA)-induced phosphorylation. Prosenescent stresses increased the permeability of Scn1a to Na+ by suppressing PKA activity and induced depolarization in preosteoblasts. Together, our findings identify a novel pathway involving mTORC1, Scn1a expression and gating, plasma membrane depolarization, increased Ca2+ influx and NFAT/ATF3/p53 signaling in the regulation of preosteoblast senescence. Pharmaceutical studies of the related pathways and agents might lead to novel potential treatments for age-related bone loss.
Collapse
Affiliation(s)
- Ajuan Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jian Jin
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shasha Cheng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Yang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingjing Chen
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenquan Liang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dawei Kang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhicong Ouyang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chenfeng Yao
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dadi Jin
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Bin Huang
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Rayson A, Boudiffa M, Naveed M, Griffin J, Dall’Ara E, Bellantuono I. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol 2022; 10:682045. [PMID: 35223825 PMCID: PMC8864221 DOI: 10.3389/fcell.2022.682045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis and osteoarthritis are the most common age-related diseases of the musculoskeletal system. They are responsible for high level of healthcare use and are often associated with comorbidities. Mechanisms of ageing such as senescence, inflammation and autophagy are common drivers for both diseases and molecules targeting those mechanisms (geroprotectors) have potential to prevent both diseases and their co-morbidities. However, studies to test the efficacy of geroprotectors on bone and joints are scant. The limited studies available show promising results to prevent and reverse Osteoporosis-like disease. In contrast, the effects on the development of Osteoarthritis-like disease in ageing mice has been disappointing thus far. Here we review the literature and report novel data on the effect of geroprotectors for Osteoporosis and Osteoarthritis, we challenge the notion that extension of lifespan correlates with extension of healthspan in all tissues and we highlight the need for more thorough studies to test the effects of geroprotectors on skeletal health in ageing organisms.
Collapse
Affiliation(s)
- Alexandra Rayson
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maya Boudiffa
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Maneeha Naveed
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| | - Jon Griffin
- Healthy Lifespan Institute, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall’Ara
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
- Insigneo Institute for in silico Medicine, Sheffield, United Kingdom
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, Sheffield, United Kingdom
| |
Collapse
|
25
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
26
|
Gong W, Chen X, Shi T, Shao X, An X, Qin J, Chen X, Jiang Q, Guo B. Network Pharmacology-Based Strategy for the Investigation of the Anti-Osteoporosis Effects and Underlying Mechanism of Zhuangguguanjie Formulation. Front Pharmacol 2021; 12:727808. [PMID: 34658868 PMCID: PMC8517248 DOI: 10.3389/fphar.2021.727808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
As the society is aging, the increasing prevalence of osteoporosis has generated huge social and economic impact, while the drug therapy for osteoporosis is limited due to multiple targets involved in this disease. Zhuangguguanjie formulation (ZG) is extensively used in the clinical treatment of bone and joint diseases, but the underlying mechanism has not been fully described. This study aimed to examine the therapeutic effect and potential mechanism of ZG on postmenopausal osteoporosis. The ovariectomized (OVX) mice were treated with normal saline or ZG for 4 weeks after ovariectomy following a series of analyses. The bone mass density (BMD) and trabecular parameters were examined by micro-CT. Bone remodeling was evaluated by the bone histomorphometry analysis and ELISA assay of bone turnover biomarkers in serum. The possible drug–disease common targets were analyzed by network pharmacology. To predict the potential biological processes and related pathways, GO/KEGG enrichment analysis was performed. The effects of ZG on the differentiation phenotype of osteoclasts and osteoblasts and the predicted pathway were verified in vitro. The results showed that ZG significantly improved the bone mass and micro-trabecular architecture in OVX mice compared with untreated OVX mice. ZG could promote bone formation and inhibit bone resorption to ameliorate ovariectomy-induced osteoporosis as evidenced by increased number of osteoblast (N.Ob/Tb.Pm) and decreased number of osteoclast (N.Oc/Tb.Pm) in treated group compared with untreated OVX mice. After identifying potential drug–disease common targets by network pharmacology, GO enrichment analysis predicted that ZG might affect various biological processes including osteoblastic differentiation and osteoclast differentiation. The KEGG enrichment analysis suggested that PI3K/Akt and mTOR signaling pathways could be the possible pathways. Furthermore, the experiments in vitro validated our findings. ZG significantly down-regulated the expression of osteoclast differentiation markers, reduced osteoclastic resorption, and inhibited the phosphorylation of PI3K/Akt, while ZG obviously up-regulated the expression of osteogenic biomarkers, promoted the formation of calcium nodules, and hampered the phosphorylation of 70S6K1/mTOR, which can be reversed by the corresponding pathway activator. Thus, our study suggested that ZG could inhibit the PI3K/Akt signaling pathway to reduce osteoclastic bone resorption as well as hamper the mTORC1/S6K1 signaling pathway to promote osteoblastic bone formation.
Collapse
Affiliation(s)
- Wang Gong
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xingren Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tianshu Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiaoyan Shao
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xueying An
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jianghui Qin
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Medical School, Nanjing University, Nanjing, China
| | - Baosheng Guo
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
28
|
Martin SA, Riordan RT, Wang R, Yu Z, Aguirre-Burk AM, Wong CP, Olson DA, Branscum AJ, Turner RT, Iwaniec UT, Perez VI. Rapamycin impairs bone accrual in young adult mice independent of Nrf2. Exp Gerontol 2021; 154:111516. [PMID: 34389472 DOI: 10.1016/j.exger.2021.111516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022]
Abstract
Advanced age is the strongest risk factor for osteoporosis. The immunomodulator drug rapamycin extends lifespan in numerous experimental model organisms and is being investigated as a potential therapeutic to slow human aging, but little is known about the effects of rapamycin on bone. We evaluated the impact of rapamycin treatment on bone mass, architecture, and indices of bone turnover in healthy adult (16-20 weeks old at treatment initiation) female wild-type (ICR) and Nrf2-/- mice, a mouse model of oxidative damage and aging-related disease vulnerability. Rapamycin (4 mg/kg bodyweight) was administered by intraperitoneal injection every other day for 12 weeks. Mice treated with rapamycin exhibited lower femur bone mineral content, bone mineral density, and bone volume compared to vehicle-treated mice. In midshaft femur diaphysis (cortical bone), rapamycin-treated mice had lower cortical volume and thickness, and in the distal femur metaphysis (cancellous bone), rapamycin-treated mice had higher trabecular spacing and lower connectivity density. Mice treated with rapamycin exhibited lower bone volume, bone volume fraction, and trabecular thickness in the 5th lumbar vertebra. Rapamycin-treated mice had lower levels of bone formation in the distal femur metaphysis compared to vehicle-treated mice which occurred co-incidentally with increased serum CTX-1, a marker of global bone resorption. Rapamycin had no impact on tibia inflammatory cytokine gene expression, and we found no independent effects of Nrf2 knockout on bone, nor did we find any interactions between genotype and treatment. These data show that rapamycin may have a negative impact on the skeleton of adult mice that should not be overlooked in the clinical context of its usage as a therapy to retard aging and reduce the incidence of age-related pathologies.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, USA.
| | - Ruben T Riordan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
29
|
Izumiya M, Haniu M, Ueda K, Ishida H, Ma C, Ideta H, Sobajima A, Ueshiba K, Uemura T, Saito N, Haniu H. Evaluation of MC3T3-E1 Cell Osteogenesis in Different Cell Culture Media. Int J Mol Sci 2021; 22:ijms22147752. [PMID: 34299372 PMCID: PMC8304275 DOI: 10.3390/ijms22147752] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Many biomaterials have been evaluated using cultured cells. In particular, osteoblast-like cells are often used to evaluate the osteocompatibility, hard-tissue-regeneration, osteoconductive, and osteoinductive characteristics of biomaterials. However, the evaluation of biomaterial osteogenesis-inducing capacity using osteoblast-like cells is not standardized; instead, it is performed under laboratory-specific culture conditions with different culture media. However, the effect of different media conditions on bone formation has not been investigated. Here, we aimed to evaluate the osteogenesis of MC3T3-E1 cells, one of the most commonly used osteoblast-like cell lines for osteogenesis evaluation, and assayed cell proliferation, alkaline phosphatase activity, expression of osteoblast markers, and calcification under varying culture media conditions. Furthermore, the various media conditions were tested in uncoated plates and plates coated with collagen type I and poly-L-lysine, highly biocompatible molecules commonly used as pseudobiomaterials. We found that the type of base medium, the presence or absence of vitamin C, and the freshness of the medium may affect biomaterial regeneration. We posit that an in vitro model that recapitulates in vivo bone formation should be established before evaluating biomaterials.
Collapse
Affiliation(s)
- Makoto Izumiya
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Miyu Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
| | - Katsuya Ueda
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Haruka Ishida
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Chuang Ma
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Hirokazu Ideta
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Atsushi Sobajima
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Department of Orthopedics (Lower Limbs), Social Medical Care Corporation Hosei-kai Marunouchi Hospital, 1-7-45 Nagisa, Matsumoto, Nagano 390-8601, Japan
| | - Koki Ueshiba
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
| | - Hisao Haniu
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; (M.I.); (M.H.); (K.U.); (H.I.); (C.M.); (K.U.); (T.U.); (N.S.)
- Biomedical Engineering Division, Graduate School of Medicine, Science and Technology, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan;
- Correspondence: ; Tel.: +81-263-37-3555
| |
Collapse
|
30
|
Luo X, Yin J, Miao S, Feng W, Ning T, Xu S, Huang S, Zhang S, Liao Y, Hao C, Wu B, Ma D. mTORC1 promotes mineralization via p53 pathway. FASEB J 2021; 35:e21325. [PMID: 33508145 DOI: 10.1096/fj.202002016r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
The objectives of our study were to investigate the roles of mTORC1 in odontoblast proliferation and mineralization and to determine the mechanism by which mTORC1 regulates odontoblast mineralization. In vitro, MDPC23 cells were treated with rapamycin (10 nmol/L) and transfected with a lentivirus for short hairpin (shRNA)-mediated silencing of the tuberous sclerosis complex (shTSC1) to inhibit and activate mTORC1, respectively. CCK8 assays, flow cytometry, Alizarin red S staining, ALP staining, qRT-PCR, and western blot analysis were performed. TSC1-conditional knockout (DMP1-Cre+ ; TSC1f/f , hereafter CKO) mice and littermate control (DMP1-Cre- ; TSC1f/f , hereafter WT) mice were generated. H&E staining, immunofluorescence, and micro-CT analysis were performed. Transcriptome sequencing analysis was used to screen the mechanism of this process. mTORC1 inactivation decreased the cell proliferation. The qRT-PCR and western blot results showed that mineralization-related genes and proteins were downregulated in mTORC1-inactivated cells. Moreover, mTORC1 overactivation promoted cell proliferation and mineralization-related gene and protein expression. In vivo, the micro-CT results showed that DV/TV and dentin thickness were higher in CKO mice than in controls and H&E staining showed the same results. Mineralization-related proteins expression was upregulated. Transcriptome sequencing analysis revealed that p53 pathway-associated genes were differentially expressed in TSC1-deficient cells. By inhibiting p53 alone or both mTORC1 and p53 with rapamycin and a p53 inhibitor, we elucidated that p53 acts downstream of mTORC1 and that mTORC1 thereby promotes odontoblast mineralization. Taken together, our findings demonstrate that the role of mTORC1 in odontoblast proliferation and mineralization, and confirm that mTORC1 upregulates odontoblast mineralization via the p53 pathway.
Collapse
Affiliation(s)
- Xinghong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Jingyao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Shenghong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Weiqing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Tingting Ning
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shijiang Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China.,Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| |
Collapse
|
31
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
32
|
Liu H, Zhu H, Cheng L, Zhao Y, Chen X, Li J, Xv X, Xiao Z, Li W, Pan J, Zhang Q, Zeng C, Guo J, Xie D, Cai D. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast activity. J Tissue Eng Regen Med 2021; 15:475-486. [PMID: 33686790 DOI: 10.1002/term.3186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/22/2021] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to develop a novel β-tricalcium phosphate (TCP)/poly (D,L-lactic-co-glycolic acid) (PLGA) composite scaffold loaded with rapamycin that can regulate the activity of osteoblasts and osteoclasts for lumbar fusion. The TCP/PLGA composite scaffold was fabricated by cryogenic three-dimensional printing techniques and then loaded with rapamycin in situ. The structural surface morphology of the composite scaffold was tested with scanning electron microscope. To evaluate the biocompatibility of the composite scaffold in vitro, bone marrow mesenchymal stem cells (BMSCs) were cultured on the TCP/PLGA composite scaffold slide and tested with Live/Dead Viability Kit. The effect of rapamycin on osteoclast and osteoblast was studied with staining and Western blotting. The in vitro results showed that the rapamycin-loaded TCP/PLGA composite scaffold showed good biocompatibility with BMSC and released rapamycin obviously promoted the osteoblast differentiation and mineralization. In vivo study, the TCP/PLGA composite scaffold loaded with rapamycin were implanted in lumbar fusion model and study with micro-computed tomography scanning, hematoxylin-eosin, Masson, and immune-histological staining, to evaluate the effect of rapamycin on bone fusion. The in vivo results demonstrated that rapamycin-loaded TCP/PLGA composite scaffold could enhance bone formation by regulating osteoblast and osteoclast activity, respectively. In this study, the TCP/PLGA composite scaffold loaded with rapamycin was confirmed to provide great compatibility and improved performance in lumbar fusion by regulating osteoblastic and osteoclastic activity and would be a promising composite biomaterial for bone tissue engineering.
Collapse
Affiliation(s)
- Hai Liu
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Cheng
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yitao Zhao
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xizhong Chen
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jintao Li
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Xv
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhisheng Xiao
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Li
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianying Pan
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qun Zhang
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Office of Clinical Trial of Drug, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Zeng
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jinshan Guo
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Histology and Embryology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Denghui Xie
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Daozhang Cai
- Department of Orthopaedic Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Relevance of Notch Signaling for Bone Metabolism and Regeneration. Int J Mol Sci 2021; 22:ijms22031325. [PMID: 33572704 PMCID: PMC7865281 DOI: 10.3390/ijms22031325] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Notch1-4 receptors and their signaling pathways are expressed in almost all organ systems and play a pivotal role in cell fate decision by coordinating cell proliferation, differentiation and apoptosis. Differential expression and activation of Notch signaling pathways has been observed in a variety of organs and tissues under physiological and pathological conditions. Bone tissue represents a dynamic system, which is constantly remodeled throughout life. In bone, Notch receptors have been shown to control remodeling and regeneration. Numerous functions have been assigned to Notch receptors and ligands, including osteoblast differentiation and matrix mineralization, osteoclast recruitment and cell fusion and osteoblast/osteoclast progenitor cell proliferation. The expression and function of Notch1-4 in the skeleton are distinct and closely depend on the temporal expression at different differentiation stages. This review addresses the current knowledge on Notch signaling in adult bone with emphasis on metabolism, bone regeneration and degenerative skeletal disorders, as well as congenital disorders associated with mutant Notch genes. Moreover, the crosstalk between Notch signaling and other important pathways involved in bone turnover, including Wnt/β-catenin, BMP and RANKL/OPG, are outlined.
Collapse
|
34
|
Chen J, Dong Y, Peng J, Zhang J, Gao X, Lu A, Shen C. Notch signaling mitigates chemotherapy toxicity by accelerating hematopoietic stem cells proliferation via c-Myc. Am J Transl Res 2020; 12:6723-6739. [PMID: 33194068 PMCID: PMC7653623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The mechanisms that regulate hematopoietic stem cell (HSC) regeneration after myelosuppressive injury are not well understood. Here, we showed that disruption of Notch signaling aggravated chemotherapy-induced myelosuppression in inducible genetic mice. Conversely, Notch activation correlated positively with clinical HSC engraftment. We used endothelial-targeted chimeric Notch ligand Delta-like 1 (D1R) to activate Notch signaling in hematopoietic stem/progenitor cells through micro-environmental cellular contact. Recombinant protein D1R contributed to the recovery of the HSC pool and sustained HSC vitality in response to various chemotherapeutic agents in vivo. Mechanistically, D1R treatment promoted HSC proliferation transiently, prevented HSC exhaustion, correlated with activation of the downstream phosphoinositide 3-kinase (PI3K)/extracellular-signal-regulated kinase (ERK)/BCL2 associated agonist of cell death (BAD) signaling axis during regeneration, and partially mediated upregulation of c-Myc in HSCs. These data reveal an unrecognized role for Notch signaling in promoting HSC repopulation after myelosuppressive chemotherapy and offer a new therapeutic approach to mitigate chemotherapy-induced injury.
Collapse
Affiliation(s)
- Juanjuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Oncology and Hematology, 421 Hospital of Chinese People’s Liberation ArmyGuangzhou, China
| | - Yan Dong
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jian Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xiaotong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an, China
| | - Aili Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Chunlin Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
35
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
36
|
Lin J, Chen L, Dou D. Progress of orthopaedic research in China over the last decade. J Orthop Translat 2020; 24:131-137. [PMID: 32913711 PMCID: PMC7452214 DOI: 10.1016/j.jot.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective To summarize the representative scientific achievements in the past decade, and discuss the future challenges and directions for orthopaedic research in China. Methods In this review, we used the data provided by National Natural Science Foundation of China (NSFC) for analysis. Results Over the last decade, NSFC has initiated various research programs with a total funding of over 1149 million RMB to support orthopaedic exploration. Under the strong support of NSFC, great progresses have been made in basic research, talent training, platform construction and the clinical translation in the field of orthopaedics in China. Conclusion In general, since the establishment of the Department of Health Sciences of NSFC 10 years ago, both the amount of funding and the scale of researchers in the field of orthopaedic research have increased substantially. Despite of several shortcomings in orthopaedic research, with continuous support from NSFC both in funding and in policy, we believe that the orthopaedic research in China will surely make steady and significant progress. The translational potential of this article This article summarizes the representative scientific achievements in the past decade and puts forward the future challenges and directions for orthopaedic research in China.
Collapse
Affiliation(s)
- Jun Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
37
|
Liu W, Wang Z, Yang J, Wang Y, Li K, Huang B, Yan B, Wang T, Li M, Zou Z, Yang J, Xiao G, Cui ZK, Liu A, Bai X. Osteocyte TSC1 promotes sclerostin secretion to restrain osteogenesis in mice. Open Biol 2020; 9:180262. [PMID: 31088250 PMCID: PMC6544986 DOI: 10.1098/rsob.180262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteocytes secrete the glycoprotein sclerostin to inhibit bone formation by osteoblasts, but how sclerostin production is regulated in osteocytes remains unclear. Here, we show that tuberous sclerosis complex 1 (TSC1) in osteocytes promotes sclerostin secretion through inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and downregulation of Sirt1. We generated mice with DMP1-Cre-directed Tsc1 gene deletion (Tsc1 CKO) to constitutively activate mTORC1 in osteocytes. Although osteocyte TSC1 disruption increased RANKL expression and osteoclast formation, it markedly reduced sclerostin production in bone, resulting in severe osteosclerosis with enhanced bone formation in mice. Knockdown of TSC1 activated mTORC1 and decreased sclerostin, while rapamycin inhibited mTORC1 and increased sclerostin mRNA and protein expression levels in MLO-Y4 osteocyte-like cells. Furthermore, mechanical loading activated mTORC1 and prevented sclerostin expression in osteocytes. Mechanistically, TSC1 promotes sclerostin production and prevents osteogenesis through inhibition of mTORC1 and downregulation of Sirt1, a repressor of the sclerostin gene Sost. Our findings reveal a role of TSC1/mTORC1 signalling in the regulation of osteocyte sclerostin secretion and bone formation in response to mechanical loading in vitro. Targeting TSC1 represents a potential strategy to increase osteogenesis and prevent bone loss-related diseases.
Collapse
Affiliation(s)
- Wen Liu
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Zhenyu Wang
- 2 Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Jun Yang
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Yongkui Wang
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Kai Li
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China.,2 Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Bin Huang
- 2 Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Bo Yan
- 2 Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University , Guangzhou , People's Republic of China
| | - Ting Wang
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Mangmang Li
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Zhipeng Zou
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Jian Yang
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China.,4 Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park, PA , USA
| | - Guozhi Xiao
- 5 Department of Biochemistry and Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment, South University of Science and Technology of China , Shenzhen , People's Republic of China
| | - Zhong-Kai Cui
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Anling Liu
- 3 Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| | - Xiaochun Bai
- 1 Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Science, Southern Medical University , Guangzhou , People's Republic of China
| |
Collapse
|
38
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
39
|
Chen S, van Tok MN, Knaup VL, Kraal L, Pots D, Bartels L, Gravallese EM, Taurog JD, van de Sande M, van Duivenvoorde LM, Baeten DL. mTOR Blockade by Rapamycin in Spondyloarthritis: Impact on Inflammation and New Bone Formation in vitro and in vivo. Front Immunol 2020; 10:2344. [PMID: 32194539 PMCID: PMC7065603 DOI: 10.3389/fimmu.2019.02344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction: Spondyloarthritis (SpA) is characterized by inflammation, articular bone erosions and pathologic new bone formation. Targeting TNFα or IL-17A with current available therapies reduces inflammation in SpA, however, treatment of the bone pathology in SpA remains an unmet clinical need. Activation of the mammalian target Of rapamycin (mTOR) promotes IL-17A expression and osteogenesis. Therefore, the inhibition of mTOR (with rapamycin) could be a promising therapeutic avenue in SpA. Objectives: To investigate the effect of blocking mTOR on inflammation, bone erosions and new bone formation in SpA. Methods: Peripheral blood mononuclear cells (PBMCs) from patients with SpA were stimulated with anti-CD3/CD28 in the presence or absence of rapamycin and the resulting cytokine expression was assessed. Fibroblast-like synoviocytes (FLS) from SpA patients were assessed for osteogenic differentiation potential in conditions with TNFα, IL-17A, or TNFα plus IL-17A, in the presence or absence of rapamycin. HLA-B27/Huβ2m transgenic rats were immunized with low dose heat-inactivated Mycobacterium tuberculosis (M. tub), treated with 1.5 mg/kg rapamycin prophylactically or therapeutically and monitored for arthritis and spondylitis. Histology and mRNA analysis were performed after 5 weeks of treatment to assess inflammation and bone pathology. Results:In vitro TNFα and IL-17A protein production by SpA PBMCs was inhibited in the presence of rapamycin. Rapamycin also inhibited osteogenic differentiation of human SpA FLS. Ex vivo analysis of SpA synovial biopsies indicated activation of the mTOR pathway in the synovial tissue of SpA patients. In vivo, prophylactic treatment of HLA-B27/Huβ2m transgenic rats with rapamycin significantly inhibited the development and severity of inflammation in peripheral joints and spine (arthritis and spondylitis), with histological evidence of reduced bone erosions and new bone formation around peripheral joints. In addition, therapeutic treatment with rapamycin significantly decreased severity of arthritis and spondylitis, with peripheral joint histology showing reduced inflammation, bone erosions and new bone formation. IL-17A mRNA expression was decreased in the metacarpophalangeal joints after rapamycin treatment. Conclusion: mTOR blockade inhibits IL-17A and TNFα production by PBMCs, and osteogenic differentiation of FLS from patients with SpA in vitro. In the HLA-B27 transgenic rat model of SpA, rapamycin inhibits arthritis and spondylitis development and severity, reduces articular bone erosions, decreases pathologic new bone formation and suppresses IL-17A expression. These results may support efforts to evaluate the efficacy of targeting the mTOR pathway in SpA patients.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Melissa N van Tok
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Véronique L Knaup
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Kraal
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Désiree Pots
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lina Bartels
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ellen M Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Joel D Taurog
- Internal Medicine, Rheumatic Diseases Division, UT Southwestern Medical Center, Dallas, TX, United States
| | - Marleen van de Sande
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Leonie M van Duivenvoorde
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dominique L Baeten
- Department of Experimental Immunology, Infection and Immunity Institute, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,UCB Pharma, Slough, United Kingdom
| |
Collapse
|
40
|
Xu Y, Li L, Tang Y, Yang J, Jin Y, Ma C. Icariin promotes osteogenic differentiation by suppressing Notch signaling. Eur J Pharmacol 2019; 865:172794. [PMID: 31733213 DOI: 10.1016/j.ejphar.2019.172794] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
Abstract
Osteoporosis is a bone disease characterized by microarchitectural deterioration, low bone mass, and increased risk of fractures. Icariin (ICA), an active flavonoid glucoside isolated from Herba epimedii (HEF), is a potent stimulator of osteogenic differentiation and has potential applications for preventing bone loss in postmenopausal women. However, the molecular mechanism underlying the osteogenic effect of ICA has not yet been fully elucidated. In this study, we report that ICA treatment significantly elevated gene expression of osteogenic markers and increased alkaline phosphatase (ALP) activity in MC3T3-E1 and C3H10T1/2 cells. RNA sequencing revealed that the expression of several genes involved in the Notch pathway was decreased following ICA treatment. Real-time PCR further demonstrated that the mRNA levels of Notch ligands Jagged-1 (Jag1), lunatic fringe (Lfng), and Notch signaling downstream target gene Hey-1 were significantly decreased following ICA treatment. In addition, we found that constitutive activation of Notch signaling through overexpression of the intracellular domain of Notch (NICD) fully blocked ICA-induced osteoblast differentiation. Moreover, inhibiting Notch signaling with DAPT markedly enhanced osteogenic differentiation following ICA treatment. We found that the mRNA levels of Notch pathway molecules (Lfng, Notch1, Rbpjk and Nfatc1) were increased in ovariectomized (OVX) mice, and administration of ICA significantly decreased the expression of these genes. Our results suggest that ICA promotes osteogenic differentiation in vitro and alleviates osteoporosis in vivo through inhibition of the Notch signaling pathway.
Collapse
Affiliation(s)
- Yuexin Xu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China; Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China; Department of Gynaecology and Obstetrics, Northern Jiangsu People's Hospital, Yangzhou, 225001, PR China
| | - Lingyun Li
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China
| | - Yuting Tang
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China
| | - Jiashu Yang
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China
| | - Yucui Jin
- Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China
| | - Changyan Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China; Department of Medical Genetics, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, PR China.
| |
Collapse
|
41
|
Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Arch Biochem Biophys 2019; 675:108108. [PMID: 31550444 DOI: 10.1016/j.abb.2019.108108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
The insufficient vascularization is a major challenge in bone tissue engineering, leading to partial necrosis of the implant. Pre-vascularization is a promising way via in vitro cells co-culture strategies using osteogenic cells and vasculogenic cells, and the cross-talk of cells is essential. In the present study, the effect of rat bone-marrow derived mesenchymal stem cells (BMSCs) on angiogenic capability of human umbilical vein endothelial cells (HUVECs) in growth medium (GM) and osteogenic induction medium (OIM) was investigated. It was demonstrated that cells co-cultured in OIM showed high efficiency in osteogenesis but failed to form capillary-like structure while the results of co-culture in GM were the opposite. By comparing the angiogenic capacity of co-cultures under GM and OIM, chemokine (C-X-C motif) ligand 9 (Cxcl9), secreted by BMSCs in OIM, was identified to be an angiostatic factor to counter-regulate vascular endothelial growth factor (VEGF) and prevent its binding to HUVECs, which abrogated angiogenesis of MSCs-ECs co-culture. Moreover, Cxcl9 was proved to suppress the osteogenic differentiation of BMSCs monoculture. The molecular mechanism of Cxcl9 activation in BMSCs involved mTOR/STAT1 signaling pathway. Therefore, blocking this signaling pathway via rapamycin addition resulted in the inhibition of Cxcl9 and improvement of osteogenic differentiation and angiogenic capacity of co-culture in OIM. These results reveal that Cxcl9 is a negative modulator of angiogenesis and osteogenesis, and its inhibition could promote pre-vascularization of bone tissue engineering.
Collapse
|
42
|
Yang Y, Zhou X, Li Y, Chen A, Liang W, Liang G, Huang B, Li Q, Jin D. CXCL2 attenuates osteoblast differentiation by inhibiting the ERK1/2 signaling pathway. J Cell Sci 2019; 132:jcs230490. [PMID: 31292171 DOI: 10.1242/jcs.230490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
The C-X-C motif chemokine ligand 2 (CXCL2), a member of the CXC receptor ligand family, is involved in various immune and inflammatory processes, but its effect(s) on bone formation have not yet been reported. We report here that CXCL2 is enriched in bone marrow and show abundant expression of CXCL2 in osteoblasts of osteoporotic mice. CXCL2 neutralization within the bone marrow by using antibody alleviated bone loss in mice, indicating a negative role of CXCL2 in bone formation. In line with this, CXCL2 overexpression attenuated proliferation, as well as differentiation, of osteoblasts in vitro By contrast, CXCL2 downregulation promoted osteoblast expansion and differentiation. Mechanistically, CXCL2 inhibits the ERK1/2 (MAPK3/1) signaling pathway in osteoblasts. Activation of ERK1/2 abolishes the inhibitory effect of CXCL2 in osteoblasts, whereas inactivation of ERK1/2 reverses the osteogenic role of CXCL2 inhibition. These results show that CXCL2 attenuates osteoblast differentiation through inhibition of the ERK1/2 signaling pathway. We demonstrate here that CXCL2 is a negative regulator of bone formation and clarify the responsible mechanisms. Therefore, pharmaceutical coordination of CXCL2 and of the pathways through which it is regulated in osteoblasts might be beneficial regarding bone formation.
Collapse
Affiliation(s)
- Yang Yang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Xinying Zhou
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Ajuan Chen
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Wenquan Liang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Guojun Liang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Bin Huang
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Qingchu Li
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| | - Dadi Jin
- Department of Orthopedics, Academy of Orthopedics Guangdong Province, the Third Affiliated Hospital of Southern Medical University, 510000 Guangzhou, China
| |
Collapse
|
43
|
Miyamoto H, Sawaji Y, Iwaki T, Masaoka T, Fukada E, Date M, Yamamoto K. Intermittent pulsed electromagnetic field stimulation activates the mTOR pathway and stimulates the proliferation of osteoblast‐like cells. Bioelectromagnetics 2019; 40:412-421. [DOI: 10.1002/bem.22207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Hironori Miyamoto
- Department of Orthopedic SurgeryTokyo Medical University Tokyo Japan
| | - Yasunobu Sawaji
- Department of Orthopedic SurgeryTokyo Medical University Tokyo Japan
| | - Takahiro Iwaki
- Department of Orthopedic SurgeryTokyo Medical University Tokyo Japan
| | - Toshinori Masaoka
- Department of Orthopedic SurgeryTokyo Medical University Tokyo Japan
| | - Eiichi Fukada
- Laboratory of PiezoelectricityKobayasi Institute of Physical Research Tokyo Japan
| | - Munehiro Date
- Laboratory of PiezoelectricityKobayasi Institute of Physical Research Tokyo Japan
| | - Kengo Yamamoto
- Department of Orthopedic SurgeryTokyo Medical University Tokyo Japan
| |
Collapse
|
44
|
Lv R, Pan X, Song L, Sun Q, Guo C, Zou S, Zhou Q. MicroRNA-200a-3p accelerates the progression of osteoporosis by targeting glutaminase to inhibit osteogenic differentiation of bone marrow mesenchymal stem cells. Biomed Pharmacother 2019; 116:108960. [PMID: 31112871 DOI: 10.1016/j.biopha.2019.108960] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022] Open
Abstract
To uncover the role of microRNA-200a-3p in regulating osteogenic differentiation of MSCs via targeting glutaminase, thus influencing the progression of OP. Serum level of microRNA-200a-3p in OP patients and healthy controls was determined by qRT-PCR. MicroRNA-200a-3p level in MSCs undergoing osteogenic differentiation for different days was examined as well. ALP activity, calcification nodules and relative levels of Bglap, Runx2 and OPN in MSCs overexpressing microRNA-200a-3p undergoing osteogenic differentiation were detected. Relative l-glutaminase uptake in MSCs undergoing osteogenic differentiation for different days was determined. After transfection of si-GLS in MSCs undergoing osteogenic differentiation, l-glutaminase uptake, ALP activity and relative levels of Bglap, Runx2 and OPN were detected. The potential binding relationship between microRNA-200a-3p and GLS was tested by dual-luciferase reporter gene assay. Finally, rescue experiments were conducted to elucidate the role of microRNA-200a-3p/GLS in osteogenic differentiation of MSCs. MicroRNA-200a-3p level was higher in serum of OP patients relative to controls. Its level in MSCs gradually decreased with the prolongation of osteogenic differentiation. Overexpression of microRNA-200a-3p reduced cell viability, ALP activity, number and volume of calcification nodule. The mRNA levels of Bglap, Runx2 and OPN were downregulated by overexpressed microRNA-200a-3p. The cell viability, ALP activity, number and volume of calcification nodule were reduced when microRNA-200a-3p was knocked down. The mRNA levels of Bglap, Runx2 and OPN were upregulated when transfected microRNA-200a-3p inhibitor. l-glutaminase uptake increased with the prolongation of osteogenic differentiation in MSCs. Knockdown of GLS attenuated l-glutaminase uptake and ALP activity, as well as downregulated Bglap, Runx2 and OPN. Besides, GLS was verified to directly bind to microRNA-200a-3p. GLS overexpression reversed the inhibitory effects of overexpressed microRNA-200a-3p on osteogenic differentiation of MSCs. MicroRNA-200a-3p suppresses osteogenic differentiation of MSCs via targeting glutaminase, thereafter accelerating the progression of OP.
Collapse
Affiliation(s)
- Renfa Lv
- Department of Orthopaedics, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Yintan, 335000, Jiangxi, China
| | - Xiaofeng Pan
- Department of Orthopaedics, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Yintan, 335000, Jiangxi, China
| | - Lei Song
- Department of Orthopaedics, The Southwest hospital affiliated to Army Medical University, Chongqing, 401120, China
| | - Qi Sun
- Department of Orthopaedics, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Yintan, 335000, Jiangxi, China
| | - Congtao Guo
- Department of Orthopaedics, The Southwest hospital affiliated to Army Medical University, Chongqing, 401120, China
| | - Shu Zou
- Department of Orthopaedics, The 908th Hospital of Chinese PLA Joint Logistic Support Force, Yintan, 335000, Jiangxi, China
| | - Qiang Zhou
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University(Gener Hospital), Chongqing, 401120, China.
| |
Collapse
|
45
|
Ding Y, Jiang H, Meng B, Zhu B, Yu X, Xiang G. Sweroside-mediated mTORC1 hyperactivation in bone marrow mesenchymal stem cells promotes osteogenic differentiation. J Cell Biochem 2019; 120:16025-16036. [PMID: 31074104 DOI: 10.1002/jcb.28882] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
This paper aims to probe into the effect of sweroside (SOS) in osteoporosis (OP) and explains mechanisms of its molecular. Applying the ovariectomized (OVX) mouse model investigates the preventive effect of SOS against postmenopausal OP after 3 months of SOS treatment (120 mg/kg/day). Using hematoxylin and eosin (HE) staining and micro computed tomography (CT) observed the morphology of OP in each group. Immunohistochemical staining (IHC) was used to examine osteoblast markers. Experiments in vitro, bone marrow mesenchymal stem cells (BMSCs) from C57/BL6 mice were treated with SOS for 14 days. The staining of alizarin red and alkaline phosphatase activity were measured, and the presentation of osteoblast markers was detected by quantitative reverse transcription PCR. BMSCs were also treated with 1 μg/mL SOS with or without rapamycin, the expression of protein S6 (PS6), P-mTOR, runt-related transcription factor 2 (RUNX2), OSX, and osteocalcin (OCN) was detected by Western blotting. Experiments in vivo, HE results show that SOS can alleviate OP, CT results show that there are lower trabecular thickness, bone mineral density, and trabecular number in control OVX mice than those in the OVX + SOS group. IHC results showed that SOS can promote the expression of osteogenic markers and immunofluorescent results show that SOS can promote mTORC1 signal activation. Experiments in vitro revealed that SOS stimulated the activation of the mTORC1 signaling pathway and upregulated RUNX2, OSX, and OCN, rapamycin can reverse it. Our findings demonstrated that differentiated BMSCs into osteoblasts can be promoted by SOS via upregulating the expression of P-mTOR, PS6, RUNX2, OSX, and OCN. SOS effectively prevented OP by hyperactivation of the mTORC1/PS6 signaling pathway.
Collapse
Affiliation(s)
- Yan Ding
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Huaji Jiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Biying Meng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Biao Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| | - Xiao Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangda Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.,Department of Endocrinology, General Hospital of Central Theater Command, Hubei Province, China
| |
Collapse
|
46
|
miR-206 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells by targetting glutaminase. Biosci Rep 2019; 39:BSR20181108. [PMID: 30804229 PMCID: PMC6900431 DOI: 10.1042/bsr20181108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Osteoblast-mediated bone formation is a complex process involving various pathways and regulatory factors, including cytokines, growth factors, and hormones. Investigating the regulatory mechanisms behind osteoblast differentiation is important for bone regeneration therapy. miRNAs are known as important regulators, not only in a variety of cellular processes, but also in the pathogenesis of bone diseases. In the present study, we investigated the potential roles of miR-206 during osteoblast differentiation. We report that miR-206 expression was significantly down-regulated in human bone marrow mesenchymal stem cells (BMSCs) at days 7 and 14 during osteogenic induction. Furthermore, miR-206 overexpressing BMSCs showed attenuated alkaline phosphatase (ALP) activity, Alizarin Red staining, and osteocalcin secretion. The mRNA levels of osteogenic markers, Runx2 and Osteopontin (OPN), were significantly down-regulated in miR-206 overexpressing BMSCs. We observed that significantly increased glutamine uptake at days 7 and 14 during the osteogenic induction and inhibition of glutamine metabolism by knocking down glutaminase (GLS)-suppressed osteogenic differentiation of BMSCs. Here, we discover that miR-206 could directly bind to the 3′-UTR region of GLS mRNA, resulting in suppressed GLS expression and glutamine metabolism. Finally, restoration of GLS in miR-206 overexpressing BMSCs led to recovery of glutamine metabolism and osteogenic differentiation. In summary, these results reveal a new insight into the mechanisms of the miR-206-mediated osteogenesis through regulating glutamine metabolism. Our study may contribute to the development of therapeutic agents against bone diseases.
Collapse
|
47
|
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7:5. [PMID: 30792936 PMCID: PMC6381187 DOI: 10.1038/s41413-018-0041-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.
Collapse
|
48
|
Bateman JF, Sampurno L, Maurizi A, Lamandé SR, Sims NA, Cheng TL, Schindeler A, Little DG. Effect of rapamycin on bone mass and strength in the α2(I)-G610C mouse model of osteogenesis imperfecta. J Cell Mol Med 2018; 23:1735-1745. [PMID: 30597759 PMCID: PMC6378195 DOI: 10.1111/jcmm.14072] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/15/2018] [Accepted: 11/10/2018] [Indexed: 12/23/2022] Open
Abstract
Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant‐containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations.
Collapse
Affiliation(s)
- John F Bateman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Lisa Sampurno
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Antonio Maurizi
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tegan L Cheng
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - David G Little
- Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Choi HK, Yuan H, Fang F, Wei X, Liu L, Li Q, Guan JL, Liu F. Tsc1 Regulates the Balance Between Osteoblast and Adipocyte Differentiation Through Autophagy/Notch1/β-Catenin Cascade. J Bone Miner Res 2018; 33:2021-2034. [PMID: 29924882 PMCID: PMC6248888 DOI: 10.1002/jbmr.3530] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/07/2018] [Accepted: 06/17/2018] [Indexed: 01/14/2023]
Abstract
A reduction in trabecular bone mass is often associated with an increase in marrow fat in osteoporotic bones. The molecular mechanisms underlying this inverse correlation are incompletely understood. Here, we report that mice lacking tuberous sclerosis 1 (Tsc1) in Osterix-expressing cells had a significant decrease in trabecular bone mass characterized by decreased osteoblastogenesis, increased osteoclastogenesis, and increased bone marrow adiposity in vivo. In vitro study showed that Tsc1-deficient bone marrow stromal cells (BMSCs) had decreased proliferation, decreased osteogenic differentiation, and increased adipogenic differentiation in association with the downregulation of Wnt/β-catenin signaling. Mechanistically, TSC1 deficiency led to autophagy suppression and consequent Notch1 protein increase, which mediated the GSK3β-independent β-catenin degradation. Together, our results indicate that Tsc1 controls the balance between osteoblast and adipocyte differentiation of BMSCs. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Han Kyoung Choi
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Hebao Yuan
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Fang Fang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Lu Liu
- Department of Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Qing Li
- Department of Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Lin X, Sun Q, Zhou L, He M, Dong X, Lai M, Liu M, Su Y, Jia C, Han Z, Liu S, Zheng H, Jiang Y, Ling H, Li M, Chen J, Zou Z, Bai X. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunol 2018; 11:1663-1673. [PMID: 30082707 DOI: 10.1038/s41385-018-0018-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 02/07/2023]
Abstract
The functional role of colonic epithelium in the pathogenesis of ulcerative colitis (UC) remains unclear. Here, we reveal a novel mechanism by which colonic epithelia recruit T helper-17 (Th17) cells during the onset of UC. mTOR complex 1 (mTORC1) was hyper-activated in colonic epithelia of UC mice. While colonic epithelial TSC1 (mTORC1 negative regulator) disruption induced constitutive mTORC1 activation in the colon epithelia and aggravated UC, RPTOR (essential mTORC1 component) depletion inactivated mTORC1 and ameliorated UC. TSC1 deficiency enhanced, whereas RPTOR ablation reduced the expression of cyclooxygenase 2 (COX-2), interleukin-1 (IL-1), IL-6, and IL-23, as well as Th17 infiltration in the colon. Importantly, inhibition of COX-2 reversed the elevation in the expression of these proinflammatory mediators induced by TSC1 deficiency, and subsequently reduced the symptoms and pathological characteristics of UC in mouse models. Mechanistically, mTORC1 activates COX-2 transcription via phosphorylating STAT3 and enhancing it's binding to the COX-2 promoter. Consistently, enhanced mTORC1 activity and COX2 expression, as well as strong positive correlation between each other, were observed in colonic epithelial tissues of UC patients. Collectively, our study demonstrates an essential role of epithelial mTORC1 in UC pathogenesis and establishes a novel link between colonic epithelium, Th17 responses, and UC development.
Collapse
Affiliation(s)
- Xiaojun Lin
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Qiuyi Sun
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Ling Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Minhong He
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiaoying Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Mingqiang Lai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Miao Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Yongchun Su
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Hang Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 7054, USA
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Juan Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|